Features

- Incorporates the ARM926EJ-S[™] ARM[®] Thumb[®] Processor
 - DSP Instruction Extensions, ARM Jazelle® Technology for Java® Acceleration
 - 32-KByte Data Cache, 32-KByte Instruction Cache, Write Buffer
 - CPU Frequency 400 MHz
 - Memory Management Unit
 - EmbeddedlCE[™], Debug Communication Channel Support
- Additional Embedded Memories
 - One 64-KByte Internal ROM, Single-cycle Access at Maximum Matrix Speed
 - Two 16-KByte Internal SRAM, Single-cycle Access at Maximum Matrix Speed
- External Bus Interface (EBI)
 - Supports SDRAM, Static Memory, ECC-enabled NAND Flash and CompactFlash®
- USB 2.0 Full Speed (12 Mbits per second) Device Port
 - On-chip Transceiver, 2,432-byte Configurable Integrated DPRAM
- USB 2.0 Full Speed (12 Mbits per second) Host and Double Port
 - Single or Dual On-chip Transceivers
 - Integrated FIFOs and Dedicated DMA Channels
- Ethernet MAC 10/100 Base T
 - Media Independent Interface or Reduced Media Independent Interface
 - 128-byte FIFOs and Dedicated DMA Channels for Receive and Transmit
- Image Sensor Interface
 - ITU-R BT. 601/656 External Interface, Programmable Frame Capture Rate
 - 12-bit Data Interface for Support of High Sensibility Sensors
 - SAV and EAV Synchronization, Preview Path with Scaler, YCbCr Format
- Bus Matrix
 - Six 32-bit-layer Matrix
 - Boot Mode Select Option, Remap Command
- Fully-featured System Controller, including
 - Reset Controller, Shutdown Controller
 - Four 32-bit Battery Backup Registers for a Total of 16 Bytes
 - Clock Generator and Power Management Controller
 - Advanced Interrupt Controller and Debug Unit
 - Periodic Interval Timer, Watchdog Timer and Real-time Timer
- Reset Controller (RSTC)
 - Based on a Power-on Reset Cell, Reset Source Identification and Reset Output Control
- Clock Generator (CKGR)
 - Selectable 32,768 Hz Low-power Oscillator or Internal Low Power RC Oscillator on Battery Backup Power Supply, Providing a Permanent Slow Clock
 - 3 to 20 MHz On-chip Oscillator, One up to 800 MHz PLL and One up to 100 MHz PLL
- Power Management Controller (PMC)
 - Very Slow Clock Operating Mode, Software Programmable Power Optimization Capabilities
 - Two Programmable External Clock Signals
- Advanced Interrupt Controller (AIC)
 - Individually Maskable, Eight-level Priority, Vectored Interrupt Sources
 - Three External Interrupt Sources and One Fast Interrupt Source, Spurious Interrupt Protected
- Debug Unit (DBGU)
 - 2-wire UART and Support for Debug Communication Channel, Programmable ICE Access Prevention

AT91 ARM Thumb-based Microcontroller

AT91SAM9G20 Preliminary

NOTE: This is a summary document. The complete document is available on the Atmel website at www.atmel.com.

- Periodic Interval Timer (PIT)
 - 20-bit Interval Timer plus 12-bit Interval Counter
- Watchdog Timer (WDT)
 - Key-protected, Programmable Only Once, Windowed 16-bit Counter Running at Slow Clock
- Real-time Timer (RTT)
 - 32-bit Free-running Backup Counter Running at Slow Clock with 16-bit Prescaler
- One 4-channel 10-bit Analog-to-Digital Converter
- Three 32-bit Parallel Input/Output Controllers (PIOA, PIOB, PIOC)
 - 96 Programmable I/O Lines Multiplexed with up to Two Peripheral I/Os
 - Input Change Interrupt Capability on Each I/O Line
 - Individually Programmable Open-drain, Pull-up Resistor and Synchronous Output
 - All I/O Lines are Schmitt Trigger Inputs
- Peripheral DMA Controller Channels (PDC)
- One Two-slot MultiMedia Card Interface (MCI)
 - SDCard/SDIO and MultiMediaCard[™] Compliant
 - Automatic Protocol Control and Fast Automatic Data Transfers with PDC
- One Synchronous Serial Controller (SSC)
 - Independent Clock and Frame Sync Signals for Each Receiver and Transmitter
 - I2S Analog Interface Support, Time Division Multiplex Support
 - High-speed Continuous Data Stream Capabilities with 32-bit Data Transfer
- Four Universal Synchronous/Asynchronous Receiver Transmitters (USART)
 - Individual Baud Rate Generator, IrDA® Infrared Modulation/Demodulation, Manchester Encoding/Decoding
 - Support for ISO7816 T0/T1 Smart Card, Hardware Handshaking, RS485 Support
 - Full Modem Signal Control on USART0
- Two 2-wire UARTs
- Two Master/Slave Serial Peripheral Interfaces (SPI)
 - 8- to 16-bit Programmable Data Length, Four External Peripheral Chip Selects
 - Synchronous Communications
- Two Three-channel 16-bit Timer/Counters (TC)
 - Three External Clock Inputs, Two Multi-purpose I/O Pins per Channel
 - Double PWM Generation, Capture/Waveform Mode, Up/Down Capability
 - High-Drive Capability on Outputs TIOA0, TIOA1, TIOA2
- One Two-wire Interface (TWI)
 - Compatible with Standard Two-wire Serial Memories
 - One, Two or Three Bytes for Slave Address
 - Sequential Read/Write Operations
 - Master, Multi-master and Slave Mode Operation
 - Bit Rate: Up to 400 Kbits
 - General Call Supported in Slave Mode
 - Connection to Peripheral DMA Controller (PDC) Channel Capabilities Optimizes Data Transfers in Master Mode
- IEEE® 1149.1 JTAG Boundary Scan on All Digital Pins
- Required Power Supplies
 - 0.9V to 1.1V for VDDBU, VDDCORE, VDDPLL
 - 1.65 to 3.6V for VDDOSC
 - 1.65V to 3.6V for VDDIOP (Peripheral I/Os)
 - 3.0V to 3.6V for VDDUSB
 - 3.0V to 3.6V VDDANA (Analog-to-digital Converter)
 - Programmable 1.65V to 1.95V or 3.0V to 3.6V for VDDIOM (Memory I/Os)
- Available in a 217-ball LFBGA RoHS-compliant Package

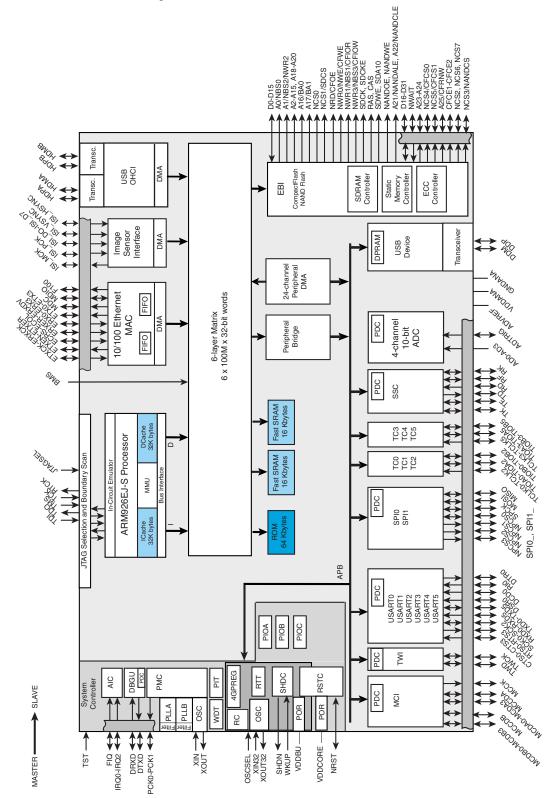
AT91SAM9G20 Preliminary

1. Description

The AT91SAM9G20 is based on the integration of an ARM926EJ-S processor with fast ROM and RAM memories and a wide range of peripherals.

The AT91SAM9G20 embeds an Ethernet MAC, one USB Device Port, and a USB Host controller. It also integrates several standard peripherals, such as the USART, SPI, TWI, Timer Counters, Synchronous Serial Controller, ADC and MultiMedia Card Interface.

The AT91SAM9G20 is architectured on a 6-layer matrix, allowing a maximum internal bandwidth of six 32-bit buses. It also features an External Bus Interface capable of interfacing with a wide range of memory devices.


The AT91SAM9G20 is an enhancement of the AT91SAM9260 with the same peripheral features. It is pin-to-pin compatible with the exception of power supply pins. Speed is increased to reach 400 MHz on the ARM core and 133 MHz on the system bus and EBI.

2. AT91SAM9G20 Block Diagram

Figure 2-1. AT91SAM9G20 Block Diagram

3. Signal Description

 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Type	Active Level	Comments
	Power Supp			
VDDIOM	DDIOM EBI I/O Lines Power Supply Power			1.65V to 1.95V or 3.0V to 3.6V
VDDIOP	Peripherals I/O Lines Power Supply	,		1.65V to 3.6V
VDDBU	Backup I/O Lines Power Supply	Power		0.9V to 1.1V
VDDANA	Analog Power Supply	Power		3.0V to 3.6V
VDDPLL	PLL Power Supply	Power		0.9V to 1.1V
VDDOSC	Oscillator Power Supply	Power		1.65V to 3.6V
VDDCORE	Core Chip Power Supply	Power		0.9V to 1.1V
VDDUSB	USB Power Supply	Power		1.65V to 3.6V
GND	Ground	Ground		
GNDANA	Analog Ground	Ground		
GNDBU	Backup Ground	Ground		
GNDUSB	USB Ground	Ground		
	Clocks, Oscillators	and PLLs		
XIN	Main Oscillator Input	Input		
XOUT	Main Oscillator Output	Output		
XIN32	Slow Clock Oscillator Input	Input		
XOUT32	Slow Clock Oscillator Output	Slow Clock Oscillator Output Output		
OSCSEL	Slow Clock Oscillator Selection	Input		Accepts between 0V and VDDBU.
PCK0 - PCK1	Programmable Clock Output	Output		
	Shutdown, Wake	up Logic		
SHDN	Shutdown Control	Output		
WKUP	Wake-up Input	Input		Accepts between 0V and VDDBU.
	ICE and JT	AG		'
NTRST	Test Reset Signal	Input	Low	Pull-up resistor
TCK	Test Clock	Input		No pull-up resistor
TDI	Test Data In	Input		No pull-up resistor
TDO	Test Data Out	Output		
TMS	Test Mode Select	Input		No pull-up resistor
JTAGSEL	JTAG Selection	Input		Pull-down resistor. Accepts between 0V and VDDBU.
RTCK	Return Test Clock	Output		

 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments				
Reset/Test								
NRST	Microcontroller Reset	I/O	Low	Pull-up resistor				
TST	Test Mode Select	Input		Pull-down resistor. Accepts between 0V and VDDBU.				
BMS	Boot Mode Select	Input		No pull-up resistor BMS = 0 when tied to GND. BMS = 1 when tied to VDDIOP.				
	Debug Un	it - DBGU						
DRXD	Debug Receive Data	Input						
DTXD	Debug Transmit Data	Output						
	Advanced Interrup	ot Controller - AIC						
IRQ0 - IRQ2	External Interrupt Inputs	Input						
FIQ	Fast Interrupt Input	Input						
	PIO Controller - PI	OA - PIOB - PIOC						
PA0 - PA31	Parallel IO Controller A	I/O		Pulled-up input at reset				
PB0 - PB31	Parallel IO Controller B	I/O		Pulled-up input at reset				
PC0 - PC31	Parallel IO Controller C	I/O		Pulled-up input at reset				
	External Bus I	nterface - EBI						
D0 - D31	Data Bus	I/O		Pulled-up input at reset				
A0 - A25	Address Bus	Output		0 at reset				
NWAIT	External Wait Signal	Input	Low					
	Static Memory C	Controller - SMC						
NCS0 - NCS7	Chip Select Lines	Output	Low					
NWR0 - NWR3	Write Signal	Output	Low					
NRD	Read Signal	Output	Low					
NWE	Write Enable	Output	Low					
NBS0 - NBS3	Byte Mask Signal	Output	Low					
	CompactFla	sh Support						
CFCE1 - CFCE2	CompactFlash Chip Enable	Output	Low					
CFOE	CompactFlash Output Enable	Output	Low					
CFWE	CompactFlash Write Enable	Output	Low					
CFIOR	CompactFlash IO Read	Output	Low					
CFIOW	CompactFlash IO Write	Output	Low					
CFRNW	CompactFlash Read Not Write	Output						
CFCS0 - CFCS1	CompactFlash Chip Select Lines	Output	Low					

AT91SAM9G20 Preliminary

 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments
	NAND Flash Su	pport		
NANDCS	NAND Flash Chip Select	Output	Low	
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NANDALE	NAND Flash Address Latch Enable	Output	Low	
NANDCLE	NAND Flash Command Latch Enable	Output	Low	
	SDRAM Contro	oller		+
SDCK	SDRAM Clock	Output		
SDCKE	SDRAM Clock Enable	Output	High	
SDCS	SDRAM Controller Chip Select	Output	Low	
BA0 - BA1	Bank Select	Output		
SDWE	SDRAM Write Enable	Output	Low	
RAS - CAS	Row and Column Signal	Output	Low	
SDA10	SDRAM Address 10 Line	Output		
	Multimedia Card Inte	erface MCI	1	-1
MCCK	Multimedia Card Clock	Output		
MCCDA	Multimedia Card Slot A Command	I/O		
MCDA0 - MCDA3	Multimedia Card Slot A Data	I/O		
MCCDB	Multimedia Card Slot B Command	I/O		
MCDB0 - MCDB3	Multimedia Card Slot B Data	I/O		
	Universal Synchronous Asynchronous	Receiver Trans	smitter USA	RTx
SCKx	USARTx Serial Clock	I/O		
TXDx	USARTx Transmit Data	I/O		
RXDx	USARTx Receive Data	Input		
RTSx	USARTx Request To Send	Output		
CTSx	USARTx Clear To Send	Input		
DTR0	USART0 Data Terminal Ready	Output		
DSR0	USART0 Data Set Ready	Input		
DCD0	USART0 Data Carrier Detect	Input		
RI0	USART0 Ring Indicator	Input		
	Synchronous Serial Co	ntroller - SSC		
TD	SSC Transmit Data	Output		
RD	SSC Receive Data	Input		
TK	SSC Transmit Clock	I/O		
RK	SSC Receive Clock	I/O		
TF	SSC Transmit Frame Sync	I/O		
RF	SSC Receive Frame Sync	I/O		

 Table 3-1.
 Signal Description List (Continued)

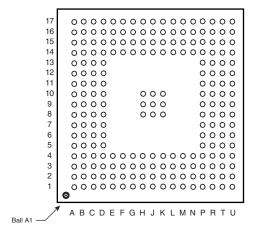
Signal Name	Function	Туре	Active Level	Comments			
Timer/Counter - TCx							
TCLKx	TC Channel x External Clock Input	Input					
TIOAx TC Channel x I/O Line A		I/O					
TIOBx	TC Channel x I/O Line B	I/O					
	Serial Peripheral Inte	erface - SPIx_					
SPIx_MISO	Master In Slave Out	I/O					
SPIx_MOSI	Master Out Slave In	I/O					
SPIx_SPCK	SPI Serial Clock	I/O					
SPIx_NPCS0	SPI Peripheral Chip Select 0	I/O	Low				
SPIx_NPCS1-SPIx_NPCS3	SPI Peripheral Chip Select	Output	Low				
	Two-Wire Into	erface	•				
TWD	Two-wire Serial Data	I/O					
TWCK	Two-wire Serial Clock	I/O					
	USB Host	Port					
HDPA	USB Host Port A Data +	Analog					
HDMA	USB Host Port A Data -	Analog					
HDPB	USB Host Port B Data +	Analog					
HDMB	USB Host Port B Data +	Analog					
	USB Device	Port					
DDM	USB Device Port Data -	Analog					
DDP	USB Device Port Data +	Analog					
	Ethernet 10)/100					
ETXCK	Transmit Clock or Reference Clock	Input		MII only, REFCK in RMII			
ERXCK	Receive Clock	Input		MII only			
ETXEN	Transmit Enable	Output					
ETX0-ETX3	Transmit Data	Output		ETX0-ETX1 only in RMII			
ETXER	Transmit Coding Error	Output		MII only			
ERXDV	Receive Data Valid	Input		RXDV in MII, CRSDV in RMII			
ERX0-ERX3	Receive Data	Input		ERX0-ERX1 only in RMII			
ERXER	Receive Error	Input					
ECRS	Carrier Sense and Data Valid	Input		MII only			
ECOL	Collision Detect	Input		MII only			
EMDC	Management Data Clock	Output					
EMDIO	Management Data Input/Output	I/O					
EF100	Force 100Mbit/sec.	Output	High				

 Table 3-1.
 Signal Description List (Continued)

Signal Name	Function	Туре	Active Level	Comments
	Image Sensor In	terface	1	1
ISI_D0-ISI_D11	Image Sensor Data	Input		
ISI_MCK	Image Sensor Reference Clock	Output		
ISI_HSYNC Image Sensor Horizontal Synchro		Input		
ISI_VSYNC	ISI_VSYNC Image Sensor Vertical Synchro			
ISI_PCK	ISI_PCK Image Sensor Data clock			
	Analog to Digital C	onverter	•	•
AD0-AD3	Analog Inputs	Analog		Digital pulled-up inputs at reset
ADVREF	Analog Positive Reference	Analog		
ADTRG	ADC Trigger	Input		

Note: No PLLRCA line present on the AT91SAM9G20.

4. Package and Pinout


The AT91SAM9G20 is available in a 217-ball 15 x 15 mm LFBGA package (0.8 mm pitch) (Figure 4-1).

4.1 217-ball LFBGA Package Outline

Figure 4-1 shows the orientation of the 217-ball LFBGA package.

A detailed mechanical description is given in the section "AT91SAM9G20 Mechanical Characteristics" of the product datasheet.

Figure 4-1. 217-ball LFBGA Package (Top View)

4.2 217-ball LFBGA Pinout

Table 4-1. Pinout for 217-ball

Table 4-1.	Fillout for 217-k
Pin	Signal Name
A1	CFIOW/NBS3/NWR3
A2	NBS0/A0
A3	NWR2/NBS2/A1
A4	A6
A5	A8
A6	A11
A7	A13
A8	BA0/A16
A9	A18
A10	A21
A10	A21 A22
A12	CFWE/NWE/NWR0
A13	CFOE/NRD
A14	NCS0
A15	PC5
A16	PC6
A17	PC4
B1	SDCK
B2	CFIOR/NBS1/NWR1
B3	SDCS/NCS1
B4	SDA10
B5	A3
B6	A7
B7	A12
B8	A15
B9	A20
B10	NANDWE
B11	PC7
B12	PC10
B13	
_	PC13 PC11
B14	
B15	PC14
B16	PC8
B17	WKUP
C1	D8
C2	D1
C3	CAS
C4	A2
C5	A4
C6	A9
C7	A14
C8	BA1/A17
C9	A19
C10	NANDOE
C11	PC9
C12	PC12
C13	DDP
C14	HDMB
C14	NC
C16	VDDUSB
C17	SHDN
D1	D9
D2	D2
D3	RAS
D4	D0

	LFBGA Package				
Pin	Signal Name				
D5	A5				
D6	GND				
D7	A10				
D8	GND				
D9	VDDCORE				
D10	GNDUSB				
D11	VDDIOM				
D12	GNDUSB				
D13	DDM				
D14	HDPB				
D15	NC				
D16	VDDBU				
D17	XIN32				
E1	D10				
E2	D5				
E3	D3				
E4	D3				
	HDPA				
E14					
E15	HDMA				
E16	GNDBU				
E17	XOUT32				
F1	D13				
F2	SDWE				
F3	D6				
F4	GND				
F14	OSCSEL				
F15	BMS				
F16	JTAGSEL				
F17	TST				
G1	PC15				
G2	D7				
G3	SDCKE				
G4	VDDIOM				
G14	GND				
G15	NRST				
G16	RTCK				
G17	TMS				
H1	PC18				
H2	D14				
H3	D12				
H4	D11				
H8	GND				
H9	GND				
H10	GND				
H14	VDDCORE				
	TCK				
H15					
H16	NTRST				
H17	PB18				
J1	PC19				
J2	PC17				
J3	VDDIOM				
J4	PC16				
J8	GND				
J9	GND				
J10	GND				

Pin	Signal Name
J14	TDO
J15	PB19
J16	TDI
J17	PB16
K1	PC24
K2	PC20
K3	D15
K4	PC21
K8	GND
K9	GND
K10	GND
K14	PB4
K15	PB17
K16	GND
K17	PB15
L1	GND
L2	PC26
L3	PC25
L4	VDDOSC
L14	PA28
L15	PB9
L16	PB8
L17	PB14
M1	VDDCORE
M2	PC31
M3	GND
M4	PC22
M14	PB1
M15	PB2
M16	PB3
M17	PB7
N1	XIN
N2	VDDPLL
N3	PC23
N4	PC27
N14	PA31
N14 N15	PA30
N16	PB0
N17	PB6
P1	XOUT
P2	VDDPLL
P3	PC30
P3	PC30 PC28
P4 P5	PC28
P6 P7	PB13 PB24
P8	VDDIOP
P9	PB30
P10	PB31
P11	PA1
P12	PA3
P13	PA7
P14	PA9
P15	PA26
P16	PA25
·	

Pin	Signal Name
P17	PB5
R1	NC
R2	GNDANA
R3	PC29
R4	VDDANA
R5	PB12
R6	PB23
R7	GND
R8	PB26
R9	PB28
R10	PA0
R11	PA4
R12	PA5
R13	PA10
R14	PA21
R15	PA23
R16	PA24
R17	PA29
T1	NC
T2	GNDPLL
T3	PC0
T4	PC1
T5	PB10
T6	PB22
T7	GND
T8	PB29
T9	PA2
T10	PA6
T11	PA8
T12	PA11
T13	VDDCORE
T14	PA20
T15	GND
T16	PA22
T17	PA27
U1	GNDPLL
U2	ADVREF
U3	PC2
U4	PC3
U5	PB20
U6	PB21
U7	PB25
U8	PB27
U9	PA12
U10	PA13
U11	PA14
U12	PA15
U13	PA19
U14	PA17
U15	PA16
U16	PA18
U17	VDDIOP

5. Power Considerations

5.1 Power Supplies

The AT91SAM9G20 has several types of power supply pins:

- VDDCORE pins: Power the core, including the processor, the embedded memories and the peripherals; voltage ranges from 0.9V to 1.1V, 1.0V nominal.
- VDDIOM pins: Power the External Bus Interface I/O lines; voltage ranges between 1.65V and 1.95V (1.8V typical) or between 3.0V and 3.6V (3.3V nominal). The voltage range is selectable by software.
- VDDIOP pins: Power the Peripherals I/O lines; voltage ranges from 1.65V to 3.6V.
- VDDBU pin: Powers the Slow Clock oscillator, the internal RC oscillator and a part of the System Controller; voltage ranges from 0.9V to 1.1V, 1.0V nominal.
- VDDPLL pin: Powers the PLL cells; voltage ranges from 0.9V to 1.1V.
- VDDOSC pin: Powers the Main Oscillator cells; voltage ranges from 1.65V to 3.6V
- VDDANA pin: Powers the Analog to Digital Converter; voltage ranges from 3.0V to 3.6V, 3.3V nominal.
- VDDUSB pin: Powers USB transceiver; voltage ranges from 3.0V to 3.6V.

Ground pins GND are common to VDDCORE, VDDIOM, VDDOSC and VDDIOP pins power supplies. Separated ground pins are provided for VDDBU, VDDPLL, VDDUSB and VDDANA. These ground pins are respectively GNDBU, GNDPLL, GNDUSB and GNDANA.

5.2 Power Consumption

The AT91SAM9G20 consumes about 4 mA of static current on VDDCORE at 25°C. This static current rises at up to 18 mA if the temperature increases to 85°C.

On VDDBU, the current does not exceed 9 μ A at 25°C. This static current rises at up to 18 μ A if the temperature increases to 85°C.

For dynamic power consumption, the AT91SAM9G20 consumes a maximum of 50 mA on VDDCORE at maximum conditions (1.0V, 25°C, rises to 80mA at 85°C, processor running full-performance algorithm out of high-speed memories).

5.3 Programmable I/O Lines

The power supplies pins VDDIOM accept two voltage ranges. This allows the device to reach its maximum speed either out of 1.8V or 3.3V external memories.

The maximum speed is 133 MHz on the pin SDCK (SDRAM Clock) loaded with 10 pF. The other signals (control, address and data signals) do not go over 66 MHz, loaded with 30 pF for power supply at 1.8V and 50 pF for power supply at 3.3V.

The EBI I/Os accept two slew rate modes, Fast and Slow. This allows to adapt the rising and falling time on SDRAM clock, control and data to the bus load.

The voltage ranges and the slew rates are determined by programming VDDIOMSEL and IOSR bits in the Chip Configuration registers located in the Matrix User Interface.

At reset, the selected voltage defaults to 3.3V nominal and power supply pins can accept either 1.8V or 3.3V. The user must make sure to program the EBI voltage range before getting the device out of its Slow Clock Mode.

At reset, the selected slew rates defaults are Fast.

6. I/O Line Considerations

6.1 JTAG Port Pins

TMS, TDI and TCK are schmitt trigger inputs and have no pull-up resistors.

TDO and RTCK are outputs, driven at up to VDDIOP, and have no pull-up resistor.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent pull-down resistor of about 15 k Ω to GND, so that it can be left unconnected for normal operations.

The NTRST signal is described in the Reset Pins paragraph.

All the JTAG signals are supplied with VDDIOP.

6.2 Test Pin

The TST pin is used for manufacturing test purposes when asserted high. It integrates a permanent pull-down resistor of about 15 k Ω to GNDBU, so that it can be left unconnected for normal operations. Driving this line at a high level leads to unpredictable results.

This pin is supplied with VDDBU.

6.3 Reset Pins

NRST is an open-drain output integrating a non-programmable pull-up resistor. It can be driven with voltage at up to VDDIOP.

NTRST is an input which allows reset of the JTAG Test Access port. It has no action on the processor.

As the product integrates power-on reset cells, which manages the processor and the JTAG reset, the NRST and NTRST pins can be left unconnected.

The NRST and NTRST pins both integrate a permanent pull-up resistor of 100 $k\Omega$ minimum to VDDIOP.

The NRST signal is inserted in the Boundary Scan.

6.4 PIO Controllers

All the I/O lines are Schmitt trigger inputs and all the lines managed by the PIO Controllers integrate a programmable pull-up resistor of 75 k Ω typical with the exception of P4 - P31. For details, refer to the section "AT91SAM9G20 Electrical Characteristics". Programming of this pull-up resistor is performed independently for each I/O line through the PIO Controllers.

6.5 I/O Line Drive Levels

The PIO lines drive current capability is described in the DC Characteristics section of the product datasheet.

6.6 Shutdown Logic Pins

The SHDN pin is an output only, which is driven by the Shutdown Controller.

The pin WKUP is an input-only. It can accept voltages only between 0V and VDDBU.

12 AT91SAM9G20 Preliminary

6.7 Slow Clock Selection

The AT91SAM9G20 slow clock can be generated either by an external 32768Hz crystal or the on-chip RC oscillator.

7. Processor and Architecture

7.1 ARM926EJ-S Processor

- RISC Processor Based on ARM v5TEJ Architecture with Jazelle technology for Java acceleration
- Two Instruction Sets
 - ARM High-performance 32-bit Instruction Set
 - Thumb High Code Density 16-bit Instruction Set
- DSP Instruction Extensions
- 5-Stage Pipeline Architecture:
 - Instruction Fetch (F)
 - Instruction Decode (D)
 - Execute (E)
 - Data Memory (M)
 - Register Write (W)
- 32-Kbyte Data Cache, 32-Kbyte Instruction Cache
 - Virtually-addressed 4-way Associative Cache
 - Eight words per line
 - Write-through and Write-back Operation
 - Pseudo-random or Round-robin Replacement
- Write Buffer
 - Main Write Buffer with 16-word Data Buffer and 4-address Buffer
 - DCache Write-back Buffer with 8-word Entries and a Single Address Entry
 - Software Control Drain
- Standard ARM v4 and v5 Memory Management Unit (MMU)
 - Access Permission for Sections
 - Access Permission for large pages and small pages can be specified separately for each quarter of the page
 - 16 embedded domains
- Bus Interface Unit (BIU)
 - Arbitrates and Schedules AHB Requests
 - Separate Masters for both instruction and data access providing complete Matrix system flexibility
 - Separate Address and Data Buses for both the 32-bit instruction interface and the 32-bit data interface
 - On Address and Data Buses, data can be 8-bit (Bytes), 16-bit (Half-words) or 32-bit (Words)

7.2 Bus Matrix

- 6-layer Matrix, handling requests from 6 masters
- Programmable Arbitration strategy
 - Fixed-priority Arbitration
 - Round-Robin Arbitration, either with no default master, last accessed default master or fixed default master
- Burst Management
 - Breaking with Slot Cycle Limit Support
 - Undefined Burst Length Support
- One Address Decoder provided per Master
 - Three different slaves may be assigned to each decoded memory area: one for internal boot, one for external boot, one after remap
- Boot Mode Select
 - Non-volatile Boot Memory can be internal or external
 - Selection is made by BMS pin sampled at reset
- Remap Command
 - Allows Remapping of an Internal SRAM in Place of the Boot Non-Volatile Memory
- Allows Handling of Dynamic Exception Vectors

7.2.1 Matrix Masters

The Bus Matrix of the AT91SAM9G20 manages six Masters, which means that each master can perform an access concurrently with others, according the slave it accesses is available.

Each Master has its own decoder that can be defined specifically for each master. In order to simplify the addressing, all the masters have the same decodings.

Table 7-1. List of Bus Matrix Masters

Master 0	ARM926 [™] Instruction
Master 1	ARM926 Data
Master 2	PDC
Master 3	ISI Controller
Master 4	Ethernet MAC
Master 5	USB Host DMA

7.2.2 Matrix Slaves

Each Slave has its own arbiter, thus allowing to program a different arbitration per Slave.

Table 7-2. List of Bus Matrix Slaves

Slave 0	Internal SRAM0 16 KBytes	
Slave 1	Internal SRAM1 16 KBytes	
Slave 2	Internal ROM	
Slave 2	USB Host User Interface	
Slave 3	External Bus Interface	
Slave 4	Internal Peripherals	

7.2.3 Masters to Slaves Access

All the Masters can normally access all the Slaves. However, some paths do not make sense, like as example allowing access from the Ethernet MAC to the Internal Peripherals. Thus, these paths are forbidden or simply not wired, and shown "-" in Table 7-3.

Table 7-3. AT91SAM9G20 Masters to Slaves Access

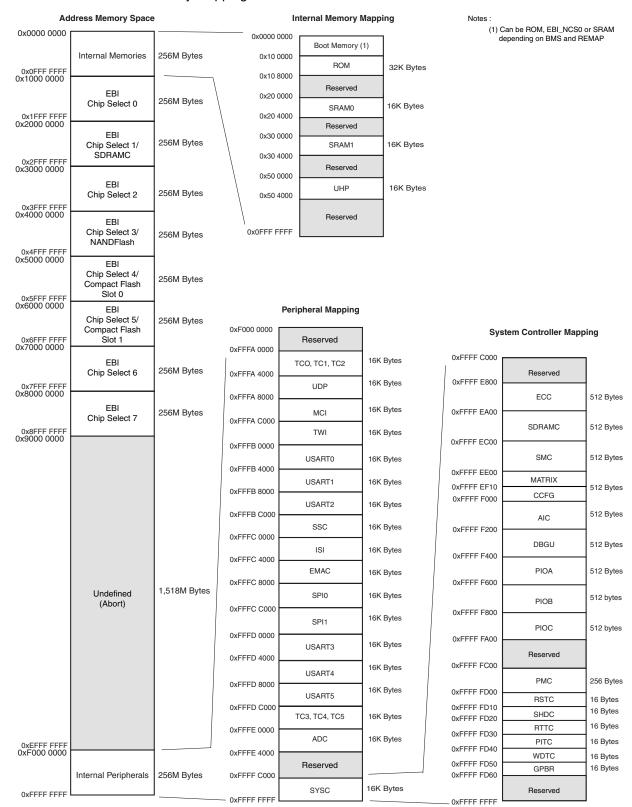
Master		0 & 1	2	3	4	5
Slave		ARM926 Instruction & Data	Peripheral DMA Controller	ISI Controller	Ethernet MAC	USB Host Controller
0	Internal SRAM 16 Kbytes	x	X	X	X	X
1	Internal SRAM 16 Kbytes	x	Х	Х	Х	X
0	Internal ROM	Х	Х	-	-	-
2	UHP User Interface	Х	Х	-	-	-
3	External Bus Interface	Х	Х	Х	Х	Х
4	Internal Peripherals	Х	X	-	-	-

7.3 Peripheral DMA Controller

- · Acting as one Matrix Master
- Allows data transfers from/to peripheral to/from any memory space without any intervention of the processor.
- Next Pointer Support, forbids strong real-time constraints on buffer management.
- Twenty-four channels
 - Two for each USART
 - Two for the Debug Unit
 - Two for the Serial Synchronous Controller
 - Two for each Serial Peripheral Interface
 - One for Multimedia Card Interface
 - One for Analog-to-Digital Converter
 - Two for the Two-wire Interface

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to High priorities):

- TWI Transmit Channel
- DBGU Transmit Channel
- USART5 Transmit Channel
- USART4 Transmit Channel
- USART3 Transmit Channel
- USART2 Transmit Channel
- USART1 Transmit Channel
- USART0 Transmit Channel
- SPI1 Transmit Channel


- SPI0 Transmit Channel
- SSC Transmit Channel
- TWI Receive Channel
- DBGU Receive Channel
- USART5 Receive Channel
- USART4 Receive Channel
- USART3 Receive Channel
- USART2 Receive Channel
- USART1 Receive Channel
- USART0 Receive Channel
- ADC Receive Channel
- SPI1 Receive Channel
- SPI0 Receive Channel
- SSC Receive Channel
- MCI Transmit/Receive Channel

7.4 Debug and Test Features

- ARM926 Real-time In-circuit Emulator
 - Two real-time Watchpoint Units
 - Two Independent Registers: Debug Control Register and Debug Status Register
 - Test Access Port Accessible through JTAG Protocol
 - Debug Communications Channel
- Debug Unit
 - Two-pin UART
 - Debug Communication Channel Interrupt Handling
 - Chip ID Register
- IEEE1149.1 JTAG Boundary-scan on All Digital Pins

8. Memories

Figure 8-1. AT91SAM9G20 Memory Mapping

A first level of address decoding is performed by the Bus Matrix, i.e., the implementation of the Advanced High Performance Bus (AHB) for its Master and Slave interfaces with additional features.

Decoding breaks up the 4G bytes of address space into 16 banks of 256 Mbytes. The banks 1 to 7 are directed to the EBI that associates these banks to the external chip selects EBI_NCS0 to EBI_NCS7. Bank 0 is reserved for the addressing of the internal memories, and a second level of decoding provides 1 Mbyte of internal memory area. Bank 15 is reserved for the peripherals and provides access to the Advanced Peripheral Bus (APB).

Other areas are unused and performing an access within them provides an abort to the master requesting such an access.

Each Master has its own bus and its own decoder, thus allowing a different memory mapping per Master. However, in order to simplify the mappings, all the masters have a similar address decoding.

Regarding Master 0 and Master 1 (ARM926 Instruction and Data), three different Slaves are assigned to the memory space decoded at address 0x0: one for internal boot, one for external boot, one after remap. Refer to Table 8-1, "Internal Memory Mapping," on page 18 for details.

A complete memory map is presented in Figure 8-1 on page 17.

8.1 Embedded Memories

- 64-KByte ROM
 - Single Cycle Access at full matrix speed
- Two 16-Kbyte Fast SRAM
 - Single Cycle Access at full matrix speed

8.1.1 Boot Strategies

Table 8-1 summarizes the Internal Memory Mapping for each Master, depending on the Remap status and the BMS state at reset.

Table 8-1. Internal Memory Mapping

Address	REMA	REMAP = 1				
Address	BMS = 1	BMS = 0				
0x0000 0000	ROM	SRAM0 16K				
0x0010 0000	ROM					
0x0020 0000	SRAM0 16K					
0x0030 0000	SRAM1 16K					
0x0050 0000	USB Host User Interface					

The system always boots at address 0x0. To ensure a maximum number of possibilities for boot, the memory layout can be configured with two parameters.

REMAP allows the user to lay out the first internal SRAM bank to 0x0 to ease development. This is done by software once the system has booted. When REMAP = 1, BMS is ignored. Refer to the Bus Matrix Section for more details.

AT91SAM9G20 Preliminary

When REMAP = 0, BMS allows the user to lay out to 0x0, at his convenience, the ROM or an external memory. This is done via hardware at reset.

Note: Memory blocks not affected by these parameters can always be seen at their specified base addresses. See the complete memory map presented in Figure 8-1 on page 17.

The AT91SAM9G20 matrix manages a boot memory that depends on the level on the BMS pin at reset. The internal memory area mapped between address 0x0 and 0x000F FFFF is reserved for this purpose.

If BMS is detected at 1, the boot memory is the embedded ROM.

If BMS is detected at 0, the boot memory is the memory connected on the Chip Select 0 of the External Bus Interface.

8.1.1.1 BMS = 1, Boot on Embedded ROM

The system boots using the Boot Program.

- Boot on slow clock (On-chip RC or 32,768 Hz)
- · Auto baudrate detection
- Downloads and runs an application from external storage media into internal SRAM
- Downloaded code size depends on embedded SRAM size
- · Automatic detection of valid application
- · Bootloader on a non-volatile memory
 - SDCard
 - NAND Flash
 - SPI DataFlash[®] and Serial Flash connected on NPCS0 and NPCS1 of the SPI0
 - EEPROM on TWI
- SAM-BA® Boot in case no valid program is detected in external NVM, supporting
 - Serial communication on a DBGU
 - USB Device HS Port

8.1.1.2 BMS = 0, Boot on External Memory

- Boot on slow clock (On-chip RC or 32,768 Hz)
- Boot with the default configuration for the Static Memory Controller, byte select mode, 16-bit data bus, Read/Write controlled by Chip Select, allows boot on 16-bit non-volatile memory.

The customer-programmed software must perform a complete configuration.

To speed up the boot sequence when booting at 32 kHz EBI CS0 (BMS=0), the user must take the following steps:

- 1. Program the PMC (main oscillator enable or bypass mode).
- 2. Program and start the PLL.
- 3. Reprogram the SMC setup, cycle, hold, mode timings registers for CS0 to adapt them to the new clock.
- 4. Switch the main clock to the new value.

8.2 External Memories

The external memories are accessed through the External Bus Interface. Each Chip Select line has a 256-Mbyte memory area assigned.

Refer to the memory map in Figure 8-1 on page 17.

8.2.1 External Bus Interface

- Integrates three External Memory Controllers
 - Static Memory Controller
 - SDRAM Controller
 - ECC Controller
- Additional logic for NAND Flash
- Full 32-bit External Data Bus
- Up to 26-bit Address Bus (up to 64MBytes linear)
- Up to 8 chip selects, Configurable Assignment:
 - Static Memory Controller on NCS0
 - SDRAM Controller or Static Memory Controller on NCS1
 - Static Memory Controller on NCS2
 - Static Memory Controller on NCS3, Optional NAND Flash support
 - Static Memory Controller on NCS4 NCS5, Optional CompactFlash support
 - Static Memory Controller on NCS6-NCS7

8.2.2 Static Memory Controller

- 8-, 16- or 32-bit Data Bus
- Multiple Access Modes supported
 - Byte Write or Byte Select Lines
 - Asynchronous read in Page Mode supported (4- up to 32-byte page size)
- Multiple device adaptability
 - Compliant with LCD Module
 - Control signals programmable setup, pulse and hold time for each Memory Bank
- Multiple Wait State Management
 - Programmable Wait State Generation
 - External Wait Request
 - Programmable Data Float Time
- Slow Clock mode supported

8.2.3 SDRAM Controller

- Supported devices
 - Standard and Low-power SDRAM (Mobile SDRAM)
- · Numerous configurations supported
 - 2K, 4K, 8K Row Address Memory Parts
 - SDRAM with two or four Internal Banks
 - SDRAM with 16- or 32-bit Datapath
- · Programming facilities
 - Word, half-word, byte access
 - Automatic page break when Memory Boundary has been reached

- Multibank Ping-pong Access
- Timing parameters specified by software
- Automatic refresh operation, refresh rate is programmable
- Energy-saving capabilities
 - Self-refresh, power down and deep power down modes supported
- Error detection
 - Refresh Error Interrupt
- SDRAM Power-up Initialization by software
- CAS Latency of 1, 2 and 3 supported
- Auto Precharge Command not used

8.2.4 Error Corrected Code Controller

- Hardware Error Corrected Code (ECC) Generation
 - Detection and Correction by Software
- Supports NAND Flash and SmartMedia™ Devices with 8- or 16-bit Data Path.
- Supports NAND Flash/SmartMedia with Page Sizes of 528, 1056, 2112 and 4224 Bytes, Specified by Software
- Supports 1 bit correction for a page of 512,1024,2048 and 4096 Bytes with 8- or 16-bit Data Path
- Supports 1 bit correction per 512 bytes of data for a page size of 512, 2048 and 4096 Bytes with 8-bit Data Path
- Supports 1 bit correction per 256 bytes of data for a page size of 512, 2048 and 4096 Bytes with 8-bit Data Path

9. System Controller

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets, clocks, time, interrupts, watchdog, etc.

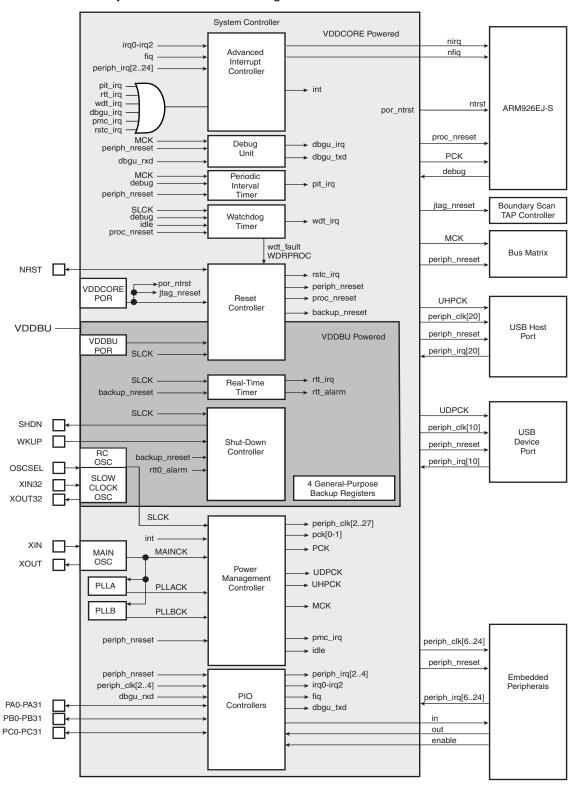
The System Controller User Interface embeds also the registers allowing to configure the Matrix and a set of registers for the chip configuration. The chip configuration registers allows configuring:

- EBI chip select assignment and Voltage range for external memories

The System Controller's peripherals are all mapped within the highest 16 Kbytes of address space, between addresses 0xFFFF E800 and 0xFFFF FFFF.

However, all the registers of System Controller are mapped on the top of the address space. All the registers of the System Controller can be addressed from a single pointer by using the standard ARM instruction set, as the Load/Store instruction has an indexing mode of ±4 Kbytes.

Figure 9-1 on page 22 shows the System Controller block diagram.


Figure 8-1 on page 17 shows the mapping of the User Interfaces of the System Controller peripherals.

9.1 System Controller Block Diagram

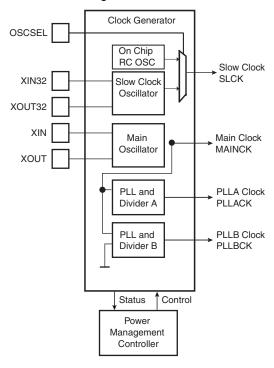
Figure 9-1. AT91SAM9G20 System Controller Block Diagram

9.2 Reset Controller

- Based on two Power-on-Reset cell
 - one on VDDBU and one on VDDCORE
- Status of the last reset
 - Either general reset (VDDBU rising), wake-up reset (VDDCORE rising), software reset, user reset or watchdog reset
- Controls the internal resets and the NRST pin output
 - Allows shaping a reset signal for the external devices

9.3 Shutdown Controller

- Shutdown and Wake-Up logic
 - Software programmable assertion of the SHDWN pin
 - Deassertion Programmable on a WKUP pin level change or on alarm


9.4 Clock Generator

- Embeds a Low Power 32768 Hz Slow Clock Oscillator and a Low power RC oscillator selectable with OSCSEL signal
 - Provides the permanent Slow Clock SLCK to the system
- Embeds the Main Oscillator
 - Oscillator bypass feature
 - Supports 3 to 20 MHz crystals
- Embeds 2 PLLs
 - The PLL A outputs 400-800 MHz clock
 - The PLL B outputs 100 MHz clock
 - Both integrate an input divider to increase output accuracy
 - PLL A and PLL B embed their own filters

Figure 9-2. Clock Generator Block Diagram

9.5 Power Management Controller

- Provides:
 - the Processor Clock PCK
 - the Master Clock MCK, in particular to the Matrix and the memory interfaces. The MCK divider can be 1,2,4,6
 - the USB Device Clock UDPCK
 - independent peripheral clocks, typically at the frequency of MCK
 - 2 programmable clock outputs: PCK0, PCK1
- Five flexible operating modes:
 - Normal Mode, processor and peripherals running at a programmable frequency
 - Idle Mode, processor stopped waiting for an interrupt
 - Slow Clock Mode, processor and peripherals running at low frequency
 - Standby Mode, mix of Idle and Backup Mode, peripheral running at low frequency, processor stopped waiting for an interrupt
 - Backup Mode, Main Power Supplies off, VDDBU powered by a battery

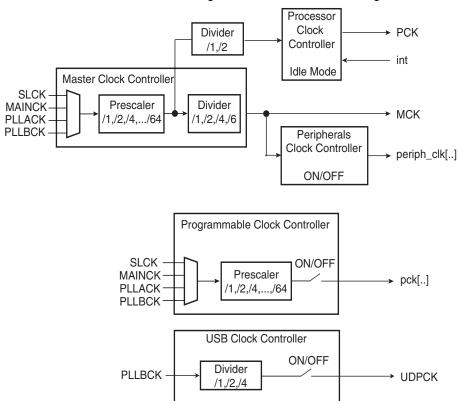


Figure 9-3. AT91SAM9G20 Power Management Controller Block Diagram

9.6 Periodic Interval Timer

- Includes a 20-bit Periodic Counter, with less than 1 µs accuracy
- Includes a 12-bit Interval Overlay Counter
- Real Time OS or Linux[®]/Windows CE[®] compliant tick generator

9.7 Watchdog Timer

- 16-bit key-protected only-once-Programmable Counter
- Windowed, prevents the processor being in a dead-lock on the watchdog access

9.8 Real-time Timer

- Real-time Timer 32-bit free-running back-up Counter
- Integrates a 16-bit programmable prescaler running on slow clock
- Alarm Register capable of generating a wake-up of the system through the Shutdown Controller

9.9 General-purpose Back-up Registers

• Four 32-bit backup general-purpose registers

9.10 Advanced Interrupt Controller

- Controls the interrupt lines (nIRQ and nFIQ) of the ARM Processor
- Thirty-two individually maskable and vectored interrupt sources

- Source 0 is reserved for the Fast Interrupt Input (FIQ)
- Source 1 is reserved for system peripherals
- Programmable Edge-triggered or Level-sensitive Internal Sources
- Programmable Positive/Negative Edge-triggered or High/Low Level-sensitive
- Three External Sources plus the Fast Interrupt signal
- 8-level Priority Controller
 - Drives the Normal Interrupt of the processor
 - Handles priority of the interrupt sources 1 to 31
 - Higher priority interrupts can be served during service of lower priority interrupt
- Vectoring
 - Optimizes Interrupt Service Routine Branch and Execution
 - One 32-bit Vector Register per interrupt source
 - Interrupt Vector Register reads the corresponding current Interrupt Vector
- Protect Mode
 - Easy debugging by preventing automatic operations when protect models are enabled
- · Fast Forcing
 - Permits redirecting any normal interrupt source on the Fast Interrupt of the processor

9.11 Debug Unit

- Composed of two functions:
 - Two-pin UART
 - Debug Communication Channel (DCC) support
- Two-pin UART
 - Implemented features are 100% compatible with the standard Atmel ® USART
 - Independent receiver and transmitter with a common programmable Baud Rate Generator
 - Even, Odd, Mark or Space Parity Generation
 - Parity, Framing and Overrun Error Detection
 - Automatic Echo, Local Loopback and Remote Loopback Channel Modes
 - Support for two PDC channels with connection to receiver and transmitter
- Debug Communication Channel Support
 - Offers visibility of and interrupt trigger from COMMRX and COMMTX signals from the ARM Processor's ICE Interface

9.12 Chip Identification

- Chip ID:0x019905A1
- JTAG ID: 0x05B2403F
- ARM926 TAP ID:0x0792603F

10. Peripherals

10.1 User Interface

The peripherals are mapped in the upper 256 Mbytes of the address space between the addresses 0xFFFA 0000 and 0xFFFC FFFF. Each User Peripheral is allocated 16 Kbytes of address space. A complete memory map is presented in Figure 8-1 on page 17.

10.2 Identifiers

Table 10-1 defines the Peripheral Identifiers of the AT91SAM9G20. A peripheral identifier is required for the control of the peripheral interrupt with the Advanced Interrupt Controller and for the control of the peripheral clock with the Power Management Controller.

Table 10-1. AT91SAM9G20 Peripheral Identifiers (Continued)

Peripheral ID	Peripheral Mnemonic	Peripheral Name	External Interrupt
0	AIC	Advanced Interrupt Controller	FIQ
1	SYSC	System Controller Interrupt	
2	PIOA	Parallel I/O Controller A	
3	PIOB	Parallel I/O Controller B	
4	PIOC	Parallel I/O Controller C	
5	ADC	Analog to Digital Converter	
6	US0	USART 0	
7	US1	USART 1	
8	US2	USART 2	
9	MCI	Multimedia Card Interface	
10	UDP	USB Device Port	
11	TWI	Two-wire Interface	
12	SPI0	Serial Peripheral Interface 0	
13	SPI1	Serial Peripheral Interface 1	
14	SSC	Synchronous Serial Controller	
15	-	Reserved	
16	-	Reserved	
17	TC0	Timer/Counter 0	
18	TC1	Timer/Counter 1	
19	TC2	Timer/Counter 2	
20	UHP	USB Host Port	
21	EMAC	Ethernet MAC	
22	ISI	Image Sensor Interface	
23	US3	USART 3	
24	US4	USART 4	
25	US5	USART 5	
26	TC3	Timer/Counter 3	
27	TC4	Timer/Counter 4	
28	TC5	Timer/Counter 5	

Table 10-1. AT91SAM9G20 Peripheral Identifiers (Continued)

Peripheral ID	Peripheral Mnemonic	Peripheral Name	External Interrupt
29	AIC	Advanced Interrupt Controller	IRQ0
30	AIC	Advanced Interrupt Controller	IRQ1
31	AIC	Advanced Interrupt Controller	IRQ2

Note: Setting AIC, SYSC, UHP, ADC and IRQ0-2 bits in the clock set/clear registers of the PMC has no effect. The ADC clock is automatically started for the first conversion. In Sleep Mode the ADC clock is automatically stopped after each conversion.

10.2.1 Peripheral Interrupts and Clock Control

10.2.1.1 System Interrupt

The System Interrupt in Source 1 is the wired-OR of the interrupt signals coming from:

- the SDRAM Controller
- the Debug Unit
- the Periodic Interval Timer
- the Real-time Timer
- the Watchdog Timer
- the Reset Controller
- the Power Management Controller

The clock of these peripherals cannot be deactivated and Peripheral ID 1 can only be used within the Advanced Interrupt Controller.

10.2.1.2 External Interrupts

All external interrupt signals, i.e., the Fast Interrupt signal FIQ or the Interrupt signals IRQ0 to IRQ2, use a dedicated Peripheral ID. However, there is no clock control associated with these peripheral IDs.

10.3 Peripheral Signal Multiplexing on I/O Lines

The AT91SAM9G20 features 3 PIO controllers (PIOA, PIOB, PIOC) that multiplex the I/O lines of the peripheral set.

Each PIO Controller controls up to 32 lines. Each line can be assigned to one of two peripheral functions, A or B. Table 10-2 on page 29, Table 10-3 on page 30 and Table 10-4 on page 31 define how the I/O lines of the peripherals A and B are multiplexed on the PIO Controllers. The two columns "Function" and "Comments" have been inserted in this table for the user's own comments; they may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only might be duplicated within both tables.

The column "Reset State" indicates whether the PIO Line resets in I/O mode or in peripheral mode. If I/O appears, the PIO Line resets in input with the pull-up enabled, so that the device is maintained in a static state as soon as the reset is released. As a result, the bit corresponding to the PIO Line in the register PIO_PSR (Peripheral Status Register) resets low.

If a signal name appears in the "Reset State" column, the PIO Line is assigned to this function and the corresponding bit in PIO_PSR resets high. This is the case of pins controlling memories, in particular the address lines, which require the pin to be driven as soon as the reset is released. Note that the pull-up resistor is also enabled in this case.

10.3.1 PIO Controller A Multiplexing

 Table 10-2.
 Multiplexing on PIO Controller A

PIO Controller A			Application Usage				
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments
PA0	SPI0_MISO	MCDB0		I/O	VDDIOP		
PA1	SPI0_MOSI	MCCDB		I/O	VDDIOP		
PA2	SPI0_SPCK			I/O	VDDIOP		
PA3	SPI0_NPCS0	MCDB3		I/O	VDDIOP		
PA4	RTS2	MCDB2		I/O	VDDIOP		
PA5	CTS2	MCDB1		I/O	VDDIOP		
PA6	MCDA0			I/O	VDDIOP		
PA7	MCCDA			I/O	VDDIOP		
PA8	MCCK			I/O	VDDIOP		
PA9	MCDA1			I/O	VDDIOP		
PA10	MCDA2	ETX2		I/O	VDDIOP		
PA11	MCDA3	ETX3		I/O	VDDIOP		
PA12	ETX0			I/O	VDDIOP		
PA13	ETX1			I/O	VDDIOP		
PA14	ERX0			I/O	VDDIOP		
PA15	ERX1			I/O	VDDIOP		
PA16	ETXEN			I/O	VDDIOP		
PA17	ERXDV			I/O	VDDIOP		
PA18	ERXER			I/O	VDDIOP		
PA19	ETXCK			I/O	VDDIOP		
PA20	EMDC			I/O	VDDIOP		
PA21	EMDIO			I/O	VDDIOP		
PA22	ADTRG	ETXER		I/O	VDDIOP		
PA23	TWD	ETX2		I/O	VDDIOP		
PA24	TWCK	ETX3		I/O	VDDIOP		
PA25	TCLK0	ERX2		I/O	VDDIOP		
PA26	TIOA0	ERX3		I/O	VDDIOP		
PA27	TIOA1	ERXCK		I/O	VDDIOP		
PA28	TIOA2	ECRS		I/O	VDDIOP		
PA29	SCK1	ECOL		I/O	VDDIOP		
PA30	SCK2	RXD4		I/O	VDDIOP		
PA31	SCK0	TXD4		I/O	VDDIOP		

10.3.2 PIO Controller B Multiplexing

Table 10-3. Multiplexing on PIO Controller B

PIO Controller B			Application Usage				
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments
PB0	SPI1_MISO	TIOA3		I/O	VDDIOP		
PB1	SPI1_MOSI	TIOB3		I/O	VDDIOP		
PB2	SPI1_SPCK	TIOA4		I/O	VDDIOP		
PB3	SPI1_NPCS0	TIOA5		I/O	VDDIOP		
PB4	TXD0			I/O	VDDIOP		
PB5	RXD0			I/O	VDDIOP		
PB6	TXD1	TCLK1		I/O	VDDIOP		
PB7	RXD1	TCLK2		I/O	VDDIOP		
PB8	TXD2			I/O	VDDIOP		
PB9	RXD2			I/O	VDDIOP		
PB10	TXD3	ISI_D8		I/O	VDDIOP		
PB11	RXD3	ISI_D9		I/O	VDDIOP		
PB12	TXD5	ISI_D10		I/O	VDDIOP		
PB13	RXD5	ISI_D11		I/O	VDDIOP		
PB14	DRXD			I/O	VDDIOP		
PB15	DTXD			I/O	VDDIOP		
PB16	TK0	TCLK3		I/O	VDDIOP		
PB17	TF0	TCLK4		I/O	VDDIOP		
PB18	TD0	TIOB4		I/O	VDDIOP		
PB19	RD0	TIOB5		I/O	VDDIOP		
PB20	RK0	ISI_D0		I/O	VDDIOP		
PB21	RF0	ISI_D1		I/O	VDDIOP		
PB22	DSR0	ISI_D2		I/O	VDDIOP		
PB23	DCD0	ISI_D3		I/O	VDDIOP		
PB24	DTR0	ISI_D4		I/O	VDDIOP		
PB25	RI0	ISI_D5		I/O	VDDIOP		
PB26	RTS0	ISI_D6		I/O	VDDIOP		
PB27	CTS0	ISI_D7		I/O	VDDIOP		
PB28	RTS1	ISI_PCK		I/O	VDDIOP		
PB29	CTS1	ISI_VSYNC		I/O	VDDIOP		
PB30	PCK0	ISI_HSYNC		I/O	VDDIOP		
PB31	PCK1	ISI_MCK		I/O	VDDIOP		

10.3.3 PIO Controller C Multiplexing

Table 10-4. Multiplexing on PIO Controller C

PIO Controller C				Application Usage			
I/O Line	Peripheral A	Peripheral B	Comments	Reset State	Power Supply	Function	Comments
PC0		SCK3	AD0	I/O	VDDANA		
PC1		PCK0	AD1	I/O	VDDANA		
PC2		PCK1	AD2	I/O	VDDANA		
PC3		SPI1_NPCS3	AD3	I/O	VDDANA		
PC4	A23	SPI1_NPCS2		A23	VDDIOM		
PC5	A24	SPI1_NPCS1		A24	VDDIOM		
PC6	TIOB2	CFCE1		I/O	VDDIOM		
PC7	TIOB1	CFCE2		I/O	VDDIOM		
PC8	NCS4/CFCS0	RTS3		I/O	VDDIOM		
PC9	NCS5/CFCS1	TIOB0		I/O	VDDIOM		
PC10	A25/CFRNW	CTS3		A25	VDDIOM		
PC11	NCS2	SPI0_NPCS1		I/O	VDDIOM		
PC12	IRQ0	NCS7		I/O	VDDIOM		
PC13	FIQ	NCS6		I/O	VDDIOM		
PC14	NCS3/NANDCS	IRQ2		I/O	VDDIOM		
PC15	NWAIT	IRQ1		I/O	VDDIOM		
PC16	D16	SPI0_NPCS2		I/O	VDDIOM		
PC17	D17	SPI0_NPCS3		I/O	VDDIOM		
PC18	D18	SPI1_NPCS1		I/O	VDDIOM		
PC19	D19	SPI1_NPCS2		I/O	VDDIOM		
PC20	D20	SPI1_NPCS3		I/O	VDDIOM		
PC21	D21	EF100		I/O	VDDIOM		
PC22	D22	TCLK5		I/O	VDDIOM		
PC23	D23			I/O	VDDIOM		
PC24	D24			I/O	VDDIOM		
PC25	D25			I/O	VDDIOM		
PC26	D26			I/O	VDDIOM		
PC27	D27			I/O	VDDIOM		
PC28	D28			I/O	VDDIOM		
PC29	D29			I/O	VDDIOM		
PC30	D30			I/O	VDDIOM		
PC31	D31			I/O	VDDIOM		

10.4 Embedded Peripherals

10.4.1 Serial Peripheral Interface

- Supports communication with serial external devices
 - Four chip selects with external decoder support allow communication with up to 15 peripherals
 - Serial memories, such as DataFlash and 3-wire EEPROMs
 - Serial peripherals, such as ADCs, DACs, LCD Controllers, CAN Controllers and Sensors
 - External co-processors
- · Master or slave serial peripheral bus interface
 - 8- to 16-bit programmable data length per chip select
 - Programmable phase and polarity per chip select
 - Programmable transfer delays between consecutive transfers and between clock and data per chip select
 - Programmable delay between consecutive transfers
 - Selectable mode fault detection
- · Very fast transfers supported
 - Transfers with baud rates up to MCK
 - The chip select line may be left active to speed up transfers on the same device

10.4.2 Two-wire Interface

- Compatibility with standard two-wire serial memory
- · One, two or three bytes for slave address
- Sequential read/write operations
- Supports either master or slave modes
- Compatible with standard two-wire serial memories
- · Master, multi-master and slave mode operation
- Bit rate: up to 400 Kbits
- General Call supported in slave mode
- Connection to Peripheral DMA Controller (PDC) capabilities optimizes data transfers in master mode only
 - One channel for the receiver, one channel for the transmitter
 - Next buffer support

10.4.3 USART

- Programmable Baud Rate Generator
- 5- to 9-bit full-duplex synchronous or asynchronous serial communications
 - 1, 1.5 or 2 stop bits in Asynchronous Mode or 1 or 2 stop bits in Synchronous Mode
 - Parity generation and error detection
 - Framing error detection, overrun error detection
 - MSB- or LSB-first
 - Optional break generation and detection

AT91SAM9G20 Preliminary

- By 8 or by-16 over-sampling receiver frequency
- Hardware handshaking RTS-CTS
- Optional modem signal management DTR-DSR-DCD-RI
- Receiver time-out and transmitter timeguard
- Optional Multi-drop Mode with address generation and detection
- RS485 with driver control signal
- ISO7816, T = 0 or T = 1 Protocols for interfacing with smart cards
 - NACK handling, error counter with repetition and iteration limit
- IrDA modulation and demodulation
 - Communication at up to 115.2 Kbps
- Test Modes
 - Remote Loopback, Local Loopback, Automatic Echo

The USART contains features allowing management of the Modem Signals DTR, DSR, DCD and RI. In the AT91SAM9G20, only the USART0 implements these signals, named DTR0, DSR0, DCD0 and RI0.

The USART1 and USART2 do not implement all the modem signals. Only RTS and CTS (RTS1 and CTS1, RTS2 and CTS2, respectively) are implemented in these USARTs for other features.

Thus, programming the USART1, USART2 or the USART3 in Modem Mode may lead to unpredictable results. In these USARTs, the commands relating to the Modem Mode have no effect and the status bits relating the status of the modem signals are never activated.

10.4.4 Serial Synchronous Controller

- Provides serial synchronous communication links used in audio and telecom applications (with CODECs in Master or Slave Modes, I²S, TDM Buses, Magnetic Card Reader, etc.)
- Contains an independent receiver and transmitter and a common clock divider
- Offers a configurable frame sync and data length
- Receiver and transmitter can be programmed to start automatically or on detection of different event on the frame sync signal
- Receiver and transmitter include a data signal, a clock signal and a frame synchronization signal

10.4.5 Timer Counter

- Two blocks of three 16-bit Timer Counter channels
- Each channel can be individually programmed to perform a wide range of functions including:
 - Frequency Measurement
 - Event Counting
 - Interval Measurement
 - Pulse Generation
 - Delay Timing
 - Pulse Width Modulation
 - Up/down Capabilities
- Each channel is user-configurable and contains:
 - Three external clock inputs

- Five internal clock inputs
- Two multi-purpose input/output signals
- Each block contains two global registers that act on all three TC Channels

Note: TC Block 0 (TC0, TC1, TC2) and TC Block 1 (TC3, TC4, TC5) have identical user interfaces. See Figure 8-1, "AT91SAM9G20 Memory Mapping," on page 17 for TC Block 0 and TC Block 1 base addresses.

10.4.6 Multimedia Card Interface

- One double-channel MultiMedia Card Interface
- Compatibility with MultiMedia Card Specification Version 2.2
- Compatibility with SD Memory Card Specification Version 1.0
- Compatibility with SDIO Specification Version V1.0.
- Card clock rate up to Master Clock divided by 2
- Embedded power management to slow down clock rate when not used
- · MCI has two slots, each supporting
 - One slot for one MultiMediaCard bus (up to 30 cards) or
 - One SD Memory Card
- · Support for stream, block and multi-block data read and write

10.4.7 USB Host Port

- Compliance with Open HCI Rev 1.0 Specification
- Compliance with USB V2.0 Full-speed and Low-speed Specification
- Supports both Low-Speed 1.5 Mbps and Full-speed 12 Mbps devices
- Root hub integrated with two downstream USB ports in the 217-LFBGA package
- Two embedded USB transceivers
- Supports power management
- Operates as a master on the Matrix

10.4.8 USB Device Port

- USB V2.0 full-speed compliant, 12 MBits per second
- Embedded USB V2.0 full-speed transceiver
- Embedded 2,432-byte dual-port RAM for endpoints
- Suspend/Resume logic
- Ping-pong mode (two memory banks) for isochronous and bulk endpoints
- Six general-purpose endpoints
 - Endpoint 0 and 3: 64 bytes, no ping-pong mode
 - Endpoint 1 and 2: 64 bytes, ping-pong mode
 - Endpoint 4 and 5: 512 bytes, ping-pong mode
- Embedded pad pull-up

10.4.9 Ethernet 10/100 MAC

- Compatibility with IEEE Standard 802.3
- 10 and 100 MBits per second data throughput capability

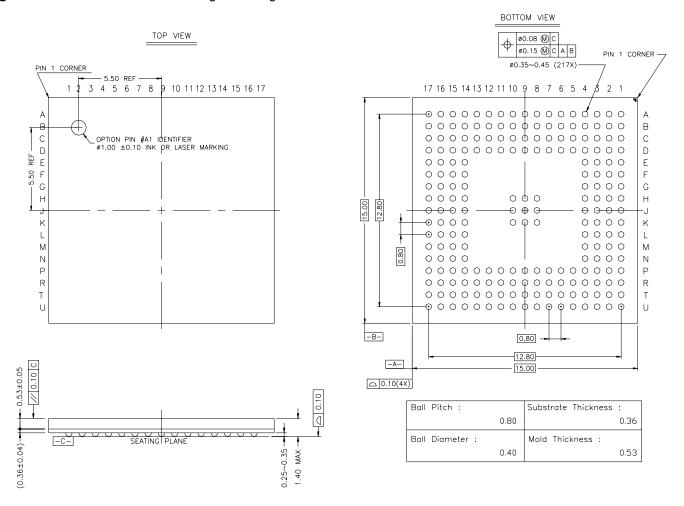
AT91SAM9G20 Preliminary

- Full- and half-duplex operations
- MII or RMII interface to the physical layer
- Register Interface to address, data, status and control registers
- DMA Interface, operating as a master on the Memory Controller
- Interrupt generation to signal receive and transmit completion
- 28-byte transmit and 28-byte receive FIFOs
- Automatic pad and CRC generation on transmitted frames
- Address checking logic to recognize four 48-bit addresses
- · Support promiscuous mode where all valid frames are copied to memory
- Support physical layer management through MDIO interface

10.4.10 Image Sensor Interface

- ITU-R BT. 601/656 8-bit mode external interface support
- Support for ITU-R BT.656-4 SAV and EAV synchronization
- Vertical and horizontal resolutions up to 2048 x 2048
- Preview Path up to 640 x 480 in RGMB mode, 2048 x2048 in grayscale mode
- Support for packed data formatting for YCbCr 4:2:2 formats
- Preview scaler to generate smaller size image
- Programmable frame capture rate

10.4.11 Analog-to-Digital Converter


- 4-channel ADC
- 10-bit 312K samples/sec. Successive Approximation Register ADC
- -2/+2 LSB Integral Non Linearity, -1/+1 LSB Differential Non Linearity
- Individual enable and disable of each channel
- External voltage reference for better accuracy on low voltage inputs
- Multiple trigger source Hardware or software trigger External trigger pin Timer Counter 0 to 2 outputs TIOA0 to TIOA2 trigger
- Sleep Mode and conversion sequencer Automatic wakeup on trigger and back to sleep mode after conversions of all enabled channels
- · Four analog inputs shared with digital signals

11. Pacakge Drawing

Figure 11-1. 217-ball LFBGA Package Drawing

12. AT91SAM9G20 Ordering Information

Table 12-1. AT91SAM9G20 Ordering Information

Ordering Code	Package	Package Type	Temperature Operating Range
AT91SAM9G20-CU	BGA217	Green	Industrial -40°C to 85°C

Revision History

Doc. Rev	Comments	Change Request Ref.
6384AS	First issue	

AT91SAM9G20 Preliminary

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com www.atmel.com/AT91SAM **Technical Support**AT91SAM Support
Atmel techincal support

Sales Contacts

www.atmel.com/contacts/

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], logo and combinations thereof DataFlash[®], SAM-BA[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM[®], Thumb[®] and the ARMPowered logo[®] and others are registered trademarks or trademarks ARM Ltd. Windows[®] and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others.