AtmeL ARM-based Flash MCU

SAMA4CM Series

PRELIMINARY DATASHEET

Description

The Atmel® SAM4CM series represents a family of system-on-chip solutions for resi-
dential and polyphase metering applications. The devices offer up to class 0.2
metrology accuracy over a dynamic range of 3000:1 within the industrial temperature
range and are compliant with ANSI C12.20-2002 and IEC 62053-22 standards.

A seamless extension of Atmel's SAM4, SAM4CP and SAM4C family of microcon-
trollers and solutions for smart grid security and communications applications, these
metrology-enabled devices offer an unprecedented level of integration and flexibility
with dual 32-bit ARM® Cortex®-M4 RISC processors running at a maximum speed of
120 MHz each™, up to 1 Mbyte of embedded Flash, 152 Kbytes of SRAM and on-chip
cache.

The unigue dual ARM Cortex-M4 architecture supports implementation of signal pro-
cessing, application and communications firmware in independent partitions and
offers an ability to extend program and data memory via parallel external bus interface
(EBI) to ensure scalability of the design to meet future requirements.

The peripheral set includes metrology-specific precision voltage reference, up to
seven (7) simultaneously sampled Sigma-Delta ADC subsystem supporting three (3)
voltage and four (4) current measurement channels (polyphase versions only), an
extensive set of embedded cryptographic features, anti-tamper, Floating Point Unit
(FPU), four USARTS, two UARTS, two TWIs, four SPIs, three 16-bit PWMs, two 3-
channel general-purpose 16-bit timers, 6-channel 10-bit ADC, battery backed RTC
with <1 pA consumption and a 38 x 6 segmented LCD controller.

To ensure the distinct separation of metrology and application or communication func-
tions, the SAM4CM integrates a dedicated Cortex-M4F core that manages all
necessary metrology resources and memory.

11203A-ATARM-15-Oct-13

1. Features

e Application/ Master Core

ARM Cortex-M4 running at up to 120 MHz®

Memory Protection Unit (MPU)

DSP Instruction

Thumb®-2 instruction set

Instruction and Data Cache Controller with 2 Kbytes Cache Memaory
Memories

e Up to 1 Mbyte of Embedded Flash for Program Code (I-Code bus) and Program Data (D-Code bus)
with the built-in ECC (2-bit error detection and 1-bit correction per 128 bits)

e 128 Kbytes of Embedded SRAM (SRAMO) for Program Data (System bus)

e 8 Kbytes ROM with embedded boot loader routines (UART) and In-Application Programming (IAP)
routines

e Coprocessor (provides ability to separate application, communication or metrology functions)

ARM Cortex-M4F running at up to 120 MHz™

IEEE 754 Compliant, Single precision Floating-Point Unit (FPU)
DSP Instruction

Thumb-2 instruction set

Instruction and Data Cache Controller with 2 Kbytes Cache Memory
Memories

e 16 Kbytes of Embedded SRAM (SRAM1) for Program Code (I-Code bus) and Program Data (D-Code
bus & System bus)

e 8 Kbytes of Embedded SRAM (SRAM2) for Program Data (System bus)

e Symmetrical/Asynchronous Dual Core Architecture

Interrupt-based Interprocessor Communication
Asynchronous Clocking

One Interrupt Controller (NVIC) for each core
Each Peripheral IRQ routed to each NVIC Input

e Cryptography

High performance AES 128 to 256 with various modes (GCM, CBC, ECB, CFB, CBC-MAC, CTR)

TRNG (up to 38 Mbit/s stream, with tested diehard and fips)

Public Key Crypto accelerator and associated ROM library for RSA, ECC, DSA, ECDSA

Integrity Check Module (ICM) based on Secure Hash Algorithm (SHAL, SHA224, SHA256), DMA assisted

e Safety

Up to two physical Anti-tamper Detection I/Os with Time Stamping and General Backup Registers
Immediate Clear

Security bit for Device Protection from JTAG accesses

e Shared System Controller

Atmel

Power Supply
e Embedded Core and LCD Voltage Regulator for single supply operation
e Power-on-Reset (POR), Brownout Detector (BOD) and Dual Watchdog for safe operation
e Ultra-low-power Backup mode (< 0.5 pA Typical @ 25°C)
Clock
e Optional 3 to 20 MHz Quartz or ceramic resonator oscillators with Clock Failure Detection
e Ultra-low-power 32.768 kHz crystal oscillator for RTC with Frequency Monitoring
e High precision 4/8/12 MHz factory trimmed internal RC oscillator with on-the-fly trimming capability

SAMACM Series [PRELIMINARY DATASHEET] 2

11203A-ATARM-15-Oct-13

e One High Frequency PLL up to 240 MHz, One 8 MHz PLL with internal 32 kHz input, as source for
High Frequency PLL

e Low-power Slow Clock Internal RC Oscillator as permanent clock

e Ultra-low-power RTC with Gregorian and Persian Calendar, waveform generation in low-power modes and
clock calibration circuitry for 32.768 kHz crystal frequency compensation circuitry

e Upto 23 peripheral DMA (PDC) channels
e Shared Peripherals

e One Segmented LCD Controller
e Display Capacity of 38 Segments and 6 Common Terminals
e Software Selectable LCD Output Voltage (Contrast)
e Low Current Consumption in Steady State Mode
e Can be Used in Backup Mode

e Up to four USARTS with ISO7816, IrDA®, RS-485, SPI and Manchester Mode

e Two 2-wire UARTs with one UART (UARTL1) supporting optical transceiver allowing to establish an
electrically isolated serial communication with hand-held equipment, such as calibrators, compliant with
ANSI-C12.18 or IEC62056-21 norms

Up to two 400 kHz Master/Slave and Multi-Master Two-wire Interfaces (12C compatible)
Up to four Serial Peripheral Interfaces (SPIs)

e Two 3-Channel 16-bit Timers/Counters with capture, waveform, compare and PWM mode. Quadrature
Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor

3-channel 16-bit Pulse Width Modulator
e 32-bit Real-time Timer
e Energy Metering Analog-Front-End
Two-phase (SAM4CMS) or three-phase (SAM4CMP) Energy Metering Analog-Front-End
Works with Atmel's MCU Metrology library
Compliant with Class 0.2 standards (ANSI C12.20-2002 and IEC 62053-22)
Four or seven Sigma-Delta ADC measurement channels, 20-bit resolution, 102 dB dynamic range

Current channels with Pre-gain (x1, x2, x4, x8) support directly connected Shunt, Current Transformer and
Rogowsky Coils sensors without any active components

Dedicated current channel for neutral current measurement (anti-tamper)

1.2V Precision Voltage Reference. Temperature drift: 10 ppm/C typ. with software correction using factory
programmed calibration registers

e Dedicated 2.8V LDO regulator to supply the Analog-Front-End
e 3.0V to 3.6V operation, ultra-low-power: < 2.5 mW / channel @ 3.3V
e Analog Conversion Block
e 8-channel, 500 kS/s, Low-power, 10-bit SAR ADC with Digital averager providing 12-bit resolution @ 30 kS/s
e Software Controlled On-chip Reference ranging from 1.6V to 3.4V
e Temperature Sensor and Backup Battery Voltage Measurement Channel
e Debug

e Star Topology AHB-AP Debug Access Port Implementation with common SW-DP / SWJ-DP providing
higher performance than daisy-chain topology

e Debug Synchronization between both Cores (cross triggering to/from each core for Halt and Run Mode)
e |/O

e Upto 57 1/0 lines with external interrupt capability (edge or level sensitivity), Schmitt Trigger, internal pull-
up/pull-down, debouncing, glitch filtering and on-die Series Resistor Termination

e Package
e 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm
Note: 1. 120 MHz: -40/+85°C, VDDCORE = 1.2V or using internal voltage regulator.

SAMACM Series [PRELIMINARY DATASHEET 3
Atmel []

11203A-ATARM-15-Oct-13

1.1 Configuration Summary

The SAM4CM series devices differ in memory size, package and features. Table 1-1 summarizes configuration
of the device family.

Table 1-1. Configuration Summary

Energy Metering
Analog-Front-End

(3 Voltages, 4 Currents)

Feature SAM4CMP16C SAM4CMP8C SAM4CMS16C SAM4CMS8C
Flash 1024 Kbytes 512 Kbytes 1024 Kbytes 512 Kbytes
SRAM 128 + 16 + 8 Kbytes 128 + 16 + 8 Kbytes

Package LQFP 100 LQFP 100

Number of PIOs 52 57
External Bus I/F 8-bit data 8-bit data
16-bit Timer 6 channels 6 channels
16-bit PWM 3 channels 3 channels
UART / USART 2/3 2/4
S 1/4+3 14+ 4
TWI 2 2
10-bit ADC Channels® 6 6
7 channels 4 channels

(2 Voltages, 2 Currents)

Crypto AES, CPKCC, ICM (SHA), TRNG AES, CPKCC, ICM (SHA), TRNG
Segmented LCD 33 segments x 6 commons 38 segments x 6 commons
Anti-tampering inputs 1 2
Flash Page Size 512 512
Flash Pages 2048 1024 2048 1024
Flash Lock Region Size 8192 8192
LOTES;”S 128 64 128 64

Notes: 1. 1/4 + 3 = Number of SPI Controllers / Number of Chip Selects + Number of USARTs with SPI Mode.
2. One channel is reserved for internal temperature sensor and one channel for VDDBU measurement.

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

2.

Block Diagram

Figure 2-1. SAMA4CM Series 100-pin Block Diagram

o¥
NV
S
O
QLS &
A A A
TST-»| System Controller
PCKO-PCK2 4| |+——]
PLLA A
VODPLL 8 MHz PMC | Serial Wire and JTAG Debug Port (sSW-DP / SWJ-DP) |
pLe |
80 - 240 MHz ¢ ¢
RC 0SC Instr./Data ICM (SHA) CEED LD Instr./Data
4/8/12 MHz Cache Cache
A) Controller Che(ll::aiglaziule) Cortex-M4 W Cortex-M4F n | [L Sontrolier | [peripheral
Peripheral| |22 _ 2~ NI 100 mas | PSP NI E=----
XIN=>| || XTALOSC DMA 0 2 KB Locoooo 100 MHz | Il v 100 MHz v 2KB DMA 1
XOUT < |« 3-20 MHz cache [1 ! Cache
o DMA c
lemon DSP c Memory
VDDBU — CM4PO0O CM4P1
VDDIO —]
* ICode / DCode bus System bus I ICode / DCode bus System bus
Backup Zone
e s
XIN32 ——>
Master Master/Slave Master Master Master Master Master Master/Slave Master
EF*ASE*[I—> High Speed AHB Multilayer Bus Matrix O High Speed AHB Multilayer Bus Matrix 1
SHON < —— Supply Slave Slave Slave Slave Slave Slave Slave/Master | | Slave/Master Slave Slave Slave Slave
FWUP ——» Controller y'y
RTCOUTO ¢D<— Real-time Clock
Backup Reg (16) 4
T™PL| | SBus SBus 1D Bus
D Flash ROM _CPKCC_ Asynchronous AHB to APB
TMPO ——> - 1024 Kkbytes| | SrAMO (Classical Public Key' AHB to AHB Bridge 1 SRAM 2 SRAM 1
[ﬁDual Watchdog 512 KB 128 KB PKCL) Controller - RSA) 8KB 16 KB
VDDCORE -] -
- Energy Metering
Analog Front-End VDDIN_AFE
Reset >
AHB to APB
PIO Controller Bridge 0 L > \P1VP2VP3
ot > VN
Core Voltage Fan X203
VDDOUT ¢ < 5|
Regulator E L > PO IP1 IP2 IP3
VDDIN — — > INO INL IN2 IN3
VDDLCD < oltage
Regulator
_ _[poca| »| |<>UTxD1
/) [~ YRR <——| |« urxp1
T\4vv%gg b > |«—>| Exe Optical Port
e o | i
fvi o TWIL <>
IPC1
URXDO ¢ ——»]
SAM4CM
O
RXDO > M
= > = - External Bus
TXDO < > >
SCKo < < > USARTO <> S e r I e S Interface <> > D[[m]]
RTSO <% - > > A[0:23]
CTS0 > [Poco > > NANDALE
N Static Memory et
?igi = - > Controller 1 > > mg:g
SCK1 <+ -« > USART1 <>] > NGS2
< > Pocof! (VLI - > |« Ness
> |- > NWE
RXD2 < < >
TXD2 < <l P > Static Memor)
Sck2= < [l > USART2 Controller 0y
RTS2 < -
CTS2 < > IPDCO >
RXD3 < <
TXD3 < <l b >
SCK3 « > USART3 [« ¥ Sy
RTS3 < - > %
CTs3 % > IPDCO
PDCO
SPI0_NPCSO < < - > 10-bit ADC <— |« ADp.3]
SPI0_NPCS1 < - | 1PCO |<—> =
SPIO_NPCS2 < - e -~ > ADVREF
SPIO_NPCS3 < SPI0 > tag
SPI0_MISO : > - > TRNG Temperature Sensor
SN <— |2 > [PDco Digital Averager
TCLK[0:2] ¢ Timer Counter A PDCO) Timer Counter B < »TCLK[4:5]
TIOA[0:2] < <l <> — »TIOA[4:5
o l: Tcp.2) I c.sl [—> STontial
N
Sub-system 0 Sub-system 1

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

Atmel

3. Signal Description

Table 3-1 provides details on signal names classified by peripheral.

Table 3-1. Signal Description List

Active Voltage
Signal Name Function Type Level Reference Comments
Power Supplies
VDDIO
VDDBU
VDDIN
VDDLCD
Power
VDDOUT See Table 5-1 on page 13
VDDPLL
VDDCORE
VDDIN_AFE
VDDA
GND
GNDA Ground
GNDREF
Clocks, Oscillators and PLLs
XIN Main Crystal Oscillator Input
A'?a.'o? VDDIO
XOUT Main Crystal Oscillator Output Digita
XIN32 Slow Clock Crystal Oscillator Input
A'.‘a.'O? VDDBU
XOUT32 Slow Clock Crystal Oscillator Output Digita
PCKO - PCK2 Programmable Clock Output Output VDDIO
Real-time Clock
Digital
RTCOUTO Programmable RTC waveform output Output VDDIO
. Digital
FWUP Force Wake-up input Input Low VDDBU External Pull-up needed
. . Digital
TMPO Anti-tampering Input O Input VDDBU
. . Digital
TMP1 Anti-tampering Input 1 VDDIO
Input
0: The device is in Backup
. Digital mode
SHDN Active Low Shut-down Control Low VDDBU o)
Output 1: The device is running
(not in Backup mode)

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

6

Table 3-1.

Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference Comments
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Digital
VDDIO
TDI Test Data In Input
TDO/TRACESWO Test Data Out / Trace Asynchronous Data Digital
Out Output
. VDDIO
Test Mode Select input / Digital
TMS/SWDIO .)
Serial Wire Input/Output 110
JTAGSEL JTAG Selection Digital | o vDDBy | "ermanentintemal
Input pull-down
Flash Memory
ERASE Flash and NVM Configuration Bits Erase Digital High VDDIO Permanent Internal
Command Input pull-down
Reset/Test
NRST Synchronous Microcontroller Reset Digital Low VDDIO Permanent Intermal
110 pull-up
TST Test Select Digital VDDBU Permanent Internal
Input pull-down
Universal Asynchronous Receiver Transceiver - UARTX
Digital/ .
URXDx UART Receive Data Analog Analqg Mode for Optical
Receiver
Input VDDIO
UTXDx UART Transmit Data Digital
Output
PIO Controller - PIOA - PIOB - PIOC
PAO - PA31 Parallel IO Controller A iqi
Digital VDDIO
PBO - PB31 Parallel IO Controller B /o
PCO - PC9 Parallel 10 Controller C D:t}qgal VDDIO
External Bus Interface
DO-D7 Data Bus D:?Iotal
— VDDIO
A0-A23 Address Bus Digital
Output
Static Memory Controller - SMC
NCSO - NCS3 Chip Select Lines
NRD Read Signal
NWE Write Enable Digital Low VDDIO
Output
NBSO- NBS1 Byte Mask Signal
NWRO-NWR1 Write Signal

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

7

Table 3-1. Signal Description List (Continued)
Active Voltage
Signal Name Function Type Level Reference Comments
Universal Synchronous Asynchronous Receiver Transmitter - USARTX
SCKx USARTx Serial Clock D'I?'ota'
— VDDIO
TXDx USARTX Transmit Data Digital
Output
RXDx USARTx Receive Data Digital
Input
RTSx USARTx Request To Send Digital VDDIO
Output
Digital
CTSx USARTX Clear To Send
Input
Timer/Counter - TC
TCLKx TC Channel x External Clock Input El)r:%hat“
TIOAX TC Channel x I/O Line A Digital VvDDIO
TIOBx TC Channel x I/O Line B 1’0
Pulse Width Modulation Controller - PWMC
Digital
PWMx PWM Waveform Output for channel x VDDIO
Output
Serial Peripheral Interface - SPI
SPI0_MISO Master In Slave Out Digital
- Input
SPIO_MOSI Master Out Slave In
SPCKO SPI Serial Clock g:ﬁgilt VDDIO
SPI0_NPCSO0 SPI Peripheral Chip Select 0 Low NPCSO0 is also NSS for
slave mode
SPIx_NPCS1 -) .
SPIx_NPCS3 SPI Peripheral Chip Select Output Low
Segmented LCD Controller - SLCDC
COM[5:0] Common Terminals Output
: VDDIO
SEG[39:0] Segment Terminals Output
Two-wire Interface - TWI
. . Digital
TWDx TWIx Two-wire Serial Data /0
— VDDIO
TWCKx TWIx Two-wire Serial Clock Digital
Output

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

8

Table 3-1.

Signal Description List (Continued)

Active Voltage
Signal Name Function Type Level Reference Comments
Analog
ADVREF External Voltage Reference for ADC Alrrlzlftg VDDIN
10-bit Analog-to-Digital Converter - ADC
Analog, ADC input range limited to
ADO-AD3 Analog Inputs Digital VDDIO [0 - ADVREF]
ADTRG ADC Trigger Input
Fast Flash Programming Interface - FFPI
PGMENO- Programming Enablin -
PGMEN1 ogramming Enabling Digital
Input
PGMMO-PGMM3 Programming Mode
PGMDO-PGMD15 | Programming Data D:?gal
PGMRDY Programming Ready Digital High VDDIO
PGMNVALID Data Direction Output Low
PGMNOE Programming Read Low
PGMCK Programming Clock Digital
Input ||
PGMNCMD Programming Command Low
Energy Metering Analog Front End - EMAF
. Analog
Precision 1.2V Voltage Reference Input
VREF_AFE and Output for EMAFE Input/
Output
VPx Voltage Channel x, Positive Input
. VDDA
VN Voltage Channels, Common Negative
Input Analog
Input
IPx Current Channel x, Positive Input
INX Current Channel x, Negative Input

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

9

4. Package and Pinout

4.1 SAMA4CM Series 100-lead LQFP Package Outline
The SAM4CM series 100-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards.

Figure 4-1 shows the orientation of the 100-lead LQFP package. Refer to the “Mechanical Characteristics” section of the
datasheet for the SAM4CM series 100-lead LQFP package mechanical drawing.

Figure 4-1. Orientation of the 100-lead LQFP Package

75 51
1 1
76 — 50
100 —
26
\ —
1] 1
1 25

At L SAMACM Series [PRELIMINARY DATASHEET)] 10
me 11203A-ATARM-15-0ct-13

4.2 100-lead LQFP Pinout

Table 4-1. SAM4CMP16/SAM4CMP8 100-lead LQFP Pinout
1 PB6 26 TDI/PBO 51 VDDIO 76 ADVREF
2 PB7 27 TCK/SWCLK/PB3 52 GND 77 GND
3 IN2 28 TMS/SWDIO/PB2 53 PA31 78 PB13/AD3
4 GND 29 ERASE/PC9 54 GND 79 PA5/AD2/PGMRDY
5 P2 30 TDO/TRACESWO 55 VDDPLL 80 PA4/AD1/PGMNCM
/PB1 D
6 PB8 31 PC1 56 PA28 81 PA12/ADO/PGMDO
7 IN1 32 PC6 57 PA27/PGMD15 82 VDDIN
8 IP1 33 VDDIO 58 PA6/PGMNOE 83 VDDOUT
9 INO 34 VDDBU 59 VDDCORE 84 VP3
10 IPO 35 FWUP 60 PA3 85 VP2
11 GND 36 JTAGSEL 61 PA21/PGMD9 86 VDDCORE
12 VDDCORE 37 SHDN 62 PA22/PGMD10 87 VP1
13 PB9 38 TST 63 VDDIO 88 PAO/PGMENO
14 PB10 39 TMPO 64 VDDIN_AFE 89 VN
15 PB11 40 XIN32 65 - 90 VREF_AFE
16 PB12 41 X0OUT32 66 PA23/PGMD11 91 GNDREF
17 PB14 42 GND 67 PA9/PGMM1 92 VDDLCD
18 PB15 43 PB4 68 PA10/PGMM2 93 GNDA
19 PA26/PGMD14 44 VDDCORE 69 PA11/PGMM3 94 VDDA
20 PA25/PGMD13 45 PB5 70 PA13/PGMD1 95 IN3
21 PA24/PGMD12 46 PC7 71 PA14/PGMD2 96 PA1/PGMEN1
22 PA20/PGMD8 47 PCO 72 PA15/PGMD3 97 IP3
23 PA19/PGMD7 48 NRST 73 PA16/PGMDA4 98 PA7/PGMNVALID
24 PA18/PGMD6 49 VDDIO 74 PA17/PGMD5 99 VDDIO
25 PA8/PGMMO 50 PA30 75 VDDIO 100 PA2

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET] 11

11203A-ATARM-15-Oct-13

Table 4-2.

SAM4CMS16/SAM4CMS8 100-lead LQFP Pinout

1 PB6 26 TDI/PBO 51 VDDIO 76 ADVREF

2 PB7 27 TCK/SWCLK/PB3 52 GND 77 GND

3 PB18 28 TMS/SWDIO/PB2 53 PA31 78 PB13/AD3

4 GND 29 ERASE/PC9 54 GND 79 PA5/AD2/PGMRDY

5 PB19 30 TDO/TRACESWO 55 VDDPLL 80 PA4/AD1/PGMNCM
/PB1 D

6 PB8 31 PC1 56 PA28 81 PA12/ADO/PGMDO

7 IN1 32 PC6 57 PA27/PGMD15 82 VDDIN

8 IP1 33 VDDIO 58 PA6/PGMNOE 83 VDDOUT

9 INO 34 VDDBU 59 VDDCORE 84 PB21

10 IPO 35 FWUP 60 PA3 85 VP2

11 GND 36 JTAGSEL 61 PA21/PGMD9 86 VDDCORE

12 VDDCORE 37 SDHN 62 PA22/PGMD10 87 VP1

13 PB9 38 TST 63 VDDIO 88 PAO/PGMENO

14 PB10 39 TMPO 64 VDDIN_AFE 89 VN

15 PB11 40 XIN32 65 - 90 VREF_AFE

16 PB12 41 X0OUT32 66 PA23/PGMD11 91 GNDREF

17 PB14 42 GND 67 PA9/PGMM1 92 VDDLCD

18 PB15 43 PB4 68 PA10/PGMM2 93 GNDA

19 PA26/PGMD14 44 VDDCORE 69 PA11/PGMM3 94 VDDA

20 PA25/PGMD13 45 PB5 70 PA13/PGMD1 95 PB16/TMP1

21 PA24/PGMD12 46 PC7 71 PA14/PGMD2 96 PA1/PGMEN1

22 PA20/PGMD8 47 PCO 72 PA15/PGMD3 97 PB17

23 PA19/PGMD7 48 NRST 73 PA16/PGMD4 98 PA7/PGMNVALID

24 PA18/PGMD6 49 VDDIO 74 PA17/PGMD5 99 VDDIO

25 PA8/PGMMO 50 PA30 75 VDDIO 100 PA2

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 12

11203A-ATARM-15-Oct-13

5. Power Supply and Power Control

5.1 Power Supplies
The SAMA4CM series has several types of power supply pins. In most cases, a single supply scheme for all power
supplies (except VDDBU) is possible. Figure 5-1 below shows power domains according to the different power supply
pins.
Figure 5-1. Power Domains

VDDBU VDDIO VDDPLL VDDCORE

0]
!

Y l
AUTOMATIC POWER PLLA,
SWITCH - PLLB
DN VDDIO or VDDBU
VDDA Voltage RC OSC 32 kHz _
VDDIN_AFE |—|)— Regulator
Energy Metering RTC, RTT, RSTC,
VDDA ."')' Analog-Front-End Backup, Reg, ...
v v v
Core Voltage 10-bit ADC, Temp. Sensor,
vDDoUuT < Regulator Voltage Reference
vooiN [—
LCD Voltage LCD Analog Buffers Input / Output
Regulator + Switch Array Buffers
L »
>

A
Y

0

VDDLCD
Table 5-1. Power Supply Voltage Ranges
Power Supplies Ranges Comments
- Flash Memory Charge Pumps Supply for Erase and Program Operations, and
VDDIO 1.6Vto 3.6V | Read operation.
- Input Output buffers Supply
VDDBU 16V 10 3.6V - Backup Area power supply.
- VDDBU is automatically disconnected when VDDIO is present (> 1.9V)
VDDIN 1.6V to 3.6V - 1.6V min. if LCD and ADC not used, else 2.5V
- LCD Voltage Regulator Output
VDDLCD 2.5V t0 3.6V - External LCD power supply input (LCD regulator not used)
- VDDIO/VDDIN need to be supplied when the LCD Controller is used
VDDOUT 1.2V Output 120 mA Output Current
VDDPLL 1.08V to 1.32V
VDDCORE 1.08V to 1.32V
- EMAFE Regulator Input
VDDIN_AFE 3.00V to 3.60V
- - EMAFE Digital Functions Power Supply Input
- EMAFE Regulator Output (2.8V)
VDDA 2.70 to 2.90V
- EMAFE Analog Functions Power Supply Input
AtmeL SAMA4CM Series [PRELIMINARY DATASHEET] 13

11203A-ATARM-15-Oct-13

511

512

5.13

514

515

Core Voltage Regulator
The SAM4CM series embeds a core voltage regulator that is managed by the Supply Controller.

It features two operating modes:

e In Normal mode, the quiescent current of the voltage regulator is less than 500 yA when sourcing maximum load
current, i.e. 120 mA. Internal adaptive biasing adjusts the regulator quiescent current depending on the required
load current. In Wait Mode quiescent current is only 5 pA.

e In Backup mode, the voltage regulator consumes less than 100 nA while its output (VDDOUT) is driven internally
to GND.

The default output voltage is 1.20V and the start-up time to reach Normal mode is less than 500 ps.

For further information on electrical characteristics of this regulator, refer to Section 45.5.1 “Core Voltage Regulator”.

LCD Voltage Regulator
The SAM4CM series embeds an adjustable LCD voltage regulator that is managed by the Supply Controller.

The LCD voltage regulator output voltage is software selectable from 2.4V to 3.4V with 16 levels. Its input (VDDIN) must
be supplied in the range of 2.5 to 3.6V. The maximum drop-out is 100 mV with a maximum load of 100 pA (corresponding
to the LCD 1/Os toggling).

This internal regulator is designed to supply the Segment LCD outputs when they are used so that it can be used to
adjust the contrast.

The operational current of the LCD voltage regulator is 3 pA (typical case).

If not used, its output (VDDLCD) can be bypassed (Hi-z mode) and an external power supply can be provided onto the
VDDLCD pin. In this case, VDDIO still needs to be supplied.

The LCD voltage regulator can be used in every power modes (Backup, Wait, Sleep and Active).

For further information on electrical characteristics of this regulator, refer to Section 45.5.1 “Core Voltage Regulator”.

Automatic Power Switch

The SAM4CM features an automatic power switch between VDDBU and VDDIO. When VDDIO is present (>1.9V min),
the backup zone power supply is powered by VDDIO and current consumption on VDDBU is about zero (around 100 nA,
typ.). Switching between VDDIO and VDDBU is transparent to the user.

EMAFE Voltage Regulator

The SAM4CM series embeds a 2.8V voltage regulator to supply its Energy Metering Analog-Front-End (the VDDA pin).
This regulator is under software control. When the EMAFE voltage regulator is turned off, its output stage is placed in
high impedance mode and thus can be forced by an external voltage source.

Typical Powering Schematics

The SAM4CM series supports 1.6V to 3.6V single supply operation. This range is reduced to:
e 2.5V to 3.6V when either the LCD Controller or the ADC Controller is used, and
e 3.0V to 3.6V when the Energy Metering Analog-Front-End is used

Note: Figure 5-2, Figure 5-3 and Figure 5-4 show simplified schematics of the power section.

SAMACM Series [PRELIMINARY DATASHEET 14
Atmel []

11203A-ATARM-15-Oct-13

5.1.5.1 Single Supply Operation

Figure 5-2 below shows a typical power supply scheme with a single power source. VDDIO, VDDIN, VDDIN_AFE and
VDDBU are derived from the main power source (typically a 3.3V regulator output) while VDDCORE, VDDPLL,
VDDLCD, and VDDA are fed by the embedded regulators outputs.

Figure 5-2. Single Supply Operation

SAM4CM
VDDBU i Backup Region
L]

AUTOMATIC
POWER MY XTAL OSC 32 kHz

SWITCH
VDDIO r RTC, RTT, RSTC,
> |_ Backup, Reg, ...

(1) vpbbLcD
cTTT T ’ | | ¢ LCD Voltage
Regulator
Main I

L

(2) VDDIN 10-bit ADC,
SLPIY» N ouT @ [~ Temp. Sensor,
J_ L Voltage Ref.
Voltage
LCD Analog
Regulator III
Buffers
Core Voltage g
¢ VDDOUT Regulator Switch Array

VDDCORE

VDDPLL

VDDIN—AFE‘ VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA

—_i_—

Notes: 1. Internal LCD Voltage Regulator can be disabled to save its operating current. VDDLCD must then be pro-
vided externally.

2. If EMAFE is used: 3.0V to 3.6V. If ADC and LCD Controllers are used: 2.5V to 3.6V, otherwise 1.6V to 3.6V.

SAMACM Series [PRELIMINARY DATASHEET 15
Atmel []

11203A-ATARM-15-Oct-13

5.1.5.2 Single Supply Operation with Backup Battery

Figure 5-3 improves the previous single supply operation schematic by adding a backup capability. VDDBU is supplied
with a separated backup battery while VDDIO, VDDIN and VDDIN_AFE are still connected to the main power source.
Note that the TMP1 and RTCOUTO pins can not be used in backup mode as they are referred to VDDIO which is not

powered in this application case.

Figure 5-3. Single Supply Operation with Backup Battery

SAM4CM
Backup Power Supply

Backup (1.6V-3.6V) _ VDDBU Backup Region
X L

Battery | + AUTOMATIC
—— POWER [N XTAL OSC 32 kHz

SWITCH
VDDIO I_ RTC, RTT, RSTC,
Backup, Reg, ...
T |
VDDLCD
R ;,_—[]‘_ LCD Voltage
Regulator

L

Main
VDDIN 10-bit ADC,
M’ IN ouT [Temp. Sensor,
J. |_ Voltage Ref.
Voltage
Regulator |I, LCBDu;:fr;iog
g Core Voltage +
é vbbouT] Regulator Switch Array

VDDCORE

“h

VDDPLL

VDDI N—AFE VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA

—i—

SHDN (1)

] > FWUP
External Wake-up Signal

Note: 1. Example with the SHDN pin used to control the main regulator enable pin. SHDN defaults to VDDBU
at startup and when MCU wakes up from a wake-up event (external pin, RTC alarm, etc.). When MCU is
in backup mode, SHDN defaults to 0.

/It L SAMACM Series [PRELIMINARY DATASHEET)] 16
me 11203A-ATARM-15-0ct-13

5.1.5.3 Single Power Supply using One Main Battery and LCD Controller in Backup Mode

Figure 5-4 below shows a typical power supply scheme that maintains VDDBU, VDDIO, and VDDLCD when entering
back-up mode. This is useful to enable the display and/or some supplementary wake-up sources in backup mode.

In this power supply scheme, the SAM4CM series device can wake up both from an internal wake-up source, such as
RTT, RTC and Supply Monitor, and from an external source, such as generic wake-up pins (WKUPX), anti-tamper inputs
(TMPO0/1) or force wake-up (FWUP).

Figure 5-4. Single Power Supply using Battery and LCD Controller in Backup Mode

SAM4CM
VDDBU i Backup Region
L]

AUTOMATIC
POWER N XTAL OSC 32 kHz

SWITCH
VDDIO = RTC, RTT, RSTC,
|_ | Backup, Reg, ...

L

VDDLCD
c-c- ’ | |‘_ LCD Voltage
. Regulator
Main
Suppl
_SUPBY 1 our :
J_ VDDIN I— 10-bit ADC,
Voltage Automatic O Temp. Sensor,
Regulator Power Swich | L I— Voltage Ref.
EN I LCD Analog
¢ State Buffers
Core Voltage +
vDDoUT] Regulator Switch Array
+

VDDCORE

VDDPLL
VDDIN_AFE VDDA Voltage Energy Metering
Regulator Analog-Front-End
VDDA

RTCOUTO (2)

WKUPX

- - FWUP (1)
State = 0 when main power is OFF

SHDN

Notes: 1. The State output of the automatic power switch indicates to the MCU that the main power is back and forces
its wake-up.
2. RTCOUTO signal is used to make a dynamic wake-up. WKUPX pin is pulled-up with a low duty cycle to
avoid battery discharge by permanent activation of the switch.

SAMACM Series [PRELIMINARY DATASHEET 17
Atmel []

11203A-ATARM-15-Oct-13

5.1.5.4 Wake-up, Anti-tamper and RTCOUTO Pins

In all power supply figures shown above, if generic wake-up pins other than WKUPO/TMPO are used either as a wake-up
or a fast startup input, or as anti-tamper inputs, VDDIO must be present. This also applies to the RTCOUTO pin.

5.1.5.5 General Purpose IOs (GPIO) State in Low-power Modes

In dual power supply schemes shown in Figure 5-3 and Figure 5-4, where backup or wait mode has to be used,
configuration of the GPIO lines is kept in the same state as before entering backup or wait mode. Thus, to avoid extra
current consumption on the VDDIO power rail, the user must configure the GPIOs either as an input with pull-up or pull-
down enabled, or as an output with low or high level to comply with external components.

5.1.5.6 Default General Purpose I0s (GPIO) State after Reset

The reset state of the GPIO lines after reset is given in Table 11-4, “Multiplexing on PIO Controller A (PIOA)”, Section 11-
5 “Multiplexing on PIO Controller B (PIOB)” and Table 11-6, “Multiplexing on P1O Controller C (PIOC)". For further details
about the General Purpose 10 and System lines, wake-up sources and wake-up time, and typical power consumption in
different low-power modes, refer to Table 5-2, “Low-power Mode Configuration Summary”.

SAMACM Series [PRELIMINARY DATASHEET 18
Atmel []

11203A-ATARM-15-Oct-13

H B 19]|011U0D
! X000 JeiIseN sng H Juawabeuep
10ssaooidony K ! 19MOd
B : MONEdD "
) H '
.. M m i poo Buuny sely : _9_%& masma
S O = : Jossaooidoy K STo4do " : :
% mu\ 2 H 340/NO =OW8dD : " "
S ' = ' H
= o) : #0010 MILSAS g ¥QOSAIFOS OWd B ! H
3 - Q ! 10558001d0D ' HDILSASAD 8/1opmna m : E Gl :
o a m H ! H
-_ = H apop des|s ' 2/ 18ping
T S i . S : H08T1d | pue gTId
;& .W.u .m " 00| Jossao0ido) <€ 18[101U0D ! o0 g11d q
23, = : MTOHdO 00 [G5a] [so% : : :
= N0 H 10ss3001d0D) 4940/NO =X2dD ' H '
© N (7)) ' ¥aos/H30Ss Od SET] H ' H
<5} [} H : . H
e I - m H Z+w o yduad % 9T 01 T Aq 3pinip Soatd ! SOV TId v :
c = > O H J40/NO J19[e0S3ld — . 30010 V11d m H
» o 2 c : T : : :
c | _ v ' '
v o = ..m H sfesayduad waisks (UMOWDOIN) PONIVAY ! H
W < m o] H 10s52901d02 B 10} J31103U0D 001D J3IseN 18 ! H '
m t..“_ L - H Xapul Ue S| W aIaym ' H 101.||19SO '
nla o I ..m H w o yduad m m ‘_MH_N_MMMN_ ' 1OX
X O H 440/NO ! H l—o '
E S =5 N K RO : 7 o :
Q O 1 O ! fe1shio i
o 3 > = 1(waisAs x0[D 0d-¥ND) 0 810D ; : ;
e © H _ MONIVN 4 1001050 0¥ !
(8] '
o 2 = m : Z+ujjoyduad : o[4 0 [B4 :
o % % p : FH0MNo : uen ZHNZT/R |
o ' ' pappaqus '
[e H _ ' H '
= ..|m m % ! T+U Y yduad O : ; :
m o = w H sfesoyduad waishs m H 13SOSON T
s o < 7] ! J10sse001d 8 10§ ' ! 1011950 :
A c W 5 ! Xapul ue sl ualeym u P yduad od ona : H eiskin :
%) nrm o O : HONO 354 oNe) : 1 b zHgasee |
H <==f=-- 18]j101U0D 001D L
L = m Q : stelayduad H h H
< S % : 30010 8IS Sng . : H
. © w IS) ! iossas0rd & SON ﬂ SS9 H v m 2ENIX
] : P : 1 0TS :
o 3 = w : %0010 Buluuny 8a prysm— | odmd popmels 1012[19S0 Y| |}
L O m — c : 10sse00id TR ‘8'vI'eI2 T SOovTld : O fe—ro_ zmze (i
Q nla o [a by H J1a[eosald ' H pappaqu3 | f:
W 2 x 0 =2 H010 MULSAS 8/38pING NIV : :
o C : 10sS9201 L | (4MOW~OW) v H H
_.anw _.PIVVJ (@] _....H QVU‘ H d HOILSAS S 18]103U0D %00]D JBISeN A8 : H ' (13)1013u02 Addns)
s} ' apoy das|s ' H @
m W N [SINe) v ! w— ' ' H T3SVLX
o 3T N m o ! 1900u00 | ' : :
+— T X I o o ! 00| 10S$9201d 0010 ' H Jojesauan 320D '
%) LL ~ > 5 O ! MIOH 105S320.d H b e e e '
> £ m o O e e e e e e e e e n :
0p) <
S 0o 0 o o
L C C
O <= [0}
o
—_ n © e o .
O < 2
(3]
=
=]
™ >
Lo L

19

11203A-ATARM-15-Oct-13

SAMA4CM Series [PRELIMINARY DATASHEET]

Atmel

5.3

531

5.3.2

5.3.3

5.4

5.5

System State at Power-up

Device Configuration after the First Power-up

At the first power-up, the SAM4CM is booting from the ROM. The device configuration is defined by SAM-BA boot
program.

Device Configuration after a Power Cycle when Booting from Flash Memory
After a power cycle of all the power supply rails, the system peripherals, such as the Flash Controller, the Clock
Generator, the Power Management Controller and the Supply Controller, are in the following state:
e Slow Clock (SLCK) source is the internal 32 kHz RC Oscillator
Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator
Crystal oscillators and PLLs are disabled
Core Brownout Detector and Core Reset are enabled
Backup Power-on-reset is enabled
VDDIO Supply Monitor is disabled
Flash Wait State (FWS) bit in the EEFC Flash Mode Register is set to 0
Core 0 Cache Controller (CMCCO) is enabled (only used if the application link address for the Core 0 is 0x11000000)
Sub-system 1 is in the reset state and not clocked

Device Configuration after a Reset
The system state after a reset or a wake-up from backup mode is the same as after a power cycle, except that the
configuration of the peripherals in the backup area remains the same as before a reset:
e Slow Clock (SLCK) source: as after a power cycle (32 kHz RC or Crystal oscillator)
Main Clock (MAINCK) source is set to the 4 MHz internal RC Oscillator
Crystal oscillators and PLLs are disabled
Core Brownout Detector: as after a power cycle
Backup Power-on-reset: as after a power cycle
VDDIO Supply Monitor: as after a power cycle

Active Mode

Active mode is the normal running mode with single or dual core executing code. System clock can be the fast RC
Oscillator, the Main Crystal Oscillator or the PLLs. The Power Management Controller can be used to adapt
the frequency and to disable the peripheral clocks when unused.

Low-power Modes

The various low-power modes (backup, wait and sleep modes) of the SAM4CM are described below. Note that
the Segmented LCD Controller can be used in all low-power modes.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes,
however this may add complexity in the design of application state machines. This is due to the fact that the
WEFE instruction goes along with an event flag of the Cortex core (cannot be managed by the software applica-
tion). The event flag can be set by interrupts, a debug event or an event signal from another processor. Since an
interrupt can occur just before the execution of WFE, WFE takes into account events that happened in the past.
As a result, WFE prevents the device from entering low-power mode if an interrupt event has occurred. Atmel
has made provision to avoid using the WFE instruction. The workarounds to ease application design are given
in the following description of the low-power mode sequences. Using the WFE instruction is given as well.

SAMACM Series [PRELIMINARY DATASHEET 20
Atmel []

11203A-ATARM-15-Oct-13

5.5.1 Backup Mode
The purpose of backup mode is to achieve the lowest possible power consumption in a system that executes periodic
wake-ups to perform tasks but which does not require fast start-up time. The total current consumption is 0.5 pA typical
on VDDBU.
The Supply Controller, power-on reset, RTT, RTC, backup registers and the 32 kHz oscillator (RC or crystal oscillator
selected by software in the Supply Controller) are running. The regulator and the core supplies are off. The power-on-
reset on VDDBU can be deactivated by software.
The SAM4CM can be awakened from backup mode through the Force Wake-up (FWUP) pin, WKUPX pins, the VDDIO
Supply Monitor (SM) if VDDIO is supplied, or through an RTT or RTC wake-up event. Wake-up pins multiplexed with anti-
tampering functions are possible sources of a wake-up as well in case an anti-tampering event is detected.
The LCD Controller can be used in this mode. The purpose is to maintain the displayed message on the LCD display
after entering backup mode. The current consumption on VDDIN to maintain the LCD is 10 pA typical.
In case the VDDIO power supply is kept on with VDDBU when entering backup mode, it is up to the application to
configure all PIO lines in a stable and known state to avoid extra power consumption or possible current path with the
input/output lines of the external on-board devices.
5.5.1.1 Backup Mode Sequence
e Application dependant: set the PIO lines in the correct mode and configuration (input pull-up or pull-down, output
low or high levels)
Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM)
Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use
Disable JTAG lines via the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG
lines)
Enable RTT in 1 Hz mode
Disable Normal Mode of RTT (RTT will run in 1 Hz mode)
Disable POR backup
To enter backup mode using the VROFF bit:
e Write a 1 to the VROFF bit of SUPC_CR
To enter backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor
e Execute the WFE instruction of the processor
After this step, the Core voltage regulator is shut down and the SHDN pin goes low. All the digital internal logics (cores,
peripherals and memories) are not powered. The LCD controller can be enabled if needed before entering backup mode.
In both cases, either the VROFF bit or the WFE instruction was used to enter backup mode, the system exits backup
mode if one of the following enabled wake-up events occurs:
e WKUP[0-15] pins
e Force Wake-up pin
e VDDIO Supply Monitor (if VDDIO is present)
e Anti-tamper event detection
e RTCalarm
e RTT alarm
After exiting backup mode, the device is in the reset state. Only the configuration of the backup area peripherals remains
unchanged.
Note that the device does not automatically enter backup mode if VDDIN is disconnected or fell down under minimum
voltage. The Shutdown pin (SHDN) remains high in this case.
For current consumption in backup mode, refer to the electrical characteristics of this datasheet.
/ItmeL SAMACM Series [PRELIMINARY DATASHEET)] 21

11203A-ATARM-15-Oct-13

5.5.2

5521

Wait Mode

The purpose of wait mode is to achieve very low power consumption while maintaining the whole device in a powered
state for a start-up time of less than 10 ys. For current consumption in wait mode, refer to the product electrical
characteristics.

In this mode, the bus and peripheral clocks of Sub-system 0 and Sub-system 1 (MCK/CPBMCK), the clocks of Core 0
and Core 1 (HCLK/CPHCLK) are stopped. However, the power supply of core, peripherals and memories are maintained
using standby mode of the core voltage regulator.

To enter wait mode, follow the sequence provided in Section 5.5.2.1.

The SAM4CM is able to handle external and internal events in order to perform a wake-up. This is done by configuring
the external WKUPX lines as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC alarm, RTT alarm and
anti-tamper events can wake the device up as well.

Wait mode can be used together with Flash in Read-Idle mode, Standby mode or Deep Power mode to further reduce
the current consumption. Flash in Read-ldle mode provides a faster start-up and Standby mode offers a lower power
consumption. For further details, see the “Low-power Wake-up Time” section of the product electrical characteristics.

Wait Mode Sequence
e Stop Sub-system 1
e Select the 4/8/12 MHz fast RC Oscillator as Main Clock®

e Application dependant: set the PIO lines in the correct mode and configuration (input pull-up or pull-down, output
low or high level)

e Disable the Main Crystal Oscillator (enabled by SAM-BA boot if device is booting from ROM)
Configure PA30/PA31 (XIN/XOUT) into PIO mode according to their use

Disable JTAG lines via the SFR1 register in Matrix 0 (by default, internal pull-up or pull-down is disabled on JTAG
lines)

e Setthe FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)®
e Set the Flash Wait State (FWS) bit in the EEFC Flash Mode Register to O

To enter wait mode using the WAITMODE bit:
e Setthe WAITMODE bit to 1 in the PMC Main Oscillator Register (CKGR_MOR)
e Wait for Master Clock Ready MCKRDY = 1 in the PMC Status Register (PMC_SR)
To enter wait mode using the WFE instruction:
e Select the 4/8/12 MHz fast RC Oscillator as Main Clock
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR)
Set Flash Wait State at 0
Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR)
Write a 0 to the SLEEPDEEP bit of the Cortex-M4 processor
e Execute the Wait-For-Event (WFE) instruction of the processor

Notes: 1. Any frequency can be chosen. The 12 MHz frequency will provide a faster start-up compared to the 4 MHz, but
with the increased current consumption (in the pA range). See electrical characteristics of the product.
2. Depending on the Flash Low-power Mode (FLPM) value, the flash enters three different modes:
e If FLPM = 0, the flash enters Stand-by mode (Low consumption)
e |[f FLPM = 1, the flash enters Deep Power-down mode (Extra low consumption)
e if FLPM = 2, the flash enters Idle mode. Memory is ready for Read access

In both cases, either the WAITMODE bit or the WFE instruction was used to enter wait mode, the system exits wait mode
if one of the following enabled wake-up events occurs:

e WKUP[0-15] pins in Fast wake-up mode

e Anti-tamper event detection

e RTCalarm

e RTT alarm

SAMACM Series [PRELIMINARY DATASHEET 22
Atmel []

11203A-ATARM-15-Oct-13

5.5.3

554

After exiting wait mode, the PIO controller has the same configuration state as before entering wait mode. The SAM4CM
is clocked back to the RC oscillator frequency which was used before entering wait mode. The core will start fetching
from flash at this frequency. Depending on configuration of the Flash Low-power Mode (FLPM) bits used to enter wait
mode, the application has to reconfigure it back to read-idle mode.

Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the
core clocks of CM4P0 and/or CM4P1 are stopped. Some of the peripheral clocks can be enabled depending on the
application needs. The current consumption in this mode is application dependent. This mode is entered via Wait for
Interrupt (WFI) or Wait for Event (WFE) instructions of the Cortex-M4.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used to enter sleep mode, or
from a wake-up event if the WFE instruction is used. The WFI instruction can also be used to enter sleep mode with the
SLEEPONEXIT bit set to 1 in the System Control Register (SCB_SCR) of the Cortex-M. If the SLEEPONEXIT bit of the
SCB_SCRis set to 1, when the processor completes the execution of an exception handler it returns to thread mode and
enters immediately sleep mode. This mechanism can be used in applications that require the processor to run only when
an exception occurs. Setting the SLEEPONEXIT bit to 1 enables an interrupt-driven application in order to avoid
returning to an empty main application.

Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Table 5-2 below provides a configuration summary of the low-
power modes.

Table 5-2. Low-power Mode Configuration Summary

SUPC,
32 kHz
Oscillator,
RTC, RTT
Backup Core
Registers, | Regulator PIO State
POR / Core 0/1 Core in Low- PIO State
(Backup LCD Memory Potential at power at Wake-up
Mode Region) | Regulator | Peripherals Mode Entry®? Wake-up Sources | Wake-up | Mode Wake-up | Consumption® | Time®
VROFF bit = 1 : mﬂ';g':é I
OFF / OFF or . -15 pins. .
Backup |4y OFE/OEE - Supply Monitor Reset Previous Rese(tm) <1 pA typ® <1,5ms
Mode (Not powered) |SLEEPDEEP =1 .) (10) state saved |state
- Anti-tamper inputs
+WFE - RTC or RTT alarm
VROFF bit = 1 - FWUP pin. - Unchanged
Backup - WKUPO-15 pins*?), i ;
i OFF / OFF or ; Previous |(LCD Pins)/ ©
Mode with |ON OFF/ON - Supply Monitor Reset) <10 pA typ© <1,5ms
LCD (Not powered) |SLEEPDEEP =1 - Anti-Tamper inputs® state saved |Inputs with
ull ups
+WFE - RTC or RTT alarm P P
WAITMODE =1 +
FLPM =0
Wait Mode CoreOand 1, |or Any Event from:
memories and - Fast start-up through Clocked Previ
') eripherals: -15 pi ocke revious @
Elashin |ON ON/ perip SLEEPDEEP = 0 WKU_PO 15 pm_s. back state saved Unchanged |45 pA/ 66 pA <10 ps
Standby Powered, but | LPM =1 - Anti-Tamper inputs?
Mode®D Not clocked - B
+FELPM =0 RTC or RTT alarm
+ WFE
Wait Mode ‘é"L’;',\TA""_OlDE =1+ _
CoreOand 1, = Any Event from:
. i or - Fast start-up through
Flash in memories and)
Deo ON ON/® peripherals: |SLEEPDEEP =0 |WKUPO-15 pins. Clocked |Previous |, panged |45 pa/ 62 © <75us
p 8 ; back state saved
Power- Powered, but |+ LPM =1 - Anti-Tamper inputs“®
down(u) Not clocked +FLPM =1 -RTC or RTT alarm
Mode! + WFE
/ItmeL SAMA4CM Series [PRELIMINARY DATASHEET] 23

11203A-ATARM-15-Oct-13

Table 5-2. Low-power Mode Configuration Summary (Continued)

SUPC,
32 kHz
Oscillator,
RTC, RTT
Backup Core
Registers, | Regulator PIO State
POR / Core 0/1 Core in Low- PIO State
(Backup LCD Memory Potential at power at Wake-up
Mode Region) | Regulator | Peripherals Mode Entry®? Wake-up Sources | Wake-up Mode Wake-up | Consumption® | Time®
Entry mode = WFI
Any Enabled Interrupts;
gg:g g_a“d/or SLEEPDEEP =0 |Entry mode = WFE _
fﬂlggg ON ON/®) Poweré d +LPM=0 Any Enabled Events: E;%T(ked sPtr:t\elzK;:fle 4|Unchanged ® ©®
(Not clocked) + WFE or WFI - Fast start-up through
WKUPO-15 pins.
- Anti-Tamper inputs?
- RTC or RTT alarm
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device
works either from the 4, 8 or 12 MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the
system. The wake-up time is defined as the time taken for wake-up until the first instruction is fetched.
2. Current consumption of the Supply Monitor on VDDIO is not included.
3. On VDDBU (in backup mode, if VDDIO is powered, consumption is on VDDIO due to the automatic power switch).
When VDDIO is kept in backup mode to use generic wake-up, anti-tamper or RTCOUT, total power consumption on
VDDIO is less than 3 pA. See electrical characteristics of the product.
4. 45 pA on VDDCORE, 66 uA for total current consumption (using internal voltage regulator), TBD pA for total current
consumption (without using internal voltage regulator).
5. 45 pA on VDDCORE, 62 pA for total current consumption (using internal voltage regulator), TBD pA for total current
consumption (without using internal voltage regulator).
6. Depends on MCK frequency.
7. In this mode, the core is supplied and not clocked but some peripherals can be clocked.
8. LCD voltage regulator can be OFF if VDDLCD is supplied externally thus saving current consumption of the LCD volt-
age regulator.
9. On VDDIN, VDDIO, VDDLCD
10.Refer to Table 3-1, “Signal Description List”. Some anti-tamper pin pads are VDDIO powered.
11.Fast RC Osc. set to 4 MHz Frequency.
12.Refer to the note in Section 5.5 “Low-power Modes”.
13.See PIO Controller Multiplexing tables in Section 11.4 “Peripheral Signal Multiplexing on 1/O Lines”.
5.6 Wake-up Sources
Wake-up events allow the device to exit backup mode. When a wake-up event is detected, the Supply Controller
performs a sequence which automatically reenables the core power supply and all digital logics.
5.7 Fast Start-up
The SAM4CM allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep
mode. A fast start-up occurs upon detection of one of the wake-up inputs.
The fast restart circuitry is fully asynchronous and provides a fast start-up signal to the Power Management Controller.
As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded 4/8/12 MHz Fast RC
oscillator, switches the master clock on this 4 MHz clock and re-enables the processor clock.
/ItmeL SAMACM Series [PRELIMINARY DATASHEET)] 24

11203A-ATARM-15-Oct-13

6.

6.1

6.2

Input/Output Lines

The SAM4CM has two types of input/output (1/0O) lines: general purpose I/Os (GPIO) and system I/Os. GPIOs have
alternate functionality due to multiplexing capabilities of the PIO controllers. The same PIO line can be used whether in
I/0 mode or by the multiplexed peripheral. System 1/Os include pins such as test pins, oscillators, erase or analog inputs.

General Purpose I/O Lines

GPIO lines are managed by PIO Controllers. All I/0Os have several input or output modes such as pull-up or pull-down,
input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these
modes is performed independently for each 1/O line through the PIO controller user interface. For more details, refer to
the “Parallel Input/Output (P1O) Controller” section of this datasheet.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail when used as general purpose
I0s (GPIOs). When used as extra functions like LCD or analog modes, GPIO lines have either VDDLCD or VDDIN
voltage range.

Each 1/O line embeds an ODT (On-die Termination) shown in Figure 6-1 below. ODT consists of an internal series
resistor termination scheme for impedance matching between the driver output (SAM4CM) and the PCB trace
impedance preventing signal reflection. The series resistor helps to reduce 10s switching current (di/dt) thereby reducing
EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. Finally, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

Receiver
SAM4 Driver with

PCB Trace
Zout ~ 10 Ohms

Z0 ~ 50 Ohms

[TTTTTTToToTososoooosososoooos Z0 ~ Zout + Rodt
1 1

1 1

| opT |

! 36 Ohms Typ. !

i i

i

ey S AMA—— Y b (Y oo
1

| Rodt % %

i 1 1

1

1

1

1

1

Lo

System 1/O Lines

System 1/O lines are pins used by oscillators, test mode, reset and JTAG, to name but a few. Described below in Table 6-
1 are the SAM4CM system 1/O lines shared with PIO lines. These pins are software configurable as general purpose /O
or system pins. At start-up, the default function of these pins is always used.

Table 6-1. System I/O Configuration Pin List

SYSTEM_IO Default Function Constraints

Bit Number after Reset Other Function for Normal Start Configuration
0 TDI PBO -
1 TDO/TRACESWO PB1 ~ In Matrix User Interface Registers
2 TMS/SWDIO PB2 _ (Refer to the System 110

Configuration Register in the “Bus
3 TCK/SWCLK PB3) Matrix” section of this datasheet)
4 ERASE PC9 Low level at Start-up™®
- PA31 XIN -
See footnote @ below
- PA30 XOuT -
Notes: 1. If PC9is used as PIO input in user applications, a low level must be ensured at start-up to prevent Flash erase before

the user application sets PC9 into PIO mode.

2. In the product datasheet, refer to “3 to 20 MHz Crystal Oscillator” subsection in the “Power Management Controller
PMC” section.

SAMACM Series [PRELIMINARY DATASHEET 25
Atmel []

11203A-ATARM-15-Oct-13

6.2.1

6.3

6.4

6.5

6.6

Serial Wire JTAG Debug Port (SWJ-DP) and Serial Wire Debug Port (SW-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG
connector defined by ARM. For more details about voltage reference and reset state, refer to Table 11-5, “Multiplexing
on PIO Controller B (PIOB)”.

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Refer to the
“Debug and Test” section of this datasheet.

SWJ-DP pins can be used as standard 1/Os to provide users with more general input/output pins when the debug port is
not needed in the end application. Mode selection between SWJ-DP mode (System 10 mode) and general IO mode is
performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up,
triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent
pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the
SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used
with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, refer to the “Debug and Test”
section of this datasheet. The SW-DP/SWJ-DP pins are used for debug access to both cores.

Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4CM
series. For details on entering fast programming mode, see the “Fast Flash Programming Interface (FFPI)” section of this
datasheet. For more information on the manufacturing and test modes, refer to the “Debug and Test” section of this
datasheet.

NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal
to the external components or asserted low externally to reset the microcontroller. It resets the core and the peripherals
except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset pulse, and
the Reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up resistor to
VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

TMPx Pins: Anti-tampering Pins

Anti-tampering pins detect intrusion, for example, into a smart meter case. Upon detection through a tamper switch,
automatic, asynchronous and immediate clear of registers in the backup area, and time stamping in the RTC will be
performed. Anti-tamper pins can be used in all modes. Date and number of tampering events are stored automatically.
Anti-tampering events can be programmed so that half of the General Purpose Backup Registers (GPBR) are erased
automatically. TMP1 signal is referred to VDDIO meaning that it is effective only if VDDIO is supplied, whereas TMPO is
in the VDDBU domain.

RTCOUTO Pin

The RTCOUTO pin shared in the PIO (supplied by VDDIO) can be used to generate waveforms from the RTC in order to
take advantage of the RTC inherent prescalers while the RTC is the only powered circuitry (low-power mode of
operation, backup mode) or in any active mode. Entering backup or low-power operating modes does not affect the
waveform generation outputs (VDDIO still needs to be supplied). Anti-tampering pin detection can be synchronised with
this signal.

Note: To use the RTCOUTO signal during application development via JTAG-ICE interface, the programmer must use Serial
Wire Debug (SWD) mode. In this case, the TDO pin is not used as a JTAG signal by the ICE interface.

SAMACM Series [PRELIMINARY DATASHEET 26
Atmel []

11203A-ATARM-15-Oct-13

6.7 Shutdown (SHDN) Pin

The SHDN pin reflects the MCU backup mode of operation: when the MCU is in backup mode, SHDN = 0, otherwise
SHDN =1 (VDDBU). This pin is designed to control the enable pin of the main external voltage regulator. When the MCU
enters backup mode, the SHDN pin disables the external voltage regulator and, upon the wake-up event, it re-enables
the voltage regulator.

The SHDN pin is managed by the Supply Controller (SUPC). It is asserted low when the VROFF bit in the Supply
Controller Control Register (SUPC_CR) is set to 1.

6.8 Force Wake-up (FWUP) Pin

The FWUP pin can be used as a wake-up source in all low-power modes as it is supplied by VDDBU.

6.9 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as
logic level 1). The ERASE pin integrates a pull-down resistor of about 100 kQ into GND, so that it can be left
unconnected for normal operations.

This pin is debounced by SLCK to improve the glitch tolerance. When the ERASE pin is tied high during less than
100 ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase
operation.

The ERASE pin is a system I/O pin and can be used as a standard 1/O. At start-up, the ERASE pin is not configured as
a PI1O pin. If the ERASE pin is used as a standard I/O, the start-up level of this pin must be low to prevent unwanted
erasing. Refer to Section 11.3 “APB/AHB Bridge”. If the ERASE pin is used as a standard 1/O output, asserting the pin to
low does not erase the Flash.

SAMACM Series [PRELIMINARY DATASHEET 27
Atmel []

11203A-ATARM-15-Oct-13

7. Product Mapping and Peripheral Access

Figure 7-1 shows the default memory mapping of the ARM Cortex-M Core.

Figure 7-1. Cortex-M Memory Mapping

OXFFFFFFFF
System level
0xE0000000
OxDFFFFFFF
External device
0xA0000000
OX9FFFFFFF
External RAM
0x60000000
OX5FFFFFFF
Peripherals
0x40000000
Ox3FFFFFFF
SRAM
0x20000000
Ox1FFFFFFF
CODE
0x00000000

Atmel

Private peripherals including
build-in interrupt controller
(NVIC), MPU control
registers, and debug
components

Mainly used as external
peripherals

Mainly used as external
memory

Mainly used as peripherals

Mainly used as static RAM

Mainly used for program
code. Also provides exception
vector table after power up

SAMACM Series [PRELIMINARY DATASHEET] 28

11203A-ATARM-15-Oct-13

Atmel

Figure 7-2. SAM4CM16/8 Memory Mapping of CODE and SRAM Area

A
Ox00000000 ddress memory space
Code
0x20000000
| | SRAM Internal SRAM i Code
0x20000000 el S - . 0X00000000
\ Boot Memory (1)
SRAMO OX4000OOOO' | (Code - Non-cached)
0x20080000 . Y 0x01000000
/!) | Internal Flash
SRAML (2) K Peripherals L (Code - Non-cached)
0x20100000 / 5 0x02000000
SRAM2 0x60000000 Internal ROM
0x20180000 \ 0x03000000
) Y EBI Chip Select 0
CPKCC ROM ',' External SRAM . (Code - Non-cached)
0x20190000 N \ 0x04000000
h N EBI Chip Select 1
Reserved 0XA0000000 (Code - Non-cached)
0x20191000 ! + 0x05000000
) \ EBI Chip Select 2
CPKCC SRAM : External devices . X06000000 (Code - Non-cached)
0x20192000 S L OX
. . EBI Chip Select 3
Reserved 0xE0000000 \ (Code - l\?on-cached)
0x20200000 '.’ '-‘0X07000000
Undefined (Abort) | ~ ori thrtgx;]M B Undefined (Abort)
OX3FFFFFFE rivate Peripheral Bus 9x10000000
0xE0100000 N Undefined (Abort)
0X11000000
Reserved Internal Flash
3 Code - Cached
offset 0x12000000 ()
I:)I()Ckperipheral OXFFFFFFFF . Undefined (Abort)
1D 0x13000000
Y EBI Chip Select 0
0x14050000 (Code - Cached)
. EBI Chip Select 1
0x15000000 (Code - Cached)
y EBI Chip Select 2
0x16000(‘300 (Code - Cached)
% EBI Chip Select 3
0x1700000‘b (Code - Cached)
. Undefined (Abort)
OX1FFFFFFF!
Notes: 1. Boot Memory for Core O.
2. Boot Memory for Core 1 @ 0x00000000.

SAMA4CM Series [PRELIMINARY DATASHEET]

29

11203A-ATARM-15-Oct-13

In Figure 7-2 above, ‘Code’ means ‘Program Code over I-Code bus’ and ‘Program Data over D-Code bus'.

SRAM1 shown in the mapping above, can be seen at the address 0x20080000 (through S-bus) and the address
0x00000000 (through I/D Bus) for Corel. Instruction fetch from Core 1 to the SRAM address range is possible but leads
to reduced performance due to the fact that instructions and read/write data go through the System Bus (S-Bus).
Maximum performance for Core 1 (Metrology Core) is obtained by mapping the instruction code to the address
0x00000000 (SRAML1 through I/D-Code) and read/write data from the address 0x20100000 (SRAM2 through S-Bus).

For Core 0 (Application Core), maximum performance is achieved when the instruction code is mapped to the flash
address and read/write data is mapped into SRAMO.
Each cores can access the following memories and peripherals:
e Core 0 (Application Core):
e All internal memories
e External memories or memory devices mapped on SMC 0 or SMC 1
e Allinternal peripherals
e Core 1 (Metrology/Coprocessor Core):
e Allinternal memories
e External memories or memory devices mapped on SMC 0 or SMC 1
e Allinternal peripherals

Note that Peripheral DMA 0 on Matrix O cannot access SRAM1 or SRAM2, Peripheral DMA 1 on Matrix 1 cannot access
SRAMO, SRAM2 or SRAMO can be the Data RAM for Inter-core Communication.

If the Metrology Core is not to be used (Clock Stopped and Reset active), all the peripherals, SRAM1 and SRAM2 of the
Sub-system 1 can be used by the Application Core 0) as long as the peripheral bus clock and reset are configured.

Detailed Memory Mapping and Memory Access versus Matrix Masters/Slaves is given in the “Bus Matrix (MATRIX)”
section of this datasheet.

SAMACM Series [PRELIMINARY DATASHEET 30
Atmel []

11203A-ATARM-15-Oct-13

Figure 7-3. SAM4CM16/8 Memory Mapping of the Peripherals Area

Address memory space

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0000000

0xE0100000

OXFFFFFFFF

Atmel

Code

Internal SRAM

Peripherals

External SRAM

External devices

Cortex-M
Private
Peripheral Bus

Reserved

v
'
'
'
'
'
'
'
'
'
'
'
v
'
'
'
'
'
'
'
'
'
'
v

0x48004000

0x4800$000

'

0x4800C000

0x48010000
0x48014000

0x48018000

0x4801C000

048020000

OX5FFFFFFF

UART1
38
PWM
41
PIOC
37
MATRIX1
IPC1
39
CMCC1
SMC1
43
Reserved

EEEEY

'
'

'

'
'

.

'
Il

'
' '
'
]

'

0x4000000 Peripherals
e AES
.-~ Tx40004000 36
: Reserved
0x40008000
SPIO
0x4000C000 21
Reserved
0x40010000
T o
+0x40 23
L
+0x80 24
T .,
0x40014000 25
Tc1
TC3
+0x40 26
o,
+0x80 27
T o
0x40018000 28
TWIO
0x4001C000 19
TWiL
0x40020000 20
Reserved
0x40024000
USARTO
0x40028000 14
USARTL
0x4002C000 15
USART2
040030000 16
USART3
0x40034000 17
Reserved
0x40038000
ADC
0x4003C000 29
sLcpe
0x40040000 32
CPKCC
040044000 35
ICM
0x40048000 34
TRNG
0x4004C000 33
IPCO
0x40050000 31
Reserved
0x4007C000
cMcco
0x40080000
Reserved
0x400E0000
System Controller
0x400E4000
Reserved
0x48000000
Reserved
----- 0x48004000

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

! 0x400E4000

System Controller

0x400E0000
] SMCO
Ox400E0200 10
; MATRIXO
0X400E0400
: PMC
0x400E0600 5
: UARTO
0x400E0740 8
: CHIPID
0X400E0800
.-' Reserved
0x400EGA00
: EFC
0x400E0CO0 6
Reserved
0x400EOE00
; PIOA
0x400E1000 11
: PIOB
0x40DE1200 12
Reserved
0x400E1400
; SYSC orc
I +0x10
H SYSC - supc
I +0x30
; sysc
! +0x50 3
; sysc o
i +0x60 4
: SYSC oo
I +0x90 2
i SE.
0x400E1600
reserved

.

.

'

31

Figure 7-4. SAM4CM16/8 Memory Mapping of External SRAM and External Devices Area

Address memory space

0x00000000

0x20000000

0x40000000

0x60000000

0xA0000000

0xE0000000

0xE0100000

OXFFFFFFFF

Atmel

Code

Internal SRAM

Peripherals

External SRAM

External devices

Cortex-M
Private
Peripheral Bus

Reserved

I
'
'
'
'
'
'
'
v
'
v
'
'
'
v
'
'
'
'
'
v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
v
'
'
'
'
'
'
'

0x48004000

OX4800$000

'
'

0x4800C000

0x48010000

OX480140p0

0x48018000

0x4801C000

'

0x48020000

OX5FFFFFFF

A

e mmmmmmmmmmmmmmmmmmmmmmmmsmmmemmsmmsmmeemmmmmmemm—nnd

0x4000000 Peripherals
ot AES
.-~ Ux40004000 36
Reserved
0x40008000
SPIO
0x4000C000 21
Reserved
0x40010000
Tc0 o
+0x40 23
Tc0
+0x80 24
T
0x40014000 25
TCL
TC3
+0x40 26
T,
+0x80 27
T
0x40018000 28
TWIO
0x4001C000 19
TWIL
0x40020000 20
Reserved
0x40024000
USARTO
0x40028000 14
USART1
0x4002C000 15
USART2
0x40030000 16
USART3
0x40034000 17
Reserved
0x40038000
ADC
0x4003C000 29
sLcobe
0x40040000 32
CPKCC
0x40044000 35
ICM
0x40048000 34
TRNG
0x4004C000 33
IPCO
0x40050000 31
Reserved
0x4007C000
CMCCo
0x40080000
Reserved
0x400E0000
System Controller
0x400E4000
Reserved
0x48000000
Reserved
----- 0x48004000

System Controller

0X400E0000
] SMCO
0x400E0200 10
: MATRIXO
0X400E0400
; PMC
Ox400E0600 5
H UARTO
0X400E0740
; CHIPID
0x400E0800
Reserved
0x400EGA00
: EFCO
0x400E0CO0 6
: EFC1
0x400EOE00 ’
: PIOA
0x400E1000 11
: PIOB
Ox40DE1200 12
Reserved
0x400E1400
: SYSC - Rste
i +0x10 L
i SYSC (ne
i +0x30
; svs¢ o
! +0x50 3
i sysc o
i +0x60 4
: svsc oo
! +0x90 2
: SYSC oo
0x400E1600
reserved

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

8.1

8.11

8.1.2

8.1.3

8.1.4

8.14.1

Memories

The memory map shown in Figure 7-2, “SAM4CM16/8 Memory Mapping of CODE and SRAM Area” is global to both
Cortex-M4 processors except the “Boot Memory” block. For more information on Boot Memory, refer to Section 8.1.5
“Boot Strategy”.

Each processor uses its own ARM private bus memory map for the NVIC and other system functions.

Embedded Memories

Internal SRAM
The SAM4CM embeds a total of 152 Kbytes high-speed SRAM with zero wait state access time.

SRAMO on Matrix0 is 128 Kbytes. It is dedicated to the application processor (CM4P0) or other peripherals on Matrix0
but can be identified and used by masters on Matrix1. Refer to “Bus Matrix (MATRIX)” section of this datasheet for more
details.

SRAM1 on Matrix1 is 16 Kbytes. It is mainly dedicated to be the code region of the CM4P1 processor but can be
identified and used by on Matrix0. Refer to “Bus Matrix (MATRIX)” section of this datasheet for more details.

SRAM2 on Matrix1 is 8 Kbytes. It is mainly dedicated to be the data region of the CM4P1 processor or other peripherals
on Matrix1 but can be identified and used by masters on Matrix0. Refer to “Bus Matrix (MATRIX)” section of this
datasheet for more details.

If the CM4P1 processor is in the reset state and not used, the application core can use it.
The SRAM is located in the bit band region. The bit band alias region is from 0x2200 0000 to 0x23FF_FFFF.

System ROM

The SAM4CM embeds an Internal ROM for the master processor (CM4P0), which contains the SAM Boot Assistant
(SAM-BA), In Application Programming routines (IAP), and Fast Flash Programming Interface (FFPI).

The ROM is always mapped at the address 0x02000000.

CPKCC ROM

The ROM contains a Cryptographic Library using the CPKCC Cryptographic accelerator peripheral (CPKCC) to provide
support for Rivest Shamir Adleman (RSA), Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA).

Embedded Flash

Flash Overview

The embedded Flash is the boot memory for the Cortex-M4 Core 0 (CM4P0). The flash memory can be accessed
through the Cache Memory Controller (CMCCO) of the CM4P0 and can also be identified by the Cortex-M4F Core 1
(CM4P1) through its Cache Memory Controller (CMCC1).

The memory plane is organized in sectors. Each sector has a size of 64 Kbytes. The first sector of 64 Kbytes is divided
into 3 smaller sectors.

The three smaller sectors are organized into 2 sectors of 8 Kbytes and 1 sector of 48 Kbytes. Refer to Figure 8-1 below.

The Flash Memory as a Built-in Error Code Correction provides 2-bit error detection and 1-bit correction per 128 bits.

SAMACM Series [PRELIMINARY DATASHEET 33
Atmel []

11203A-ATARM-15-Oct-13

Figure 8-1. Memory Plane Organization

Atmel

Flash Organization

Sector size

8 KBytes

8 KBytes

48 KBytes

64 KBytes

64 KBytes

Sector name

Small Sector 0

Small Sector 1 Sector 0

Larger Sector

Sector 1

Sector n

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

34

Each sector is organized in pages of 512 Bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 Bytes, 8 Kbytes in total
e The smaller sector 1 has 16 pages of 512 Bytes, 8 Kbytes in total
e The larger sector has 96 pages of 512 Bytes, 48 Kbytes in total
From Sector 1 to n:

The rest of the array is composed of 64-Kbyte sector where each sector comprises 128 pages of 512 bytes. Refer to
Figure 8-2, “Flash Sector Organization” below.

Figure 8-2. Flash Sector Organization
Flash Sector Organization

A sector size is 64 Kbytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes Smaller sector 1

96 pages of 512 Bytes Larger sector

Sector n 128 pages of 512 Bytes

The flash size varies by product:
e SAMA4CMS: Flash size is 512 Kbytes
e SAMACM16: Flash size is 1024 Kbytes

Refer to Figure 8-3 below for the organization of the Flash depending on the size.

Figure 8-3. SAM4CM16/8 Flash Size

Flash 1 MBytes Flash 512 KBytes
2 * 8 KBytes 2 * 8 KBytes
1 * 48 KBytes 1 * 48 KBytes

7 * 64 KBytes
15 * 64 KBytes

Erasing the memory can be performed as follows:
e Per 512-Byte page inside a sector of 8 Kbytes.
EWP and EWPL commands can be only used in 8 Kbytes sectors

e Per 4-Kbyte block inside a sector of 8 Kbytes/48 Kbytes/64 Kbytes.
Erase Page commands can be only used with FARG[1:0] =1

SAMACM Series [PRELIMINARY DATASHEET 35
Atmel []

11203A-ATARM-15-Oct-13

8.1.4.2

8.1.4.3

8.1.4.4

8.1.45

8.1.4.6

8.1.4.7

e Per sector of 8 Kbytes/48 Kbytes/64 Kbytes.
Erase Page commands can be only used with FARG[1:0] = 2

e Per Full-Memory

Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by masters of the system. It enables reading
the Flash and writing the write buffer. It also contains a User Interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block. It manages the programming,
erasing, locking and unlocking sequences of the Flash using the full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

Flash Speed

The user needs to set the number of wait states depending on the frequency used on the SAM4CM series.

For more details, refer to the “AC Characteristics” section of the product electrical characteristics.

Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several

consecutive pages, and each lock region has its associated lock bit.

Table 8-1. Lock bit number

Product Number of Lock Bits Lock Region Size
SAM4CM16 128 8 Kbytes
SAM4CM8 64 8 Kbytes

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Security Bit Feature

The SAM4CM features a security bit based on a specific General Purpose NVM bit (GPNVM bit 0). When the security is
enabled, any access to the Flash, SRAM, Core Registers and Internal Peripherals, either through the SW-DP/JTAG-DP
interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code
programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals
are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 220 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is
safer to connect it directly to GND for the final application.

Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the
user. The ERASE pin has no effect on the unique identifier.

User Signhature

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible
through specific modes, for erase, write and read operations. Erase pin assertion will not erase the User Signature page.

SAMACM Series [PRELIMINARY DATASHEET 36
Atmel []

11203A-ATARM-15-Oct-13

8.1.4.8

8.14.9

Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through either a serial JTAG interface or through
a multiplexed fully-handshaked parallel port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

SAM-BA Boot

The SAM-BA Boot is a default Boot Program for the master processor (CM4P0) which provides an easy way to program
in-situ the on-chip Flash memory.

The SAM-BA Boot Assistant supports serial communication via the UARTO.
The SAM-BA Boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA Boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.4.10 GPNVM Bits

8.15

The SAM4CM features GPNVM bits. These bits can be cleared or set respectively through the commands “Clear
GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface (see the “EEFC Flash Command Register” section of this
datasheet).

Figure 8-4. General-purpose Nonvolatile Memory Bits

GPNVM Bit[#] Function
0 Security bit
1 Boot mode selection

Boot Strategy

Figure 8-5 below shows a load view of the memory at boot time.

Figure 8-5. Simplified Load View at Boot Time

AT Fan [\

Core O ICode / DCode Bus
S Core 1
ICode / DCode Bus Appllcatlon Metrology Core
Core 0 Corel (Cortex-M4F)
Application Core Application
p(F():ortex-M4) (Binary Img.) = e
-
SRAM2

r S-Bus

—P] SRAMO] \)

&

—> Clock & Reset | T
Control I

|Sub-system 0 | | Sub-system 1

Note: Matrices, AHB and APB Bridges are not represented.

8.1.5.1 Application Core (Core 0) Boot Process

The application processor (CM4P0) always boots at the address 0x0. To ensure maximum boot possibilities, the memory
layout can be changed via GPNVM. A General Purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or

SAMACM Series [PRELIMINARY DATASHEET 37
Atmel []

11203A-ATARM-15-Oct-13

from the Flash. The GPNVM bit can be cleared or set through the commands “Clear General-purpose NVM Bit” and “Set
General-purpose NVM Bit” of the EEFC User Interface respectively. Setting GPNVM Bit 1 selects the boot from the Flash
whereas clearing this bit selects the boot from the ROM. Asserting ERASE clears the GPNVM Bit 1 and thus selects the
boot from the ROM by default.

8.1.5.2 Metrology/Coprocessor Core (Core 1) Boot Process

After reset, the Sub-system 1 is hold in reset and with no clock. It is up to the Master Application (Core 0 Application)
running on the Core 0 to enable the Sub-system 1. Then the application code can be downloaded into the CM4P1 Boot
memory (SRAM1), and CM4P0 can afterwards de-assert the CM4P1 reset line. The secondary processor (CM4P1)
always identifies SRAM1 as “Boot memory”.

8.1.5.3 Sub-system 1 Startup Sequence
After the Core 0 is booted from Flash, the Core 0 Application must perform the following steps:
1. Enable Core 1 System Clock (Bus and peripherals)
Enable Core 1 Clock
Release Core 1 System Reset (Bus and peripherals)
Enable SRAM1 and SRAM2 Clock
Copy Core 1 Application from Flash into SRAM1

o s~ wDN

6. Release Core 1 Reset
After step 6, the Core 1 boots from SRAM1 Memory.

Pseudo-code:
1- // Enable Coprocessor Bus Master Clock in PMC System Clock Enable Register
(CPBMCK bit)

2- // Enables Coprocessor Clocks
e PMC System Clock Enable Register (CPCK bit)
// Set Coprocessor Clock Prescaler and Source
e In PMC MCKR: Coprocessor Programmable Clock Prescaler (CPPRES bit fields)
// Choose coprocessor main clock source
e In PMC MCKR: Coprocessor Master Clock Selection (CPCSS bit fields)

3- // Release coprocessor peripheral reset
e In Reset Controller Coprocessor Mode Register (CPEREN bit)

4- // Enable Core 1 SRAM1 and SRAM2 Memories
e In PMC PCER: Peripheral ID 42 (SRAM)

5- // AT THIS POINT Core 1 application code must be loaded from Flash into
SRAM1.

6- // Release coprocessor reset
e In Reset Controller Coprocessor Mode Register (CPROCEN bit)

SAMACM Series [PRELIMINARY DATASHEET 38
Atmel []

11203A-ATARM-15-Oct-13

8.1.5.4 Typical Execution View

Figure 8-6 below provides the code execution view for both Cortex-M4 cores. AHB to APB, AHB to AHB and Matrices are

not represented in this view.

Figure 8-6. Execution View

Sub-system 0

Note: 1.
Note:

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

Flash
S-Bus > < S-Bus
Core 0 Cach
ode ode Bus &Ly Cach Code, el v
ICode / DCode Bus | ety gfﬂ.e o €=>| i [|€=P| icode/DCode Bus
(CMCCO) CMCC1)
Core 1
Core 0 Code, Core 1
RO Data
Application Core 1 Metrology
Core Application Core
(Cortex-M4) Binary (Cortex-M4F)
SRz
Core 1,
S-Bus RW Data, S-Bus
Stack, Heap
Core 0 <-->Core 1
Msg. Buffer (1)

SRAMO can also be used as Message Buffer Exchange.
Matrices, AHB and APB Bridges are not represented.

Sub-system 1

8.2

8.2.1

External Memories

The SAMACM features the External Bus Interface to provide the interface to a wide range of external memories and to
any parallel peripheral. Instruction fetch from external memories connected to the EBI/SMC is either possible through the
Cache Controller or not. See Figure 7-2, “SAM4CM16/8 Memory Mapping of CODE and SRAM Area”

Static Memory Controller
e 8-bit Data Bus
e Up to 24-bit Address Bus (up to 16 Mbytes linear per chip select)
e Up to 4 chip selects, Configurable Assignment
e Multiple Access Modes supported
e Chip Select, Write enable or Read enable Control Mode
e Asynchronous read in Page Mode supported (4-Byte up to 32-Byte page size)
Multiple device adaptability
Control signals programmable setup, pulse and hold time for each Memory Bank
Multiple Wait State Management
e Programmable Wait State Generation
e External Wait Request
e Programmable Data Float Time
e Slow Clock mode supported

The Static Memory Controllers (SMCO0/1) / External Bus Interface (EBI) can be used by either the CM4P0 or CM4P1 but
only one path is optimized, CM4P0-->SMCO or CM4P1-->SMC1.

The SMCO and SMC1 uses the same pin on the EBI. Only one can be used at the same time.
The selection is done in the Matrix User Interface Registers (in the System I/O Configuration Register).
The SMCO is used by default.

SAMACM Series [PRELIMINARY DATASHEET 40
Atmel []

11203A-ATARM-15-Oct-13

9. Real-time Event Management

The events generated by peripherals are designed to be directly routed to peripherals managing/using these events
without processor intervention. Peripherals receiving events contain logic to select the required event.

9.1 Embedded Characteristics
e Timers generate event triggers which are directly routed to event managers, such as ADC, to start
measurement/conversion without processor intervention

e UART, USART, SPI, TWI, and PIO generate event triggers directly connected to Peripheral DMA controller (PDC)

for data transfer without processor intervention

e PMC Security Event (Clock Failure Detection) can be programmed to switch the MCK on reliable main RC internal

clock

9.2 Real-time Event Mapping List

Table 9-1. Real-time Event Mapping List

Event Generator Event Manager Function
Anti-tamper Inputs (TMPX) General Purp(cgggs;:kup Register iﬁ;igt%F/);T(;T;tta:(i;t:n(igiSgﬂi?rzs(asynchronous) on
Power Management Controller PMC _Safety / Automatic Switch to Religble Main RC oscillator
(PMC) in case of Main Crystal Clock Failure
10 (ADTRG) ADC Trigger for measurement. Selection in ADC
TC Output 0 ADC Trigger for measurement. Selection in ADC
TC Output 1 ADC Trigger for measurement. Selection in ADC
TC Output 2 ADC Trigger for measurement. Selection in ADC
TC Output 3 ADC Trigger for measurement. Selection in ADC
TC Output 4 ADC Trigger for measurement. Selection in ADC
TC Output 5 ADC Trigger for measurement. Selection in ADC

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

41

10. System Controller

The System Controller comprises a set of peripherals. It handles key elements of the system, such as power, resets,
clocks, time, interrupts, watchdog, reinforced safety watchdog, etc.

10.1 System Controller and Peripheral Mapping
Refer to Section 7-2 “SAM4CM16/8 Memory Mapping of CODE and SRAM Area”.

All the peripherals are in the bit band region and are mapped in the bit band alias region.

10.2 Power Supply Monitoring

The SAMACM embeds Supply Monitor, Power-on-Reset and Brownout detectors for power supplies monitoring allowing
to warn and/or reset the chip.

10.2.1 Power-on-Reset on VDDCORE

The Power-on-Reset monitors VDDCORE. It is always activated and monitors voltage at start-up but also during power-
down. If VDDCORE goes below the threshold voltage, the entire chip (except VDDBU domain) is reset. For more
information, refer to the “Electrical Characteristics” section of the product datasheet.

10.2.2 Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply
Controller (SUPC_MR).

If VDDCORE goes below the threshold voltage, the reset of the core is asserted.

10.2.3 Power-on-Reset on VDDIO

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during power-
down. If VDDIO goes below the threshold voltage, the IOs are reset but the core continues to run. Voltage detection is
fixed.

10.2.4 Supply Monitor on VDDIO

The supply monitor on VDDIO is fully programmable with 16 steps for the threshold (between 1.6V to 3.4V). It provides
the user the flexibility to set a voltage level detection higher then the power-on-reset on VDDIO. Either a reset or an
interrupt can be generated upon detection. It can be activated by software and it is controlled by the Supply Controller
(SUPC). A sample mode is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048.

10.2.5 Power-on-Reset and Brownout Detector on VDDBU

The Power-on reset monitors VDDBU. It is active by default and monitors voltage at start-up but also during power-down.
It can be deactivated by software through the Supply Controller (SUPC_MR). If VDDBU goes below the threshold
voltage, the entire chip is reset.

10.2.6 Power-on-Reset on EMAFE Internal VDDIO

The EMAFE Power-on reset monitors VDDIO. It is always activated and monitors voltage at start-up but also during
power-down. If VDDIO goes below the threshold voltage, EMAFE registers are reset and the EMAFE regulator is shut
down. Note that this POR does not reset the rest of the product. Only the EMAFE related registers are reset.

SAMACM Series [PRELIMINARY DATASHEET 42
Atmel []

11203A-ATARM-15-Oct-13

10.3 Reset Controller
The Reset Controller uses the Power-on-Reset cells and Brownout Monitor.

The Reset Controller returns to software either the source of the last reset, or of a general reset, a wake-up reset, a
software reset, a user reset, a watchdog or reinforced watchdog reset.

The Reset Controller controls the internal resets of the system (or independent reset of CM4P1 processor) and the NRST
pin input/output. It shapes a reset signal for the external devices, simplifying to a minimum connection of a push-button
on the NRST pin to implement a manual reset.

The configuration of the Reset Controller is saved as its is supplied by VDDBU.

10.4 Supply Controller (SUPC)

The Supply Controller controls the power supplies of each section of the processor.

The Supply Controller starts up the device by sequentially enabling the internal power switches and the Voltage
Regulator, then it generates the proper reset signals to the core power supply.

It also sets the system in different low-power modes, wakes it up from a wide range of events.

SAMACM Series [PRELIMINARY DATASHEET 43
Atmel []

11203A-ATARM-15-Oct-13

11. Peripherals

11.1 Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4CM. A peripheral identifier is required for the control of the
peripheral interrupt with the Nested Vectored Interrupt Controller, and for the control of the peripheral clock with the
Power Management Controller.

The two ARM Cortex-M4 processors share the same interrupt mapping, and thus, they share all the interrupts of the
peripherals.

Some peripherals are on the Bus Matrix 0/AHB to ABP Bridge 0 and other peripherals are on the Bus Matrix 1/
AHB to ABP Bridge 1. If Core 0 needs to access a peripheral on the Bus Matrix 1/AHB to ABP Bridge 1, the
Core 0 application must enable the Core 1 System Clock (Bus and peripherals) and release Core 1 System
Reset (Bus and peripherals). Peripherals on Sub-system 0 or Sub-system 1 are mentioned in the Instance
description table that follows.,

Note:

Table 11-1. Peripheral Identifiers

Instance ID Instance Name NVIC Interrupt CIocE'\égntrol Instance Description
0 SUPC X Supply Controller
1 RSTC X Reset Controller
2 RTC X Real-time Clock
3 RTT X Real-time Timer
Watchdog Timer/Reinforced Watchdog Timer.
4 wDT X No interrupts available for the Reinforced Watchdog
Timer.
5 PMC Power Management Controller
6 EFC X Enhanced Embedded Flash Controller O
7 - - - Reserved
8 UARTO X X UART 0 (Sub-system 0 Clock)
9 - - - Reserved
10 SMCO0 - X Static Memory Controller 0 (Sub-system 0 Clock)
11 PIOA X X Parallel I/O Controller A (Sub-system 0 Clock)
12 PIOB X X Parallel I/O Controller B (Sub-system 0 Clock)
13 - - - Reserved
14 USARTO X X USART 0 (Sub-system 0 Clock)
15 USART1 X X USART 1 (Sub-system 0 Clock)
16 USART2 X X USART 2 (Sub-system 0 Clock)
17 USART3 X X USART 3 (Sub-system 0 Clock)
18 - - - Reserved
19 TWIO X X Two Wire Interface 0 (Sub-system 0 Clock)
20 TWI1 X X Two Wire Interface 1 (Sub-system 0 Clock)
21 SPIO X X Serial Peripheral Interface 0 (Sub-system 0 Clock)
22 - - - Reserved
23 TCO X X Timer/Counter 0 (Sub-system 0 Clock)

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 44

11203A-ATARM-15-Oct-13

Table 11-1. Peripheral Identifiers (Continued)

Instance ID Instance Name NVIC Interrupt Cloclfl\c/ligntrol Instance Description
24 TC1 X X Timer/Counter 1 (Sub-system 0 Clock)
25 TC2 X Timer/Counter 2 (Sub-system 0 Clock)
26 TC3 X X Timer/Counter 3 (Sub-system 0 Clock)
27 TC4 X X Timer/Counter 4 (Sub-system 0 Clock)
28 TC5 X X Timer/Counter 5 (Sub-system 0 Clock)
29 ADC X X Analog To Digital Converter (Sub-system 0 Clock)
30 ARM X _ FPU signals (only on CM4P1 core): FPIXC, FPOFC,
FPUFC, FPIOC, FPDZC, FPIDC, FPIXC
31 IPCO X X gt;zgi)rocessor communication 0 (Sub-system 0
32 SLCDC X X Segment LCD Controller (Sub-system 0 Clock)
33 TRNG True Random Generator (Sub-system 0 Clock)
34 ICM X X Integrity Check Module (Sub-system 0 Clock)
35 CPKCC X X ;:)I/Z\tsesrlsag (P::JObCI:(c) Key Cryptography Controller (Sub-
36 AES Advanced Enhanced Standard (Sub-system 0 Clock)
37 PIOC X X Parallel I/O Controller C (Sub-system 1 Clock)
38 UART1 UART 1 (Sub-system 1 Clock)
39 IPC1 X X glltgéi;ocessor communication 1 (Sub-system 1
40 - - - Reserved
41 PWM X X Pulse Width Modulation (Sub-system 1 Clock)
2 : X | gD cate b ol cuard) shak2 Syt
43 SMC1 - X Static Memory Controller 1 (Sub-system 1 Clock)

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

45

11.2 Peripheral DMA Controller

Two PDC are available:
e PDCO: dedicated to peripherals on APBO
e PDC1: dedicated to peripherals on APB1
Features:
e Handles data transfer between peripherals and memories
e Low bus arbitration overhead
e One Master Clock cycle needed for a transfer from memory to peripheral
e Two Master Clock cycles needed for a transfer from peripheral to memory
e Next Pointer management for reducing interrupt latency requirement

Note that Peripheral DMA 0 on Matrix O cannot access SRAM1 or SRAM2. Peripheral DMA 1 on Matrix 1 cannot access
SRAMO.

The Peripheral DMA Controller handles transfer requests from the channel according to the following priorities (Low to
High priorities):

Table 11-2. Peripheral DMA Controller (PDCO0)

Instance name Channel T/R
AES Transmit
TWIO Transmit

UARTO Transmit
USART1 Transmit
USARTO Transmit
USART2 Transmit
USART3 Transmit
SPIO Transmit
AES Receive
TWIO Receive
UARTO Receive
USART3 Receive
USART2 Receive
USART1 Receive
USARTO Receive
ADC Receive
SPIO Receive
Table 11-3. Peripheral DMA Controller (PDC1)

Instance name Channel T/R

UART1 Transmit
UART1 Receive

SAMACM Series [PRELIMINARY DATASHEET 46
Atmel []

11203A-ATARM-15-Oct-13

11.3 APB/AHB Bridge
The SAM4CM embeds two peripheral bridges: one on each Matrix (Matrix O for CM4P0 and Matrix 1 for CM4P1).

The peripherals of the bridge corresponding to CM4P0 (APBO) are clocked by MCK, and the peripherals of the bridge
corresponding to CM4P1 (APB1) are clocked by CPBMCK.

11.4 Peripheral Signal Multiplexing on I/O Lines
The SAM4CM can multiplex the 1/O lines of the peripheral set.

The SAM4CM PIO Controllers control up to 32 lines. Each line can be assigned to one of two peripheral functions: A or B.
The multiplexing tables in the paragraphs that follow define how the 1/O lines of the peripherals A and B are multiplexed on
the PIO Controllers. The column “Comments” has been inserted in this table for the user’s own comments; it may be used
to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

11.4.1 Pad Features
In the tables that follow, the column “Feature” indicates if the corresponding I/O Line has programmable Pull-up, Pull-
Down and Schmitt Trigger with mnemonics.
e “PUP”™ Programmable (P) / Not Programmable (NP) Pull-up.
e “PDN": Programmable (P) / Not Programmable (NP) Pull-down.
e “ST™ Programmable (P) / Not Programmable (NP) Schmitt trigger.
e “LDRV/MDRV/HDRV”": Programmable (P) / Not Programmable (NP) Drive (Low/Medium/High).

11.4.2 Reset State

In the tables that follow, the column “Reset State” indicates the reset state of the line with mnemonics.

e “PIO” or signal name: Indicates whether the PIO Line resets in I/O mode or in peripheral mode.
If “P1O” is mentioned, the PIO Line is in general purpose /O (GPIO). If a signal name is mentioned in the “Reset
State” column, the PIO Line is assigned to this function.

“I""O”: Indicates whether the signal is input or output state.
“PU”/"PD": Indicates whether Pull-up, Pull-down or nothing is enabled.
“ST": Indicates if Schmitt Trigger is enabled.

SAMACM Series [PRELIMINARY DATASHEET 47
Atmel []

11203A-ATARM-15-Oct-13

11.4.3 PIO Controller A Multiplexing

Table 11-4. Multiplexing on PIO Controller A (PIOA)

System
1/0 Line | Peripheral A Peripheral B Peripheral C Extra Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PAO RTS3 PCK2 Al0 COMO WKUP5 - ST(P)
- HDRV(NP)
PAl CTS3 NCS1 A9 COM1
PA2 SCK3 NCS2 A8 CcOomM2
PA3 RXD3 NCS3 A7 COM3 WKUP6 - PUP(P) / PDN(P)
- ST(P)
PA4 TXD3 A6 COM4/AD1 - LDRV(P) / MDRV(P)
PA5 SPIO_NPCSO0 A5 COMS5/AD2
PA6 SPI0_MISO A4 SEGO
PA7 SPI0_MOSI A3 SEG1
- PUP(P) / PDN(P)
PA8 SPI0_SPCK A2 SEG2 - ST(P)
- HDRV(NP)
PA9 RXD2 Al SEG3 WKUP2
PA10 TXD2 AO/NBSO SEG4
PAl11 RXD1 A23 SEG5 WKUP9
A22/
PA12 TXD1 NANDCLE SEG6/AD0O
PIO, I, PU
A21/
PA13 SCK2 TIOAO NANDALE SEG7
PA14 RTS2 TIOBO A20 SEG8 WKUP3
PA15 CTS2 TIOA4 Al19 SEG9
PA16 SCK1 TIOB4 Al8 SEG10
PA17 RTS1 TCLK4 Al7 SEG11 WKUP7 -PUP(P) / PDN(P)
PA18 CTS1 TIOAS Al6 SEG12 - ST(P)
- LDRV(P) / MDRV(P)
PA19 RTSO TCLK5 Al15 SEG13 WKUP4
PA20 CTSO TIOB5 Al4 SEG14
PA21 SPIO_NPCS1 A13 SEG15
PA22 SPI0O_NPCS2 Al2 SEG16
PA23 SPIO_NPCS3 All SEG17
PA24 TWDO Al10 SEG18 WKUP1
PA25 TWCKO A9 SEG19
PA26 A8 SEG20
PA27 NCSO SEG21
PA28 NRD SEG22
- PUP(P) / PDN(P)
PA30 PCK1 A15 XOouT -ST(P) XOuT
- LDRV(P) / MDRV(P)
- PUP(P) / PDN(P)
PA31 PCKO Al4 XIN - ST(P) XIN
- LDRV(P) / MDRV(P)

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

11.4.4 PIO Controller B Multiplexing

Table 11-5. Multiplexing on PIO Controller B (PIOB)

110 Extra System
Line Peripheral A | Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P) / PDN(P)
PBO TWD1 TDI - ST(P) JTAG, |
- LDRV(P) / MDRV(P)
TDO/ - PUP(P)/PDN(P)
PB1 TWCK1 RTCOUTO TRACESWO - LDRV(NP) JTAG, O
PB2 TMS/SWDIO
JTAG, |
PB3 TCK/SWCLK
PB4 URXDO TCLKO Al7 WKUP8
PB5 UTXDO Al6
PB6 DO SEG24
- PUP(P) / PDN(P)
PB7 TIOAL D1 SEG25 - ST(P)
PB8 TIOB1 D2 SEG26 -LDRV(P) I MDRV(P)
PB9 TCLK1 D3 SEG27
PB10 TIOA2 D4 SEG28
PB11 TIOB2 D5 SEG29 PIO, I, PU
PB12 TCLK2 D6 SEG30
- PUP(P) / PDN(P)
PB13 PCKO D7 SEG31/AD3 - ST(P)
- HDRV(NP)
NWRO/
PB14 NWE SEG32
NWR1/
PB15 NBS1 SEG33
- PUP(P) / PDN(P) . .]
WKUP10/ TMP1 is only available in
PB16 RXDO D8 SEG34 TMP1 -ST(P) SAM4CMS devices.
- LDRV(P) / MDRV(P)
PB17 TXDO D9 SEG35
PB18 SCKO PCK2 D10 SEG36 PIO. 1, PD
PB19 D11 SEG37
PB21 D13 SEG39 WKUP11

Atmel

SAMA4CM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

49

11.4.5 PIO Controller C Multiplexing

Table 11-6. Multiplexing on PIO Controller C (PIOC)

1/0 Extra System
Line Peripheral A Peripheral B Peripheral C Function Function Feature Reset State Comments
- PUP(P)
PCO UTXD1 PWMO - HDRV(NP)
- PUP(P) / PDN(P)
PC1 URXD1 PWM1 WKUP12 -ST(P) PIO. I PU
- LDRV(P) / MDRV(P) Y
PC6 PWMO
- PUP(P) / PDN(P)
PC7 PWM1 -ST(P)
- LDRV(P) / MDRV(P)
PC9 PWM3 ERASE ERASE, PD

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

50

12.

12.1

12.11

12.1.2

ARM Cortex-M4

Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt handling,
enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and
memories, ultra-low power consumption with integrated sleep modes, and platform security robustness, with integrated
memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-with-
accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug capabilities.
The Cortex-M4 processor implements a version of the Thumb instruction set based on Thumb-2 technology, ensuring
high code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance. The
NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt
latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-
multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the
ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive.

Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a
profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire Viewer
(SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can use.
The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE memory
region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a small
programmable memory, for example flash, is available in the device. During initialization, the application in ROM detects,
from the programmable memory, whether a patch is required. If a patch is required, the application programs the FPB to
remap a humber of addresses. When those addresses are accessed, the accesses are redirected to a remap table
specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

SAMACM Series [PRELIMINARY DATASHEET 51
Atmel []

11203A-ATARM-15-Oct-13

12.2 Embedded Characteristics
Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU
Code-patch ability for ROM system updates
Power control optimization of system components

Integrated sleep modes for low power consumption
Fast code execution permits slower processor clock or increases sleep mode time

Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing
Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications
Extensive debug and trace capabilities:

e Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and

code profiling.

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4 Implementation

Cortex-M4
Processor FPU
NVIC (4P
Processor
Core
Debug Memor Serial
P Access ProtectionyUnit L E—
Port ¢ t Viewer
Flash Data
Patch \Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A

Atmel

v

A

y

SAMACM Series [PRELIMINARY DATASHEET] 52

11203A-ATARM-15-Oct-13

12.4 Cortex-M4 Models

12.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions,
it contains information about the processor modes and privilege levels for software execution and stacks.

12.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.
e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception processing.
The privilege levels for software execution are:
e Unprivileged
The software:
e Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e Cannot access the System Timer, NVIC, or System Control Block
e Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged
The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.

In Thread mode, the CONTROL register controls whether the software execution is privileged or unprivileged, see
Section 12.4.1.16 "CONTROL Register”. In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

12.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item
to the new memory location. The processor implements two stacks, the main stack and the process stack, with a pointer
for each held in independent registers, see Section 12.4.1.5 "Stack Pointer”.

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack, see
Section 12.4.1.16 "CONTROL Register”.

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege Level for Stack Used
Mode Execute Software Execution
C Privileged or Main stack or
Thread Applications unprivileged ™ process stack®
Exception - .
Handler handlers Always privileged Main stack

Note: 1. See Section 12.4.1.16 "CONTROL Register”.

SAMACM Series [PRELIMINARY DATASHEET 53
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.3 Core Registers

Figure 12-2. Processor Core Regist

—

Low registers

High registers

Stack Pointer
Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

ers
—

General-purpose registers

SP (R13)

PSP || MSP?

*Banked version of SP

LR (R14)

PC (R15)

PSR

PRIMASK

FAULTMASK

BASEPRI

CONTROL

Table 12-2. Core Processor Registers

Program status register

Exception mask registers

CONTROL register

Special registers

Register Name Access® Required Reset
Privilege®
General-purpose registers RO-R12 Read-write Either Unknown
Stack Pointer MSP Read-write Privileged See description
Stack Pointer PSP Read-write Either Unknown
Link Register LR Read-write Either OXFFFFFFFF
Program Counter PC Read-write Either See description
Program Status Register PSR Read-write Privileged 0x01000000
Application Program Status Register APSR Read-write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read-write Privileged 0x00000000
Fault Mask Register FAULTMASK Read-write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read-write Privileged 0x00000000
CONTROL register CONTROL Read-write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

12.4.1.4 General-purpose Registers

R0O-R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer
to use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1 =Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions.
On reset, the processor loads the LR value OxFFFFFFFF.

12.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit
at reset and must be 1.

SAMACM Series [PRELIMINARY DATASHEET 55
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.8 Program Status Register

Name: PSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N Z C \Y | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
e Application Program Status Register (APSR)
e Interrupt Program Status Register (IPSR)
e Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.
The PSR register accesses these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:
e Read of all the registers using PSR with the MRS instruction
e Write to the APSR N, Z, C, V and Q bits using APSR_nzcvqg with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read-write®™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read-write® APSR and IPSR
EAPSR | Read-write® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits

See the instruction descriptions Section 12.6.12.6 "MRS” and Section 12.6.12.7 "MSR” for more information about how to access
the program status registers.

SAMACM Series [PRELIMINARY DATASHEET 56
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.9 Application Program Status Register

Name: APSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z I c v I Q I - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

N: Negative Flag

o

: Operation result was positive, zero, greater than, or equal

=

: Operation result was negative or less than.

Z: Zero Flag
: Operation result was not zero

= O

: Operation result was zero.

» C: Carry or Borrow Flag
Carry or borrow flag:
0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

» V: Overflow Flag
0: Operation did not result in an overflow

1: Operation resulted in an overflow.

* Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

» GE[19:16]: Greater Than or Equal Flags
See Section 12.6.5.21 "SEL” for more information.

SAMACM Series [PRELIMINARY DATASHEET
Atmel []

11203A-ATARM-15-Oct-13

57

12.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SvCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

53 = IRQ37

See Section 12.4.3.2 "Exception Types” for more information.

SAMACM Series [PRELIMINARY DATASHEET 58
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write
the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value in the
stacked PSR to indicate the operation that is at fault. See Section 12.4.3.7 "Exception Entry and Return”

* ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH,
or VPOP instruction, the processor:
e Stops the load multiple or store multiple instruction operation temporarily
e Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:
e Returns to the register pointed to by bits[15:12]
e Resumes the execution of the multiple load or store instruction.

When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The con-
ditions for the instructions are either all the same, or some can be the inverse of others. See Section 12.6.10.3 "IT” for more
information.

e T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
e Instructions BLX, BX and POP{PC}
e Restoration from the stacked xPSR value on an exception return
e Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See subsection “Lockup” for more information.

SAMACM Series [PRELIMINARY DATASHEET 59
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might

impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value
of PRIMASK or FAULTMASK. See Section 12.6.12.6 "MRS", Section 12.6.12.7 "MSR”, and Section 12.6.12.2 "CPS” for
more information.

12.4.1.13 Priority Mask Register

Name: PRIMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

* PRIMASK

0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

60

12.4.1.14 Fault Mask Register

Name: FAULTMASK

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

* FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

SAMACM Series [PRELIMINARY DATASHEET 61
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it pre-
vents the activation of all exceptions with same or lower priority level as the BASEPRI value.

» BASEPRI
Priority mask bits:
e (0x0000 = No effect.
e Nonzero = Defines the base priority for exception processing.
The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See Section 12.8.3.6 "Interrupt Priority Registers” for more information. Remember that
higher priority field values correspond to lower exception priorities.

SAMACM Series [PRELIMINARY DATASHEET 62
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.16 CONTROL Register

Name: CONTROL

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FPCA | SPSEL | nPRIV |

The CONTROL register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

» FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:
0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

* SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

* nPRIV: Thread Mode Privilege Level

Defines the Thread mode privilege level:

0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CONTROL reg-

ister when in Handler mode. The exception entry and return mechanisms update the CONTROL register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and excep-
tion handlers use the main stack.
By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:

e Use the MSR instruction to set the Active stack pointer bit to 1, see Section 12.6.12.7 "MSR”", or

e Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See Section 12.6.12.5 "ISB".

SAMACM Series [PRELIMINARY DATASHEET 63
Atmel []

11203A-ATARM-15-Oct-13

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt
Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The
processor uses the Handler mode to handle all exceptions except for reset. See Section "Exception Entry” and Section
"Exception Return” for more information.

The NVIC registers control interrupt handling. See Section 12.8 "Nested Vectored Interrupt Controller (NVIC)” for more
information.

12.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus

(PPB) accesses are always little-endian. See Section 12.4.2.1 "Memory Regions, Types and Attributes” for more
information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
e Access peripheral registers
e Define exception vectors
e The names of:
e The registers of the core peripherals
e The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include
their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions
that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the archi-
tectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 12.5.3 "Power Management Programming Hints”
e Section 12.6.2 "CMSIS Functions”

e Section 12.8.2.1 "NVIC Programming Hints".

SAMACM Series [PRELIMINARY DATASHEET 64
Atmel []

11203A-ATARM-15-Oct-13

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features.
The processor has a fixed memory map that provides up to 4GB of addressable memory.

Figure 12-3. Memory Map

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
anatebp:JeSrlpheral 1.0MB
0xE000 0000
0x DFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43EFEFEE External RAM 1.0GB
32 MB Bit band alias
0x60000000
0x42000000 OX5FFFFFFF
OXA00FFEFF S B Band regon Peripheral 0.5GB
| |
0x40000000 0x40000000
0x23FFFFFF Ox3FFFFFFF
SRAM 0.5GB
32 MB Bit band alias
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
0x200FFFFF - -
0x20000000 L-MB BitBand region | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data, see
Section 12.4.2.5 "Bit-banding”.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product, refer
to the Memories section of the datasheet.

SAMACM Series [PRELIMINARY DATASHEET 65
Atmel []

11203A-ATARM-15-Oct-13

12.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a
write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that
the order in which the accesses complete matches the program order of the instructions, providing this does not affect
the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses
completing in program order, the software must insert a memory barrier instruction between the memory access
instructions, see Section 12.4.2.4 "Software Ordering of Memory Accesses”.

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For
two memory access instructions A1l and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Device Access Strongly-
Al Normal ordered
Access Non-shareable Shareable Access
Normal Access - - - -
Device access, non-
— < — <
shareable
Device access, shareable — — < <
Strongly-ordered access - < < <
Where:
- Means that the memory system does not guarantee the ordering of the accesses.
< Means that accesses are observed in program order, that is, Al is always observed
before A2.
/ItmeL SAMACM Series [PRELIMINARY DATASHEET)] 66

11203A-ATARM-15-Oct-13

12.4.2.3 Behavior of Memo

The behavior of accesses to each region in the memory map is:

ry Accesses

Table 12-4. Memory Access Behavior

Address Range Memory Region Memory XN | Description
Type
0x00000000 - OXLFFFEEFE | Code Normal® | - Executable region for program code. Data can also be
put here.
Executable region for data. Code can also be put here.
0x20000000 - Ox3FFFFFFF | SRAM Normal® | - This region includes bit band and bit band alias areas,
see Table 12-6.
0x40000000 - OXSFFFFFFE | Peripheral Device® | XN This region includes bit band and bit band alias areas,
see Table 12-6.
0x60000000 - OX9FFFFFFF | External RAM Normal® | - Executable region for data.
0xA0000000 - OXDFFFFFFF | External device Device™® XN | External Device memory
OXE0000000 - OXEOOFFFFE | Private Peripheral Bus Strongly(—l) XN This region includes the NVIC, System timer, and
ordered system control block.
0XE0100000 - OXFFFFFFFF | Reserved Device®™ | XN | Reserved

Note: 1.

See Section 12.4.2.1 "Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always use

the Code region. This is because the processor has separate buses that enable instruction fetches and data accesses to

occur simultaneousl|

Y.

The MPU can override the default memory access behavior described in this section. For more information, see Section
12.11 "Memory Protection Unit (MPU)".

Additional Memory Access Constraints For Shared Memory

When a system includes shared memory, some memory regions have additional access constraints, and some regions
are subdivided, as Table 12-5 shows:

Table 12-5. Memory Region Shareability Policies

Address Range

Memory Region

Memory Type

Shareability

0x00000000-
OXLFFFFFFF

Code

Normal®

(@)

0x20000000-
OX3FFFFFFF

SRAM

Normal®

0x40000000-
OXSFFFFFFF

Peripheral

Device®

0x60000000-
OXTFFFFFFF

0x80000000-
OX9FFFFFFF

External RAM

Normal®

WBWA®

wT®

0XA0000000-
OXBFFFFFFF

0xC0000000-
OXDFFFFFFF

External device

Device®

Shareable®

Non-shareable ™

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

67

Table 12-5. Memory Region Shareability Policies (Continued)

Address Range | Memory Region Memory Type Shareability
0xE0000000- Private Peripheral) e (1) i
OXEOOEEEEF BUS Strongly- ordered Shareable
0xE0100000- Vendor-specific Device ®) i
OxFFFFFFFF device

Notes: 1. See Section 12.4.2.1 "Memory Regions, Types and Attributes”for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the Section 12.13 "Glossary”
for more information.
Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:
e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory
transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

The processor has multiple bus interfaces
Memory or devices in the memory map have different wait states
Some memory accesses are buffered or speculative.

Section 12.4.2.2 "Memory System Ordering of Memory Accesses” describes the cases where the memory system
guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, the software must
include memory barrier instructions to force that ordering. The processor provides the following memory barrier
instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent
memory transactions. See Section 12.6.12.3 "DMB”.

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before
subsequent instructions execute. See Section 12.6.12.4 "DSB”".

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is
recognizable by subsequent instructions. See Section 12.6.12.5 "ISB”.

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by
subsequent instructions.

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:
e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.

SAMACM Series [PRELIMINARY DATASHEET 68
Atmel []

11203A-ATARM-15-Oct-13

e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in Table 12-
7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Memory Instruction and Data Accesses
Range Region

Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit-addressable
through bit-band alias.

0x20000000- | SRAM bit-band
Ox200FFFFF | region

0x22000000- Data accesses to this region are remapped to bit-band
SRAM bit-band alias | region. A write operation is performed as read-modify-

Ox23FFFFFF write. Instruction accesses are not remapped.

Table 12-7. Peripheral Memory Bit-banding Regions

Address Memory Instruction and Data Accesses
Range Region

Direct accesses to this memory range behave as
peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

0x40000000- | Peripheral bit-band
Ox400FFFFF | alias

Data accesses to this region are remapped to bit-band
region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

0x42000000- | Peripheral bit-band
OX43FFFFFF | region

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or periph-
eral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer
size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit word_offset = (byte_offset x 32) + (bit_number x 4)
bit word_addr = bit_band_base + bit_word_offset
where:
e Bit_word_offset is the position of the target bit in the bit-band memory region.
Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bit_band_base is the starting address of the alias region.
Byte offset is the number of the byte in the bit-band region that contains the targeted bit.
Bit_number is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:
e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEO = 0x22000000 +
(OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 + (0*32) + (O

*4).
e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+ (0*32) +
(7*4).
SAMACM Series [PRELIMINARY DATASHEET 69
Atmel []

11203A-ATARM-15-Oct-13

Figure 12-4. Bit-band Mapping

32 MB alias region

| oxearrrrrc | oxearrrrrs | oxesrrrFFa | oxesFrFFFO | oxe3FFFFEC | oxe3FrFFES

0x23FFFFE4 I 0x23FFFFEO I

°

°

°

I 0x2200001C I 0x22000018 0x22000014 0x22000010 0x2200000C 0x22000008

0x22000004 | 0x22000000 |

1 MB SRAM bit-band region

6 5 4 3 2 1 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

‘7

7 6 5 4 3 2 1 0

O' 7
T T
0x200FFFFF 0x200FFFFE
I — I —

T 1
0x200FFFFD
I —

T 1
0x200FFFFC
I —

°
°

°

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1

0‘7

6 5 4 3 2 1

V4

UL UL U
0x20000003 0x20000002 0x20000001
I — I — I —

U
0x20000000
I —

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to 0 writes a 0 to

the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF. Writing

0x00 has the same effect as writing 0x0E.

Reading a word in the alias region:

e 0x00000000 indicates that the targeted bit in the bit-band region is setto 0
e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1

Directly Accessing a Bit-band Region

Section 12.4.2.3 "Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the

bit-band regions.

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

12.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes
0-3 hold the first stored word, and bytes 4-7 hold the second stored word. The subsection “Little-endian Format”
describes how words of data are stored in memory.

Little-endian Format
In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most

significant byte at the highest-numbered byte. An example is given in Figure 12-5 "Little-endian Format” below.

Figure 12-5. Little-endian Format

Memory Register
7 0
31 2423 1615 87 0
Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 [msbyte

12.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism that
a thread or process can use to obtain exclusive access to a memory location. The software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.
A pair of synchronization primitives comprises:
A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.
A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a register.
If this bit is:

e 0: Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:Itindicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:
e The word instructions LDREX and STREX
e The halfword instructions LDREXH and STREXH
e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software must
retry the read-modify-write sequence.

SAMACM Series [PRELIMINARY DATASHEET 71
Atmel []

11203A-ATARM-15-Oct-13

The software can use the synchronization primitives to implement a semaphore as follows:
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
2. If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. Ifthe returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software has
claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have claimed the
semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.
The processor removes its exclusive access tag if:

e It executes a CLREX instruction

e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means that the processor can resolve semaphore conflicts between different threads.
In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the processor

e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all global

exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see Section 12.6.4.8 "LDREX and STREX” and
Section 12.6.4.9 "CLREX".

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for generation
of these instructions:

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __ LDREXW (uint32_t *addr)

LDREXH uintl6_t _LDREXH (uint16_t *addr)

LDREXB uint8_t _ LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t __ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__Idrex((volatile char *) OxFF);

SAMACM Series [PRELIMINARY DATASHEET 72
Atmel []

11203A-ATARM-15-Oct-13

12.4.3 Exception Model

This section describes the exception model.
12.4.3.1 Exception States
Each exception is in one of the following states:
Inactive
The exception is not active and not pending.
Pending

The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.

Active

An exception is being serviced by the processor but has not completed.

An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending
The exception is being serviced by the processor and there is a pending exception from the same source.
12.4.3.2 Exception Types
The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.

NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.

Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have higher
priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or the
fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This fault is
used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory transaction.
This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
e An undefined instruction

SAMACM Series [PRELIMINARY DATASHEET 73
Atmel []

11203A-ATARM-15-Oct-13

An illegal unaligned access
An invalid state on instruction execution
An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:

SvcCall

An unaligned address on word and halfword memory access
A division by zero.

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can
use SVC instructions to access OS kernel functions and device drivers.

PendSVv

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching
when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

Table 12-9. Properties of the Different Exception Types
Exception Irqg Number® Exception Type Priority Vector Address Activation
Number® or Offset®
1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C —
4 -12 man:meent fault Configurable® | 0x00000010 Synchronous
Synchronous when
5 -11 Bus fault Configurable® | 0x00000014 precise, asynchronous
when imprecise
6 -10 Usage fault Configurable® | 0x00000018 Synchronous
7-10 - - - Reserved -
11 -5 SvCall Configurable® | 0x0000002C Synchronous
12-13 - - - Reserved -
14 -2 PendSVv Configurable® | 0x00000038 Asynchronous
15 -1 SysTick Configurable® | 0x0000003C Asynchronous
16 and above | 0 and above Interrupt (IRQ) Configurable® géggg%?om and Asynchronous
Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions

ok wb

Atmel

other than interrupts. The IPSR returns the Exception number, see Section 12.4.1.10 "Interrupt Program Status
Register”.

See Section 12.4.3.4 "Vector Table” for more information
See Section 12.9.1.8 "System Handler Priority Registers”
See Section 12.8.3.6 "Interrupt Priority Registers”
Increasing in steps of 4.

SAMACM Series [PRELIMINARY DATASHEET] 74

11203A-ATARM-15-Oct-13

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:

e Section 12.9.1.12 "System Handler Control and State Register”

e Section 12.8.3.2 on page 206.

For more information about hard faults, memory management faults, bus faults, and usage faults, see Section 12.4.3.8

"Fault Handling”.

12.4.3.3 Exception Handlers

The processor handles exceptions using:
e Interrupt Service Routines (ISRs)

Interrupts IRQO to IRQ37 are the exceptions handled by ISRs.

e Fault Handlers

Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

e System Handlers

NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system

handlers.

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for
all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-significant bit

of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number IRQ number
255 239
18 2
17
16 0
15 -1
14 -2
13
12
11 -5
10
9
8
7
6 -10
5 -11
4 -12
3 -13
2 -14
1

Atmel

Offset

0x03FC

0x004C
0x0048
0x0044
0x0040
0x003C
0x0038

0x002C

0x0018
0x0014
0x0010
0x000C
0x0008
0x0004
0x0000

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

Vector

IRQ239

IRQ2

IRQ1L

IRQO

SysTick

PendSV

Reserved

Reserved for Debug

Svcall

Reserved

Usage fault

Bus fault

Memory management fault

Hard fault

NMI

Reset

Initial SP value

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR register
to relocate the vector table start address to a different memory location, in the range 0x00000080 to 0x3FFFFF80, see
Section 12.9.1.4 "Vector Table Offset Register”.

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:
e A lower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see Section 12.9.1.8 "System Handler Priority Registers”, and Section
12.8.3.6 "Interrupt Priority Registers”.

Note: Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions,
with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher

priority than IRQ[O]. If both IRQ[1] and IRQI[0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[O0] is processed
before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception
occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

e An upper field that defines the group priority

e A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ
number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see Section 12.9.1.5
"Application Interrupt and Reset Control Register”.

12.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is
higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See Section "Exception Entry”
more information.

Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced

SAMACM Series [PRELIMINARY DATASHEET 76
Atmel []

11203A-ATARM-15-Oct-13

e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
subsection “Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception
that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception
handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception,
the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State
saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the state saving
continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception
handler of the original exception enters the execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread
mode, or the new exception is of a higher priority than the exception being handled, in which case the new exception
preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see Section
12.4.1.12 "Exception Mask Registers”. An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor
pushes information onto the current stack. This operation is referred as stacking and the structure of eight data words is
referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on
exception entry. Figure 2-3 on page 2-27 shows the Cortex-M4 stack frame layout when floating-point state is preserved
on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 2-3 on page 2-27 shows this stack frame also.

SAMACM Series [PRELIMINARY DATASHEET 77
Atmel []

11203A-ATARM-15-Oct-13

Figure 12-7. Exception Stack Frame

I Pre-IRQ top of stack

{aligner}

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

SO

XPSR

PC

LR

R12

Decreasing
memory
address

! {alig.].r.1er}

] Pre-IRQ top of stack

XPSR

PC

LR

R12

R3 R3

R2 v R2
R1 R1

RO <« IRQ top of stack RO 2

IRQ top of stack

Exception frame with
floating-point storage

Exception frame without
floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the stack
frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This
value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address
from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same
time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

Exception Return

Atmel

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load
the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BXnstruction using any register.

SAMACM Series [PRELIMINARY DATASHEET] 78

11203A-ATARM-15-Oct-13

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information on
the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a description of the exception
return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the processor
that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10. Exception Return Behavior

EXC_RETURN[31:0] Description
OXEFEEFEFL Return to Handler mode, (_axceptlon return uses non-floating-point state
from the MSP and execution uses MSP after return.
OXEEFEEFFQ Return_to Thread mode, exception return uses state from MSP and
execution uses MSP after return.
OXEFEEFEED Return.to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from
OXFFFFFFEL MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFED MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFED PSP and execution uses PSP after return.

12.4.3.8 Fault Handling
Faults are a subset of the exceptions, see Section 12.4.3 "Exception Model”. The following generate a fault:
e A bus error on:
e An instruction fetch or vector table load
e A data access
e Aninternally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See Section 12.9.1.13 "Configurable Fault Status Register” for more
information about the fault status registers.

Table 12-11. Faults

Fault Handler Bit Name Fault Status Register

Bus error on a vector read d faul VECTTBL Section 12.9.1.15 "Hard Fault Status
Hard fault S e

Fault escalated to a hard fault FORCED Register

MPU or default memory map mismatch: - -

on instruction access IACCVIOL
on data access Memory DACCVIOL®
)) . management “MMFSR: Memory Management Fault
during exception stacking fault MSTKERR Status Subregister”
during exception unstacking MUNSKERR
during lazy floating-point state preservation MLSPERR
/It L SAMACM Series [PRELIMINARY DATASHEET)] 79
me 11203A-ATARM-15-Oct-13

Table 12-11. Faults (Continued)

Fault Handler Bit Name Fault Status Register
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
“BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state® INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attemptto use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction
with ICI continuation.

Fault Escalation and Hard Faults

All faults exceptions except for hard fault have configurable exception priority, see Section 12.9.1.8 "System Handler
Priority Registers”. The software can disable the execution of the handlers for these faults, see Section 12.9.1.12
"System Handler Control and State Register”.

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
Section 12.4.3 "Exception Model”.

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e Afault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because
a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler
for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.

e A fault occurs and the handler for that fault is not enabled.

If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault.

This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler
failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

SAMACM Series [PRELIMINARY DATASHEET 80
Atmel []

11203A-ATARM-15-Oct-13

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address
register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Table 12-12. Fault Status and Fault Address Registers

Handler Status Register | Address Register Description
Name Register Name
Hard fault SCB_HFSR - “Hard Fault Status Register”
Memory “MMFSR: Memory Management Fault Status Subregister”
management fault MMFSR SCB_MMFAR “MemManage Fault Address Register”
“BFSR: Bus Fault Status Subregister”
Bus fault BFSR SCB_BFAR i
“Bus Fault Address Register”
Usage fault UFSR - “UFSR: Usage Fault Status Subregister”

Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

e ltisreset

e An NMI occurs

e ltis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

12.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which sleep mode is used; see Section 12.9.1.6 "System Control Register”.

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore,
the software must be able to put the processor back into sleep mode after such an event. A program might have an idle
loop to put the processor back to sleep mode.

12.5.1.1 Wait for Interrupt
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See Section 12.6.12.12 "WFI” for more information.
12.5.1.2 Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:
e If the register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See Section 12.6.12.11 "WFE” for more information.

SAMACM Series [PRELIMINARY DATASHEET 81
Atmel []

11203A-ATARM-15-Oct-13

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler, it
returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require the
processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see Section 12.4.1.12 "Exception Mask Registers”.

12.5.2.2 Wakeup from WFE

The processor wakes up if:
e It detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See Section 12.5.2.3 "External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the

processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more information
about the SCR, see Section 12.9.1.6 "System Control Register”.

12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See Section 12.5.1.2 "Wait for Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for these
instructions:

void _ WFE(void) // Wait for Event

void _ WFE(void) // Wait for Interrupt

SAMACM Series [PRELIMINARY DATASHEET 82
Atmel []

11203A-ATARM-15-Oct-13

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.
e Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant

Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,CV
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,CV
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #Isb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -
CBNz Rn, label Compare and Branch if Non Zero -

CcBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V
CMP Rn, Op2 Compare N,Z,C,V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{1}, reglist Load Multiple registers, increment after -

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

83

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,zZ,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,zZ,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,Z,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSuB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSuUB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

84

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QSuUB8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,CV
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C.V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -
SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁi’g gmtﬁ_ﬁr Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?_g gmtﬁt_ﬂ RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 85

11203A-ATARM-15-Oct-13

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
gmgt_?g: ST | Rd)Rn, Rm Signed Multiply (halfwords) -
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
ST™M Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{1}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [RN] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C\V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C.V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -
TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

86

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g:_sbi?[rlggul\l{[lultiply Accumulate Accumulate Long (32 x 32 + 32 +32), |
UMLAL RdLo, RdHi, Rn, Rm g”zs)i(gg;‘i'\g:;t’irgﬁ_‘t’)"iitﬂr‘ep‘sﬁi”m”'ate -
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSuUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP E32 Sd, <Sm | #0.0> gr(]J(lj‘an:rr(;e two floating-point registers, or one floating-point register FPSCR
vowperzz | sa<smisoos | Some o tostngpantvgiters o one fosing ponteoster | e

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

87

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fhits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{1}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {S8d,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{1}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

88

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can generate
these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void ___DSB(void)

DMB void __DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV/(void)

WFE void __ WFE(void)

WFI void __WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access | CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP : : :
Write void __set PSP (uint32_t TopOfProcStack)

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 89

11203A-ATARM-15-Oct-13

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination register. When there is a destination register in the instruction, it
is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See Section 12.6.3.3 "Flexible Second
Operand”.

12.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or
destination register can be used. See instruction descriptions for more information.

Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct exe-
cution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb
instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant
Specify an Operand2 constant in the form:
#constant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO0O0XY
e Any constant of the form 0xXY00XYQ0
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or
TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other constant.

Instruction Substitution

The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not
permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand? register in the form:
Rm {, shift}

where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:

SAMACM Series [PRELIMINARY DATASHEET 90
Atmel []

11203A-ATARM-15-Oct-13

ASR #n arithmetic shift right n bits, 1 < n < 32.
LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.
If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag

when used with certain instructions. For information on the shift operations and how they affect the carry flag, see
Section 12.6.3.3 "Flexible Second Operand”

12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with shift. See
Section 12.6.3.3 "Flexible Second Operand”. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following sub-sections describe the
various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value
to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-hand
32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 12-
8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3
1

Camy

Flag

3 s|lala|z|1|o |;|
l |

|

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

LSR

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

SAMACM Series [PRELIMINARY DATASHEET 91
Atmel []

11203A-ATARM-15-Oct-13

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-9. LSR #3

11|
ooo
T ¥ ¥

Carry
Flag
31 s{a|afz]|1|o |;|
1
]

[0

LSL
Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n
bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned
integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of the
register Rm. These instructions do not affect the carry flag when used with LSL #0.

e If nis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-10. LSL #3

[
Tt ! Daoao
1 * W ¥
D31 413|2|1|0
Gy TTELL] 1]
Flag

ROR
Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n
bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 12-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

SAMACM Series [PRELIMINARY DATASHEET 92
Atmel []

11203A-ATARM-15-Oct-13

RRX

12.6.3.5

12.6.3.6

Figure 12-11. ROR #3

#§

3 S|4]13|2]|1

ELE, | .

i o=

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31] of
the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX
Camy
Flag

31|30 110

) L]

Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word access,
or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:

e LDR,LDRT

e |DRH, LDRHT

e |LDRSH, LDRSHT

e STR, STRT

e STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and therefore
their accesses must be address-aligned. For more information about usage faults, see Section 12.4.3.8 "Fault Handling”.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to
trap all unaligned accesses, see Section 12.9.1.7 on page 222.

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented
in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the
label and the address of the current instruction. If the offset is too big, the assembler produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4 bytes.
For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number,
or an expression of the form [PC, #number].

SAMACM Series [PRELIMINARY DATASHEET 93
Atmel []

11203A-ATARM-15-Oct-13

12.6.3.7 Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see Section 12.4.1.9 "Application Program Status Register”. Some
instructions update all flags, and some only update a subset. If a flag is not updated, the original value is preserved. See
the instruction descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.
Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions. See
Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition code suffix

enables the processor to test a condition based on the flags. If the condition test of a conditional instruction fails, the
instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more

information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automatically
insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .

Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see Section 12.4.1.8 "Program Status Register”.

A carry occurs:

e If the result of an addition is greater than or equal to 2%?

e If the result of a subtraction is positive or zero

e As the result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:

e [f adding two negative values results in a positive value

e If adding two positive values results in a negative value

e If subtracting a positive value from a negative value generates a positive value

e If subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

SAMACM Series [PRELIMINARY DATASHEET 94
Atmel []

11203A-ATARM-15-Oct-13

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 12-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

Eé or c=1 Higher or same, unsigned >

EOC or Cc=0 Lower, unsigned <

Ml N=1 Negative

PL N=0 Positive or zero

VS v=1 Overflow

vC V=0 No overflow

HI C=1landZ=0 Higher, unsigned >

LS C=0or Z2=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N !=V Less than, signed <

GT Z=0and N=V Greater than, signed >

LE Z=1and N !=V | Less than or equal, signed <

AL Can have any AIwa_y_s. This is the default when no suffix is
value specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
IT Mi ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; If "greater than", compare R2 and R3, setting flags

MOVGT R4, R5 ; If still "greater than®, do R4 = R5

12.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the operands
and destination register specified. For some of these instructions, the user can force a specific instruction size by using
an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

SAMACM Series [PRELIMINARY DATASHEET] 95

11203A-ATARM-15-Oct-13

Atmel

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not automat-
ically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.

BCS.W label creates a 32-bit instruction even for a short
branch
creates a 32-bit instruction even though the same
operation can be done by a 16-bit instruction

ADDS.W RO, RO, R1

12.6.4 Memory Access Instructions

The table below shows the memory access instructions:

Table 12-17. Memory Access Instructions

Mnemonic Description

ADR Load PC-relative address

CLREX Clear Exclusive

LDM{mode} Load Multiple registers

LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual

LDREX{type} Load Register Exclusive

POP Pop registers from stack

PUSH Push registers onto stack

STM{mode} Store Multiple registers

STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

96

12.6.4.1 ADR

Load PC-relative address.

Syntax

ADR{cond} Rd, label
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.
ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is set
to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
ADR R1, TextMessage Write address value of a location labelled as

TextMessage to R1

SAMACM Series [PRELIMINARY DATASHEET 97
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.2 LDR and STR, Immediate Offset
Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! pre-indexed
op{type}{cond} Rt, [Rn], #offset post-indexed
opb{cond} Rt, Rt2, [Rn {, #offset}] immediate offset, two words
opb{cond} Rt, Rt2, [Rn, #offset]! pre-indexed, two words
opb{cond} Rt, Rt2, [Rn], #offset post-indexed, two words

where:

op is one of:
LDR Load Register.
STR Store Register.

type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.

SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Pre-indexed Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:
[Rn, #offset]!

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to or
subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:
[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment” .

SAMACM Series [PRELIMINARY DATASHEET 98
Atmel []

11203A-ATARM-15-Oct-13

Table 12-18 below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset Ranges

Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words

multiple of 4 in the
range -1020 to
1020

multiple of 4 in the
range -1020 to
1020

multiple of 4 in the
range -1020 to 1020

Atmel

Restrictions
For load instructions:

e Rtcan be SP or PC for word loads only

e Rt must be different from Rt2 for two-word loads

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution

e A branch occurs to the address created by changing bit[0] of the loaded value to 0

e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:

e Rtcan be SP for word stores only

e Rt mustnot be PC

e Rn mustnot be PC

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags
These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET] 99

11203A-ATARM-15-Oct-13

Examples
LDR
LDRNE

STR

STRH

LDRD

STRD

[RLO]
[R5, #960] !

[RO, #const - struc]
[R4], #4

RO, [R3, #0x20]

RL, [R8], # 16

12.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn,

where:

op
LDR
STR

type

SB

SH

cond
Rt

Rn
Rm
LSL #n

Operation

is one of:
Load Register.
Store Register.

is one of:

Loads R8 fromthe address in R10.

Loads (conditionally) R2 froma word

960 bytes above the address in R5, and
increments R5 by 960.

const-struc is an expression eval uating
to a constant in the range 0-4095.

Store R3 as hal fword data into address in
R4, then increnent R4 by 4

Load R8 froma word 32 bytes above the
address in R3, and load RO froma word 36
byt es above the address in R3

Store RO to address in R8, and store Rl to
a word 4 bytes above the address in RS,
and then decrenment R8 by 16.

Rm {, LSL #n}]

unsigned byte, zero extend to 32 bits on loads.
signed byte, sign extend to 32 bits (LDR only).

unsigned halfword, zero extend to 32 bits on loads.
signed halfword, sign extend to 32 bits (LDR only).

omit, for word.

is an optional condition code, see “Conditional Execution” .

is the register to load or store.

is the register on which the memory address is based.

is a register containing a value to be used as the offset.

is an optional shift, with n in the range 0 to 3.

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:
e Rn must not be PC

e Rm must not be SP and must not be PC

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 100

11203A-ATARM-15-Oct-13

e Rtcan be SP only for word loads and word stores
e Rtcan be PC only for word loads.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
e If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples
STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and Rl
LDRSB RO, [R5, Rl, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two tines R1, sign extended it
; to a word value and put it in RO
STR RO, [R1, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four times R2

SAMACM Series [PRELIMINARY DATASHEET 101
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn mustnot be PC
e Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

SAMACM Series [PRELIMINARY DATASHEET 102
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.5 LDR, PC-relative

Load register from memory.

Syntax
LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label

where:

type is one of:

B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.

; Load two words

H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or by

an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be

signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between label

and the PC.

Table 12-19. Offset Ranges

Instruction Type

Offset Range

Word, halfword, signed halfword, byte, signed byte

-4095 to 4095

Two words

-1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .

Restrictions

In these instructions:
e Rtcan be SP or PC only for word loads
e Rt2 must not be SP and must not be PC
e Rt must be different from Rt2.

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 103

11203A-ATARM-15-Oct-13

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e

LDRSB R7, | ocal data ; Load a byte value from an address | abelled

; as localdata, sign extend it to a word
; value, and put it in R7

12.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

IA Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” ..

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order
of increasing register numbers, with the lowest numbered register using the lowest memory address and the highest
number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is
written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of decreasing

SAMACM Series [PRELIMINARY DATASHEET 104
Atmel []

11203A-ATARM-15-Oct-13

register numbers, with the highest numbered register using the highest memory address and the lowest number register
using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.

Restrictions

In these instructions:
e Rn mustnot be PC
e reglist must not contain SP
e In any STM instruction, reglist must not contain PC
e Inany LDM instruction, reglist must not contain PC if it contains LR
e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e Ifthe instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDM R8, { RO, R2, RO} ; LDM A is a synonymfor LDM
STNVDB R1l!, {R3-R6, R11, R12}

Incorrect Examples

STM R5!,{R5, R4, RO} ; Value stored for R5 is unpredictable
LDM RrR2, {} ; There nust be at |east one register in the |ist

SAMACM Series [PRELIMINARY DATASHEET 105
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist
POP{cond} reglist
where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using
the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the
lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions
In these instructions:
e reglist must not contain SP
e For the PUSH instruction, reglist must not contain PC
e Forthe POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e |[f the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples
PUSH {RO,R4-R7}
PUSH {R2,LR}
POP {RO,R10,PC}

SAMACM Series [PRELIMINARY DATASHEET 106
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.8 LDREX and STREX

Load and Store Register Exclusive.

Syntax
LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]
STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]
STREXH{cond} Rd, Rt, [Rn]

where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the value
loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the store, it
writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is guaranteed
that no other process in the system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding Load-
Exclusive instruction is unpredictable.

Restrictions

In these instructions:

Do not use PC

Do not use SP for Rd and Rt

e For STREX, Rd must be different from both Rt and Rn

e The value of offset must be a multiple of four in the range 0-1020.

Condition Flags
These instructions do not change the flags.

Examples
MOV R1, #O0x1 ; Initialize the “lock taken” value try
LDREX RO, [LockAddr] ; Load the lock value
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claim the lock
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No — try again

; Yes — we have the lock

SAMACM Series [PRELIMINARY DATASHEET 107
Atmel []

11203A-ATARM-15-Oct-13

12.6.4.9 CLREX

Clear Exclusive.

12.6.5

Syntax
CLREX{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception occurs
between a load exclusive instruction and the matching store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.
Condition Flags
These instructions do not change the flags.

Examples
CLREX

General Data Processing Instructions

The table below shows the data processing instructions:

Table 12-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right
BIC Bit Clear

CLz Count leading zeros
CMN Compare Negative
CMP Compare

EOR Exclusive OR

LSL Logical Shift Left
LSR Logical Shift Right
MOV Move

MOVT Move Top

MOVW Move 16-bit constant
MVN Move NOT

ORN Logical OR NOT
ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

SAMACM Series [PRELIMINARY DATASHEET 108
Atmel []

11203A-ATARM-15-Oct-13

Table 12-20. Data Processing Instructions (Continued)

Mnemonic | Description

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADDS8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange
SHSUB16 | Signed Halving Subtract 16

SHSUBS8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SuUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange

UHADD16 | Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

USADS8 Unsigned Sum of Absolute Differences

USADAS8 Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
uUsuB8 Unsigned Subtract 8

SAMACM Series [PRELIMINARY DATASHEET 109
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
op is one of:

ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

imm12 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is reduced
by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand?2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.
See also “ADR” .

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions

In these instructions:

e Operand2 must not be SP and must not be PC

e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:

e Rn must also be SP

e Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
Rn can be SP only in ADD and SUB
Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

e The user must not specify the S suffix

e Rm must not be PC and must not be SP

e If the instruction is conditional, it must be the last instruction in the IT block

SAMACM Series [PRELIMINARY DATASHEET 110
Atmel []

11203A-ATARM-15-Oct-13

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only with
the additional restrictions:

e The user must not specify the S suffix
e The second operand must be a constant in the range 0 to 4095.

e Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to Ob00 before
performing the calculation, making the base address for the calculation word-aligned.

e Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to O.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, RO, R3 ; Flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

96-bit Subtraction Example
SUBS R6, R6, R9
SBCS R9, R2, R1
SBC R2, R8, R11

subtract the least significant words
subtract the middle words with carry
subtract the most significant words with carry

SAMACM Series [PRELIMINARY DATASHEET 111
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11, R14, ASR #32

SAMACM Series [PRELIMINARY DATASHEET 112
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on what
result is generated by the different instructions, see “Shift Operations” .

Restrictions
Do not use SP and do not use PC.
Condition Flags
If S is specified:
e These instructions update the N and Z flags according to the result
e The Cflag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .
Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 Rotate right by the value in the bottom byte of R6
RRX R4, R5 Rotate right with extend.

SAMACM Series [PRELIMINARY DATASHEET 113
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.4CLZ

Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result value
is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLz R4,R9
CLZNE R2,R3

12.6.5.5 CMP and CMN
Compare and Compare Negative.

Syntax
CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2

where:

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand?2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but do
not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an ADDS instruction, except that
the result is discarded.

Restrictions

In these instructions:
e Do notuse PC
e Operand2 must not be SP.

Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

SAMACM Series [PRELIMINARY DATASHEET 114
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
imm16 is any value in the range 0-65535.
Operation

The MOV instruction copies the value of Operand2 into Rd.
When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SYcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n
LSL{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSL #nifn!=0
LSR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}¥cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{SHcond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SH{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places the
result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:

e The second operand must be a register without shift

e The S suffix must not be specified.

When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.
Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction
to branch for software portability to the ARM instruction set.
Condition Flags
If S is specified, these instructions:
e Update the N and Z flags according to the result

SAMACM Series [PRELIMINARY DATASHEET 115
Atmel []

11203A-ATARM-15-Oct-13

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
MOVS R11, #0x000B ; Write value of 0x000B to
R11, flags get updated
MOV R1, #OxFAO5 ; Write value of OxFAO5 to
R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10,

flags get updated
MOV R3, #23
MOV R8, SP
MVNS R2, #OxF

Write value of 23 to R3

Write value of stack pointer to R8

Write value of OxXFFFFFFFO (bitwise inverse of OxF)
to the R2 and update flags.

12.6.5.7 MOVT
Move Top.
Syntax
MOVT{cond} Rd, #imm16
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write does
not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #O0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

12.6.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution” .

SAMACM Series [PRELIMINARY DATASHEET 116
Atmel []

11203A-ATARM-15-Oct-13

Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:

REV converts either:

e 32-bit big-endian data into little-endian data
e 32-bit little-endian data into big-endian data.

REV16 converts either:

e 16-bit big-endian data into little-endian data
e 16-hit little-endian data into big-endian data.

REVSH converts either:

e 16-hit signed big-endian data into 32-bit signed little-endian data
e 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
REV R3, R7;
REV16 RO, RO;
REVSH RO, R5;
REVHS R3, R7;
RBIT R7, R8;

Atmel

Reverse
Reverse
Reverse
Reverse
Reverse

byte order of value in R7 and write it to R3

byte order of each 16-bit halfword in RO

Signed Halfword

with Higher or Same condition

bit order of value in R8 and write the result to R7.

SAMACM Series [PRELIMINARY DATASHEET] 117

11203A-ATARM-15-Oct-13

12.6.5.9 SADD16 and SADD8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.
The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples

SADD16 R1, RO Adds the halfwords in RO to the corresponding
halfwords of R1 and writes to corresponding halfword
of R1.
Adds bytes of RO to the corresponding byte in R5 and

writes to the corresponding byte in R4.

SADD8 R4, RO, R5

SAMACM Series [PRELIMINARY DATASHEET 118
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, RO Adds halfwords In RO to corresponding halfword of R1
and writes halved result to corresponding halfword in
R1
Adds bytes of RO to corresponding byte in R5 and

writes halved result to corresponding byte in R4.

SHADD8 R4, RO, R5

CI I N N I]

SAMACM Series [PRELIMINARY DATASHEET 119
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
The SHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the right
causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R4 and writes halved result to bottom halfword of R7

SHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
; of R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

SAMACM Series [PRELIMINARY DATASHEET 120
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUBL16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples

SHSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1
Subtracts bytes of RO from corresponding byte in R5,

and writes to corresponding byte in R4.

SHSUB8 R4, RO, R5

SAMACM Series [PRELIMINARY DATASHEET 121
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.13 SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand

2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1
Subtracts bytes of R5 from corresponding byte in

RO, and writes to corresponding byte of R4.

SSUB8 R4, RO, R5

SAMACM Series [PRELIMINARY DATASHEET 122
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rm,

where:

op

cond
Rd

Rn, Rm

is any of:

Rn

SASX Signed Add and Subtract with Exchange.
SSAX Signed Subtract and Add with Exchange.
is an optional condition code, see “Conditional Execution” .

is the destination register.

Operation

The SASX instruction:
Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
Writes the signed result of the addition to the top halfword of the destination register.

Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
Writes the signed result of the subtraction to the bottom halfword of the destination register.

1.
2.
3.
4.

The SSAX instruction:
Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
Writes the signed result of the addition to the bottom halfword of the destination register.
Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
Writes the signed result of the subtraction to the top halfword of the destination register.

1.
2.
3.
4.

Restrictions

Do not use SP and do not use PC.

Condition Flags

are registers holding the first and second operands.

These instructions do not affect the condition code flags.

Examples

Atmel

SASX RO, R4, R5 ;

SSAX R7, R3, R2 ;

Adds top halfword of R4 to bottom halfword of R5 and
writes to top halfword of RO

Subtracts bottom halfword of R5 from top halfword of R4
and writes to bottom halfword of RO

Subtracts top halfword of R2 from bottom halfword of R3
and writes to bottom halfword of R7

Adds top halfword of R3 with bottom halfword of R2 and
writes to top halfword of R7.

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

123

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result, but
do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same as
the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and all
other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is the
same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the sign
bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to Ox3F8,
; APSR is updated but result is discarded

TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in R9, APSR is updated but result is discarded.

SAMACM Series [PRELIMINARY DATASHEET 124
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1,
; writes to corresponding halfword of R1
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

writes to corresponding byte in R4.

SAMACM Series [PRELIMINARY DATASHEET 125
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of RO
; and writes to bottom halfword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 to bottom halfword of R2 and
; writes to top halfword of R7.

SAMACM Series [PRELIMINARY DATASHEET 126
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword
; in R7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; writes halved result to corresponding byte in R4.

SAMACM Series [PRELIMINARY DATASHEET 127
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

ok wDbd

Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

o wbD

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
and writes halved result to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of
R7 and writes halved result to bottom halfword of R7
Subtracts bottom halfword of R5 from top halfword of
R3 and writes halved result to top halfword of RO
Adds top halfword of R5 to bottom halfword of R3 and

writes halved result to bottom halfword of RO.

UHSAX RO, R3, R5

SAMACM Series [PRELIMINARY DATASHEET 128
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.20 UHSUB16 and UHSUBS
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding halfwrd in R1
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and
; wites halved result to corresponding byte in R4.

SAMACM Series [PRELIMINARY DATASHEET 129
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values of
the GE flags.
Syntax

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
where:
c, q are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second oper-
and register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE.

SAMACM Series [PRELIMINARY DATASHEET 130
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.22 USADS

Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1
USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,
; adds the differences and writes to RO.

SAMACM Series [PRELIMINARY DATASHEET 131
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.23 USADAS
Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm, Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of R1
: adds di fferences, adds value of R6, wites to Rl
USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 from corresponding byte in RO
; adds differences, adds value of R2 wites to R4.

SAMACM Series [PRELIMINARY DATASHEET 132
Atmel []

11203A-ATARM-15-Oct-13

12.6.5.24 USUB16 and USUBS8
Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:

USUB16 Unsigned Subtract 16.

USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword of R1
; and wites to corresponding hal fword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; wites to the corresponding byte in R4.

SAMACM Series [PRELIMINARY DATASHEET 133
Atmel []

11203A-ATARM-15-Oct-13

12.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result
SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWI[B|T] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULI[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIv

Unsigned Divide

Unsigned Multiply Accumulate Accumulate Long

UMAAL (32x32+32+32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result
UMULL Unsigned Multiply (32x32), 64-bit result

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

134

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{S}{cond} {Rd,} Rn, Rm
MLA{cond} Rd, Rn, Rm, Ra
MLS{cond} Rd, Rn, Rm, Ra

Multiply
Multiply with accumulate
Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places the
least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 X R6)
/ItmeL SAMACM Series [PRELIMINARY DATASHEET)] 135

11203A-ATARM-15-Oct-13

12.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Miultiplies R5 and R6, wites the top 32 bits to R4
: and the bottom 32 bits to RO
UVAAL R3, R6, R2, R7 ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, R1, R3, R5 ; Miultiplies RS and R3, adds RL: R2, wites to Rl: R2.
/ItmeL SAMA4CM Series [PRELIMINARY DATASHEET]
11203A-ATARM-15-Oct-13

136

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X'is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.

If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
e The top signed halfword of Rm, T instruction suffix.
e The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Examples
SMLABB R5, R6, R4, R1L ; Miltiplies bottom hal fwords of R6 and R4, adds
; RlL and wites to RS
SMLATB R5, R6, R4, Rl ; Miltiplies top halfword of R6 with bottom hal fword
; of R4, adds Rl and wites to R5

SAMACM Series [PRELIMINARY DATASHEET 137
Atmel []

11203A-ATARM-15-Oct-13

SMLATT R5, R6, R4, R ; Miltiplies top hal fwords of R6 and R4, adds
: Rl and wites the sumto R5
SMLABT R5, R6, R4, RL ; Miltiplies bottomhal fword of R6 with top hal fword
; of R4, adds Rl and wites to R5
SMLABT R4, R3, R2 ; Miultiplies bottomhal fword of R4 with top hal fword of
: R3, adds R2 and wites to R4
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMLAWI R10, R2, Rl, R5 ; Miultiplies R2 with top halfword of Rl, adds R5
; and wites top 32-bits to R10.

12.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply
operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If X is not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the bottom
signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.

e Add both multiplication results to the signed 32-bit value in Ra.

e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and
; writes to R10

SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
; RO.

SAMACM Series [PRELIMINARY DATASHEET 138
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate Long
Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
The SMLAL instruction:
e Multiplies the two's complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.
The non-specified halfwords of the source registers are ignored.
The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement signed
16-bit integers. These instructions:

e If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom
signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
e Write the 64-bit product in RdLo and RdHi.

SAMACM Series [PRELIMINARY DATASHEET 139
Atmel []

11203A-ATARM-15-Oct-13

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
SMLAL R4,
SMLALBT R2,
SMLALTB R2,
SMLALD R,
SMLALDX RS,

R5, R3, R8 ; Miltiplies R3 and R8, adds R5:R4 and wites to

. R5:R4

Rl, R6, R7 ; Miltiplies bottomhal fword of R6 with top

; hal fword of R7, sign extends to 32-bit, adds
; RI:R2 and wites to RL: R2

Rl, R6, R7 ; Miltiplies top halfword of R6 with bottom

; hal fword of R7,sign extends to 32-bit, adds Rl:R2
; and wites to RL: R2

R8, R5, RL ; Miltiplies top halfwords in R5 and Rl and bottom

; hal fwords of R5 and Rl, adds R8:R6 and wites to
; R8:R6

R8, R5, Rl ; Miultiplies top halfword in R5 with bottom

: hal fword of RL, and bottom hal fword of R5 with
; top halfword of Rl, adds R8:R6 and wites to
; R8: R6.

12.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

where:

op

cond
Rd

Rn, Rm
Ra

Operation

is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).

If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.

is an optional condition code, see “Conditional Execution” .
is the destination register.

are registers holding the first and second operands.

is the register holding the accumulate value.

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This

instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.

e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 140

11203A-ATARM-15-Oct-13

e Writes the result of the addition to the destination register.

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
e Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications or
subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
halfword of R5, multiplies top halfword of R4
with top halfword of R5, subtracts second from
first, adds R6, writes to RO
Multiplies bottom halfword of R3 with top
halfword of R2, multiplies top halfword of R3
with bottom halfword of R2, subtracts second from
first, adds RO, writes to R1
Multiplies bottom halfword of R6 with bottom
halfword of R2, multiplies top halfword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3
Multiplies bottom halfword of R6 with top
halfword of R2, multiplies top halfword of R6
with bottom halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3.

SMLSDX R1, R3, R2, RO

SMLSLD R3, R6, R2, R7

SMLSLDX R3, R6, R2, R7

SAMACM Series [PRELIMINARY DATASHEET 141
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:
e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Adds the value of Ra to the signed extracted value.
e Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:
e Multiplies the values in Rn and Rm.
e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

Examples

SMMLA RO, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and writes to RO

SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
; R4, rounds and writes to R6

SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
; Subtracts R7, rounds and writes to R3

SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.

SAMACM Series [PRELIMINARY DATASHEET 142
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The SMMUL
instruction:

e Multiplies the values from Rn and Rm.

e Optionally rounds the result, otherwise truncates the result.

e Writes the most significant signed 32 bits of the result in Rd.
Restrictions

In this instruction:
e donotuse SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
; and writes to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6.

SAMACM Series [PRELIMINARY DATASHEET 143
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.9 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm

where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed integers.
This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD RO, R4, R5 ; Miultiplies bottomhal fword of R4 with the bottom

; hal fword of R5, adds multiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword

; of R4, adds nultiplication of top halfword of R7
; with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhal fword of R4 with bottom hal fword

; of R6, subtracts multiplication of top hal fwrd of R6
; with top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhalfword of R65 with top hal fword of

; R3, subtracts multiplication of top hal fword of R5
; Wth bottomhal fword of R3, wites to R4.

SAMACM Series [PRELIMINARY DATASHEET 144
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword)
Syntax

op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:
op is one of:
SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as
the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If X'is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bot
tom halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).
Y specifies which halfword of the source register Rm is used as the second mul
tiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-bit
integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO
SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
; writes to RO

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the

; bottom halfword of R5, multiplies results and

SAMACM Series [PRELIMINARY DATASHEET 145
Atmel []

11203A-ATARM-15-Oct-13

; and writes to RO

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,

; extracts top 32 bits and writes to R4.

12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accu
mulating value.

Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds the
64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

Restrictions
In these instructions:
e Do not use SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
R5 x R6

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) =
= (R5,R4) + R3 x R8

SMLAL R4, R5, R3, R8 ; Signed (R5,R4)

SAMACM Series [PRELIMINARY DATASHEET 146
Atmel []

11203A-ATARM-15-Oct-13

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDIV{cond} {Rd,} Rn, Rm
uDIv{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1
/ItmeL SAMACM Series [PRELIMINARY DATASHEET)] 147

11203A-ATARM-15-Oct-13

12.6.7 Saturating Instructions

The table below shows the saturating instructions:

Table 12-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDsuB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUB8 Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2", the result returned is -2"*
e Ifthe value to be saturated is greater than 2"1-1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e If the value to be saturated is less than 0, the result returned is 0
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the instruction

sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the MSR instruction
must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

SAMACM Series [PRELIMINARY DATASHEET 148
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

op

cond

Rd

n

n ranges from 1
to 32 for SSAT
Rm

shift #s

ASR #s
LSL #s
Operation

is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

is an optional condition code, see “Conditional Execution” .
is the destination register.

specifies the bit position to saturate to:

n ranges from 0 to 31 for USAT.

is the register containing the value to saturate.

is an optional shift applied to Rm before saturating. It must be one of the
following:

where s is in the range 1 to 31.
where s is in the range 0 to 31.

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"* £ x £ 2"1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 £ x £ 2"-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT

USATNE RO, #7, R5

Atmel

R7, #16, R7, LSL #4

Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit value and
write it back to R7

Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO.

PR RN

SAMACM Series [PRELIMINARY DATASHEET] 149

11203A-ATARM-15-Oct-13

12.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit position in n.
Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit position
inn.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 Saturates the top and bottom highwords of R2
as 9-bit values, writes to corresponding halfword
of R7
Conditionally saturates the top and bottom
halfwords of R5 as 13-bit values, writes to

corresponding halfword of RO.

USAT16NE RO, #13, R5

NI N N ouT owr owa

SAMACM Series [PRELIMINARY DATASHEET 150
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a signed
saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed range -
21 £ x £ 211, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the QADD and
QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit and 16-bit QADD
and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
; saturates to 8 bits and writes to corresponding
; byte of R3

QSuB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
; halfword of R2, saturates to 16 bits, writes to
; corresponding halfword of R4

QsuB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
; In R2, saturates to 8 bits, writes to corresponding
; byte of R4.

SAMACM Series [PRELIMINARY DATASHEET 151
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'° < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x <251, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x < 25— 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2%° < x < 215 — 1, where x
equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
saturates to 16 bits, writes to top halfword of R7
Subtracts top highword of R2 from bottom halfword of
R4, saturates to 16 bits and writes to bottom halfword
of R7
Subtracts bottom halfword of R5 from top halfword of
R3, saturates to 16 bits, writes to top halfword of RO
Adds bottom halfword of R3 to top halfword of R5,
saturates to 16 bits, writes to bottom halfword of RO.

QSAX RO, R3, R5

SAMACM Series [PRELIMINARY DATASHEET 152
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —23* < x <
2%1_ 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, writes to R7
QDSuUB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; from R5, saturates to 32 bits, writes to RO.

SAMACM Series [PRELIMINARY DATASHEET 153
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm, Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0<x <2 _1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 216 — 1, where x
equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 21 — 1, where x
equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 218 — 1, where x equals
16, to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,

; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4, saturates to 16 bits, wites to bottom hal fword of R7

UQSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword of R3,

; saturates to 16 bits, wites to top hal fword of RO
; Adds bottom hal fword of R4 to top hal fword of RS
; saturates to 16 bits, wites to bottom hal fword of RO.

SAMACM Series [PRELIMINARY DATASHEET 154
Atmel []

11203A-ATARM-15-Oct-13

12.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the destination
register.

The UQADD16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.

e Saturates the result of the additions for each halfword in the destination register to the unsigned range 0 £ x £ 216-
1, where x is 16.

The UQADDS instruction:
e Adds each respective byte of the first and second operands.

e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 £ x £ 28-1,
where x is 8.

The UQSUB16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 £ x £ 216-1, where x is 16.

The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

e Saturates the results of the differences for each byte in the destination register to the unsigned range 0 £ x £ 28-1,
where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding hal fword in R2,

; saturates to 16 bits, wites to corresponding hal fwrd of R7

UQADD8 R4, R2, RS ; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, wites to correspondi ng bytes of R4

U@suUB16 R6, R3, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; in R3, saturates to 16 bits, wites to corresponding
; halfword in R6

uQsuUB8 Rl1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
; saturates to 8 bits, wites to corresponding byte of RIL.

/ItmeL SAMA4CM Series [PRELIMINARY DATASHEET] 155

11203A-ATARM-15-Oct-13

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data:

Table 12-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

SAMACM Series [PRELIMINARY DATASHEET 156
Atmel []

11203A-ATARM-15-Oct-13

12.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:
1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:
1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.

Examples
PKHBT R3, R4, R5 LSL #0 ; Wites bottomhalfword of R4 to bottom hal fword of
; R3, wites top hal fword of R5, unshifted, to top
; hal fword of R3
PKHTB R4, RO, R2Z ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
: hal fword of R4.

SAMACM Series [PRELIMINARY DATASHEET 157
Atmel []

11203A-ATARM-15-Oct-13

12.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax
op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.
SXTBL16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.
e UXTBL16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of
; of result, sign extends to 32 bits and wites to R4
UXTB R3, R10 ; Extracts |l owest byte of value in RLO, zero extends, and
;. wites to R3.

SAMACM Series [PRELIMINARY DATASHEET 158
Atmel []

11203A-ATARM-15-Oct-13

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax
op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}
where:
op is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the register holding the value to rotate and extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.
SXTABL16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.
e UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.
3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16 Rotates R6 right by 16 bits, obtains bottom
halfword, sign extends to 32 bits, adds
R8,and writes to R4
Extracts bottom byte of R10 and zero extends

; to 32 bits, adds R4, and writes to R3.

UXTAB R3, R4, R10

SAMACM Series [PRELIMINARY DATASHEET 159
Atmel []

11203A-ATARM-15-Oct-13

12.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 12-24. Packing and Unpacking Instructions

Mnemonic | Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

160

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lIsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position Isb,
with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2.

SAMACM Series [PRELIMINARY DATASHEET 161
Atmel []

11203A-ATARM-15-Oct-13

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples
SBFX RO, R1, #20, #4

UBFX R8, R11, #9, #10 ;

Atmel

Extract bit 20 to bit 23 (4 bits) fromRl and sign
extend to 32 bits and then wite the result to RO.
Extract bit 9 to bit 18 (10 bits) from Rl1 and zero
extend to 32 bits and then wite the result to R8.

SAMACM Series [PRELIMINARY DATASHEET] 162

11203A-ATARM-15-Oct-13

12.6.9.3 SXT and UXT
Sign extend and Zero extend.

Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:
extend is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
e UXTB extracts bits[7:0] and zero extends to 32 bits.
e SXTH extracts bits[15:0] and sign extends to 32 bits.
e UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower
; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero
; extend it, and wite the result to R3.

SAMACM Series [PRELIMINARY DATASHEET 163
Atmel []

11203A-ATARM-15-Oct-13

12.6.10 Branch and Control Instructions

The table below shows the branch and control instructions:

Table 12-25. Branch and Control Instructions

Mnemonic | Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero
cBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

164

12.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution” .
label is a PC-relative expression. See “PC-relative Expressions” .
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch instructions
must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT”.

The table below shows the ranges for the various branch instructions.

Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created by
changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch
range when it is inside an IT block.

SAMACM Series [PRELIMINARY DATASHEET 165
Atmel []

11203A-ATARM-15-Oct-13

Condition Flags

These instructions do not change the flags.

Examples

B | oopA ; Branch to | oopA

BLE ng ; Conditionally branch to | abel ng

B. W tar get ; Branch to target within 16MB range

BEQ tar get ; Conditionally branch to target

BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
; stored in LR

BX LR ; Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored in RO.

12.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.
label is the branch destination.
Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CBz R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

SAMACM Series [PRELIMINARY DATASHEET 166
Atmel []

11203A-ATARM-15-Oct-13

12.6.10.3 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in the IT
block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some of
them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so that the
user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution of
the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last instruction
inside the IT block. These are:

e ADDPC, PC,Rm
e MOV PC,Rm
e B, BL, BX, BLX
e Any LDM, LDR, or POP instruction that writes to the PC
e TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler
All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT
block but has a larger branch range if it is inside one
e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse as
for the other instructions in the block.

SAMACM Series [PRELIMINARY DATASHEET 167
Atmel []

11203A-ATARM-15-Oct-13

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler directives
within them.

Condition Flags
This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional move

CMP RO, #9 ; Convert RO hex value (0O to 15) into ASCII
; ('OI_'gI, IAI_IFI)

ITE GT ; Next 2 instructions are conditional

ADDGT R1, RO, #55 ; Convert OxA -> "A*"
ADDLE R1, RO, #48 ; Convert 0x0O -> "0OF

T GT ; 1T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional move

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block

SAMACM Series [PRELIMINARY DATASHEET 168
Atmel []

11203A-ATARM-15-Oct-13

12.6.10.4 TBB and TBH

Table Branch Byte and Table Branch Halfword.
Syntax

TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]

where:
Rn is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets for
TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is twice the
unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned value of the
halfword returned from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

Restrictions
The restrictions are:
e Rn must not be SP
e Rm must not be SP and must not be PC
e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags
These instructions do not change the flags.

Examples
ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3

; an instruction sequence follows

BranchTable_Byte
DCB 0] ; Casel offset calculation
DCB ((Case2-Casel)/2) ; Case2 offset calculation
DCB ((Case3-Casel)/2) ; Case3 offset calculation

TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the
; branch table
BranchTable_H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation

DCI ((CaseB - BranchTable _H)/2) ; CaseB offset calculation

DCI ((CaseC - BranchTable H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

SAMACM Series [PRELIMINARY DATASHEET 169
Atmel []

11203A-ATARM-15-Oct-13

12.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU” for
information about enabling the floating-point unit.

Table 12-27. Floating-point Instructions

Mnemonic Description

VABS Floating-point Absolute

VADD Floating-point Add

VCMP Compare two floating-point registers, or one floating-point register and zero

VCMPE Compare two floating-point registers, or one floating-point register and zero with
Invalid Operation check

VCVT Convert between floating-point and integer

VCVT Convert between floating-point and fixed point

VCVTR Convert between floating-point and integer with rounding

VCVTB Converts half-precision value to single-precision

VCVTT Converts single-precision register to half-precision

VDIV Floating-point Divide

VEMA Floating-point Fused Multiply Accumulate

VENMA Floating-point Fused Negate Multiply Accumulate

VFMS Floating-point Fused Multiply Subtract

VFNMS Floating-point Fused Negate Multiply Subtract

VLDM Load Multiple extension registers

VLDR Loads an extension register from memory

VLMA Floating-point Multiply Accumulate

VLMS Floating-point Multiply Subtract

VMOV Floating-point Move Immediate

VMOV Floating-point Move Register

VMOV Copy ARM core register to single precision

VMOV Copy 2 ARM core registers to 2 single precision

VMOV Copies between ARM core register to scalar

VMOV Copies between Scalar to ARM core register

VMRS Move to ARM core register from floating-point System Register

VMSR Move to floating-point System Register from ARM Core register

VMUL Multiply floating-point

VNEG Floating-point negate

VNMLA Floating-point multiply and add

VNMLS Floating-point multiply and subtract

VNMUL Floating-point multiply

VPOP Pop extension registers

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 170

11203A-ATARM-15-Oct-13

Table 12-27. Floating-point Instructions (Continued)

Mnemonic Description

VPUSH Push extension registers

VSQRT Floating-point square root

VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract

Atmel

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

171

Atmel

12.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples
VABS_F32 S4, S6

12.6.11.2 VADD

Floating-point Add

Syntax
VADD{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

This instruction does not change the flags.

Examples
VADD.F32 S4, S6, S7

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

172

Atmel

12.6.11.3 VCMP, VCMPE

Compares two floating-point registers, or one floating-point register and zero.

Syntax
VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution” .

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares:
e Two floating-point registers.
e One floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises an

Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a

wn

subsequent VMRS instruction, see “” .

Examples
VCMP _F32 S4, #0.0
VCMP _F32 S4, S2

SAMACM Series [PRELIMINARY DATASHEET] 173

11203A-ATARM-15-Oct-13

12.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.

Syntax
VCVT{R}{cond}.Tm_.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.
If R is omitted. the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution” .

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either
e Converts a value in a register from floating-point value to a 32-bit integer.
e Converts from a 32-bit integer to floating-point value.
2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally use the
rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 174
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.5 VCVT between Floating-point and Fixed-point
Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution” .
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
U1l6 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0-16.
If Td is S32 or U32, fbits must be in the range 1-32.
Operation

These instructions:
1. Either
e Converts a value in a register from floating-point to fixed-point.
e Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-order
bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.
Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point
operation uses the Round to Nearest rounding mode.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 175
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.6 VCVTB, VCVTT
Converts between a half-precision value and a single-precision value.

Syntax
VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the
operand or destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the.F16.32 suffix:
1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-precision.
2. Writes the result to a single-precision register.

This instruction with the.F32.F16 suffix:
1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the target
register.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.7 VDIV
Divides floating-point values.
Syntax
VDIV{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 176
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax
VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFMA instruction:
1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:
1. Negates the first operand register.
2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.
4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 177
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.9 VENMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax
VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFENMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VENMS instruction:
1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 178
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.10 VLDM
Floating-point Load Multiple

Syntax

VLDM{mode}{cond}{.size} Rn{!1}, list

where:

mode

cond
size
Rn

list

Operation

is the addressing mode:

- 1A Increment After. The consecutive addresses start at the address speci
fied in Rn.

- DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

is an optional condition code, see “Conditional Execution” .
is an optional data size specifier.
is the base register. The SP can be used

is the command to the instruction to write a modified value back to Rn. This is
required if mode == DB, and is optional if mode == IA.

is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

This instruction loads:

e Multiple extension registers from consecutive memory locations using an address from an ARM core register as
the base address.

Restrictions

The restrictions are:
e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

e For the base address, the SP can be used.
In the ARM instruction set, if ! is not specified the PC can be used.

e [ist must contain at least one register. If it contains doubleword registers, it must not contain more than 16
registers.

e If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base register
specification.

Condition Flags

These instructions do not change the flags.

Atmel

SAMACM Series [PRELIMINARY DATASHEET] 179

11203A-ATARM-15-Oct-13

12.6.11.11 VLDR
Loads a single extension register from memory

Syntax
VLDR{cond}{-64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{-64} Dd, [PC, #imm}]
VLDR{cond}{-32} Sd, [Rn {, #imm}]
VLDR{cond}{-.32} Sd, label
VLDR{cond}{-32} Sd, [PC, #imm]

where:
cond is an optional condition code, see “Conditional Execution” .
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address.
Permitted address values are multiples of 4 in the range 0 to 1020.
label is the label of the literal data item to be loaded.
Operation

This instruction:

e |oads a single extension register from memory, using a base address from an ARM core register, with an optional
offset.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 180
Atmel []

11203A-ATARM-15-Oct-13

Atmel

12.6.11.12 VLMA, VLMS

Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax
VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.

Sn, Sm are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.
The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.

3. Places the results in the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

181

Atmel

12.6.11.13 VMOV Immediate

Move floating-point Immediate

Syntax
VMOV{cond}.F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the branch destination.
imm is a floating-point constant.
Operation

This instruction copies a constant value to a floating-point register.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.14 VMOV Register

Copies the contents of one register to another.

Syntax
VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Dd is the destination register, for a doubleword operation.
Dm is the source register, for a doubleword operation.
Sd is the destination register, for a singleword operation.
Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

182

12.6.11.15 VMOV Scalar to ARM Core Register

Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{cond} Rt, Dn[x]

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:
e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.

Restrictions
Rt cannot be PC or SP.
Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 183
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.16 VMOV ARM Core Register to Single Precision

Transfers a single-precision register to and from an ARM core register.

Syntax
VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn
where:
cond is an optional condition code, see “Conditional Execution” .
Sn is the single-precision floating-point register.
Rt is the ARM core register.
Operation

This instruction transfers:
e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

12.6.11.17 VMOV Two ARM Core Registers to Two Single Precision

Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax

VMov{cond} Sm, Sml, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sm is the first single-precision register.
Sml is the second single-precision register.

This is the next single-precision register after Sm.

Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:
e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.

Restrictions
e The restrictions are:

The floating-point registers must be contiguous, one after the other.

The ARM core registers do not have to be contiguous.

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 184
Atmel []

11203A-ATARM-15-Oct-13

12.6.11.18 VMOV ARM Core Register to Scalar

Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV{cond}{-32} Dd[x], Rt
where:
cond is an optional condition code, see “Conditional Execution” .
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,
as follows:
If x is O, the lower half is extracted
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation
This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.
Restrictions

Rt cannot be PC or SP.
Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET 185
Atmel []

11203A-ATARM-15-Oct-13

Atmel

12.6.11.19 VMRS

Move to ARM Core register from floating-point System Register.

Syntax
VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register. This register can be R0-R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.
Operation

This instruction performs one of the following actions:
e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions
Rt cannot be PC or SP.
Condition Flags

These instructions optionally change the flags: N, Z, C, V.

12.6.11.20 VMSR

Move to floating-point System Register from ARM Core register.

Syntax
VMSR{cond} FPSCR, Rt
where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control

Register” for more information.
Restrictions

The restrictions are:
e Rtcannot be PC or SP.

Condition Flags
This instruction updates the FPSCR.

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

186

Atmel

12.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMUL{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.22 VNEG

Floating-point Negate.

Syntax
VNEG{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:
1. Negates a floating-point value.
2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

SAMACM Series [PRELIMINARY DATASHEET]

11203A-ATARM-15-Oct-13

187

12.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.

Syntax
VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.
Restrictions
There are no restrictions.
Condition Flags
These instructions do not change the fla