
• Cypress Semiconductor • Interface Products Division •
• 15050 Avenue of Science • Suite 200 • San Diego, CA 92128 •

EZ-USB FX

Manual
Technical Reference

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may
occur. Should Buyer purchase or use Cypress
Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-

ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the part.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

Chapter 16, 17, and 18 of this databook con-
tain copyrighted material that is the property of
Synopsys, Inc., © 1998, ALL RIGHTS
RESERVED.

The EZ-USB FX Technical Reference Manual,
Version 1.2.

Copyright 2000, Cypress Semiconductor Cor-
poration.

All rights reserved.

Table of Contents
Chapter 1. Introducing EZ-USB FX - 1-1
 1.1 Introduction ...1-1
 1.2 EZ-USB FX Block Diagrams ... 1-2
 1.3 The USB Specification.. 1-3
 1.4 Tokens and PIDs ... 1-4
 1.5 Host is Master.. 1-5

 1.5.1 Receiving Data from the Host ... 1-5
 1.5.2 Sending Data to the Host .. 1-6

 1.6 USB Direction .. 1-6
 1.7 Frame ... 1-6
 1.8 EZ-USB FX Transfer Types .. 1-6

 1.8.1 Bulk Transfers ... 1-7
 1.8.2 Interrupt Transfers... 1-7
 1.8.3 Isochronous Transfers .. 1-7
 1.8.4 Control Transfers ... 1-8

 1.9 Enumeration .. 1-8
 1.10 The USB Core .. 1-9
 1.11 EZ-USB FX Microprocessor ... 1-10
 1.12 ReNumeration™ .. 1-11
 1.13 EZ-USB FX Endpoints...1-11

 1.13.1 EZ-USB FX Bulk Endpoints .. 1-12
 1.13.2 EZ-USB FX Control Endpoint Zero ... 1-12
 1.13.3 EZ-USB FX Interrupt Endpoints.. 1-13
 1.13.4 EZ-USB FX Isochronous Endpoints.. 1-13

 1.14 Interrupts ... 1-13
 1.15 Reset and Power Management ..1-14
 1.16 Slave FIFOs.. 1-14
 1.17 GPIF (General Programmable Interface) ... 1-14
 1.18 EZ-USB FX Product Family .. 1-15
i

(Table of Contents)
Chapter 2. EZ-USB FX CPU - 2-1
 2.1 Introduction... 2-1
 2.2 8051 Enhancements ... 2-1
 2.3 EZ-USB FX Enhancements .. 2-2
 2.4 EZ-USB FX Register Interface ... 2-2
 2.5 EZ-USB FX Internal RAM.. 2-3
 2.6 I/O Ports... 2-3
 2.7 Interrupts ... 2-4
 2.8 Power Control ... 2-5
 2.9 SFRs... 2-5
 2.10 Internal Bus ... 2-7
 2.11 Reset .. 2-7

Chapter 3. EZ-USB FX Memory - 3-1
 3.1 Introduction... 3-1
 3.2 8051 Memory... 3-2

 3.2.1 About 8051 Memory Spaces .. 3-2
 3.3 Expanding EZ-USB FX Memory... 3-4
 3.4 CS# and OE# Signals ... 3-5

Chapter 4. EZ-USB FX Input/Output - - - - - - - - - - - - - - - - - - - 4-1
 4.1 Introduction... 4-1
 4.2 I/O Ports... 4-2
 4.3 Input/Output Port Registers... 4-4
 4.4 Port Configuration Tables.. 4-8
 4.5 I2C-Compatible Controller .. 4-14
 4.6 8051 I2C-Compatible Controller... 4-14
 4.7 Control Bits ... 4-16

 4.7.1 START.. 4-16
 4.7.2 STOP.. 4-16
 4.7.3 LASTRD ... 4-17

 4.8 Status Bits ... 4-17
 4.8.1 DONE ... 4-17
 4.8.2 ACK .. 4-17
 4.8.3 BERR.. 4-17
 4.8.4 ID1, ID0 .. 4-18
ii Table of Contents

(Table of Contents)
 4.9 Sending I2C-Compatible Data ..4-18
 4.10 Receiving I2C-Compatible Data..4-18
 4.11 I2C-Compatible Boot Loader ..4-19
 4.12 SFR Addressing .. 4-21
 4.13 SFR Control of PORTs A-E... 4-25

Chapter 5. EZ-USB FX Enumeration & ReNumeration™ - - - - - - - - - 5-1
 5.1 Introduction ...5-1
 5.2 The Default USB Device ... 5-2
 5.3 USB Core Response to EP0 Device Requests ... 5-3

 5.3.1 Port Configuration Bits .. 5-4
 5.4 Firmware Load...5-5
 5.5 Enumeration Modes... 5-6
 5.6 No Serial EEPROM ..5-7
 5.7 Serial EEPROM Present, First Byte is 0xB4 ... 5-8
 5.8 Serial EEPROM Present, First Byte is 0xB6 ... 5-9
 5.9 Configuration Byte 0.. 5-10
 5.10 ReNumeration™ .. 5-11
 5.11 Multiple ReNumeration™ ... 5-13
 5.12 Default Descriptor ... 5-13

Chapter 6. EZ-USB FX Bulk Transfers - - - - - - - - - - - - - - - - - - 6-1
 6.1 Introduction ...6-1
 6.2 Bulk IN Transfers .. 6-4
 6.3 Interrupt Transfers ..6-5
 6.4 EZ-USB FX Bulk IN Example .. 6-5
 6.5 Bulk OUT Transfers .. 6-6
 6.6 Endpoint Pairing ... 6-8
 6.7 Paired IN Endpoint Status .. 6-8
 6.8 Paired OUT Endpoint Status .. 6-9
 6.9 Reusing Bulk Buffer Memory... 6-9
 6.10 Data Toggle Control .. 6-10
 6.11 Polled Bulk Transfer Example ... 6-11
 6.12 Enumeration Note ... 6-12
 6.13 Bulk Endpoint Interrupts .. 6-13
 6.14 Interrupt Bulk Transfer Example ... 6-14
Table of Contents iii

(Table of Contents)
 6.15 Enumeration Note... 6-19
 6.16 The Autopointer .. 6-19

Chapter 7. EZ-USB FX Slave FIFOs- - - - - - - - - - - - - - - - - - - - 7-1

 7.1 Introduction... 7-1
 7.1.1 8051 FIFO Access.. 7-2
 7.1.2 External Logic FIFO Access ... 7-2
 7.1.3 ASEL, BSEL in 8-Bit Mode ... 7-3
 7.1.4 ASEL, BSEL in Double-Byte Mode... 7-4
 7.1.5 FIFO Registers ... 7-4
 7.1.6 FIFO Flags and Interrupts .. 7-5

 7.2 Slave FIFO Register Descriptions ... 7-6
 7.2.1 FIFO A Read Data.. 7-7
 7.2.2 A-IN FIFO Byte Count .. 7-8
 7.2.3 A-IN FIFO Programmable Flag... 7-9

7.2.3.1 Filling FIFO.. 7-10
7.2.3.2 Emptying FIFO .. 7-10
7.2.3.3 A-IN FIFO Pin Programmable Flag ... 7-11

 7.2.4 B-IN FIFO Read Data ... 7-13
 7.2.5 B-IN FIFO Byte Count .. 7-14
 7.2.6 B-IN FIFO Programmable Flag... 7-15

7.2.6.1 Filling FIFO.. 7-16
7.2.6.2 Emptying FIFO .. 7-16

 7.2.7 B-IN FIFO Pin Programmable Flag... 7-17
 7.2.8 Input FIFOs A/B Toggle CTL and Flags ... 7-18
 7.2.9 Input FIFOs A/B Interrupt Enables ... 7-20
 7.2.10 Input FIFOs A/B Interrupt Requests ... 7-22
 7.2.11 FIFO A Write Data .. 7-24

7.2.11.1 A-OUT FIFO Byte Count ... 7-25
 7.2.12 A-OUT FIFO Programmable Flag... 7-26

7.2.12.1 Filling FIFO.. 7-27
7.2.12.2 Emptying FIFO .. 7-27

 7.2.13 A-OUT FIFO Pin Programmable Flag... 7-28
 7.2.14 B-OUT FIFO Write Data ... 7-30
 7.2.15 B-OUT FIFO Byte Count .. 7-31
 7.2.16 B-OUT FIFO Programmable Flag... 7-32

7.2.16.1 Filling FIFO.. 7-33
7.2.16.2 Emptying FIFO .. 7-33
iv Table of Contents

(Table of Contents)
 7.2.17 B-OUT FIFO Pin Programmable Flag ... 7-34
 7.2.18 Output FIFOs A/B Toggle CTL and Flags 7-35
 7.2.19 Output FIFOs A/B Interrupt Enables ... 7-37
 7.2.20 Output FIFOs A/B Interrupt Requests... 7-39
 7.2.21 FIFO A/B Setup...7-40
 7.2.22 FIFO A/B Control Signal Polarities.. 7-43
 7.2.23 FIFO Flag Reset.. 7-44

 7.3 FIFO Timing ...7-45

Chapter 8. General Programmable Interface (GPIF) - - - - - - - - - - - 8-1

 8.1 What is GPIF?.. 8-1
 8.2 Applicable Documents and Tools ... 8-2
 8.3 Typical GPIF Interface .. 8-3
 8.4 External GPIF Connections.. 8-4

 8.4.1 The External GPIF Interface ... 8-4
 8.4.2 Connecting GPIF Signal Pins to Hardware ... 8-5
 8.4.3 Example GPIF Hardware Interconnect ... 8-5

 8.5 Internal GPIF Operation.. 8-6
 8.5.1 The Internal GPIF Engine ... 8-6
 8.5.2 Global GPIF Configuration ..8-6

8.5.2.1 Data Bus Width.. 8-6
8.5.2.2 Control Output Modes ... 8-6
8.5.2.3 Synchronous/Asynchronous Mode ..8-7

 8.5.3 Programming GPIF Waveforms .. 8-7
8.5.3.1 The GPIF IDLE State... 8-8
8.5.3.2 Defining Intervals ... 8-10
8.5.3.3 Interval Waveform Descriptor .. 8-14
8.5.3.4 Physical Structure of the Waveform Memories........................8-18

 8.5.4 Starting GPIF Waveform Transactions ... 8-20
8.5.4.1 Performing a Single Read Transaction 8-20
8.5.4.2 Performing a Single Write Transaction.................................... 8-22

 8.5.5 GPIF FIFO Transactions ... 8-22
8.5.5.1 The GPIF_PF Flag .. 8-22
8.5.5.2 Performing a FIFO Read Transaction 8-23
8.5.5.3 Performing a FIFO Write Transaction...................................... 8-23
8.5.5.4 Burst FIFO Transactions ...8-24
8.5.5.5 Waveform Selector .. 8-25

 8.5.6 Data/Trigger Registers .. 8-26
Table of Contents v

(Table of Contents)
 8.5.7 FIFO Operation Trigger Registers .. 8-28
 8.5.8 Transaction Count Registers .. 8-29
 8.5.9 READY Register ... 8-30
 8.5.10 CTLOUTCFG Register ... 8-31
 8.5.11 IDLE State Registers .. 8-32
 8.5.12 Address Register GPIFADRL... 8-34
 8.5.13 GPIF_ABORT Register .. 8-35

Chapter 9. EZ-USB FX Endpoint Zero - - - - - - - - - - - - - - - - - - 9-1
 9.1 Introduction... 9-1
 9.2 Control Endpoint EP0... 9-2
 9.3 USB Requests ... 9-5

 9.3.1 Get Status... 9-6
 9.3.2 Set Feature... 9-10
 9.3.3 Clear Feature .. 9-12
 9.3.4 Get Descriptor .. 9-12

9.3.4.1 Get Descriptor-Device ... 9-14
9.3.4.2 Get Descriptor-Configuration .. 9-15
9.3.4.3 Get Descriptor-String .. 9-15

 9.3.5 Set Descriptor ... 9-16
9.3.5.1 Set Configuration .. 9-19

 9.3.6 Get Configuration ... 9-19
 9.3.7 Set Interface ... 9-20
 9.3.8 Get Interface... 9-21
 9.3.9 Set Address .. 9-21
 9.3.10 Sync Frame .. 9-22
 9.3.11 Firmware Load.. 9-23

Chapter 10. EZ-USB FX Isochronous Transfers - - - - - - - - - - - - 10-1
 10.1 Introduction... 10-1
 10.2 Isochronous IN Transfers .. 10-2

 10.2.1 Initialization ... 10-2
 10.2.2 IN Data Transfers ... 10-3

 10.3 Isochronous OUT Transfers .. 10-3
 10.3.1 Initialization ... 10-4
 10.3.2 OUT Data Transfer ... 10-4

 10.4 Setting Isochronous FIFO Sizes.. 10-5
vi Table of Contents

(Table of Contents)
 10.5 Isochronous Transfer Speed ... 10-7
 10.6 Other Isochronous Registers... 10-9

 10.6.1 Disable ISO ... 10-9
 10.6.2 Zero Byte Count Bits ... 10-10

 10.7 ISO IN Response with No Data ..10-10
 10.8 Restrictions Near SOF .. 10-11

Chapter 11. EZ-USB FX DMA System - - - - - - - - - - - - - - - - - - 11-1
 11.1 Introduction ... 11-1
 11.2 DMA Register Descriptions .. 11-2

 11.2.1 Source, Destination, Transfer Length Address Registers............... 11-2
 11.2.2 DMA Start and Status Register ... 11-6
 11.2.3 DMA Synchronous Burst Enables Register 11-6
 11.2.4 Dummy Register ... 11-9

 11.3 External DMA Transfers - Strobes... 11-10
 11.3.1 Selection of RD/FRD and WR/FWR DMA Strobes 11-10

 11.4 Interaction of DMA Strobe Waveforms and Stretch Bits 11-10
 11.4.1 DMA External Writes... 11-11
 11.4.2 DMA External Reads... 11-12

11.4.2.1 Modes 0 and 1 ... 11-13
11.4.2.2 Modes 2 and 3 ... 11-13

Chapter 12. EZ-USB FX Interrupts - - - - - - - - - - - - - - - - - - - 12-1
 12.1 Introduction ... 12-1
 12.2 USB Core Interrupts.. 12-2
 12.3 Resume Interrupt ..12-2
 12.4 USB Signaling Interrupts.. 12-2
 12.5 SUTOK, SUDAV Interrupts ... 12-7
 12.6 SOF Interrupt ...12-7
 12.7 Suspend Interrupt ... 12-8
 12.8 USB RESET Interrupt .. 12-8
 12.9 Bulk Endpoint Interrupts .. 12-8
 12.10 USB Autovectors... 12-8
 12.11 Autovector Coding.. 12-10
 12.12 I2C-Compatible Interrupt... 12-12
 12.13 In Bulk NAK Interrupt.. 12-12
Table of Contents vii

(Table of Contents)
 12.14 I2C-Compatible STOP Complete Interrupt .. 12-13
 12.15 Slave FIFO Interrupt (INT4) .. 12-15

Chapter 13. EZ-USB FX Resets - 13-1

 13.1 Introduction... 13-1
 13.2 EZ-USB FX Power-On Reset (POR)... 13-1
 13.3 Releasing the 8051 Reset... 13-3

 13.3.1 RAM Download... 13-4
 13.3.2 EEPROM Load ... 13-4
 13.3.3 External ROM ... 13-4

 13.4 8051 Reset Effects .. 13-4
 13.5 USB Bus Reset.. 13-5
 13.6 EZ-USB FX Disconnect .. 13-7
 13.7 Reset Summary... 13-8

Chapter 14. EZ-USB FX Power Management - - - - - - - - - - - - - - 14-1
 14.1 Introduction... 14-1
 14.2 Suspend... 14-2
 14.3 Resume.. 14-3
 14.4 Remote Wakeup.. 14-5

Chapter 15. EZ-USB FX Registers - - - - - - - - - - - - - - - - - - - 15-1

 15.1 Introduction... 15-1
 15.1.1 Example Register Formats ... 15-1
 15.1.2 Other Conventions.. 15-2

 15.2 Slave FIFO Registers.. 15-3
 15.2.1 FIFO A Read Data .. 15-3
 15.2.2 A-IN FIFO Byte Count .. 15-3
 15.2.3 A-IN FIFO Programmable Flag ... 15-4
 15.2.4 A-IN FIFO Pin Programmable Flag... 15-4
 15.2.5 B-IN FIFO Read Data ... 15-5
 15.2.6 B-IN FIFO Byte Count .. 15-5
 15.2.7 B-IN FIFO Programmable Flag ... 15-6
 15.2.8 B-IN FIFO Pin Programmable Flag... 15-6
 15.2.9 Input FIFOs A/B Toggle CTL and Flags ... 15-7
 15.2.10 Input FIFOs A/B Interrupt Enables ... 15-7
 15.2.11 Input FIFOs A/B Interrupt Requests ... 15-7
viii Table of Contents

(Table of Contents)
 15.2.12 FIFO A Write Data... 15-8
 15.2.13 A-OUT FIFO Byte Count ... 15-8
 15.2.14 A-OUT FIFO Programmable Flag ... 15-9
 15.2.15 A-OUT FIFO Pin Programmable Flag ... 15-9
 15.2.16 B-OUT FIFO Write Data ..15-10
 15.2.17 B-OUT FIFO Byte Count ... 15-10
 15.2.18 B-OUT FIFO Programmable Flag ... 15-11
 15.2.19 B-OUT FIFO Pin Programmable Flag ... 15-11
 15.2.20 Output FIFOs A/B Toggle CTL and Flags................................... 15-12
 15.2.21 Output FIFOs A/B Interrupt Enables ... 15-12
 15.2.22 Output FIFOs A/B Interrupt Requests ... 15-12
 15.2.23 FIFO A/B Setup... 15-13
 15.2.24 FIFO A/B Control Signal Polarities .. 15-13
 15.2.25 FIFO Flag Reset.. 15-14

 15.3 Waveform Selector.. 15-14
 15.4 GPIF Done, GPIF IDLE Drive Mode .. 15-15
 15.5 Inactive Bus, CTL States .. 15-15
 15.6 GPIF Address LSB .. 15-16
 15.7 FIFO A IN Transaction Count ... 15-16
 15.8 FIFO A OUT Transaction Count... 15-17
 15.9 FIFO A Transaction Trigger.. 15-17
 15.10 FIFO B IN Transaction Count ... 15-18
 15.11 FIFO B OUT Transaction Count ... 15-18
 15.12 FIFO B Transaction Trigger..15-19
 15.13 GPIF Data H (16-bit mode only) ... 15-19
 15.14 Read or Write GPIF Data L and Trigger Read Transaction 15-19
 15.15 Read GPIF Data L, No Read Transaction Trigger............................... 15-20
 15.16 Internal READY, Sync/Async, READY Pin States 15-20
 15.17 Abort GPIF Cycles... 15-20
 15.18 General Purpose I/F Interrupt Enable.. 15-21
 15.19 Generic Interrupt Request .. 15-21
 15.20 Input/Output Port Registers D and E...15-22

 15.20.1 Port D Outputs .. 15-22
 15.20.2 Input Port D Pins ...15-22
 15.20.3 Port D Output Enable ..15-22
 15.20.4 Port E Outputs...15-23
Table of Contents ix

(Table of Contents)
 15.20.5 Input Port E Pins... 15-23
 15.20.6 Port E Output Enable.. 15-23

 15.21 PORTSETUP.. 15-24
 15.22 Interface Configuration .. 15-24
 15.23 PORTA and PORTC Alternate Configurations 15-27

 15.23.1 Port A Alternate Configuration #2... 15-27
 15.23.2 Port C Alternate Configuration #2 ... 15-28

 15.24 DMA Registers .. 15-31
 15.24.1 Source, Destination, Transfer Length Address Registers........... 15-31
 15.24.2 DMA Start and Status Register .. 15-32
 15.24.3 DMA Synchronous Burst Enables Register................................ 15-33
 15.24.4 Select 8051 A/D busses as External FIFO 15-33

 15.25 Slave FIFO Interrupt (INT4) .. 15-34
 15.25.1 Interrupt 4 Autovector ... 15-34
 15.25.2 Interrupt 4 Autovector ... 15-34

 15.26 Waveform Descriptors ... 15-35
 15.27 Bulk Data Buffers.. 15-35
 15.28 Isochronous Data FIFOs .. 15-37
 15.29 Isochronous Byte Counts .. 15-39
 15.30 CPU Registers ... 15-41
 15.31 Port Configuration .. 15-42
 15.32 Input/Output Port Registers A - C ... 15-44

 15.32.1 Outputs ... 15-44
 15.32.2 Pins... 15-45
 15.32.3 Output Enables ... 15-46

 15.33 Isochronous Control/Status Registers ... 15-47
 15.34 I2C-Compatible Registers... 15-48
 15.35 Interrupts ... 15-51
 15.36 Endpoint 0 Control and Status Registers... 15-58
 15.37 Endpoint 1-7 Control and Status Registers 15-60
 15.38 Global USB Registers... 15-65
 15.39 Fast Transfers ... 15-71

 15.39.1 AUTOPTRH/L ... 15-73
 15.39.2 AUTODATA .. 15-73

 15.40 SETUP Data ... 15-74
x Table of Contents

(Table of Contents)
 15.41 Isochronous FIFO Sizes ... 15-74

Chapter 16. 8051 Introduction- 16-1
 16.1 Introduction ... 16-1
 16.2 8051 Features .. 16-2
 16.3 Performance Overview ... 16-2
 16.4 Software Compatibility ... 16-4
 16.5 803x/805x Feature Comparison ... 16-4
 16.6 8051 Core/DS80C320 Differences.. 16-5

 16.6.1 Serial Ports..16-5
 16.6.2 Timer 2 .. 16-5
 16.6.3 Timed Access Protection ..16-5
 16.6.4 Watchdog Timer.. 16-5

Chapter 17. 8051 Architectural Overview - - - - - - - - - - - - - - - - 17-1
 17.1 Introduction ... 17-1

 17.1.1 Memory Organization.. 17-1
17.1.1.1 Registers ...17-1
17.1.1.2 Program Memory ... 17-3
17.1.1.3 Data Memory ... 17-3
17.1.1.4 EZ-USB FX Program/Data Memory....................................... 17-3
17.1.1.5 Accessing Data Memory.. 17-3

 17.1.2 Instruction Set ... 17-4
 17.1.3 Instruction Timing.. 17-8
 17.1.4 CPU Timing... 17-9
 17.1.5 Stretch Memory Cycles (Wait States) ... 17-9
 17.1.6 Dual Data Pointers .. 17-10
 17.1.7 Special Function Registers ... 17-11

Chapter 18. 8051 Hardware Description - - - - - - - - - - - - - - - - 18-1
 18.1 Introduction ... 18-1
 18.2 Timers/Counters.. 18-1

 18.2.1 803x/805x Compatibility .. 18-2
 18.2.2 Timers 0 and 1 .. 18-2

18.2.2.1 Mode 0 ... 18-2
18.2.2.2 Mode 1 ... 18-3
18.2.2.3 Mode 2 ... 18-5
18.2.2.4 Mode 3 ... 18-6
Table of Contents xi

(Table of Contents)
 18.2.3 Timer Rate Control ... 18-7
 18.2.4 Timer 2 ... 18-8

18.2.4.1 Timer 2 Mode Control ... 18-9
 18.2.5 16-Bit Timer/Counter Mode .. 18-9

18.2.5.1 6-Bit Timer/Counter Mode with Capture.............................. 18-10
 18.2.6 16-Bit Timer/Counter Mode with Auto-Reload.............................. 18-11
 18.2.7 Baud Rate Generator Mode ... 18-12

 18.3 Serial Interface .. 18-13
 18.3.1 803x/805x Compatibility ... 18-14
 18.3.2 Mode 0 .. 18-14
 18.3.3 Mode 1 .. 18-19

18.3.3.1 Mode 1 Baud Rate .. 18-19
18.3.3.2 Mode 1 Transmit ... 18-21

 18.3.4 Mode 1 Receive .. 18-21
 18.3.5 Mode 2 .. 18-23

18.3.5.1 Mode 2 Transmit ... 18-23
18.3.5.2 Mode 2 Receive .. 18-24

 18.3.6 Mode 3 .. 18-25
 18.3.7 Multiprocessor Communications... 18-27
 18.3.8 Interrupt SFRs .. 18-27

 18.4 Interrupt Processing... 18-30
 18.4.1 Interrupt Masking .. 18-31

18.4.1.1 Interrupt Priorities .. 18-31
 18.4.2 Interrupt Sampling .. 18-32
 18.4.3 Interrupt Latency ... 18-33
 18.4.4 Single-Step Operation .. 18-33

 18.5 Reset .. 18-33
 18.6 Power Saving Modes .. 18-34

 18.6.1 Idle Mode .. 18-34
EZ-USB FX Register Summary .. RegSum - 1
xii Table of Contents

List of Figures
 Figure 1-1. CY7C646x3-80NC (80 pin) Simplified Block Diagram 1-2

 Figure 1-2. CY7C646x3-128NC (128 pin) Simplified Block Diagram 1-3

 Figure 1-3. USB Packets ... 1-4

 Figure 1-4. Two Bulk Transfers, IN and OUT .. 1-7

 Figure 1-5. An Interrupt Transfer ... 1-7

 Figure 1-6. An Isochronous Transfer ... 1-7

 Figure 1-7. A Control Transfer ... 1-8

 Figure 1-8. What the SIE Does .. 1-9

 Figure 2-1. 8051 Registers .. 2-3

 Figure 3-1. EZ-USB FX 8-KB Memory Map - Addresses are in Hexadecimal 3-1

 Figure 3-2. EZ-USB FX 4-KB Memory Map - Addresses are in Hexadecimal 3-2

 Figure 3-3. Unused Bulk Endpoint Buffers (Shaded) Used as Data Memory 3-3

 Figure 3-4. EZ-USB FX Memory Map with EA=0 .. 3-4

 Figure 3-5. EZ-USB FX Memory Map with EA=1 .. 3-6

 Figure 4-1. EZ-USB FX Input/Output Pin .. 4-2

 Figure 4-2. Alternate Function is an OUTPUT ... 4-3

 Figure 4-3. Alternate Function is an INPUT ... 4-3

 Figure 4-4. Output Port Configuration Registers ... 4-5

 Figure 4-5. PINSn Registers .. 4-6

 Figure 4-6. Output Enable Registers ... 4-7

 Figure 4-7. General I2C-Compatible Transfer ... 4-14

 Figure 4-8. Addressing an I2C-compatible Peripheral ... 4-15

 Figure 4-9. I2C-compatible Registers .. 4-16

 Figure 4-10. EZ-USB FX Method, sample code .. 4-23

 Figure 4-11. SFR Method, sample code .. 4-24

 Figure 4-12. EZ-USB FX I/O Structure .. 4-25

 Figure 4-13. Use MOVX to Set PA0, sample code .. 4-25

 Figure 4-14. Test the State of PORTC, sample code .. 4-26

 Figure 5-1. Configuration 0 .. 5-11

 Figure 5-2. USB Control and Status Register .. 5-12

 Figure 5-3. Disconnect Pin Logic ... 5-12
xiii

(List of Figures)
 Figure 5-4. Typical Disconnect Circuit ... 5-12

 Figure 6-1. Two BULK Transfers, IN and OUT .. 6-1

 Figure 6-2. Registers Associated with Bulk Endpoints .. 6-3

 Figure 6-3. Anatomy of a Bulk IN Transfer .. 6-4

 Figure 6-4. Anatomy of a Bulk OUT Transfer .. 6-6

 Figure 6-5. Bulk Endpoint Toggle Control ... 6-10

 Figure 6-6. Example Code for a Simple (Polled) BULK Transfer 6-12

 Figure 6-7. Interrupt Jump Table ... 6-15

 Figure 6-8. INT2 Interrupt Vector ... 6-16

 Figure 6-9. Interrupt Service Routine (ISR) for Endpoint 6-OUT 6-16

 Figure 6-10. Background Program Transfers Endpoint 6-OUT Data to Endpoint 6-IN 6-17

 Figure 6-11. Initialization Routine .. 6-18

 Figure 6-12. Autopointer Registers .. 6-20

 Figure 6-13. Use of the Autopointer .. 6-20

 Figure 7-1. The Four 64-Byte Slave FIFOs Configured for 16-Bit Mode 7-1

 Figure 7-2. Slave FIFOs in 8-Bit Mode .. 7-3

 Figure 7-3. Double-Byte Mode with A-FIFO Selected ... 7-4

 Figure 7-4. AINDATA’s Role in the FIFO A Register ... 7-7

 Figure 7-5. FIFO A Read Data .. 7-7

 Figure 7-6. AINBC’s Role in the FIFO A Register ... 7-8

 Figure 7-7. A-IN FIFO Byte Count ... 7-8

 Figure 7-8. AINPF’s Role in the FIFO A Register .. 7-9

 Figure 7-9. A-IN FIFO Programmable Flag ... 7-9

 Figure 7-10. AINPFPIN’s Role in the FIFO A Register .. 7-11

 Figure 7-11. A-IN FIFO Pin Programmable Flag ... 7-12

 Figure 7-12. BINDATA’s Role in the FIFO B Register ... 7-13

 Figure 7-13. B-IN FIFO Read Data .. 7-13

 Figure 7-14. BINBC’s Role in the FIFO B Register ... 7-14

 Figure 7-15. B-IN FIFO Byte Count ... 7-14

 Figure 7-16. BINPF’s Role in the FIFO B Register .. 7-15

 Figure 7-17. B-IN FIFO Programmable Flag ... 7-15

 Figure 7-18. BINPFPIN’s Role in the FIFO B Register .. 7-17

 Figure 7-19. B-IN FIFO Pin Programmable Flag ... 7-18

 Figure 7-20. 8051 FIFO Toggle Mode vs. Normal Mode Diagram 7-18

 Figure 7-21. Input FIFOs A/B Toggle CTL and Flags .. 7-19
xiv List of Figures

(List of Figures)
 Figure 7-22. Input FIFOs A/B Interrupt Enables .. 7-20

 Figure 7-23. Input FIFOs A/B Interrupt Requests .. 7-22

 Figure 7-24. AOUTDATA’s Role in the FIFO A Register ... 7-24

 Figure 7-25. FIFO A Write Data ... 7-24

 Figure 7-26. AOUTBC’s Role in the FIFO A Register ... 7-25

 Figure 7-27. Input FIFOs A/B Interrupt Requests .. 7-25

 Figure 7-28. AOUTPF’s Role in the FIFO A Register .. 7-26

 Figure 7-29. Input FIFOs A/B Interrupt Requests .. 7-26

 Figure 7-30. AOUTPFPIN’s Role in the FIFO A Register .. 7-28

 Figure 7-31. A-OUT FIFO Pin Programmable Flag ... 7-29

 Figure 7-32. BOUTDATA’s Role in the FIFO B Register ... 7-30

 Figure 7-33. B-OUT FIFO Write Data .. 7-30

 Figure 7-34. BOUTBC’s Role in the FIFO B Register ... 7-31

 Figure 7-35. B-OUT FIFO Byte Count ... 7-31

 Figure 7-36. BOUTPF’s Role in the FIFO B Register .. 7-32

 Figure 7-37. B-OUT FIFO Programmable Flag ... 7-32

 Figure 7-38. BOUTPFPIN’s Role in the FIFO B Register .. 7-34

 Figure 7-39. B-OUT FIFO Pin Programmable Flag ... 7-35

 Figure 7-40. 8051 FIFO Toggle Mode vs. Normal Mode Diagram 7-35

 Figure 7-41. Output FIFOs A/B Toggle CTL and Flags ... 7-36

 Figure 7-42. Output FIFOs A/B Interrupt Enables ... 7-37

 Figure 7-43. Output FIFOs A/B Interrupt Requests ... 7-39

 Figure 7-44. FIFO A/B Setup ... 7-40

 Figure 7-45. A-IN FIFO Double-Byte Mode ... 7-41

 Figure 7-46. A-OUT FIFO Delay Synchronous Reads .. 7-42

 Figure 7-47. B-OUT FIFO Double-Byte Mode ... 7-43

 Figure 7-48. FIFO A/B Control Signal Polarities .. 7-43

 Figure 7-49. FIFO Flag Reset .. 7-44

 Figure 7-50. Synchronous Write/Read Timing .. 7-45

 Figure 7-51. Synchronous Double-byte Write/Read .. 7-46

 Figure 8-1. GPIF’s Place in the FX System ... 8-2

 Figure 8-2. EZ-USB FX Interfacing to a Peripheral ... 8-3

 Figure 8-3. Non-Decision Point (NDP) Intervals ... 8-11

 Figure 8-4. One Decision Point: Wait States Inserted Until RDY0 Goes Low 8-13
List of Figures xv

(List of Figures)
 Figure 8-5. One Decision Point: No Wait States Inserted:
RDY0 is Already Low at Decision Point I1 8-13

 Figure 8-6. Ready Register ... 8-30

 Figure 8-7. IDLE_CTLOUT 0x7826 Register ... 8-32

 Figure 8-8. GPIF Abort Register .. 8-35

 Figure 9-1. A USB Control Transfer (With Data Stage) ... 9-2

 Figure 9-2. Two Interrupts Associated with EP0 CONTROL Transfers 9-3

 Figure 9-3. Registers Associated with EP0 Control Transfers .. 9-4

 Figure 9-4. Data Flow for a Get_Status Request .. 9-7

 Figure 9-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests 9-13

 Figure 10-1. EZ-USB FX Isochronous Endpoints 8-15 .. 10-1

 Figure 10-2. Isochronous IN Endpoint Registers ... 10-2

 Figure 10-3. Isochronous OUT Registers .. 10-4

 Figure 10-4. FIFO Start Address Format ... 10-5

 Figure 10-5. Using Assembler to Translate the FIFO Sizes to Addresses 10-7

 Figure 10-6. 8051 Data Transfer to Isochronous FIFO (IN8DATA) w/DMA 10-8

 Figure 10-7. ISOCTL Register ... 10-9

 Figure 10-8. ZBCOUT Register ... 10-10

 Figure 10-9. ISOIN Register .. 10-10

 Figure 11-1. Upper Byte of the DMA Source Address ... 11-2

 Figure 11-2. Lower Byte of the DMA Source Address ... 11-2

 Figure 11-3. Upper Byte of the DMA Destination Address .. 11-2

 Figure 11-4. Lower Byte of the DMA Destination Address .. 11-3

 Figure 11-5. DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes) 11-3

 Figure 11-6. DMA Start and Status Register ... 11-6

 Figure 11-7. Fast Transfer Control Register .. 11-6

 Figure 11-8. Synchronous Burst Enables .. 11-6

 Figure 11-9. Effect of the RB Bit on DMA Mode 0 Reads ... 11-8

 Figure 11-10. Effect of the RB Bit on DMA Mode 1 Reads ... 11-8

 Figure 11-11. Effect of the WB Bit on DMA Mode 0 Writes ... 11-9

 Figure 11-12. DMAEXTFIFO Register. Data is “Don’t Care”. .. 11-9

 Figure 11-13. DMA Write Strobe Timing: 4 Modes Selected by FASTXFR[4..3] 11-11

 Figure 11-14. DMA Read Strobe Timing: 4 Modes Selected by FASTXFR[4..3] 11-12

 Figure 12-1. USB Interrupts ... 12-3

 Figure 12-2. The Order of Clearing Interrupt Requests is Important 12-5
xvi List of Figures

(List of Figures)
 Figure 12-3. EZ-USB FX Interrupt Registers ... 12-6

 Figure 12-4. SUTOK and SUDAV Interrupts ... 12-7

 Figure 12-5. A Start Of Frame (SOF) Packet .. 12-7

 Figure 12-6. The Autovector Mechanism in Action .. 12-11

 Figure 12-7. I2C-Compatible Interrupt Enable Bits and Registers 12-12

 Figure 12-8. IN Bulk NAK Interrupt Request Register ... 12-13

 Figure 12-9. IN Bulk NAK Interrupt Enable Register ... 12-13

 Figure 12-10. I2C-Compatible Mode Register ... 12-13

 Figure 12-11. I2C-Compatible Control and Status Register ... 12-14

 Figure 12-12. I2C-Compatible Data ... 12-14

 Figure 12-13. Interrupt 4 Autovector .. 12-15

 Figure 12-14. Interrupt 4 Setup ... 12-15

 Figure 13-1. EZ-USB FX Resets ... 13-1

 Figure 14-1. Suspend-Resume Control ... 14-1

 Figure 14-2. EZ-USB FX Suspend Sequence ... 14-2

 Figure 14-3. EZ-USB FX Resume Sequence .. 14-3

 Figure 14-4. EZ-USB FX RESUME Interrupt ... 14-4

 Figure 14-5. USB Control and Status Register .. 14-5

 Figure 15-1. Register Description Format ... 15-2

 Figure 15-2. FIFO A Read Data .. 15-3

 Figure 15-3. A-IN FIFO Byte Count ... 15-3

 Figure 15-4. A-IN FIFO Programmable Flag ... 15-4

 Figure 15-5. A-IN FIFO Pin Programmable Flag ... 15-4

 Figure 15-6. B-IN FIFO Read Data .. 15-5

 Figure 15-7. B-IN FIFO Byte Count ... 15-5

 Figure 15-8. B-IN FIFO Programmable Flag ... 15-6

 Figure 15-9. B-IN FIFO Pin Programmable Flag ... 15-6

 Figure 15-10. Input FIFOs A/B Toggle CTL and Flags .. 15-7

 Figure 15-11. Input FIFOs A/B Interrupt Enables .. 15-7

 Figure 15-12. Input FIFOs A/B Interrupt Requests .. 15-7

 Figure 15-13. FIFO A Write Data ... 15-8

 Figure 15-14. Input FIFOs A/B Interrupt Requests .. 15-8

 Figure 15-15. Input FIFOs A/B Interrupt Requests .. 15-9

 Figure 15-16. A-OUT FIFO Pin Programmable Flag ... 15-9

 Figure 15-17. B-OUT FIFO Write Data .. 15-10
List of Figures xvii

(List of Figures)
 Figure 15-18. B-OUT FIFO Byte Count ... 15-10

 Figure 15-19. B-OUT FIFO Programmable Flag ... 15-11

 Figure 15-20. B-OUTFIFO Pin Programmable Flag .. 15-11

 Figure 15-21. Output FIFOs A/B Toggle CTL and Flags ... 15-12

 Figure 15-22. Output FIFOs A/B Interrupt Enables ... 15-12

 Figure 15-23. Output FIFOs A/B Interrupt Requests ... 15-12

 Figure 15-24. FIFO A/B Setup ... 15-13

 Figure 15-25. FIFO A/B Control Signal Polarities .. 15-13

 Figure 15-26. FIFO Flag Reset .. 15-14

 Figure 15-27. Waveform Selector .. 15-14

 Figure 15-28. GPIF Done, GPIF IDLE Drive Mode ... 15-15

 Figure 15-29. Inactive Bus, CTL States ... 15-15

 Figure 15-30. CTLOUT Pin Drive .. 15-15

 Figure 15-31. GPIF Address Low .. 15-16

 Figure 15-32. FIFO A IN Transaction Count .. 15-16

 Figure 15-33. FIFO A OUT Transaction Count .. 15-17

 Figure 15-34. FIFO A Transaction Trigger .. 15-17

 Figure 15-35. FIFO B IN Transaction Count .. 15-18

 Figure 15-36. FIFO B OUT Transaction Count .. 15-18

 Figure 15-37. FIFO B Transaction ... 15-19

 Figure 15-38. GPIF Data H (16-bit mode only) .. 15-19

 Figure 15-39. Read or Write GPIF Data L and Trigger Read Transaction 15-19

 Figure 15-40. Read GPIF Data L, No Read Transaction Trigger .. 15-20

 Figure 15-41. Internal READY, Sync/Async, READY Pin States .. 15-20

 Figure 15-42. Abort GPIF Cycles .. 15-20

 Figure 15-43. Generic Interrupt Enable ... 15-21

 Figure 15-44. Generic Interrupt Request ... 15-21

 Figure 15-45. Port D Outputs .. 15-22

 Figure 15-46. Input Port D Pins ... 15-22

 Figure 15-47. Port D Output Enable Register .. 15-22

 Figure 15-48. Port E Outputs ... 15-23

 Figure 15-49. Input Port E Pins ... 15-23

 Figure 15-50. Port E Output Enable Register .. 15-23

 Figure 15-51. PORTSETUP .. 15-24

 Figure 15-52. Interface Configuration .. 15-24
xviii List of Figures

(List of Figures)
 Figure 15-53. Port A Alternate Configuration #2 ... 15-27

 Figure 15-54. Port C Alternate Configuration #2 ... 15-28

 Figure 15-55. Upper Byte of the DMA Source Address ... 15-31

 Figure 15-56. Lower Byte of the DMA Source Address ... 15-31

 Figure 15-57. Upper Byte of the DMA Destination Address .. 15-31

 Figure 15-58. Lower Byte of the DMA Destination Address .. 15-32

 Figure 15-59. DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes) 15-32

 Figure 15-60. DMA Start and Status Register ... 15-32

 Figure 15-61. Synchronous Burst Enables .. 15-33

 Figure 15-62. Dummy Register ... 15-33

 Figure 15-63. Interrupt 4 Autovector .. 15-34

 Figure 15-64. Interrupt 4 Setup ... 15-34

 Figure 15-65. Waveform Descriptors ... 15-35

 Figure 15-66. Bulk Data Buffers .. 15-35

 Figure 15-67. Isochronous Data FIFOs ... 15-37

 Figure 15-68. Isochronous Byte Counts .. 15-39

 Figure 15-69. CPU Control and Status Register ... 15-41

 Figure 15-70. I/O Port Configuration Registers ... 15-42

 Figure 15-71. Port A Outputs ... 15-44

 Figure 15-72. Port B Outputs ... 15-44

 Figure 15-73. Port C Outputs .. 15-44

 Figure 15-74. Port A Pins .. 15-45

 Figure 15-75. Port B Pins .. 15-45

 Figure 15-76. Port C Pins .. 15-45

 Figure 15-77. Port A Output Enable .. 15-46

 Figure 15-78. Port B Output Enable .. 15-46

 Figure 15-79. Port C Output Enable .. 15-46

 Figure 15-80. Isochronous OUT Endpoint Error Register ... 15-47

 Figure 15-81. Isochronous Control Register .. 15-47

 Figure 15-82. Zero Byte Count Register .. 15-48

 Figure 15-83. I2C-Compatible Transfer Registers ... 15-48

 Figure 15-84. I2C-Compatible Mode Register ... 15-50

 Figure 15-85. Interrupt Vector Register ... 15-51

 Figure 15-86. IN/OUT Interrupt Request (IRQ) Registers ... 15-51

 Figure 15-87. USB Interrupt Request (IRQ) Registers .. 15-52
List of Figures xix

(List of Figures)
 Figure 15-88. IN/OUT Interrupt Enable Registers ... 15-54

 Figure 15-89. USB Interrupt Enable Register .. 15-54

 Figure 15-90. Breakpoint and Autovector Register ... 15-55

 Figure 15-91. IN Bulk NAK Interrupt Request Register ... 15-56

 Figure 15-92. IN Bulk NAK Interrupt Enable Register ... 15-57

 Figure 15-93. IN/OUT Interrupt Enable Registers ... 15-57

 Figure 15-94. Port Configuration Registers ... 15-58

 Figure 15-95. IN Control and Status Registers .. 15-61

 Figure 15-96. IN Byte Count Registers .. 15-62

 Figure 15-97. OUT Control and Status Registers .. 15-63

 Figure 15-98. OUT Byte Count Registers .. 15-64

 Figure 15-99. Setup Data Pointer High/Low Registers .. 15-65

 Figure 15-100. USB Control and Status Registers .. 15-66

 Figure 15-101. Data Toggle Control Register .. 15-67

 Figure 15-102. USB Frame Count High/Low Registers ... 15-68

 Figure 15-103. Function Address Register .. 15-68

 Figure 15-104. USB Endpoint Pairing Register ... 15-69

 Figure 15-105. IN/OUT Valid Bits Register .. 15-70

 Figure 15-106. Isochronous IN/OUT Endpoint Valid Bits Register .. 15-71

 Figure 15-107. Fast Transfer Control Register .. 15-71

 Figure 15-108. Auto Pointer Registers .. 15-73

 Figure 15-109. SETUP Data Buffer ... 15-74

 Figure 15-110. SETUP Data Buffer ... 15-74

 Figure 16-1. 8051 Features ... 16-1

 Figure 16-2. 8051/Standard 8051 Timing Comparison ... 16-3

 Figure 17-1. Internal RAM Organization .. 17-2

 Figure 17-2. CPU Timing for Single-Cycle Instruction ... 17-9

 Figure 18-3. Timer 0/1 - Modes 0 and 1 .. 18-3

 Figure 18-4. Timer 0/1 - Mode 2 .. 18-6

 Figure 18-5. Timer 0 - Mode 3 ... 18-7

 Figure 18-6. Timer 2 - Timer/Counter with Capture ... 18-11

 Figure 18-7. Timer 2 - Timer/Counter with Auto Reload .. 18-12

 Figure 18-8. Timer 2 - Baud Rate Generator Mode ... 18-13

 Figure 18-9. Serial Port Mode 0 Receive Timing - Low Speed Operation 18-17

 Figure 18-10. Serial Port Mode 0 Receive Timing - High Speed Operation 18-17
xx List of Figures

(List of Figures)
 Figure 18-11. Serial Port Mode 0 Transmit Timing - Low Speed Operation 18-18

 Figure 18-12. Serial Port Mode 0 Transmit Timing - High Speed Operation 18-18

 Figure 18-13. Serial Port 0 Mode 1 Transmit Timing ... 18-22

 Figure 18-14. Serial Port 0 Mode 1 Receive Timing .. 18-23

 Figure 18-15. Serial Port 0 Mode 2 Transmit Timing ... 18-24

 Figure 18-16. Serial Port 0 Mode 2 Receive Timing .. 18-25

 Figure 18-17. Serial Port 0 Mode 3 Transmit Timing ... 18-26

 Figure 18-18. Serial Port 0 Mode 3 Receive Timing .. 18-26
List of Figures xxi

xxii List of Figures

List of Tables
Table 1-1. USB PIDs . 1-4

Table 1-2. EZ-USB FX Family . 1-15

Table 2-1. EZ-USB FX Interrupts . 2-4

Table 2-2. Added Registers and Bits . 2-6

Table 4-1. Port A Configuration . 4-8

Table 4-2. Port B Configuration . 4-9

Table 4-3. Port C Configuration . 4-11

Table 4-4. Port D Bits . 4-12

Table 4-5. Port E Bits . 4-13

Table 4-6. Strap Boot EEPROM Address Lines to These Values 4-20

Table 4-7. Results of Power-On I2C-Compatible Test . 4-21

Table 4-8. EZ-USB FX Special Function Registers* . 4-22

Table 5-1. EZ-USB FX Default Endpoints . 5-2

Table 5-2. How the USB Core Handles EP0 Requests When RENUM=0 5-3

Table 5-3. Firmware Download . 5-5

Table 5-4. Firmware Upload . 5-5

Table 5-5. USB Core Action at Power-Up . 5-6

Table 5-6. EZ-USB FX Device Characteristics, No Serial EEPROM 5-8

Table 5-7. EEPROM Data Format for “B4” Load . 5-8

Table 5-8. EEPROM Data Format for “B6” Load . 5-9

Table 5-9. USB Default Device Descriptor . 5-13

Table 5-10. USB Default Configuration Descriptor . 5-14

Table 5-11. USB Default Interface 0, Alternate Setting 0 Descriptor 5-14

Table 5-12. USB Default Interface 0, Alternate Setting 1 Descriptor 5-15

Table 5-13. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor 5-15

Table 5-14. Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors 5-16

Table 5-15. Default Interface 0, Alternate Setting 1, ISO Endpoint Descriptors 5-17

Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor 5-18

Table 5-17. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor 5-18

Table 5-18. Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors 5-19

Table 5-19. Default Interface 0, Alternate Setting 2, ISO Endpoint Descriptors 5-20
xxiii

(List of Tables)
Table 6-1. EZ-USB FX Bulk, Control, and Interrupt Endpoints . 6-1

Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register) . 6-8

Table 6-3. EZ-USB FX Endpoint 0-7 Buffer Addresses . 6-9

Table 6-4. 8051 INT2 Interrupt Vector . 6-13

Table 6-5. Byte Inserted by USB Core at Location 0x45 if AVEN=1 6-13

Table 7-1. Autovector for INT4* . 7-5

Table 7-2. INT4 Autovectors . 7-6

Table 7-3. Filling FIFO . 7-10

Table 7-4. Emptying FIFO . 7-11

Table 7-5. Filling FIFO . 7-16

Table 7-6. Emptying FIFO . 7-17

Table 7-7. Filling FIFO . 7-27

Table 7-8. Emptying FIFO . 7-28

Table 7-9. Filling FIFO . 7-33

Table 7-10. Emptying FIFO . 7-34

Table 8-1. GPIF Pin Descriptions . 8-4

Table 8-2. Example GPIF Hardware Interconnect . 8-5

Table 8-3. CTL Output Modes . 8-7

Table 8-4. Control Outputs (CTLn) During the IDLE State . 8-9

Table 8-5. Waveform Memory Types . 8-18

Table 8-6. Waveform Memory Descriptors . 8-19

Table 8-7. Selecting the GPIF_PF Flag . 8-23

Table 8-8. Addresses of Transaction Count Registers . 8-29

Table 9-1. The Eight Bytes in a USB SETUP Packet . 9-5

Table 9-2. How the 8051 Handles USB Device Requests (RENUM=1) 9-6

Table 9-3. Get Status-Device (Remote Wakeup and Self-Powered Bits) 9-8

Table 9-4. Get Status-Endpoint (Stall Bits) . 9-8

Table 9-5. Get Status-Interface . 9-10

Table 9-6. Set Feature-Device (Set Remote Wakeup Bit) . 9-10

Table 9-7. Set Feature-Endpoint (Stall) . 9-11

Table 9-8. Clear Feature-Device (Clear Remote Wakeup Bit) . 9-12

Table 9-9. Clear Feature-Endpoint (Clear Stall) . 9-12

Table 9-10. Get Descriptor-Device . 9-14

Table 9-11. Get Descriptor-Configuration . 9-15

Table 9-12. Get Descriptor-String . 9-15
xxiv List of Tables

(List of Tables)
Table 9-13. Set Descriptor-Device . 9-16

Table 9-14. Set Descriptor-Configuration . 9-16

Table 9-15. Set Descriptor-String . 9-17

Table 9-16. Set Configuration . 9-19

Table 9-17. Get Configuration . 9-19

Table 9-18. Set Interface (Actually, Set Alternate Setting AS for Interface IF) 9-20

Table 9-19. Get Interface (Actually, Get Alternate Setting AS for interface IF) 9-21

Table 9-20. Sync Frame . 9-22

Table 9-21. Firmware Download . 9-23

Table 9-22. Firmware Upload . 9-23

Table 10-1. Isochronous Endpoint FIFO Starting Address Registers 10-6

Table 10-2. Addresses for RD# and WR# vs. ISODISAB Bit . 10-9

Table 11-1. DMA Sources and Destinations . 11-4

Table 11-2. Legends Used in Table 11-1 . 11-5

Table 11-3. DMA External RAM Control . 11-10

Table 11-4. Effect of Stretch Values on a Write Strobe . 11-12

Table 11-5. Effect of Stretch Values on a Write Strobe . 11-13

Table 12-1. EZ-USB FX Interrupts . 12-1

Table 12-2. 8051 JUMP Instruction . 12-9

Table 12-3. A Typical USB Jump Table . 12-10

Table 12-4. Autovector for INT4* . 12-15

Table 12-5. INT4 Autovectors . 12-16

Table 13-1. EZ-USB FX States After Power-On Reset (POR) . 13-2

Table 13-2. EZ-USB FX States After a USB Bus Reset . 13-6

Table 13-3. Effects of an EZ-USB FX Disconnect and Re-connect 13-7

Table 13-4. Effects of Various EZ-USB FX Resets (“U” Means “Unaffected”) 13-8

Table 15-1. Port A Alternate Functions When GSTATE=1. 15-25

Table 15-2. Pin Configurations Based on IFCONFIG[1..0] . 15-26

Table 15-3. Port A Bit 5 . 15-27

Table 15-4. Port A Bit 4 . 15-27

Table 15-5. Port C Bit 7 . 15-28

Table 15-6. Port C Bit 6 . 15-28

Table 15-7. Port C Bit 5 . 15-29

Table 15-8. Port C Bit 4 . 15-29

Table 15-9. Port C Bit 3 . 15-29
List of Tables xxv

(List of Tables)
Table 15-10. Port C Bit 1 . 15-30

Table 15-11. Port C Bit 0 . 15-30

Table 15-12. Bulk Endpoint Buffer Memory Addresses . 15-36

Table 15-13. Isochronous Endpoint FIFO Register Addresses . 15-38

Table 15-14. Isochronous Endpoint Byte Count Register Addresses 15-40

Table 15-15. I/O Pin Alternate Functions . 15-43

Table 15-16. Control and Status Register Addresses for Endpoints 0-7 15-60

Table 15-17. Isochronous FIFO Start Address Registers . 15-75

Table 16-1. 8051/Standard 8051 Speed Comparison . 16-3

Table 16-2. Features of 8051 Core & Common 803x/805x Configurations 16-4

Table 17-1. Legend for Instruction Set Table . 17-4

Table 17-2. 8051 Instruction Set . 17-5

Table 17-3. Data Memory Stretch Values . 17-10

Table 17-4. Special Function Registers . 17-12

Table 17-5. Special Function Register Reset Values . 17-13

Table 17-6. PSW Register - SFR D0h . 17-14

Table 18-7. Timer/Counter Implementation Comparison . 18-2

Table 18-8. TMOD Register — SFR 89h . 18-4

Table 18-9. TCON Register — SRF 88h . 18-5

Table 18-10. CKCON Register — SRF 8Eh . 18-8

Table 18-11. Timer 2 Mode Control Summary . 18-9

Table 18-12. T2CON Register — SFR C8h . 18-10

Table 18-13. Serial Port Modes . 18-14

Table 18-14. SCON0 Register — SFR 98h . 18-15

Table 18-15. SCON1 Register — SFR C0h . 18-16

Table 18-16. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates 18-20

Table 18-17. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates 18-21

Table 18-18. IE Register — SFR A8h . 18-28

Table 18-19. IP Register — SFR B8h . 18-28

Table 18-20. EXIF Register — SFR 91h . 18-29

Table 18-21. EICON Register — SFR D8h . 18-29

Table 18-22. EIE Register — SFR E8h . 18-30

Table 18-23. EIP Register — SFR F8h . 18-30

Table 18-24. Interrupt Natural Vectors and Priorities . 18-31

Table 18-25. Interrupt Flags, Enables, and Priority Control . 18-32

Table 18-26. PCON Register — SFR 87h . 18-34
xxvi List of Tables

Chapter 1. Introducing EZ-USB FX

1.1 Introduction

Like a well designed automobile or appliance, a USB peripheral’s outward simplicity hides internal
complexity. There’s a lot going on “under the hood” of a USB device, which gives the user a new
level of convenience. For example:

• A USB device can be plugged in anytime, even when the PC is turned on.

• When the PC detects that a USB device has been plugged in, it automatically interrogates
the device to learn its capabilities and requirements. From this information, the PC auto-
matically loads the device’s driver into the operating system. When the device is
unplugged, the operating system automatically logs it off and unloads its driver.

• USB devices do not use DIP switches, jumpers, or configuration programs. There is never
an IRQ, DMA, MEMORY, or I/O conflict with a USB device.

• USB expansion hubs make the bus available to dozens of devices.

• USB is fast enough for printers, CD-quality audio, and scanners.

USB is defined in the Universal Serial Bus Specification Version 1.1, a 268-page document
describing in elaborate detail all aspects of a USB device. The USB Specification is available at
http://usb.org. The EZ-USB FX Technical Reference Manual describes the EZ-USB FX chip along
with USB topics that provide help in understanding the USB Specification.

The Cypress Semiconductor EZ-USB FX is a compact, integrated circuit that provides a highly
integrated solution for a USB peripheral device. Three key EZ-USB FX features are:

• The EZ-USB FX family provides a soft (RAM-based) solution that allows unlimited configu-
ration and upgrades.

• The EZ-USB FX family delivers full USB throughput. Designs that use EZ-USB FX are not
limited by number of endpoints, buffer sizes, or transfer speeds.

• The EZ-USB FX family does much of the USB housekeeping in the USB core, simplifying
code and accelerating the USB learning curve.
Chapter 1. Introducing EZ-USB FX Page 1-1

EZ-USB FX Technical Reference Manual
This chapter introduces key USB concepts and terms to make reading this Technical Reference
Manual easier.

1.2 EZ-USB FX Block Diagrams

Figure 1-1. CY7C646x3-80NC (80 pin) Simplified Block Diagram

The Cypress Semiconductor EZ-USB FX chip packs the intelligence required by a USB peripheral
interface into a compact, integrated circuit. As Figure 1-1 illustrates, an integrated USB transceiver
connects to the USB bus pins D+ and D-. A Serial Interface Engine (SIE) decodes and encodes
the serial data and performs error correction, bit stuffing, and other signaling-level details required
by USB. Ultimately, the SIE transfers data bytes to and from the USB interface.

The internal microprocessor is an enhanced 8051 with fast execution time and added features. It
uses internal RAM for program and data storage, making the EZ-USB FX family a soft solution.
The USB host downloads 8051 program code and device personality into RAM over the USB bus,
and then EZ-USB FX re-connects as the custom device, as defined by the loaded code.

The EZ-USB FX family uses an enhanced SIE/USB interface (USB Core), which has the intelli-
gence to function as a full USB device, even before the 8051 runs. The enhanced core simplifies
8051 code by implementing much of the USB protocol, itself.

EZ-USB FX chips operate at 3.3V. This simplifies the design of bus-powered USB devices, since
the 5V power available in the USB connector (USB Specification allows power to be as low as
4.4V) can drive a 3.3V regulator to deliver clean, isolated power to the EZ-USB FX chip.

Serial
Interface
Engine
(SIE)

USB
Transceiver

+5V

GND

D+
D-

USB
Connector

bytes

bytes
IO Ports

General
Purpose

Microprocessor

USB
Interface

Program &
Data
RAM

EZ-USB GPIF Slave FIFOs

16
Page 1-2 EZ-USB FX Technical Reference Manual v1.2

Figure 1-2. CY7C646x3-128NC (128 pin) Simplified Block Diagram

Figure 1-2 illustrates the CY7C646x3-128NC, a 128-pin version of the EZ-USB FX family. In addi-
tion to the 40 I/O pins, it contains a 16-bit address bus and an 8-bit data bus for external memory
expansion. Slave interface FIFOs and a General Programmable Interface (GPIF) controller pro-
vide a flexible, high-bandwidth interface to external logic.

Also included, the DMAEXTFIFO register provides legacy support for invoking the fast transfer
mode available on the EZ-USB Series 2100. This allows data to move directly between external
logic and internal USB FIFOs. This, along with abundant endpoint resources, allows the EZ-USB
FX family to support transfer bandwidths to external logic that exceed the USB delivery/consump-
tion rate.

1.3 The USB Specification

The Universal Serial Bus Specification Version 1.1 is available on the Internet at http://usb.org.
Published in January 1998, the USB Specification is the work of a founding committee of seven
industry heavyweights: Compaq, DEC, IBM, Intel, Microsoft, NEC, and Northern Telecom. This
impressive list of developers secures USB as the low-to-medium speed PC connection method of
the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly as simple
as the customary serial or parallel port. The USB Specification uses new terms like “endpoint,” iso-
chronous,” and “enumeration,” and finds new uses for old terms like “configuration,” “interface,”
and “interrupt.” Woven into the USB fabric is a software abstraction model that deals with things
such as “pipes.” The USB Specification also contains detail about the connector types and wire
colors.

Serial
Interface
Engine
(SIE)

USB
Transceiver

+5V

GND

D+
D-

USB
Connector

bytes

bytes
IO Ports

Address Bus

Data Bus

External
Memory

General
Purpose

Microprocessor

USB
Interface

Program &
Data
RAM

EZ-USB GPIF Slave FIFOs

16
Chapter 1. Introducing EZ-USB FX Page 1-3

EZ-USB FX Technical Reference Manual
1.4 Tokens and PIDs

In this manual, statements like the following appear: “When the host sends an IN token...,” or “The
device responds with an ACK.” What do these terms mean? A USB transaction consists of data
packets identified by special codes called Packet IDs or PIDs. A PID signifies what kind of packet
is being transmitted. There are four PID types, shown in Table 1-1.

Table 1-1. USB PIDs

Figure 1-3. USB Packets

Figure 1-3 illustrates a USB transfer. Packet 1 is an OUT token, indicated by the OUT PID. The
OUT token signifies that data from the host is about to be transmitted over the bus. Packet 2 con-
tains data, as indicated by the DATA1 PID. Packet 3 is a handshake packet, sent by the device
using the ACK (acknowledge) PID to signify to the host that the device received the data error-
free.

Continuing with Figure 1-3, a second transaction begins with another OUT token 4, followed by
more data 5, this time using the DATA0 PID. Finally, the device again indicates success by trans-
mitting the ACK PID in a handshake packet 6.

Why two DATA PIDs, DATA0 and DATA1? It’s because the USB architects took error correction
very seriously. As mentioned previously, the ACK handshake is an indication to the host that the
peripheral received data without error (the CRC portion of the packet is used to detect errors). But
what if the handshake packet itself is garbled in transmission? To detect this, each side (host and
device) maintains a data toggle bit, which is toggled between data packet transfers. The state of
this internal toggle bit is compared with the PID that arrives with the data, either DATA0 or DATA1.
When sending data, the host or device sends alternating DATA0-DATA1 PIDs. By comparing the
Data PID with the state of the internal toggle bit, the host or device can detect a corrupted hand-
shake packet.

PID Type PID Name

Token IN, OUT, SOF, SETUP

Data DATA0, DATA1

Handshake ACK, NAK, STALL

Special PRE

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt H/S Pkt

1 2 3 4 5 6
Page 1-4 EZ-USB FX Technical Reference Manual v1.2

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from which the
peripheral decodes host Device Requests.

SOF tokens occur once per millisecond, denoting a USB frame.

There are three handshake PIDs: ACK, NAK, and STALL.

• ACK means success; the data was received error-free.

• NAK means “busy, try again.” It’s tempting to assume that NAK means “error,” but it
doesn’t. A USB device indicates an error by not responding.

• STALL means that something unforeseen went wrong (probably as a result of miscommu-
nication or lack of cooperation between the software and firmware writers). A device sends
the STALL handshake to indicate that it doesn’t understand a device request, that some-
thing went wrong on the peripheral end, or that the host tried to access a resource that
wasn’t there. It’s like HALT, but better, because USB provides a way to recover from a
stall.

A PRE (Preamble) PID precedes a low-speed (1.5 Mbps) USB transmission. The EZ-USB FX fam-
ily supports high-speed (12 Mbps) USB transfers only. It ignores PRE packets and the resultant
low-speed transfer.

1.5 Host is Master

This is a fundamental USB concept. There is exactly one master in a USB system: the host com-
puter. USB devices respond to host requests. USB devices cannot send information between
themselves, as they could if USB were a peer-to-peer topology.

However, there is one case where a USB device can initiate signaling without prompting from the
host. After being put into a low-power suspend mode by the host, a device can signal a remote
wakeup. A Remote Wakeup is the only method in which the USB becomes the initiator. Everything
else happens because the host makes device requests, and the device responds to them.

There’s an excellent reason for this host-centric model. The USB architects were keenly mindful of
cost, and the best way to make low-cost peripherals is to put most of the smarts into the host side,
the PC. If USB had been defined as peer-to-peer, every USB device would have required more
intelligence, raising cost.

Here are two important consequences of the “host is master” concept:

1.5.1 Receiving Data from the Host

To send data to a USB peripheral, the host issues an OUT token, followed by the data. If the
peripheral has space for the data, and accepts it without error, it returns an ACK to the host. If it is
Chapter 1. Introducing EZ-USB FX Page 1-5

EZ-USB FX Technical Reference Manual
busy, it sends a NAK. If it finds an error, it sends back nothing. For the latter two cases, the host re-
sends the data at a later time.

1.5.2 Sending Data to the Host

A USB device never spontaneously sends data to the host. Nevertheless, in the EZ-USB FX chip,
there’s nothing to stop the 8051 from loading data for the host into an endpoint buffer (see "EZ-
USB FX Endpoints", this chapter) and arming it for transfer. However, the data remains in the
buffer until the host sends an IN token to that particular endpoint. If the host never sends the IN
token, the data remains there indefinitely.

1.6 USB Direction

Once you accept that the host is the bus master, it’s easy to remember USB direction: OUT means
from the host to the device, and IN means from the device to the host. EZ-USB FX nomenclature
uses this naming convention. For example, an endpoint that sends data to the host is an IN end-
point. This can be confusing at first, because the 8051 sends data by loading an IN endpoint
buffer. Keep in mind that an 8051out is an IN to the host.

1.7 Frame

The USB host provides a time base to all USB devices by transmitting a SOF (Start Of Frame)
packet every millisecond. The SOF packet includes an incrementing, 11-bit frame count. The 8051
can read this frame count from two EZ-USB FX registers. SOF-time has significance for isochro-
nous endpoints; it’s the time that the ping-ponging buffers switch places. The USB core provides
the 8051 with an SOF interrupt request for servicing isochronous endpoint data.

1.8 EZ-USB FX Transfer Types

USB defines four transfer types. These match the requirements of different data types delivered
over the bus. ("EZ-USB FX Endpoints" explains how the EZ-USB FX family supports the four
transfer types.)
Page 1-6 EZ-USB FX Technical Reference Manual v1.2

1.8.1 Bulk Transfers

Figure 1-4. Two Bulk Transfers, IN and OUT

Bulk data is bursty, traveling in packets of 8, 16, 32, or 64 bytes. Bulk data has guaranteed accu-
racy, due to an automatic re-try mechanism for erroneous data. The host schedules bulk packets
when there is available bus time. Bulk transfers are typically used for printer, scanner, or modem
data. Bulk data has built-in flow control provided by handshake packets.

1.8.2 Interrupt Transfers

Figure 1-5. An Interrupt Transfer

Interrupt data is like bulk data; it can have packet sizes of 1 through 64 bytes. Interrupt endpoints
have an associated polling interval that ensures they will be pinged (receive an IN token) by the
host on a regular basis.

1.8.3 Isochronous Transfers

Figure 1-6. An Isochronous Transfer

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Da ta

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt H/S Pkt

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Da ta

C
R
C
1
6

Data Packet
Chapter 1. Introducing EZ-USB FX Page 1-7

EZ-USB FX Technical Reference Manual
Isochronous data is time-critical and used to stream data like audio and video. Time of delivery is
the most important requirement for isochronous data. In every USB frame, a certain amount of
USB bandwidth is allocated to isochronous transfers. To lighten the overhead, isochronous trans-
fers have no handshake (ACK/NAK/STALL), and no retries. Error detection is limited to a 16-bit
CRC. Isochronous transfers do not use the data toggle mechanism. Isochronous data uses only
the DATA0 PID.

1.8.4 Control Transfers

Figure 1-7. A Control Transfer

Control transfers configure and send commands to a device. Being mission critical, they employ
the most extensive USB error checking USB. Control transfers are delivered on a best effort basis
by the host (best effort is a six-step process defined by the Universal Serial Bus Specification Ver-
sion 1.1, “Section 5.5.4”). The host reserves a part of each USB frame time for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of USB
CONTROL data. An optional DATA stage contains more data, if required. The STATUS (or hand-
shake) stage allows the device to indicate successful completion of a control operation.

1.9 Enumeration

Your computer is ON. You plug in a USB device, and the Windowsµ cursor switches to an hour-
glass, and then back to a cursor. Magically, your device is connected, and its Windowsµ driver is
loaded! Anyone who has installed a sound card into a PC and had to configure countless jumpers,
drivers, and IO/Interrupt/DMA settings knows that a USB connection is miraculous. We’ve all
heard about Plug and Play, but USB delivers the real thing.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 by tes
Setup
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

Data Pkt

A
C
K

H/S Pkt

SETUP
Stage

DATA
Stage

(optional)

STATUS
Stage
Page 1-8 EZ-USB FX Technical Reference Manual v1.2

How does all this happen automatically? Inside every USB device is a table of descriptors. This
table is the sum total of the device’s requirements and capabilities. When you plug into USB, the
host goes through a sign-on sequence:

1. The host sends a “Get_Descriptor/Device” request to address zero (devices must respond to
address zero when first attached).

2. The device responds to the request by sending ID data back to the host to define itself.

3. The host sends the device a Set_Address request, which gives it a unique address to distin-
guish it from the other devices connected to the bus.

4. The host sends more Get_Descriptor requests, asking more device information. From this, it
learns everything else about the device, like how many endpoints the device has, its power
requirements, what bus bandwidth it requires, and what driver to load.

This sign-on process is called Enumeration.

1.10 The USB Core

Figure 1-8. What the SIE Does

Every USB device has a Serial Interface Engine (SIE). The SIE connects to the USB data lines D+
and D-, and delivers bytes to and from the USB device. Figure 1-8 illustrates a USB bulk transfer,
with time moving from left to right. The SIE decodes the packet PIDs, performs error checking on
the data using the transmitted CRC bits, and delivers payload data to the USB device. If the SIE

Serial
Interface
Engine
(SIE)

D +

D-

USB
Tranceiver

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

Payload
Data

Payload
Data

A
C
K

H/S Pkt
Chapter 1. Introducing EZ-USB FX Page 1-9

EZ-USB FX Technical Reference Manual
encounters an error in the data, it automatically indicates no response instead of supplying a
handshake PID. This instructs the host to re-transmit the data at a later time.

Bulk transfers, such as the one illustrated in Figure 1-8, are asynchronous, meaning that they
include a flow control mechanism using ACK and NAK handshake PIDs. The SIE indicates busy to
the host by sending a NAK handshake packet. When the peripheral device has successfully trans-
ferred the data, it commands the SIE to send an ACK handshake packet, indicating success.

To send data to the host, the SIE accepts bytes and control signals from the USB device, formats
it for USB transfer, and sends it over the two-wire USB. Because the USB uses a self-clocking
data format (NRZI), the SIE also inserts bits at appropriate places in the bit stream to guarantee a
certain number of transitions in the serial data. This is called “bit stuffing,” and is handled transpar-
ently by the SIE.

One of the most important features of the EZ-USB FX family is that it is soft. Instead of requiring
ROM or other fixed memory, it contains internal program/data RAM downloaded over the USB to
give the device its unique personality. This makes modifications, specification revisions, and
updates a snap.

The EZ-USB FX family can connect as a USB device and download code into internal RAM. All
while, its internal 8051 is held in Reset. This is done by an enhanced SIE, which performs all the
work shown in Figure 1-8, and more. It contains additional logic to perform a full enumeration,
using an internal table of descriptors. It also responds to a vendor specific “Firmware Download”
device request to load its internal RAM. Additionally, the added SIE functionality is made available
to the 8051. This saves 8051 code and processing time.

Throughout this manual, the SIE and its enhancements are referred to as the “USB Core.”

1.11 EZ-USB FX Microprocessor

The EZ-USB FX microprocessor is an enhanced 8051 core. Use of an 8051-compatible processor
makes available immediately extensive software support tools to the EZ-USB FX designer. This
enhanced 8051 core (described in Chapter 2. "EZ-USB FX CPU", Chapter 16. "8051 Introduction",
Chapter 17. "8051 Architectural Overview", and Chapter 18. "8051 Hardware Description") has the
following features:

• 4 clocks/cycle, compared to the 12 clocks/cycle of a standard 8051:a 10X speed improve-
ment.

• 48-MHz clock.

• DMA for 48 MB/second memory-to-memory transfers. Dual data pointers for improved
XDATA access.

• Two UARTs.
Page 1-10 EZ-USB FX Technical Reference Manual v1.2

• Three counter-timers.

• Expanded interrupt system.

• 256 bytes of internal register RAM.

• Standard 8051 instruction set—if you know the 8051, you know EZ-USB FX.

The enhanced 8051 core uses on-chip RAM as program and data memory, giving EZ-USB FX its
soft feature. Chapter 3. "EZ-USB FX Memory" describes the various memory options.

The 8051 communicates with the SIE using a set of registers, occupying the top of the on-chip
RAM address space. These registers are grouped and described by function in individual chapters
of this reference manual and summarized in register order in Chapter 15. "EZ-USB FX Registers".

The EZ-USB 8051 has two duties. First, it participates in the protocol defined in the Universal
Serial Bus Specification Version 1.1, “Chapter 9, USB Device Framework.” Thanks to EZ-USB FX
enhancements to the SIE and USB interface, the 8051 firmware associated with USB overhead is
simplified, leaving code space and bandwidth available for the 8051’s primary duty, to help imple-
ment your device. On the device side, abundant input/output resources are available, including I/O

ports, UARTs, and an I2C-compatible bus master controller. These resources are described in
Chapter 4. "EZ-USB FX Input/Output"

1.12 ReNumeration™

Because the EZ-USB FX chip is soft, it can take on the identities of multiple distinct USB devices.
The first device downloads your 8051 firmware and USB descriptor tables over the USB cable
when the peripheral device is plugged in. Once downloaded, another device comes on as a totally
different USB peripheral as defined by the downloaded information. This patented two-step pro-
cess, called ReNumeration™, happens instantly when the device is plugged in, with no hint that
the initial load step has occurred.

Chapter 5. "EZ-USB FX Enumeration & ReNumeration™" describes this feature in detail, along
with other EZ-USB FX boot (startup) modes.

1.13 EZ-USB FX Endpoints

The USB Specification defines an endpoint as a source or sink of data. Since USB is a serial bus,
a device endpoint is actually a FIFO, which sequentially empties/fills with USB bytes. The host
selects a device endpoint by sending a 4-bit address and one direction bit. Therefore, USB can
uniquely address 32 endpoints, IN0 through IN15 and OUT0 through OUT15.
Chapter 1. Introducing EZ-USB FX Page 1-11

EZ-USB FX Technical Reference Manual
From the EZ-USB FX point of view, an endpoint is a buffer full of bytes received or held for trans-
mitted over the bus. The 8051 reads endpoint data from an OUT buffer, and writes endpoint data
for transmission over USB to an IN buffer.

There are four USB endpoint types: Bulk, Control, Interrupt, and Isochronous. These endpoint
types are described in the following paragraphs:

1.13.1 EZ-USB FX Bulk Endpoints

Bulk endpoints are unidirectional—one endpoint address per direction. Therefore, endpoint 2-IN is
addressed differently than endpoint 2-OUT. Bulk endpoints use maximum packet sizes (buffer
sizes) of 8, 16, 32, or 64 bytes. EZ-USB FX provides fourteen bulk endpoints, divided into seven
IN endpoints (endpoint 1-IN through 7-IN), and seven OUT endpoints (endpoint 1-OUT through 7-
OUT). Each of the fourteen endpoints has a 64-byte buffer.

Bulk data is available to the 8051 in RAM or as FIFO data, using a special EZ-USB FX Autopointer
(Chapter 6. "EZ-USB FX Bulk Transfers").

1.13.2 EZ-USB FX Control Endpoint Zero

Control endpoints transfer mission-critical control information to and from the USB device. The
USB Specification requires every USB device to have a default CONTROL endpoint, endpoint
zero. Device enumeration, the process that the host initiates when the device is first plugged in, is
conducted over endpoint zero. The host sends all USB requests over endpoint zero.

Control endpoints are bi-directional. If you have an endpoint 0 IN CONTROL endpoint, you auto-
matically have an endpoint 0 OUT endpoint. Only Control endpoints accept SETUP PIDs.

A CONTROL transfer consists of a two or three stage sequence:

• SETUP

• DATA (If needed)

• HANDSHAKE

Eight bytes of data in the SETUP portion of the CONTROL transfer have special USB significance,
as defined in the Universal Serial Bus Specification Version 1.1, “Chapter 9.” A USB device must
respond properly to the requests described in this chapter to pass USB compliance testing
(referred to as the USB “Chapter Nine Test”).

Endpoint zero is the only CONTROL endpoint in the EZ-USB FX chip. The 8051 responds to
device requests issued by the host over endpoint zero. The USB core is significantly enhanced to
simplify the 8051 code required to service these requests. Chapter 9. "EZ-USB FX Endpoint Zero"
provides a detailed roadmap for writing compliant USB Chapter 9 8051 code.
Page 1-12 EZ-USB FX Technical Reference Manual v1.2

1.13.3 EZ-USB FX Interrupt Endpoints

Interrupt endpoints are almost identical to bulk endpoints. Fourteen EZ-USB FX endpoints (EP1-
EP7, IN, and OUT) may be used as interrupt endpoints. Interrupt endpoints have a maximum
packet size 64. They contain a “polling interval” byte in their descriptor to tell the host how often to
service them. The 8051 transfers data over interrupt endpoints in exactly the same way as for bulk
endpoints. Interrupt endpoints are described in Chapter 6. "EZ-USB FX Bulk Transfers."

1.13.4 EZ-USB FX Isochronous Endpoints

Isochronous endpoints deliver high bandwidth, time critical data over USB. Isochronous endpoints
are used to stream data to devices such as audio DACs, and from devices such as video cameras.
Time of delivery is the most critical requirement, and isochronous endpoints are tailored to this
requirement. Once a device has been granted an isochronous bandwidth slot by the host, it is
guaranteed the ability to send or receive its data every frame.

EZ-USB FX contains 16 isochronous endpoints, numbered 8-15 (8IN-15IN, and 8OUT-15OUT).
1,024 bytes of FIFO memory are available to the 16 endpoints, and may be divided among them.
EZ-USB FX actually contains 2,048 bytes of isochronous FIFO memory to provide double-buffer-
ing. Using double buffering, the 8051 reads OUT data from isochronous endpoint FIFOs contain-
ing data from the previous frame, while the host writes current frame data into the other buffer.
Similarly, the 8051 loads IN data into isochronous endpoint FIFOs that will be transmitted over
USB during the next frame, while the host reads current frame data from the other buffer. At every
SOF the USB FIFOs and 8051 FIFOs switch, or ping-pong.

Isochronous transfers are described in Chapter 10. "EZ-USB FX Isochronous Transfers."

1.14 Interrupts

EZ-USB FX adds seven interrupt sources to the standard 8051 interrupt system. Three of the
added interrupts are available on device pins: INT4, INT5#, and INT6. The other four are used

internally: INT2 is used for all USB interrupts, INT3 is used by the I2C-compatible interface, INT4 is
used by the FIFOs and GPIF, and the remaining interrupt is used for remote wakeup indication.

The USB core automatically supplies jump vectors (Autovectors) for its USB and FIFO interrupts to
save the 8051 from having to test bits to determine the source of the interrupt. Each INT2 and
INT4 interrupt source has its own vector. When an interrupt requires service, the proper ISR (inter-
rupt service routine) is automatically invoked. Chapter 12. "EZ-USB FX Interrupts" describes the
EZ-USB FX interrupt system.
Chapter 1. Introducing EZ-USB FX Page 1-13

EZ-USB FX Technical Reference Manual
1.15 Reset and Power Management

The EZ-USB FX chip contains four resets:

• Power-On-Reset (POR)

• USB bus reset

• 8051 reset

• USB Disconnect/Re-connect

The functions of the various EZ-USB FX resets are described in Chapter 13. "EZ-USB FX Resets"

A USB peripheral may be put into a low power state when the host signals a suspend operation.
The USB Specification states that a bus-powered device cannot draw more than 500 ΩA of current
from the VBUS wire while in suspend. The EZ-USB FX chip contains logic to turn off its internal
oscillator and enter a sleep state. A special interrupt, triggered by a wakeup pin or wakeup signal-
ing on the USB bus, starts the oscillator and interrupts the 8051 to resume operation.

Low power operation is described in Chapter 14. "EZ-USB FX Power Management".

1.16 Slave FIFOs

The EZ-USB FX contains four 64-byte FIFOs to provide a flexible, high-speed interface to a vari-
ety of peripherals. These FIFOs can be slave FIFOs that accept RD/WR strobes from an external
source, or the GPIF can be their bus master. See "GPIF (General Programmable Interface)" below
for more information. Two FIFOs are provided in the IN direction, and two FIFOs transfer data in
the OUT direction.

The FIFO module allows the EZ-USB FX to perform the following functions:

• Act as a FIFO or a small RAM on a microprocessor bus

• Create a 16-bit data path

• Transfer data at speeds up to 96 MB per second (burst).

1.17 GPIF (General Programmable Interface)

The GPIF is a programmable state machine that runs at 48 MHz. It can be used to generate cus-
tom bus waveforems and control the FIFOs. It has four programs of seven steps each that execute
Page 1-14 EZ-USB FX Technical Reference Manual v1.2

at 48 MHz. The GPIF program can modify the CTL0-5 lines, branch on the RDY0-5 inputs, and
control FIFO data movement.

The GPIF is used to implement many standard interfaces available for the FX, including:

• IDE (ATAPI)

• PC parallel port (EPP)

• Utopia

The GPIF is fully described in Chapter 8. "General Programmable Interface (GPIF)."

1.18 EZ-USB FX Product Family

The EZ-USB FX family is available in various pinouts to serve different system requirements and
costs. Table 1-2 shows the feature set for each member of the EZ-USB FX family.

Table 1-2. EZ-USB FX Family

Part Number Package Ram
ISO

Support
 I/O FIFO Width Addr/Data Bus

CY7C64601-52NC 52-pin PQFP 4 K No 16 8 Bits No

CY7C64603-52NC 52-pin PQFP 8 K No 18 8 Bits No

CY7C64613-52NC 52-pin PQFP 8 K Yes 18 8 Bits No

CY7C64603-80NC 80-pin PQFP 8 K No 32 16 Bits No

CY7C64613-80NC 80-pin PQFP 8 K Yes 32 16 Bits No

CY7C64603-128NC 128-pin PQFP 8 K No 40 16 Bits Yes

CY7C64613-128NC 128-pin PQFP 8 K Yes 40 16 Bits Yes
Chapter 1. Introducing EZ-USB FX Page 1-15

EZ-USB FX Technical Reference Manual
Page 1-16 EZ-USB FX Technical Reference Manual v1.2

Chapter 2. EZ-USB FX CPU

2.1 Introduction

The EZ-USB FX built-in microprocessor, an enhanced 8051 core, is fully described in Chapter 16.
"8051 Introduction" , Chapter 17. "8051 Architectural Overview" and Chapter 18. "8051 Hardware
Description." This chapter introduces the processor, its interface to the USB core, and describes
architectural differences from a standard 8051.

2.2 8051 Enhancements

The enhanced 8051 core uses the standard 8051 instruction set. Instructions execute faster than
with the standard 8051 due to two features:

• Wasted bus cycles are eliminated. A bus cycle uses four clocks, as compared to 12 clocks
with the standard 8051.

• The 8051 runs at 24 MHz or 48 MHz.

In addition to speed improvement, the enhanced 8051 core also includes architectural enhance-
ments:

• A second data pointer

• A second UART

• A third, 16-bit timer (TIMER2)

• A high-speed memory interface with a non-multiplexed 16-bit address bus

• Eight additional interrupts (INT2-INT6, WAKEUP, T2, and UART1)

• Variable MOVX timing to accommodate fast/slow RAM peripherals

• 3.3V operation.
Chapter 2. EZ-USB FX CPU Page 2--1

EZ-USB FX Technical Reference Manual
2.3 EZ-USB FX Enhancements

EZ-USB FX provides additional enhancements outside the 8051. These include:

• DMA Module

• Fast external transfers (Autopointer, DMAEXTFIFO)

• Vectored USB interrupts (Autovector)

• Separate buffers for SETUP and DATA portions of a CONTROL transfer

• Breakpoint Facility.

2.4 EZ-USB FX Register Interface

The 8051 communicates with the USB core through a set of memory mapped registers. These
registers are grouped as follows:

• Endpoint buffers and FIFOs

• Slave FIFOs

• 8051 control

• I/O ports

• DMAEXTFIFO

• I2C-Compatible Controller

• Interrupts

• USB Functions

• GPIF

These registers and their functions are described throughout this manual. A full description of
every register and bit appears in Chapter 15. "EZ-USB FX Registers."
Page 2-2 EZ-USB FX Technical Reference Manual v1.2

2.5 EZ-USB FX Internal RAM

Figure 2-1. 8051 Registers

Like the standard 8051, the EZ-USB 8051 core contains 128 bytes of register RAM at address 00-
7F, and a partially populated SFR register space at address 80-FF. An additional 128 indirectly
addressed registers (sometimes called “IDATA”) are also available at address 80-FF.

All internal EZ-USB FX RAM, which includes program/data memory, bulk endpoint buffer memory,
and the EZ-USB FX register set, is addressed as add-on 8051 memory. The 8051 reads or writes
these bytes as data using the MOVX (move external) instruction. Even though the MOVX instruc-
tion implies external memory, the EZ-USB FX RAM and register set is actually inside the EZ-USB
FX chip. External memory attached to the CY7C646x3-128NC address and data busses can also
be accessed by the MOVX instruction. The USB core encodes its memory strobe and select sig-
nals (RD#, WR#, CS#, and OE#) to eliminate the need for external logic to separate the internal
and external memory spaces.

2.6 I/O Ports

A standard 8051 communicates with its I/O ports 0-3 through four Special Function Registers
(SFRs). The USB core implements I/O ports differently than a standard 8051, as described in
Chapter 4. "EZ-USB FX Input/Output." The USB core implements a flexible I/O system that is con-
trolled via SFRs or via the EZ-USB FX register set. Although 8051 SFR bits may be used to control
the I/O pins, their addresses and functions are different than in a standard 8051. Each EZ-USB FX
I/O pin functions identically, having the following resources:

• An output latch (OUTn). Used when the pin is an output port.

• A register (PINSn) that indicates the state of the I/O pins, regardless of its configuration
(input or output).

• An output enable register (OEn) that causes the I/O pin to be driven from the output latch.

Lower 128
bytes

Direct Addr

SFR Space
Direct Addr

Upper 128
bytes

Indirect Addr

00

7F
80

FF
Chapter 2. EZ-USB FX CPU Page 2-3

EZ-USB FX Technical Reference Manual
Several registers control whether the pin is a port pin or a special function pin. These registers
include PORTnCFG, IFCONFIG, PORTACF2, and PORTCGPIF. See "Port Configuration Tables"
in Chapter 4. "EZ-USB FX Input/Output".

2.7 Interrupts

All standard 8051 interrupts are supported in the enhanced 8051 core. Table 2-1 shows the exist-
ing and added 8051 interrupts, and indicates how the added ones are used.

The EZ-USB FX chip uses 8051 INT2 for 22 different USB interrupts: 17 bulk endpoints plus SOF,
Suspend, SETUP Data, SETUP Token, and USB Bus Reset. To help the 8051 determine which
interrupt is active, the USB core provides a feature called Autovectoring. The core inserts an
address byte into the low byte of the 3-byte jump instruction found at the 8051 INT2 vector
address. This second level of vectoring automatically transfers control to the appropriate USB
ISR. The Autovector mechanism, as well as the EZ-USB FX interrupt system is the subject of
Chapter 12. "EZ-USB FX Interrupts."

Table 2-1. EZ-USB FX Interrupts

Standard
8051

Interrupts

Enhanced
8051

Interrupts
Used As

INT0 Device Pin INT0#

INT1 Device Pin INT1#

Timer 0 Internal, Timer 0

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, UART0

INT2 Internal, USB

INT3 Internal, I 2C-compati-
ble Controller

INT4 Internal, FIFO Interrupt

INT5 Device Pin, PB5/INT5#

INT6 Device Pin, PB6/INT6

WAKEUP Device Pin, USB
WAKEUP#

Tx1 & Rx1 Internal, UART1

Timer 2 Internal, Timer 2
Page 2-4 EZ-USB FX Technical Reference Manual v1.2

2.8 Power Control

The USB core implements a power-down mode that allows it to be used in USB bus-powered
devices that must draw no more than 500 ΩA when suspended. Power control is accomplished
using a combination of 8051 and USB core resources. The mechanism by which EZ-USB FX pow-
ers down for suspend, and then re-powers to resume operation, is described in detail in Chapter
14. "EZ-USB FX Power Management."

EZ-USB FX responds to USB suspend using three 8051 resources: the idle mode and two inter-
rupts. A USB suspend operation is indicated by a lack of bus activity for 3 ms. The USB core
detects this, and asserts an interrupt request via the USB interrupt (8051 INT2). The ISR (Interrupt
Service Routine) turns off external sub-systems that draw power. When ready to suspend opera-
tion, the 8051 sets an SFR bit, PCON.0. This bit causes the 8051 to suspend, waiting for an inter-
rupt.

When the 8051 sets PCON.0, a control signal from the 8051 to the USB core causes the core to
shut down the 12-MHz oscillator and internal PLL. This stops all internal clocks to allow the USB
core and 8051 to enter a very low power mode.

The suspended EZ-USB FX chip can be awakened two ways: USB bus activity may resume, or an
EZ-USB FX pin (WAKEUP#) can be asserted to activate a USB Remote Wakeup. Either event
triggers the following chain of events:

• The USB core re-starts the 12-MHz oscillator and PLL, and waits for the clocks to stabi-
lize.

• The USB core asserts a high-priority 8051 interrupt to signal a resume interrupt.

• The 8051 vectors to the resume ISR and, upon completion, resumes executing code at the
instruction following the instruction that set the PCON.0 bit to 1.

2.9 SFRs

The EZ-USB FX family was designed to keep 8051 coding as standard as possible, to allow easy
integration of existing 8051 software development tools. The added 8051 SFR registers and bits
are summarized in Table 2-2.
Chapter 2. EZ-USB FX CPU Page 2-5

EZ-USB FX Technical Reference Manual
Table 2-2. Added Registers and Bits

8051
Enhancements

SFR Addr Function

Dual Data Pointers DPL0 0x82 Data Pointer 0 Low Addr

DPH0 0x83 Data Pointer 0 High Addr

DPL1 0x84 Data Pointer 1 Low Addr

DPH1 0x85 Data Pointer 1 High Addr

DPS 0x86 Data Pointer Select (LSB)

MPAGE 0x92 Replaces standard 8051 Port 2 for indirect external data memory
addressing using R0 or R1

Timer 2 T2CON.6-7 0xC8 Timer 2 Control

RCAP2L 0xCA T2 Capture/Reload Value L

RCAP2H 0xCB T2 Capture/Reload Value H

T2L 0xCC T2 Count L

T2H 0xCD T2 Count H

IE.5 0xA8 ET2-Enable T2 Interrupt Bit

IP.5 0xB8 PT2-T2 Interrupt Priority Control

UART1 SCON1.0-1 0xC0 Serial Port 1 Control

SBUF1 0xC1 Serial Port 1 Data

IE.6 0xA8 ES1-SIO1 Interrupt Enable Bit

IP.6 0xB8 PS1-SIO1 Interrupt Priority Control

EICON.7 0xD8 SMOD1-SIO1 Baud Rate Doubler

Interrupts

INT2-INT5 EXIF 0x91 INT2-INT5 Interrupt Flags

EIE 0xE8 INT2-INT5 Interrupt Enables

EIP.0-3 0xF8 INT2-INT5 Interrupt Priority Control

INT6 EICON.3 0xD8 INT6 Interrupt Flag

EIE.4 0xE8 INT6 Interrupt Enable

EIP.4 0xF8 INT6 Interrupt Priority Control

WAKEUP# EICON.4 0xD8 WAKEUP# Interrupt Flag

EICON.5 0xD8 WAKEUP# Interrupt Enable

Expanded SFRs

I/O Registers IOA 0x80 Input/Output A

IOB 0x90 Input/Output B

IOC 0xA0 Input/Output C

IOD 0xB0 Input/Output D

IOE 0xB1 Input/Output E

Interrupt Clears INT2CLR 0xA1 Interrupt 2 Clear

INT4CLR 0xA2 Interrupt 4 Clear

Enables SOEA 0xB2 Output Enable A

SOEB 0xB3 Output Enable B

SOEC 0xB4 Output Enable C
Page 2-6 EZ-USB FX Technical Reference Manual v1.2

Members of the EZ-USB FX family that supply pins to expand 8051 memory provide separate non-
multiplexed 16-bit address and 8-bit data busses. This differs from the standard 8051, which multi-
plexes eight device pins between three sources: I/O port 0, the external data bus, and the low byte
of the address bus. A standard 8051 system with external memory requires a de-multiplexing
address latch, strobed by the 8051 ALE (Address Latch Enable) pin. The external latch is not
required by the non-multiplexed EZ-USB FX chip, and no ALE signal is provided. In addition to
eliminating the customary external latch, the non-multiplexed bus saves one cycle per memory
fetch cycle, further improving 8051 performance.

2.10 Internal Bus

The typical 8051 user must choose between using Port 0 as a memory expansion port or as an I/O
port. The CY7C646x3-128NC provides a separate I/O system with its own control registers (in
external memory space), and provides the I/O port signals on dedicated (not shared) pins. This
allows the external data bus to expand memory without sacrificing I/O pins.

The 8051 is the sole master of the memory expansion bus. It provides read and write signals to
external memory. The address bus is output-only.

The DMAEXTFIFO register provides legacy support for invoking the fast transfer mode available
on the EZ-USB Series 2100. Refer to "Dummy Register" in Chapter 11. "EZ-USB FX DMA System"
for more information about this register.

2.11 Reset

The internal 8051 RESET signal is not directly controlled by the EZ-USB FX RESET pin. Instead, it
is controlled by an EZ-USB FX register bit accessible to the USB host. When the EZ-USB FX chip
is powered, the 8051 is held in reset. Using the default USB device (enumerated by the USB core),
the host downloads code into RAM. Finally, the host clears an EZ-USB FX register bit that takes
the 8051 out of reset.

The EZ-USB FX family also operates with external non-volatile memory, in which case the 8051
exits the reset state automatically at power-on. The various EZ-USB FX resets and their effects
are described in Chapter 13. "EZ-USB FX Resets."

SOED 0xB5 Output Enable D

SOEE 0xB6 Output Enable E

Idle Mode PCON.0 0x87 EZ-USB FX Power Down (Suspend)

8051
Enhancements

SFR Addr Function
Chapter 2. EZ-USB FX CPU Page 2-7

EZ-USB FX Technical Reference Manual
Page 2-8 EZ-USB FX Technical Reference Manual v1.2

Chapter 3. EZ-USB FX Memory

3.1 Introduction

EZ-USB FX devices divide RAM into two regions: one for code and data, and the other for USB
buffers and control registers.

Figure 3-1. EZ-USB FX 8-KB Memory Map - Addresses are in Hexadecimal

1B40/7B40

Data (R D/W R) R AM
Code(PSEN) RAM if

EA=0
(6,976 bytes)

Registers/Bulk Buffers

7FFF

7800

0000

16 x 64-byte
Bulk Endpoint Buffers

(1,024 bytes)

USB Control R egisters
(192 bytes) 1F40/7F40

1FFF/7FFF

1F3F/7F3F

1B3F

Data (R D/W R) R AM
If ISO DISAB=1

2000

27FF

Registers/Bulk Buffers

1FFF

1B40

Control Registers
(832 Bytes)

7B3F

7800
Chapter 3. EZ-USB FX Memory Page 3-1

EZ-USB FX Technical Reference Manual
Figure 3-2. EZ-USB FX 4-KB Memory Map - Addresses are in Hexadecimal

3.2 8051 Memory

Figure 3-1 illustrates the two internal EZ-USB FX RAM regions. 6,976 bytes of general-purpose

RAM occupy addresses 0x0000-0x1B3F. This RAM is loadable by the USB core or I2C-compati-
ble bus EEPROM, and contains 8051 code and data.

The EZ-USB FX EA (External Access) pin controls the placement of the bottom segment of code
(PSEN) memory — inside (EA=0) or outside (EA=1) the EZ-USB FX chip. If the EA pin is tied low,
the USB core internally ORs the two 8051 read signals PSEN and RD for this region, so that code
and data share the 0x0000-0x1B3F memory space. If EA=1, all code (PSEN) memory is external.

3.2.1 About 8051 Memory Spaces

The 8051 partitions its memory spaces into code memory and data memory. The 8051 reads
code memory using the signal PSEN# (Program Store Enable), reads data memory using the sig-
nal RD# (Data Read), and writes data memory using the signal WR# (Data Write). The 8051
MOVX (move external) instruction generates RD# or WR# strobes.

On EZ-USB FX, PSEN# is a dedicated pin, while the RD# and WR# signals share pins with two IO
port signals: PC7/RD and PC6/WR. Therefore, if expanded memory is used, the port pins PC7
and PC6 are not available to the system.

1,024 bytes of RAM at 0x7B40-0x7F3F implement the sixteen bulk endpoint buffers. 192 addi-
tional bytes at 0x7F40-0x7FFF contain the USB control registers. The 8051 reads and writes this
memory using the MOVX instruction. In the 8-KB RAM version of EZ-USB FX, the 1,024 bulk end-
point buffer bytes at 0x7B40-0x7F3F also appear at 0x1B40-0x1F3F. This aliasing allows unused

7B40

Code(PSEN) and
Data (RD/W R) RAM

(4,096 bytes)

Registers/Bulk Buffers

7FF F

7800

0000

16 x 64-byte
Bulk Endpoint Buffers

(1,024 bytes)

USB Control Registers
(192 bytes) 7F40

7FF F

7F3F

0FF F
Control Registers

(832 bytes)

7800

7B3F
Page 3-2 EZ-USB FX Technical Reference Manual v1.2

bulk endpoint buffer memory to be added contiguously to the data memory, as illustrated Figure 3-
3. The memory space at 0x1B40-0x1FFF should not be used.

Even though the 8051 can access EZ-USB FX endpoint buffers at either 0x1B40 or 0x7B40, write
the firmware to access this memory only at 0x7B40-0x7FFF to maintain compatibility with future
versions of EZ-USB FX that contain more than 8 KB of RAM. Future versions will have the bulk
buffer space at 0x7B40-0x7F3F, only.

Figure 3-3. Unused Bulk Endpoint Buffers (Shaded) Used as Data Memory

In the example shown in Figure 3-3, only endpoints 0-IN through 3-IN are used for the USB func-
tion, so the data RAM (shaded) can be extended to 0x1D7F.

If an application uses none of the 16 EZ-USB FX isochronous endpoints, the 8051 can set the
ISODISAB bit in the ISOCTL register to disable all 16 isochronous endpoints and make the 2-KB of
isochronous FIFO RAM available as 8051 data RAM at 0x2000-0x27FF. 8051 code cannot run
in this memory region.

Setting ISODISAB=1 is an all or nothing choice, as all 16 isochronous endpoints are disabled. An
application that sets this bit must never attempt to transfer data over an isochronous endpoint.

The memory map figures in the remainder of this chapter assume that ISODISAB=0, the default
(and normal) case.

EP0IN
EP0OUT

EP1IN
EP1OUT

EP2IN
EP2OUT

EP3IN
EP3OUT

EP4IN
EP4OUT

EP5IN
EP5OUT

EP6IN
EP06UT
EP7IN

EP07OUT1B40

Code/Data
RAM

0000

1B3F

1B80
1BC0
1C00
1C40
1C80
1CC0
1D00
1D40
1D80
1DC0
1E00
1E40
1E80
1EC0
1F00
1F40
Chapter 3. EZ-USB FX Memory Page 3-3

EZ-USB FX Technical Reference Manual
3.3 Expanding EZ-USB FX Memory

The 128-pin EZ-USB FX package provides a 16-bit address bus, an 8-bit bus, and memory control
signals PSEN#, RD#, and WR#. These signals are used to expand EZ-USB FX memory.

Figure 3-4. EZ-USB FX Memory Map with EA=0

Figure 3-4 shows that when EA=0, the code/data memory is internal at 0x0000-0x1B40. External
code memory can be added from 0x0000-0xFFFF, but it appears in the memory map only at
0x1B40-0xFFFF. Addressing external code memory at 0x0000-0x1B3F when EA=0 causes the
USB core to inhibit the #PSEN strobe. This allows program memory to be added from 0x0000-
0xFFFF without requiring decoding to disable it between 0x0000 and 0x1B3F.

Code & Data
(PSEN,RD,W R)

Registers(RD,W R)

External
Code

Memory
(PSEN)

External
Data

Memory
(RD, W R)

External
Data

Memory
(RD,W R)

1B40

Inside EZ-USB Outside EZ-USB

8000

7800

0000

1F3F

FFFF

(Note 2)

Note 1: OK to populate data memory here--RD# , WR#, CS# and OE# pins are inactive.

(Note 1)

Unused Bulk Buffers
(RD,W R)

Note 2: OK to populate code memory here--no PSEN# strobe is generated.

(Note 1)

1FFF
2000
Page 3-4 EZ-USB FX Technical Reference Manual v1.2

The internal block at 0x7B40-0x7FFF (labeled “Registers”) contains the bulk buffer memory and
EZ-USB FX control registers. As previously mentioned, they are aliased at 0x1B40-0x1FFF to
allow adding unused bulk buffer RAM to general-purpose memory. 8051 code should access this
memory only at the 0x7B40-0x7BFF addresses. External RAM may be added from 0x0000 to
0xFFFF, but the regions shown by Note 1 in Figure 3-4 are ignored; no external strobes or select
signals are generated when the 8051 executes a MOVX instruction that addresses these regions.

3.4 CS# and OE# Signals

The USB core gates the standard 8051 RD# and WR# signals to exclude selection of external
memory that exists internal to the EZ-USB FX part. The PSEN# signal is also available on a pin
for connection to external code memory.

Some 8051 systems implement external memory that is used as both data and program memory.
These systems must logically OR the PSEN# and RD# signals to qualify the chip enable and out-
put enable signals of the external memory. To save this logic, the USB core provides two addi-
tional control signals, CS# and OE#. The equations for these signals are as follows:

• CS# goes low when RD#, WR#, or PSEN# goes low.

• OE# goes low when RD# or PSEN# goes low.

Because the RD#, WR#, and PSEN# signals are already qualified by the addresses allocated to
external memory, these strobes are active only when external memory is accessed.
Chapter 3. EZ-USB FX Memory Page 3-5

EZ-USB FX Technical Reference Manual
Figure 3-5. EZ-USB FX Memory Map with EA=1

When EA=1 (Figure 3-5), all code (PSEN) memory is external. All internal EZ-USB FX RAM is
data memory. This gives the user over 6-KB of general-purpose RAM, accessible by the MOVX
instruction.

Figure 3-4 and Figure 3-5 assume that the EZ-USB FX chip uses isochronous endpoints, and
therefore that the ISODISAB bit (ISOCTL.0) is LO. If ISODISAB=1, additional data RAM appears
internally at 0x2000-0x27FF, and the RD#, WR#, CS#, and OE# signals are modified to exclude
this memory space from external data memory.

Data (RD,WR)

Registers(RD,WR)

External
Code

Memory
(PSEN)

External
Data

Memory
(RD, WR)

External
Data

Memory
(RD,WR)

1B40

Ins ide EZ-USB Outs ide EZ-USB

8000

7B40

0000

1F3F

FFFF

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# are inact ive.

(Note 1)

Unused Bulk Buffers
(RD,WR)

(Note 1)

1FFF
2000
Page 3-6 EZ-USB FX Technical Reference Manual v1.2

Chapter 4. EZ-USB FX Input/Output

4.1 Introduction

The EZ-USB FX chip provides two input-output systems:

• A set of programmable I/O pins

• A programmable I2C-compatible Controller

This chapter describes the programmable I/O pins, and shows how they are shared by a variety of
8051 and EZ-USB FX alternate functions, such as UART and timer and interrupt signals. This

chapter provides both the programming information for the 8051 I2C-compatible interface, and the

operating details of the I2C-compatible boot loader. The role of the boot loader is described in
Chapter 5. "EZ-USB FX Enumeration & ReNumeration™" .

The I2C-compatible controller uses the SCL and SDA pins, and performs two functions:

• General-purpose 8051 use

• Boot loading from an EEPROM.

Pullup resistors are required on the SDA and SCL lines, even if nothing is connected to the I2C-
compatible bus. Each line should be pulled-up to Vcc through a 2.2K ohm resistor.
Chapter 4. EZ-USB FX Input/Output Page 4-1

EZ-USB FX Technical Reference Manual
4.2 I/O Ports

Figure 4-1. EZ-USB FX Input/Output Pin

The EZ-USB FX implements its general purpose I/O ports differently than a standard 8051. Most
of the port I/O bits (PINSn and OUTn) are available in bit addressable SFR space or in XDATA
space. The OEn bits are also available via SFR registers or XDATA space. See Figure 4-6 for
more information.

Figure 4-1 shows the basic structure of an EZ-USB FX I/O pin. Forty I/O pins are grouped into five
8-bit ports: PORTA, PORTB, PORTC, PORTD, and PORTE. The CY7C646x3-128NC brings out
all five port pins. The CY7C646x3-80NC brings out all port pins for PORTA, PORTB, PORTC, and
PORTD. The CY7C646x3-52NC brings out two PORTA pins and all pins of PORTB and PORTC.
The 8051 accesses I/O pins using the three control bits shown in Figure 4-1: OE, OUT, and PINS.
The OUT bit writes output data to a register. The OE bit turns on the output buffer. The PINS bit
indicates the state of the pin. Section 4.12, "SFR Addressing" explains how this basic structure is
enhanced to add SFR access to the I/O pins.

If you are using a small package version of EZ-USB FX, it is important to recognize that I/O ports
exist inside the part that are not pinned out. Because I/O ports power-up as inputs, the 8051 code
should initialize all of the unused ports as outputs to prevent floating internal nodes. Also, users of
the 52-pin package should set IFCONFIG.7 (register 784A.7) to 1 to drive other internal nodes to
their lowest power states.

To configure a pin as an input, the 8051 sets OE=0 to turn off the output buffer. To configure a pin
as an output, the 8051 sets OE=1 to turn on the output buffer, and writes data to the OUT register.
The PINS bit reflects the actual pin value, regardless of the value of OE.

A fourth control bit (in PORTACFG, PORTBCFG, PORTCCFG registers) determines whether a
port pin is general-purpose Input/Output (GPIO), as shown in Figure 4-1, or connected to an alter-
nate 8051 or EZ-USB FX function. Each bit of PORTA, PORTB, and PORTC has a corresponding
control bit in PORTACFG, PORTBCFG, and PORTCCFG, respectively. Figure 4-1 shows the reg-
isters and bits associated with the I/O ports shown in Table 4-1 through Table 4-4.

regOUT Pin

PINS

OE
Page 4-2 EZ-USB FX Technical Reference Manual v1.2

Depending on whether the alternate function is an input or output, the I/O logic is slightly different,
as shown in Figure 4-2 (output) and Figure 4-3 (input).

Figure 4-2. Alternate Function is an OUTPUT

In Figure 4-2, when PORTCFG=0, the I/O port is selected. In this case the alternate function
(shaded) is disconnected and the pin functions exactly as shown in
Figure 4-1. When PORTCFG=1, the alternate function is connected to the I/O pin and the output
register and buffer are disconnected. Note that the 8051 can still read the state of the pin, and thus
the alternate function value.

Figure 4-3. Alternate Function is an INPUT

In Figure 4-3, when PORTCFG=0, the I/O port is selected. This is the general I/O port shown in
Figure 4-1, with one important difference—the alternate function is always listening. Whether the
port pin is set for output or input, the pin signal also drives the alternate function. 8051 firmware
should ensure that if the alternate function is not used (if the pin is GPIO only), the alternate input
function is disabled in the 8051 Special Function Register (SFR) space.

For example, suppose the PB6/INT6 pin is configured for PB6. The pin signal is also routed to
INT6. If INT6 is not used by the application, it should not be enabled. Alternatively, enabling INT6
could be useful, allowing I/O bit PB6 to trigger an interrupt.

regOUT Pin

PINS

OE

Alternate Function Output

OUT

PINS

Alternate Function Output

OE

reg
Pin

PORTCFG=0 (port) PORTCFG=1 (alternate function)

regOUT Pin

PINS

OE

Alternate Function Input

OUT

PINS

Alternate Function Input

OE

reg
Pin

PORTCFG=0 (port) PORTCFG=1 (alternate function)
Chapter 4. EZ-USB FX Input/Output Page 4-3

EZ-USB FX Technical Reference Manual
When PORTxCFG=1, the alternate function is selected. The output register and buffer are discon-
nected. The PINS bit can still read the pin, and thus the input to the alternate function.

4.3 Input/Output Port Registers

The port control bits (OUT, OE, and PINS) are contained in the six registers shown in Figures Fig-
ure 4-4 through Figure 4-6. Section 4.12, "SFR Addressing" explains how this basic structure is
enhanced to add SFR access to the I/O pins.

The OUTn registers provide the data that drives the port pin when OE=1 and the pin is configured
for port output. If the port pin is selected as an input (OE=0), the value stored in the corresponding
OUTn bit is stored in an output latch but not used.

The OE registers control the output enables on the tri-state drivers connected to the port pins,
unless the corresponding PORTnCFG bit is set to a “1.” When a PORTnCFG bit is set to a “1”, the
value of the corresponding OE bit has no effect upon the port pin or the alternate function input.

When the corresponding PORTnCFG bit is “0” and OE=”1”, the corresponding value of OUTn is
output to the pin.

When the corresponding PORTnCFG bit is “0” and OE=”0”, the corresponding value of OUTn is
not output to the pin; it is tri-stated.
Page 4-4 EZ-USB FX Technical Reference Manual v1.2

Figure 4-4. Output Port Configuration Registers

OUTA Port A Outputs 7F96

b7 b6 b5 b4 b3 b2 b1 b0

OUTA7 OUTA6 OUTA5 OUTA4 OUTA3 OUTA2 OUTA1 OUTA0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OUTB Port B Outputs 7F97

b7 b6 b5 b4 b3 b2 b1 b0

OUTB7 OUTB6 OUTB5 OUTB4 OUTB3 OUTB2 OUTB1 OUTB0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OUTC Port C Outputs 7F98

b7 b6 b5 b4 b3 b2 b1 b0

OUTC7 OUTC6 OUTC5 OUTC4 OUTC3 OUTC2 OUTC1 OUTC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OUTD Port D Outputs 7841

b7 b6 b5 b4 b3 b2 b1 b0

OUTD7 OUTD6 OUTD5 OUTD4 OUTD3 OUTD2 OUTD1 OUTD0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OUTE Port E Outputs 7845

b7 b6 b5 b4 b3 b2 b1 b0

OUTE7 OUTE6 OUTE5 OUTE4 OUTE3 OUTE2 OUTE1 OUTE0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 4. EZ-USB FX Input/Output Page 4-5

EZ-USB FX Technical Reference Manual
Figure 4-5. PINSn Registers

PINSA Port A Pins 7F99

b7 b6 b5 b4 b3 b2 b1 b0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

R R R R R R R R

x x x x x x x x

PINSB Port B Pins 7F9A

b7 b6 b5 b4 b3 b2 b1 b0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

R R R R R R R R

x x x x x x x x

PINSC Port C Pins 7F9B

b7 b6 b5 b4 b3 b2 b1 b0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

R R R R R R R R

x x x x x x x x

PINSD Port D Pins 7842

b7 b6 b5 b4 b3 b2 b1 b0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

R R R R R R R R

x x x x x x x x

PINSE Port E Pins 7846

b7 b6 b5 b4 b3 b2 b1 b0

PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0

R R R R R R R R

x x x x x x x x
Page 4-6 EZ-USB FX Technical Reference Manual v1.2

The PINSn registers contain the current value of the port pins, whether they are selected as I/O
ports or as alternate functions.

Figure 4-6. Output Enable Registers

OEA Port A Output Enable 7F9C

b7 b6 b5 b4 b3 b2 b1 b0

OEA7 OEA6 OEA5 OEA4 OEA3 OEA2 OEA1 OEA0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEB Port B Output Enable 7F9D

b7 b6 b5 b4 b3 b2 b1 b0

OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEB0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEC Port C Output Enable 7F9E

b7 b6 b5 b4 b3 b2 b1 b0

OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OEC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OED Port D Output Enable 7843

b7 b6 b5 b4 b3 b2 b1 b0

OED7 OED6 OED5 OED4 OED3 OED2 OED1 OED0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OEE Port E Output Enable 7847

b7 b6 b5 b4 b3 b2 b1 b0

OEE7 OEE6 OEE5 OEE4 OEE3 OEE2 OEE1 OEE0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 4. EZ-USB FX Input/Output Page 4-7

EZ-USB FX Technical Reference Manual
EZ-USB FX ports A, B, and C have individually selectable, alternate functions for each port pin.
Alternate functions, such as UART TxD and RxD, are selected on a pin-by-pin basis for these
ports using control bits in registers PORTACFG, PORTBCFG, and PORTCCFG.

Although ports D and E can be used for purposes other than I/O pins, they do not have corre-
sponding, alternate function configuration registers like ports A-C (see Section 15.23, "PORTA
and PORTC Alternate Configurations"). Instead, their alternate functions are selected in 8-bit
groups using a single-interface configuration register called IFCONFIG (see Section 15.22, "Inter-
face Configuration"). Two bits, IF[1..0], select four configurations for ports D and E.

4.4 Port Configuration Tables

Table 4-1. Port A Configuration

PORTA Bit 0
IFCONFIG.3=0 IFCONFIG.3=1

PORT-
ACFG.0=0

PORT-
ACFG.0=1

Port pin PA0 T0out GSTATE[0]
I/O O O

PORTA Bit 1
IFCONFIG.3=0 IFCONFIG.3=1

PORT-
ACFG.1=0

PORT-
ACFG.1=1

Port pin PA1 T1out GSTATE[1]
I/O O O

PORTA Bit 2
IFCONFIG.3=0 IFCONFIG.3=1

PORT-
ACFG.2=0

PORT-
ACFG.2=1

Port pin PA2 OE# GSTATE[2]
I/O O O

PORTA Bit 3
PORT-

ACFG.3=0
PORTACFG.3=1

Port pin PA3 CS#
I/O O
Page 4-8 EZ-USB FX Technical Reference Manual v1.2

PORTA Bit 4
PORT-

ACFG.4=0
PORTACFG.4=1

PORTACF2.4=0 PORTACF2.4=1
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
Port pin PA4 FWR# RDY4 SLWR

I/O O I I

PORTA Bit 5
PORT-

ACFG.5=0
PORTACFG.5=1

PORTACF2.5=0 PORTACF2.5=1
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
Port pin PA5 FRD# RDY5 SLRD

I/O O I I

PORTA Bit 6
PORT-

ACFG.6=0
PORTACFG.6=1

Port pin PA6 RxD0out
I/O O

PORTA Bit 7
PORT-

ACFG.7=0
PORTACFG.7=1

Port pin PA7 RxD1out
I/O O

Table 4-2. Port B Configuration

PORTB Bit 0
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.0=0

PORTB-
CFG.0=1

Port pin PB0 T2 D[0] GDA[0] AFI[0]
I/O I I/O I/O I/O

PORTB Bit 1
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.1=0

PORTB-
CFG.1=1

Port pin PB1 T2EX D[1] GDA[1] AFI[1]
I/O I I/O I/O I/O

Table 4-1. Port A Configuration
Chapter 4. EZ-USB FX Input/Output Page 4-9

EZ-USB FX Technical Reference Manual
PORTB Bit 2
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.2=0

PORTB-
CFG.2=1

Port pin PB2 RxD1 D[2] GDA[2] AFI[2]
I/O I I/O I/O I/O

PORTB Bit 3
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.3=0

PORTB-
CFG.3=1

Port pin PB3 TxD1 D[3] GDA[3] AFI[3]
I/O O I/O I/O I/O

PORTB Bit 4
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.4=0

PORTB-
CFG.4=1

Port pin PB4 INT4 D[4] GDA[4] AFI[4]
I/O I I/O I/O I/O

PORTB Bit 5
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.5=0

PORTB-
CFG.5=1

Port pin PB5 INT5# D[5] GDA[5] AFI[5]
I/O I I/O I/O I/O

PORTB Bit 6
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.6=0

PORTB-
CFG.6=1

Port pin PB6 INT6 D[6] GDA[6] AFI[6]
I/O I I/O I/O I/O

PORTB Bit 7
IFCONFIG[1..0]=00 IFCON-

FIG[1..0]=01
IFCON-

FIG[1..0]=10
IFCON-

FIG[1..0]=11
PORTB-
CFG.7=0

PORTB-
CFG.7=1

Port pin PB7 T2OUT D[7] GDA[7] AFI[7]
I/O O I/O I/O I/O

Table 4-2. Port B Configuration
Page 4-10 EZ-USB FX Technical Reference Manual v1.2

Table 4-3. Port C Configuration

PORTC Bit 0
PORTC-
CFG.0=0

PORTCCFG.0=1

PORTCCF2.0=0 PORTCCF2.0=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC0 RxD0 RDY0 X

I/O I I

PORTC Bit 1
PORTC-
CFG.1=0

PORTCCFG.1=1

PORTCCF2.1=0 PORTCCF2.1=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC1 TxD0 RDY1 X

I/O O I

PORTC Bit 2
PORTC-
CFG.2=0

PORTCCFG.2=1

Port pin PC3 INT0#
I/O I

PORTC Bit 3
PORTC-
CFG.3=0

PORTCCFG.3=1

PORTCCF2.3=0 PORTCCF2.3=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC3 INT1# RDY3 X

I/O I I

PORTC Bit 4
PORTC-
CFG.4=0

PORTCCFG.4=1

PORTCCF2.4=0 PORTCCF2.4=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC4 T0 CTL1 X

I/O I O
Chapter 4. EZ-USB FX Input/Output Page 4-11

EZ-USB FX Technical Reference Manual
PORTC Bit 5
PORTC-
CFG.5=0

PORTCCFG.5=1

PORTCCF2.5=0 PORTCCF2.5=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC5 T1 CTL3 X

I/O I O

PORTC Bit 6
PORTC-
CFG.6=0

PORTCCFG.6=1

PORTCCF2.6=0 PORTCCF2.6=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC6 WR# CTL4 X

I/O O O

PORTC Bit 7
PORTC-
CFG.7=0

PORTCCFG.7=1

PORTCCF2.7=0 PORTCCF2.7=1
IFCON-

FIG[1..0]=10
00, 01, 11 not

valid
Port pin PC7 RD# CTL5 X

I/O O O

Table 4-4. Port D Bits

PORTD Bits [7..0]

IFCON-
FIG[1..0]=00

IFCON-
FIG[1..0]=01

IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

IFCONFIG.2=0 IFCONFIG.2=1 IFCONFIG.2=0 IFCONFIG.2=1

Port pins
PD[7..0]

Port pins
PD[7..0]

Port pins
PD[7..0]

GDB[7..0] Port pins
PD[7..0]

BFI[7..0]

I/O I/O I/O I/O I/O I/O

Table 4-3. Port C Configuration
Page 4-12 EZ-USB FX Technical Reference Manual v1.2

Table 4-5. Port E Bits

Port E Bit 0

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[0] adr0 BOUTFLAG

I/O O O

Port E Bit 1

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[1] adr1 AINFULL

I/O O O

Port E Bit 2

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[2] adr2 BINFULL

I/O O O

Port E Bit 3

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[3] adr3 AOUTEMTY

I/O O O

Port E Bit 4

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[4] adr4 BOUTEMTY

I/O O O

Port E Bit 5

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[5] CTL3 Port pin PE[5]

I/O O I/O

Port E Bit 6

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[6] CTL4 Port pin PE[6]

I/O O I/O

Port E Bit 7

IFCONFIG[1..0]=00, 01 IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PE[7] CTL5 Port pin PE[7]

I/O O I/O
Chapter 4. EZ-USB FX Input/Output Page 4-13

EZ-USB FX Technical Reference Manual
4.5 I2C-Compatible Controller

The USB core contains an I2C-compatible controller for boot loading and general-purpose I2C-
compatible bus interface. This controller uses the SCL (Serial Clock) and SDA (Serial Data) pins.
I2C-compatible controller describes how the boot load operates at power-on to read the contents
of an external serial EEPROM to determine the initial EZ-USB FX configuration. The boot loader
operates automatically, while the 8051 is held in reset. The last section of this chapter describes
the operating details of the boot loader.

After the boot sequence completes and the 8051 is brought out of reset, the general-purpose I2C-

compatible controller is available to the 8051 for interface to external I2C-compatible devices,
such as other EEPROMS, I/O chips, audio/video control chips, etc.

For I2C-compatible peripherals that support it, the EZ-USB FX I2C-compatible bus can run at 400
KHz. For compatibility, the EZ-USB FX powers-up at the 100-KHz frequency.

4.6 8051 I2C-Compatible Controller

Figure 4-7. General I2C-Compatible Transfer

Figure 4-7 illustrates the waveforms for an I2C-compatible transfer. SCL and SDA are open-drain
EZ-USB FX pins, which must be pulled up to Vcc with external resistors. The EZ-USB FX chip is

an I2C-compatible bus master only, meaning that it synchronizes data transfers by generating
clock pulses on SCL by driving low. Once the master drives SCL low, external slave devices can
also drive SCL low to extend clock cycle times.

To synchronize I2C-compatible data, serial data (SDA) is permitted to change state only while SCL
is low, and must be valid while SCL is high. Two exceptions to this rule are used to generate
START and STOP conditions. A START condition is defined as SDA going low, while SCL is high,
and a STOP condition is defined as SDA going high, while SCL is high. Data is sent MSB first.
During the last bit time (clock #9 in Figure 4-7), the master (EZ-USB FX) floats the SDA line to
allow the slave to acknowledge the transfer by pulling SDA low.

1 2 3 4 5 6 7 8 9

D7 ACKD6 D5 D4 D3 D2 D1 D0

start stop

SDA

SCL
Page 4-14 EZ-USB FX Technical Reference Manual v1.2

Figure 4-8. Addressing an I2C-compatible Peripheral

The first byte of an I2C-compatible bus transaction contains the address of the desired peripheral.
Figure 4-8 shows the format for this first byte, which is sometimes called a control byte.

A master sends the bit sequence shown in Figure 4-8 after sending a START condition. The mas-

ter uses this 9-bit sequence to select an I2C-compatible peripheral at a particular address, to
establish the transfer direction (using R/W#), and to determine if the peripheral is present by test-
ing for ACK#.

The four most significant bits SA3-SA0 are the peripheral chip’s slave address. I2C-compatible
devices are pre-assigned slave addresses by device type. For example, slave address 1010 is

assigned to EEPROMS. The three bits DA2-DA0 usually reflect the states of I2C-compatible
device address pins. Devices with three address pins can be strapped to allow eight distinct
addresses for the same device type. The eighth bit (R/W#) sets the direction for the ensuing data
transfer, 1 for master read, and 0 for master write. Most address transfers are followed by one or
more data transfers, with the STOP condition generated after the last data byte is transferred.

In Figure 4-8, a READ transfer follows the address byte (at clock 8, the master sets the R/W# bit
high, indicating READ). At clock 9, the peripheral device responds to its address by asserting ACK.
At clock 10, the master floats SDA and issues SCL pulses to clock in SDA data supplied by this
slave.

Assuming the 12-MHz crystal used by the EZ-USB FX family, the SCL frequency is 90.9 KHz, giv-

ing an I2C-compatible transfer rate of 11 microseconds per bit. Operation at four times this rate is
available by setting a bit in the boot EEPROM. See Section 5.9, "Configuration Byte 0" for details.

Multiple I2C-Compatible Bus Masters — The EZ-USB FX chip acts only as an I2C-com-
patible bus master, never a slave. However, the 8051 can detect a second master by
checking for BERR=1 (Section 4.8, "Status Bits").

1 2 3 4 5 6 7 8 9

SA3 ACKSA2 SA1 SA0 DA2 DA1 DA0

start

SDA D7 D6

10 11

R/W

SCL
Chapter 4. EZ-USB FX Input/Output Page 4-15

EZ-USB FX Technical Reference Manual
Figure 4-9. I2C-compatible Registers

The 8051 uses the two registers shown in Figure 4-9 to conduct I2C-compatible transfers. The

8051 transfers data to and from the I2C-compatible bus by writing and reading the I2DAT register.

The I2CS register controls I2C-compatible transfers and reports various status conditions. The
three control bits are START, STOP, and LASTRD. The remaining bits are status bits. Writing to a
status bit has no effect.

4.7 Control Bits

4.7.1 START

The 8051 sets the START bit to 1 to prepare an I2C-compatible bus transfer. If START=1, the next
8051 load to I2DAT generates the start condition followed by the serialized byte of data in I2DAT.

The 8051 loads data in the format shown in Figure 4-7 after setting the START bit. The I2C-com-
patible controller clears the START bit during the ACK interval (clock 9 in Figure 4-7).

4.7.2 STOP

The 8051 sets STOP=1 to terminate an I2C-compatible bus transfer. The I2C-compatible controller
clears the STOP bit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition generates immediately following the ACK phase of the byte
transfer. If no byte transfer is occurring when the STOP bit is set, the STOP condition is carried out
immediately on the bus. Data should not be written to I2CS or I2DAT until the STOP bit returns
low. In most versions of CY7C646x3-128NC, an interrupt request is available to signal that STOP
bit transmission is complete.

I2CS I2C-Compatible Control and Status 7FA5

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

I2DAT I2C-Compatible Data 7FA6

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 4-16 EZ-USB FX Technical Reference Manual v1.2

4.7.3 LASTRD

To read data over the I2C-compatible bus, an I2C-compatible master floats the SDA line and
issues clock pulses on the SCL line. After every eight bits, the master drives SDA low for one clock
to indicate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK time to
instruct the slave to stop sending. This is controlled by the 8051 by setting LASTRD=1 before

reading the last byte of a read transfer. The I2C-compatible controller clears the LASTRD bit at the
end of the transfer (at ACK time).

Setting LASTRD does not automatically generate a STOP condition. The 8051 should also set the
STOP bit at the end of a read transfer.

4.8 Status Bits

After a byte transfer, the I2C-compatible controller updates the three status bits BERR, ACK, and
DONE. If no STOP condition was transmitted, they are updated at ACK time. If a STOP condition
was transmitted they are updated after the STOP condition is transmitted.

4.8.1 DONE

The I2C-compatible controller sets this bit whenever it completes a byte transfer, right after the

ACK stage. The controller also generates an I2C-compatible interrupt request (8051 INT3) when it

sets the DONE bit. The I2C-compatible controller clears the DONE bit when the 8051 reads or

writes the I2DAT register, and it clears the I2C-compatible interrupt request bit whenever the 8051
reads or writes the I2CS or I2DAT register.

4.8.2 ACK

Every ninth SCL of a write transfer, the slave indicates reception of the byte by asserting ACK. The

I2C-compatible controller floats SDA during this time, samples the SDA line, and updates the ACK
bit with the complement of the detected value. ACK=1 indicates acknowledge, and ACK=0 indi-

cates not-acknowledge. The I2C-compatible controller updates the ACK bit at the same time it sets
DONE=1. The ACK bit should be ignored for read transfers on the bus.

4.8.3 BERR

This bit indicates an I2C-compatible bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when another bus
Chapter 4. EZ-USB FX Input/Output Page 4-17

EZ-USB FX Technical Reference Manual
master wins arbitration, taking control of the bus. BERR is cleared when the 8051 reads or writes
the I2DAT register.

4.8.4 ID1, ID0

These bits are set by the boot loader (Section 4.11, "I2C-Compatible Boot Loader") to indicate
whether an 8-bit address or 16-bit address EEPROM at slave address 000 or 001 was detected at
power-on. They are normally used only for debug purposes. Table 4-7 shows the encoding for
these bits.

4.9 Sending I2C-Compatible Data

To send a multiple byte data record over the I2C-compatible bus, follow these steps:

1. Set the START bit.

2. Write the peripheral address and direction=0 (for write) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0, go to step 7.

4. Load I2DAT with a data byte.

5. Wait for DONE=1*. If BERR=1 or ACK=0 go to step 7.

6. Repeat steps 4 and 5 for each byte until all bytes have been transferred.

7. Set STOP=1.

* If the I2C-compatible interrupt (8051 INT3) is enabled, each “Wait for DONE=1” step can be interrupt
driven, and handled by an interrupt service routine. See Chapter 12. "EZ-USB FX Interrupts" for more

details regarding the I2C-compatible interrupt.

4.10 Receiving I2C-Compatible Data

To read a multiple-byte data record, follow these steps:

1. Set the START bit.

2. Write the peripheral address and direction=1 (for read) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0, terminate by setting STOP=1.

4. Read I2DAT and discard the data. This initiates the first burst of nine SCL pulses to clock in
the first byte from the slave.

5. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

6. Read the data from I2DAT. This initiates another read transfer.

7. Repeat steps 5 and 6 for each byte until ready to read the second-to-last byte.

8. Before reading the second-to-last I2DAT byte, set LASTRD=1.
Page 4-18 EZ-USB FX Technical Reference Manual v1.2

9. Read the data from I2DAT. With LASTRD=1, this initiates the final byte read on the I2C-com-
patible bus.

10. Wait for DONE=1*. If BERR=1, terminate by setting STOP=1.

11. Set STOP=1.

12. Read the last byte from I2DAT immediately (the next instruction) after setting the STOP bit.
This retrieves the last data byte without initiating an extra read transaction (nine more SCL

pulses) on the I2C-compatible bus.

* If the I2C-compatible interrupt (8051 INT3) is enabled, each “Wait for DONE=1” step can be interrupt-
driven, and handled by an interrupt service routing. See Chapter 12. "EZ-USB FX Interrupts" for more

details regarding the I2C-compatible interrupt.

4.11 I2C-Compatible Boot Loader

When the EZ-USB FX chip comes out of reset, the EZ-USB FX boot loader checks for the pres-

ence of an EEPROM on its I2C-compatible bus. If an EEPROM is detected, the loader reads the
first EEPROM byte to determine how to enumerate (specifically, whether to supply ID information
from the USB core or from the EEPROM). The various enumeration modes are described in Chap-
ter 5. "EZ-USB FX Enumeration & ReNumeration™".

Prior to reading the first EEPROM byte, the boot loader must set to zero an address counter inside
the EEPROM. It does this by sending a control byte (write) to select the EEPROM, followed by a
zero address to set the internal EEPROM address pointer to zero. Then, it issues a control byte
(read), and reads the first EEPROM byte.

The EZ-USB FX boot loader supports two I2C-compatible EEPROM types:

• EEPROMs with address A[7..4]=1010 that use an 8-bit address, (example: 24LC00,
24LC01/B, 24LC02/B).

• EEPROMs with address A[7..4]=1010 that use a 16-bit address, (example: 24AA64,
24LC128, 24AA256).

EEPROMs with densities up to 256 bytes require loading a single address byte. Larger EEPROMs
require loading two address bytes.

The EZ-USB FX I2C-compatible controller needs to determine which EEPROM type is con-
nected—one or two address bytes—so that it can properly reset the EEPROM address pointer to
zero before reading the EEPROM. For the single-byte address part, it must send a single zero byte
of address, and for the two-byte address part it must send two zero bytes of address.

Because there is no direct way to detect which EEPROM type—single or double address—is con-

nected, the I2C-compatible controller uses the EEPROM address pins A2, A1, and A0 to deter-
mine whether to send out one or two bytes of address. This algorithm requires that the EEPROM
Chapter 4. EZ-USB FX Input/Output Page 4-19

EZ-USB FX Technical Reference Manual
address lines are strapped as shown in Table 4-6. Single-byte-address EEPROMs are strapped to
address 000 and double-byte-address EEPROMs are strapped to address 001.

* This EEPROM does not have address pins

The I2C-compatible controller performs a three-step test at power-on to determine whether a one-
byte-address or a two-byte-address EEPROM is attached. This test proceeds as follows:

1. The I2C-compatible controller sends out a “read current address” command to I2C-compatible
sub-address 000 (10100001). If no ACK is returned, the controller proceeds to step 2. If ACK
is returned, the one-byte-address device is indicated. The controller discards the data and
proceeds to step 3.

2. The I2C-compatible controller sends out a “read current address” command to I2C-compatible
sub-address 001 (10100011). If ACK is returned, the two-byte-address device is indicated.
The controller discards the data and proceeds to step 3. If no ACK is returned, the controller
assumes that a valid EEPROM is not connected, assumes the “No Serial EEPROM” mode,
and terminates the boot load.

3. The I2C-compatible controller resets the EEPROM address pointer to zero (using the appro-
priate number of address bytes), then reads the first EEPROM byte. If it does not read 0xB4 or
0xB6, the controller assumes the “No Serial EEPROM” mode. If it reads either 0xB4 or 0xB6,
the controller copies the next six bytes into internal storage. If it reads 0xB6, it proceeds to
load the EEPROM contents into internal RAM.

The results of this power-on test are reported in the ID1 and ID0 bits, as shown in
Table 4-7.

Table 4-6. Strap Boot EEPROM Address Lines to These Values

Bytes
Example
EEPROM

A2 A1 A0

16 24LC00* N/A N/A N/A

128 24LC01 0 0 0

256 24LC02 0 0 0

4K 24LC32 0 0 1

8K 24LC64 0 0 1
Page 4-20 EZ-USB FX Technical Reference Manual v1.2

Other EEPROM devices (with device address of 1010) can be attached to the I2C-compatible bus
for general purpose 8051 use, as long as they are strapped for address other than 000 or 001. If a
24LC00 EEPROM is used, no other EEPROMS with device address 1010 may be used because
the 24LC00 responds to all eight sub-addresses.

4.12 SFR Addressing

The 8051 architecture includes a directly-addressable bank of registers from 0x80-0xFF, called
Special Function Registers or SFRs. These registers control various 8051 peripheral functions
such as the timers, interrupts, and UARTs. Because they are directly addressable, they allow quick
transfer of bytes in and out of the 8051 accumulator.

A portion of the 8051 SFR space is bit-addressable. The 8051 architecture assigns 256 bit
addresses to individual bits in certain registers, including SFR registers with addresses ending in 0
or 8. The advantage of bit addressing is that special bit manipulation instructions can set, test, or
toggle individual bits without dealing with bytes—reading a byte, modifying one bit, or writing back
the byte. This bit manipulation is especially useful for I/O, when a single I/O pin needs attention.

The EZ-USB FX preserves the I/O architecture used in EZ-USB Series 2100, where I/O is con-
trolled using memory mapped registers in external RAM space. To allow quick access to the I/O
control registers, EZ-USB FX also maps the I/O control registers into SFR registers. In addition,
four of the I/O control registers are bit-addressable.

Table 4-7. Results of Power-On I 2C-Compatible Test

ID1 ID0 Meaning

0 0 No EEPROM detected

0 1 One-byte-address load EEPROM detected

1 0 Two-byte-address load EEPROM detected

1 1 Not used
Chapter 4. EZ-USB FX Input/Output Page 4-21

EZ-USB FX Technical Reference Manual
* 8051 enhancements appear in bold. EZ-USB FX SFRs are shaded. Bit-addressable registers (rows 0
and 8) are highlighted.

In the standard 8051, ports 0-3 are addressed using SFRs 80, 90, A0, and B0. Because these
ports are not implemented in EZ-USB FX, the SFRs are available. The EZ-USB FX chip maps the
input-output data for four of its I/O ports, A-D, into these registers. Also, the I/O register for PORT
E and the port output enable registers are mapped into non-bit-addressable SFRs as shown in
Table 4-8.

INT2CLR and INT4CLR are dummy registers (no data) that provide a fast method for clearing
IRQ2 and IRQ4 flags. The 8051 writes any value to these registers to clear the IRQ2 or IRQ4 inter-
rupt request flags.

INT2 is used for all USB interrupts. INT4 is used for all slave FIFO and GPIF interrupts.

Two enable bits turn on the SFR interrupt clearing:

• INT2 SFR clearing is enabled by setting USBBAV.4=1.

• INT4 SFR clearing is enabled by setting INT4SETUP.2=1.

Table 4-8. EZ-USB FX Special Function Registers*

80 90 A0 B0 C0 D0 E0 F0

0 IOA IOB IOC IOD SCON1 PSW ACC B

1 SP EXIF INT2CLR IOE SBUF1

2 DPL0 MPAGE INT4CLR SOEA

3 DPH0 SOEB

4 DPL1 SOEC

5 DPH1 SOED

6 DPS SOEE

7 PCON

8 TCON SCON0 IE IP T2CON EICON EIE EIP

9 TMOD SBUF0

A TL0 RCAP2L

B TL1 RCAP2H

C TH0 TL2

D TH1 TH2

E CKCON

F

Page 4-22 EZ-USB FX Technical Reference Manual v1.2

The two code examples (Figure 4-10 and Figure 4-11) illustrate the speed advantage gained by
using the INT2CLR SFR to clear a pending USB interrupt request for endpoint 6 OUT. The first
example uses the EZ-USB FX method, and the second example uses the new SFR method to
clear an interrupt request for bulk endpoint EP6OUT.

Figure 4-10. EZ-USB FX Method, sample code

Because the OUT6 interrupt request bit is in the memory-mapped register OUT07IRQ, the 8051
clears it using the data pointer and a MOVX instruction. Because this is an interrupt service rou-
tine, all registers used by the ISR must be saved and restored. It is not known at the time of the
interrupt which data pointer is in use, so both of them along with the data pointer select register
“dps” are pushed and later restored (popped).

Next, the INT2 request bit is cleared in EXIF.4. It is important to clear INT2 before clearing the indi-
vidual source of the interrupt—in this example EP6OUT. (This is explained in Chapter 12. "EZ-USB
FX Interrupts"). Finally, the data pointer is set to OUT07IRQ, and the bit corresponding to OUT6 is
set, and written to OUT0IRQ. Writing a “1” clears the OUT6 interrupt request.

EP6OUT_ISR_A:
push dps
push dpl
push dph
push dpl1
push dph1
push acc

;
mov a,EXIF ; clear INT2 (USB) IRQ flag
clr acc.4
mov EXIF,a

;
mov dptr,#OUT07IRQ
mov a,#01000000b ; clear OUT6 IRQ bit by writing 1
movx @dptr,a

; Do interrupt processing here —set flags, whatever...
;

pop acc
pop dph1
pop dpl1
pop dph
pop dpl
pop dps
reti
Chapter 4. EZ-USB FX Input/Output Page 4-23

EZ-USB FX Technical Reference Manual
Figure 4-11. SFR Method, sample code

The “init” routine should be included in general initialization code, and is executed only once. Set-
ting bit 4 of USBBAV enables the SFR clearing feature for INT2 (but not INT4).

The ISR clears the INT2 request bit in EXIF.4, as before. But now, only one instruction is required
to clear the endpoint 6-OUT IRQ, due to the fact that the SFR is directly addressable.

There are two important points about this operation:

The data in acc is don’t care, because the act of writing INT2CLR, and not the data written, actu-
ally clears the IRQ. Second, the particular USB interrupt cleared by this instruction is the one cur-
rently pending (the interrupt source is displayed in the INT2IVEC register).

init: movx dptr,#USBBAV
movx a,@dptr
setb acc.4 ; enable the SFR-clearing feature
movx @dptr,a ; for INT2

;
EP6OUT_ISR_B:

push acc
mov a,EXIF ; clear INT2 (USB) IRQ flag
clr acc.4
mov EXIF,a

;
mov INT2CLR,a ; use whatever value is in acc

;
; Do interrupt processing here
;

pop acc
reti
Page 4-24 EZ-USB FX Technical Reference Manual v1.2

4.13 SFR Control of PORTs A-E

Figure 4-12. EZ-USB FX I/O Structure

Figure 4-12 shows a block diagram of the EZ-USB FX I/O structure. The signals in rectangles, OE,
OUT, and PINS, represent the memory mapped register bits that access I/O bits using 8051 MOVX
instructions. The ovals represent access via the SFRs. The 8051 sets a single bit, PORTSETUP.0,
to enable SFR access to all of the I/O pins.

When PORTSETUP.0=1, both I/O access methods operate simultaneously. Both the MOVX
method and SFR addressing method can be used to set the state of an output pin. To elaborate,
the following code example sets PA0 using a MOVX instruction, clears it using a bit clear instruc-
tion, and then toggles it using a bit toggle instruction.

Figure 4-13. Use MOVX to Set PA0, sample code

mov dptr,#OUTA ; set PA0 the old way
movx a,@dptr ; get value of OUTA register
setb acc.0 ; set bit 0
movx @dptr,a ; write it back

;
clrb IOA.0 ; clear PA0 bit the new way

;
cpl IOA.0 ; complement PA0 bit the new way

OUT

PINS

OE

b it se t
b it c lea r

b it t est

b it t o g g l e

P O R T S E TU P .0

pin

outpu t reg is te r

Enab
Chapter 4. EZ-USB FX Input/Output Page 4-25

EZ-USB FX Technical Reference Manual
This simple example illustrates two important points. First, both the old (MOVX) and new (SFR)
methods can be used on the same I/O bits. Second, the SFR method is much more efficient,
because setting the bit using the MOVX takes nine cycles and seven bytes, while a bit set, clear,
or toggle instruction takes two cycles and two bytes. In practice, there is no reason to use the first
method in EZ-USB FX except for backward compatibility; the example is meant to illustrate that
each method can be used independently.

The data registers for I/O ports A, B, C, and D are mapped into SFRs that are bit-addressable
(0x80, 0x90, 0xA0, and 0xB0, respectively). Because the 8051 uses the rest of the SFRs, the
remaining EZ-USB FX I/O registers (PORTE data and the output enables) are mapped into SFRs
that are not bit-addressable. This still gives faster access to these I/O bits because direct address-
ing takes less time and fewer bytes than MOVX addressing, using the data pointer.

Although not shown in Figure 4-13, the output enables are also registered in exactly the same
manner as the data register, and the SFR access is enabled using the PORTSETUP.0 bit.

The 8051 can read the state of a pin at any time by:

• Reading a PINS register using a MOVX instruction, or

• Reading the corresponding SFR register or bit.

For the bit-addressable registers IOA, IOB, IOC, or IOD, the bit test instructions (jb, jnb) may be
used on individual input pins. Bit test instructions may not be used with IOE (at 0xB1) because it is
not bit-addressable. However, SFR access is still faster for the IOE register than MOVX access.

The 8051 can read an I/O pin using SFRs, regardless of the state of the PORTSETUP.0 bit.

The following example code tests the state of PORTC bit 2, and jumps to two different routines
depending on the result.

Figure 4-14. Test the State of PORTC, sample code

checkbit: jb IOC.2, process_the_one ; jump if bit set
jmp process_the_zero ; it’s low
Page 4-26 EZ-USB FX Technical Reference Manual v1.2

Chapter 5. EZ-USB FX Enumeration & ReNumeration™

5.1 Introduction

The EZ-USB FX chip is soft. 8051 code and data is stored in internal RAM, which is loaded from
the host using the USB interface. Peripheral devices that use the EZ-USB FX chip can operate
without ROM, EPROM, or FLASH memory, shortening production lead times and making firmware
updates a breeze.

To support the soft feature, the EZ-USB FX chip enumerates automatically as a USB device with-
out firmware, so the USB interface itself can download 8051 code and descriptor tables. The USB
core performs this initial (power-on) enumeration and code download while the 8051 is held in
RESET. This initial USB device, which supports code download, is called the “Default USB
Device.”

After the code descriptor tables have been downloaded from the host to EZ-USB FX RAM, the
8051 is brought out of reset and begins executing the device code. The EZ-USB FX device enu-
merates again, this time as the loaded device. This patented enumeration process is called “ReNu-
meration™.” The EZ-USB FX chip accomplishes ReNumeration™ by electrically simulating a
physical disconnection and re-connection to the USB.

An EZ-USB FX control bit called “RENUM” (ReNumerated) determines which entity, the core or the
8051, handles device requests over endpoint zero. At power-on, the RENUM bit (USBCS.1) is
zero, indicating that the USB core automatically handles device requests. Once the 8051 is run-
ning, it can set RENUM to 1 to indicate that user 8051 code handles subsequent device requests
using its downloaded firmware. Chapter 9. "EZ-USB FX Endpoint Zero" describes how the 8051
handles device requests while RENUM=1.

It is also possible for the 8051 to run with RENUM=0 and have the USB core handle certain end-
point zero requests. (See Info Box below).

This chapter deals with the various EZ-USB FX startup modes, and describes the default USB
device that is created at initial enumeration.
Chapter 5. EZ-USB FX Enumeration & ReNumeration™ Page 5-1

EZ-USB FX Technical Reference Manual
Another Use for the Default USB Device

5.2 The Default USB Device

The Default USB Device consists of a single USB configuration containing one interface (interface
0) with three alternate settings, 0, 1, and 2. The endpoints reported for this device are shown in
Table 5-1. Note that alternate setting zero consumes no interrupt or isochronous bandwidth, as
recommended by the USB Specification.

The Default USB Device is established at power-on to set up a USB device capable of down-
loading firmware into EZ-USB FX RAM. Another useful feature of the EZ-USB FX default
device is that 8051 code can be written to support the already-configured Generic USB
device. Before bringing the 8051 out of reset, the USB core enables certain endpoints and
reports them to the host via descriptors. By utilizing the USB default machine (by keeping
RENUM=0), the 8051 can, with very little code, perform meaningful USB transfers that use
these default endpoints. This accelerates the USB learning curve. To see an example of how
little code is actually necessary, take a look at Section 6.11. "Polled Bulk Transfer Example."

Table 5-1. EZ-USB FX Default Endpoints

Endpoint Type Alternate Setting

0 1 2

Maximum Packet Size
(Bytes)

0 CTL 64 64 64

1-IN INT 0 16 64

2-IN BULK 0 64 64

2-OUT BULK 0 64 64

4-IN BULK 0 64 64

4-OUT BULK 0 64 64

6-IN BULK 0 64 64

6-OUT BULK 0 64 64

8-IN ISO 0 16 256

8-OUT ISO 0 16 256

9-IN ISO 0 16 16

9-OUT ISO 0 16 16

10-IN ISO 0 16 16

10 OUT ISO 0 16 16
Page 5-2 EZ-USB FX Technical Reference Manual v1.2

For the purpose of downloading 8051 code, the Default USB Device requires only CONTROL end-
point zero. Nevertheless, the USB default machine is enhanced to support other endpoints as
shown in Figure 5-2 (note the alternate settings 1 and 2). This enhancement is provided to allow
the developer to get a head start generating USB traffic and learning the USB system. All the
descriptors are handled automatically by the USB core, so the developer can immediately start
writing code to transfer data over USB using these pre-configured endpoints.

When the USB core establishes the Default USB Device, it also sets the proper endpoint configu-
ration bits to match the descriptor data supplied by the USB core. For example, bulk endpoints 2,
4, and 6 are implemented in the Default USB Device, so the USB core sets the corresponding
EPVAL bits. Chapter 6. "EZ-USB FX Bulk Transfers" contains a detailed explanation of the EPVAL
bits.

Tables 5-9 through 5-13 show the various descriptors returned to the host by the USB core when
RENUM=0. These tables describe the USB endpoints defined in Table 5-1, along with other USB
details. These tables should help you understand the structure of USB descriptors.

5.3 USB Core Response to EP0 Device Requests

Table 5-2 shows how the USB core responds to endpoint zero requests when RENUM=0.

Table 5-2. How the USB Core Handles EP0 Requests When RENUM=0

bRequest Name Action: RENUM=0

0x00 Get Status/Device Returns two zero bytes

0x00 Get Status/Endpoint Supplies EP Stall bit for indicated EP

0x00 Get Status/Interface Returns two zero bytes

0x01 Clear Feature/Device None

0x01 Clear Feature/Endpoint Clears Stall bit for indicated EP

0x02 (reserved) None

0x03 Set Feature/Device None

0x03 Set Feature/Endpoint Sets Stall bit for indicated EP

0x04 (reserved) None

0x05 Set Address Updates FNADD register

0x06 Get Descriptor Supplies internal table

0x07 Set Descriptor None

0x08 Get Configuration Returns internal value

0x09 Set Configuration Sets internal value

0x0A Get Interface Returns internal value (0-3)

0x0B Set Interface Sets internal value (0-3)
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-3

EZ-USB FX Technical Reference Manual
The USB host enumerates by issuing:

• Set_Address

• Get_Descriptor

• Set_Configuration (to 1)

As shown in Table 5-2, after enumeration, the USB core responds to the following host requests:

• Set or clear an endpoint stall (Set/Clear Feature_Endpoint).

• Read the stall status for an endpoint (Get_Status_Endpoint).

• Set/Read an 8-bit configuration number (Set/Get_Configuration).

• Set/Read a 2-bit interface alternate setting (Set/Get_Interface).

• Download or upload 8051 RAM.

5.3.1 Port Configuration Bits

To ensure proper operation of the default Keil Monitor, which uses SIO-1 (RXD1 and TXD1), never
change the following Port Config bits from “1”:

• PORTBCFG bits 2 (RXD1) and 3 (TXD1).

To ensure the 8051 processor can access the external SRAM (including the Keil Monitor), do not
change the following bits from “1”:

• PORTCCFG bits 6 (WR#) and 7 (RD#).

To ensure that no bits are unintentionally changed, all writes to the PORTxCFG registers should
use a read-modify-write series of instructions.

0x0C Sync Frame None

Vendor Requests

0xA0 Firmware Load Upload/Download RAM

0xA1-
0xAF

Reserved Reserved by Cypress Semiconductor

all other None

Table 5-2. How the USB Core Handles EP0 Requests When RENUM=0

bRequest Name Action: RENUM=0
Page 5-4 EZ-USB FX Technical Reference Manual v1.2

5.4 Firmware Load

The USB Specification provides for vendor-specific requests to be sent over CONTROL endpoint
zero. The EZ-USB FX chip uses this feature to transfer data between the host and EZ-USB FX
RAM. The USB core responds to two “Firmware Load” requests, as shown in Tables 5-3 and 5-4.

These requests are always handled by the USB core (RENUM=0 or 1). The bRequest value 0xA0
is reserved by the EZ-USB FX chip. It should never be used for a vendor request. Cypress Semi-
conductor also reserves bRequest values 0xA1 through 0xAF. Your system should not use these
bRequest values.

Table 5-3. Firmware Download

Byte Field Value Meaning
8051

Response

0 bmRequest 0x40 Vendor Request, OUT
None

required

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting Address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLenghtL LenL Number of Bytes

7 wLengthH LenH

Table 5-4. Firmware Upload

Byte Field Value Meaning
8051

Response

0 bmRequest 0xC0 Vendor Request, IN
None

required

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting Address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-5

EZ-USB FX Technical Reference Manual
A host loader program typically writes 0x01 to the CPUCS register to put the 8051 into RESET,
loads all or part of the EZ-USB FX RAM with 8051 code, and finally reloads the CPUCS register
with 0 to take the 8051 out of RESET. The CPUCS register is the only USB register that can be
written using the Firmware Download command.

Firmware loads are restricted to internal EZ-USB FX memory.

When RENUM=1 at Power-On

5.5 Enumeration Modes

When the EZ-USB FX chip comes out of RESET, the USB core decides how to enumerate based

on the contents of an external EEPROM on its I2C-compatible bus. Table 5-5 shows the choices.
In Table 5-5, PID means Product ID, VID means Version ID, and DID means Device ID.

If no EEPROM is present, or if one is present but the first byte is neither 0xB4 nor 0xB6, the USB
core enumerates using internally stored descriptor data, which contains the Cypress Semiconduc-
tor VID, PID, and DID. These ID bytes cause the host operating system to load a Cypress Semi-

At power-on, the RENUM bit is normally set to zero so that the EZ-USB FX to handle device
requests over CONTROL endpoint zero. This allows the core to download 8051 firmware and
then reconnect as the target device.

At power-on, the USB core checks the I2C-compatible bus for the presence of an EEPROM.
If it finds one, and the first byte of the EEPROM is 0xB6, the core copies the contents of the
EEPROM into internal RAM, sets the RENUM bit to 1, and un-RESETS the 8051. The 8051
wakes up ready to run the firmware in RAM. The required data format for this load module is
described in Section 5.8. "Serial EEPROM Present, First Byte is 0xB6".

Table 5-5. USB Core Action at Power-Up

First EEPROM byte USB Core Action

Not 0xB4 or 0xB6 Supplies descriptors, PID/VID/DID from USB
Core. Sets RENUM=0.

0xB4 Supplies descriptors from USB core, PID/VID/
DID from EEPROM. Sets RENUM=0.

0xB6 Loads EEPROM into EZ-USB FX RAM. Sets
RENUM=1; therefore 8051 supplies descrip-
tors, PID/VID/DID.
Page 5-6 EZ-USB FX Technical Reference Manual v1.2

conductor device driver. The USB core also establishes the Default USB device. This mode is only
used for code development and debug.

If a serial EEPROM is attached to the I2C-compatible bus and its first byte is 0xB4, the USB core
enumerates with the same internally stored descriptor data as for the no-EEPROM case, but with
one difference. It supplies the PID/VID/DID data from six bytes in the external EEPROM rather
than from the USB core. The custom VID/PID/DID in the EEPROM causes the host operating sys-
tem to load a device driver that is matched to the EEPROM VID/PID/DID. This EZ-USB FX operat-
ing mode provides a soft USB device using ReNumeration™�

If a serial EEPROM is attached to the I2C-compatible bus and its first byte is 0xB6, the USB core
transfers the contents of the EEPROM into internal RAM. The USB core also sets the RENUM bit
to 1 to indicate that the 8051 (and not the USB core) responds to device requests over CONTROL
endpoint zero (see the Info Box on page 5-6). Therefore, all descriptor data, including VID/DID/PID
values, are supplied by the 8051 firmware. The last byte loaded from the EEPROM (to the CPUCS
register) releases the 8051 reset signal, allowing the EZ-USB FX chip to come up as a fully, cus-
tom device with firmware in RAM.

The following sections discuss these enumeration methods in detail.

The Other Half of the I2C-Compatible Story

5.6 No Serial EEPROM

In the simplest scenario, no serial EEPROM is present on the I2C-compatible bus or an EEPROM
is present, but its first byte is not 0xB4 or 0xB6. In this case, descriptor data is supplied by a table
internal to the USB core. The EZ-USB FX chip comes on as the USB Default Device, with the ID
bytes shown in Table 5-6.

Pullup resistors are required on SCL/SDA, even if no device is connected. The resistors are
required to allow EZ-USB FX to detect the “no-EEPROM” condition.

The EZ-USB FX I2C-compatible controller serves two purposes. First, as described in this
chapter, it manages the serial EEPROM interface that operates automatically at power-on to
determine the enumeration method. Second, once the 8051 is up and running, the 8051 can

access the I2C-compatible controller for general-purpose use. This makes a wide range of

standard I2C-compatible peripherals available to an EZ-USB FX system.

Other I2C-compatible devices can be attached to the SCL and SDA lines of the I2C-compati-
ble bus as long as there is no address conflict with the serial EEPROM described in this
chapter. Chapter 4. "EZ-USB FX Input/Output" describes the general-purpose nature of the

I2C-compatible interface.
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-7

EZ-USB FX Technical Reference Manual
The USB host queries the device during enumeration, reads the device descriptor, and uses the
bytes described in Table 5-6 to determine which software driver to load into the operating system.
This is a major USB feature — drivers are dynamically matched with devices and automatically
loaded when a device is plugged in.

The “no EEPROM” scenario is the simplest configuration, and also the most limiting. This mode is
used only for code development, utilizing Cypress software tools matched to the ID values in Table
5-6.

Reminder

5.7 Serial EEPROM Present, First Byte is 0xB4

Table 5-6. EZ-USB FX Device Characteristics, No Serial EEPROM

Vendor ID
0x0547 (Cypress Semiconductor/
Anchor Chips)

Product ID 0x2235 (EZ-USB FX)

Device
Release

0xXXYY (depends on revision)

The USB core uses the data in Table 5-6 for enumeration only if the RENUM bit is zero. If
RENUM=1, enumeration data is supplied by 8051 code.

Table 5-7. EEPROM Data Format for “B4” Load

EEPROM
Address

Contents

0 0xB4

1 Vendor ID (VID) L

2 Vendor ID (VID) H

3 Product ID (PID) L

4 Product ID (PID) H

5 Device ID (DID) L

6 Device ID (DID) H

7 Config 0

8 Reserved (set to 0x00)
Page 5-8 EZ-USB FX Technical Reference Manual v1.2

If at power-on, the USB core detects an EEPROM connected to its I2C-compatible port with the
value 0xB4 at address 0, the USB core copies the Vendor ID (VID), Product ID (PID), and Device
ID (DID) from the EEPROM (Table 5-7) into internal storage. The USB core then supplies these
bytes to the host as part of the Get_Descriptor-Device request. (These six bytes replace only the
VID/PID/DID bytes in the default USB device descriptor.) This causes a driver matched to the VID/
PID/DID values in the EEPROM, instead of those in the USB core, to be loaded into the OS.

After initial enumeration, the driver downloads 8051 code and USB descriptor data into EZ-USB
FX RAM and starts the 8051. The code then ReNumerates™ and comes on as the fully, custom
device.

A recommended EEPROM for this application is the Microchip 24LC00, a small (5-pin SOT pack-
age) inexpensive 16-byte serial EEPROM. A 24LC01 (128 bytes) or 24LC02 (256 bytes) may be
substituted for the 24LC00, but as with the 24LC00, only the first nine bytes are used.

5.8 Serial EEPROM Present, First Byte is 0xB6

If at power-on, the USB core detects an EEPROM connected to its I2C-compatible port with the
value 0xB6 at address 0, the USB core loads the EEPROM data into EZ-USB FX RAM. It also sets
the RENUM bit to 1, causing device requests to be fielded by the 8051 instead of the USB core.
The EEPROM data format is shown in Table 5-8.

Table 5-8. EEPROM Data Format for “B6” Load

EEPROM
Address

Contents

0 0xB6

1* Vendor ID (VID) L

2* Vendor ID (VID) H

3* Product ID (PID) L

4* Product ID (PID) H

5* Device ID (DID) L

6* Device ID (DID) H

7 Config 0

8 Reserved (set to
0x00)

9 Length H

10 Length L

11 StartAddr H

12 StartAddr L

--- Data block

Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-9

EZ-USB FX Technical Reference Manual
* Ignored — see Info Box below.

The first byte tells the USB core to copy EEPROM data into RAM. The next six bytes are ignored
(See the Info Box below).

One or more data records follow, starting at EEPROM address 9. The maximum value of Length H
is 0x03, allowing a maximum of 1,023 bytes per record. Each data record consists of a length, a
starting address, and a block of data bytes. The last data record must have the MSB of its Length
H byte set to 1. The last data record consists of a single-byte load to the CPUCS register at
0x7F92. Only the LSB of this byte is significant—8051RES (CPUCS.0) is set to zero to bring the
8051 out of reset.

Serial EEPROM data can be loaded into two EZ-USB FX RAM spaces only.

• 8051 program/data RAM at 0x0000-0x1B3F.

• The CPUCS register at 0x7F92 (only bit 0, 8051 RESET, is host-loadable).

VID/PID/DID in a “B6” EEPROM

5.9 Configuration Byte 0

The first configuration byte, Config 0, is valid for both EEPROM load formats; B4 and B6.

--- Length H

--- Length L

--- StartAddr H

--- StartAddr L

--- Data block

--- 0x80

--- 0x01

--- 0x7F

--- 0x92

Last 00000000

Bytes 1-6 of a B6 EEPROM can be loaded with VID/PID/DID bytes if it is desired at some
point to run the 8051 program with RENUM=0 (USB core handles device requests), using the
EEPROM VID/PID/DID rather than the Cypress Semiconductor values built into the USB
core.

Table 5-8. EEPROM Data Format for “B6” Load

EEPROM
Address Contents
Page 5-10 EZ-USB FX Technical Reference Manual v1.2

Figure 5-1. Configuration 0

Bit 2: 48MHZ 24- or 48-MHz clock

If 48MHZ=1, the 8051 operates at a clock rate of 48 MHz, and the CLKOUT pin is a 48-MHz
square wave. If 48MHZ=0 the 8051 operates at a clock rate of 24 MHz, and the CLKOUT pin is
a 24-MHz square wave. This bit is copied to the CPUCS Register (Bit 3, “24/48”), which is
read-only to the 8051. Thus the 8051 clock rate is fixed at 24 or 48 MHz at boot time according
to the EEPROM contents, and cannot be changed subsequently by the 8051.

If no EEPROM is present the default value is zero, selecting 24-MHz operation.

Bit 1: CLKINV Invert CLKOUT signal

If CLKINV=0, the CLKOUT signal is not inverted (as shown in all timing diagrams in this man-
ual). If CLKINV=1, the CLKOUT signal is inverted. This bit is copied to the CPUCS Register Bit
2, which is read-only to the 8051. Thus, the CLKOUT polarity is set to invert or non-invert at
boot time according to the EEPROM contents, and cannot be changed subsequently by the
8051.

If no EEPROM is present the default value is zero, selecting non-inverting operation.

Bit 0: 400KHZ High-speed I2C-compatible Bus

If 400KHZ=0, the I2C-compatible bus operates at approximately 100 KHz. If 400KHZ=1, the

I2C-compatible bus operates at approximately 400 KHz. This bit is copied to the I2CCTL regis-

ter bit 0, which is read-write to the 8051. Thus the I2C-compatible bus speed is initially set by
the EEPROM bit, and may be changed subsequently by the 8051.

When the EZ-USB FX comes out of RESET, the I2C-compatible bus operates at 100 KHz mode,
ensuring that a 100 KHz device can be used as the boot EEPROM.

5.10 ReNumeration™

Three EZ-USB FX control bits in the USBCS (USB Control and Status) Register control the ReNu-
meration™ process: DISCON, DISCOE, and RENUM.

Config 0

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 48MHZ CLKINV 400KHZ
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-11

EZ-USB FX Technical Reference Manual
Figure 5-2. USB Control and Status Register

Figure 5-3. Disconnect Pin Logic

The logic for the DISCON and DISCOE bits is shown in Figure 5-3. To simulate a USB disconnect,
the 8051 writes the value 00001010 to USBCS. This floats the DISCON# pin, and provides an
internal DISCON=1 signal to the USB core that causes it to perform disconnect housekeeping.

To re-connect to USB, the 8051 writes the value 00000110 to USBCS. This presents a logic HI to
the DISCON# pin, enables the output buffer, and sets the RENUM bit HI to indicate that the 8051
(and not the USB core) is now in control for USB transfers. This arrangement allows connecting
the 1,500-ohm resistor directly between the DISCON# pin and the USB D+ line (Figure 5-4).

Figure 5-4. Typical Disconnect Circuit

USBCS USB Control and Status 7FD6

b7 b6 b5 b4 b3 b2 b1 b0

WAKESRC - - - DISCON DISCOE RENUM SIGRSUME

R/W R R R R/W R/W R/W R/W

0 0 0 0 0 1 0 0

In te rna l Log ic

DISCON

DISCOE

DISCON#
pin

DISCON#

D-
D+

EZ-USB
To 3.3V regulator

1500

J1

USB-B

VCC
1

D-
2

D+
3

GND
4

Page 5-12 EZ-USB FX Technical Reference Manual v1.2

5.11 Multiple ReNumeration™

The 8051 can ReNumerate™�anytime. One use for this capability might be to fine tune an isochro-
nous endpoint’s bandwidth requests by trying various descriptor values and ReNumerating.

5.12 Default Descriptor

Tables 5-9 through 5-19 show the descriptor data built into the USB core. The tables are presented
in the order that the bytes are stored.

The Device Descriptor specifies a MaxPacketSize of 64 bytes for endpoint 0, contains Cypress
Semiconductor Vendor, Product and Release Number IDs, and uses no string indices. Release
Number IDs (XX and YY) are found in individual Cypress Semiconductor data sheets. The USB
core returns this information response to a “Get_Descriptor/Device” host request.

Table 5-9. USB Default Device Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 18 bytes 12H

1 bDescriptorType Descriptor Type = Device 01H

2 bcdUSB (L) USB Specification Version 1.10 (L) 10H

3 bcdUSB (H) USB Specification Version 1.10 (H) 01H

4 bDeviceClass Device Class (FF is Vendor-Specific) FFH

5 bDeviceSubClass Device Sub-Class (FF is Vendor-Specific) FFH

6 bDeviceProtocol Device Protocol (FF is Vendor-Specific) FFH

7 bMaxPacketSize0 Maximum Packet Size for EP0 = 64 bytes 40H

8 idVendor (L) Vendor ID (L) Cypress Semiconductor = 0547H 47H

9 idVendor (H) Vendor ID (H) 05H

10 idProduct (L) Product ID (L) EZ-USB FX = 2235H 35H

11 idProduct (H) Product ID (H) 22H

12 bcdDevice (L) Device Release Number (BCD,L) (see individual data sheet) xxH

13 bcdDevice (H) Device Release Number (BCD,H) (see individual data sheet) YYH

14 iManufacturer Manufacturer Index String = None 00H

15 iProduct Product Index String = None 00H

16 iSerialNumber Serial Number Index String = None 00H

17 bNumConfigurations Number of Configurations in this Interface = 1 01H
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-13

EZ-USB FX Technical Reference Manual
The configuration descriptor includes a total length field (offset 2-3) that encompasses all interface
and endpoint descriptors that follow the configuration descriptor. This configuration describes a
single interface (offset 4). The host selects this configuration by issuing a Set_Configuration
requests specifying configuration #1 (offset 5).

Interface 0, Alternate Setting 0 describes endpoint 0 only. This setting consumes zero band-
width. The interface has no string index.

Table 5-10. USB Default Configuration Descriptor

Offset Field Description Value

0 bLength Length of this Descriptor = 9 bytes 09H

1 bDescriptorType Descriptor Type = Configuration 02H

2 wTotalLength (L) Total Length (L) Including Interface and Endpoint Descriptors DAH

3 wTotalLength (H) Total Length (H) 00H

4 bNumInterfaces Number of Interfaces in this Configuration 01H

5 bConfigurationValue Configuration Value Used by Set_Configuration Request to
Select this Configuration

01H

6 iConfiguration Index of String Describing this Configuration = None 00H

7 bmAttributes Attributes - Bus-Powered, No Wakeup 80H

8 MaxPower Maximum Power - 100 mA 32H

Table 5-11. USB Default Interface 0, Alternate Setting 0 Descriptor

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero-based Index of this Interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 0 00H

4 bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) = 0 00H

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to String Descriptor for this Interface = None 00H
Page 5-14 EZ-USB FX Technical Reference Manual v1.2

Interface 0, Alternate Setting 1 has thirteen endpoints, whose individual descriptors follow the
interface descriptor. The alternate settings have no string indices.

Interface 0, Alternate Setting 1 has one interrupt endpoint, IN1, which has a maximum packet
size of 16 and a polling interval of 10 ms.

Table 5-12. USB Default Interface 0, Alternate Setting 1 Descriptor

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptorType Descriptor Type = Interface 04H

2 bInterfaceNumber Zero-based Index of this Interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 1 01H

4 bNumEndpoints Number of Endpoints in this Interface (Not Counting EPO) = 13 0DH

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSubClass Interface Sub-class = Vendor Specific FFH

7 bInterfaceProtocol Interface Protocol = Vendor Specific FFH

8 iInterface Index to String Descriptor for this Interface = None 00H

Table 5-13. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H

5 wMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds = 10 ms 0AH
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-15

EZ-USB FX Technical Reference Manual
Table 5-14. Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN2 82H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN4 84H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT6 06H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
Page 5-16 EZ-USB FX Technical Reference Manual v1.2

Interface 0, Alternate Setting 1 has six bulk endpoints with max packet sizes of 64 bytes. Even
numbered endpoints were chosen to allow endpoint pairing. For more on endpoint pairing, see
Chapter 6. "EZ-USB FX Bulk Transfers".

Table 5-15. Default Interface 0, Alternate Setting 1, ISO Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN8 88H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT8 08H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN9 89H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT9 09H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN10 8AH
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT10 0AH
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-17

EZ-USB FX Technical Reference Manual
Interface 0, Alternate Setting 1 has six isochronous endpoints with maximum packet sizes of 16
bytes. This is a low bandwidth setting.

Interface 0, Alternate Setting 2 has thirteen endpoints, whose individual descriptors follow the
interface descriptor. Alternate Setting 2 differs from Alternate Setting 1 in the maximum packet
sizes of its interrupt endpoint and two of its isochronous endpoints (EP8IN and EP8OUT).

Alternate Setting 2 for the Interrupt 1-IN increases the maximum packet size for the interrupt
endpoint to 64.

Table 5-16. USB Default Interface 0, Alternate Setting 2 Descriptor

Offset Field Description Value

0 bLength Length of the Interface Descriptor 09H

1 bDescriptor Type Descriptor Type = Interface 04H

2 bInterfaceNum-
ber

Zero-based Index of this Interface = 0 00H

3 bAlternateSetting Alternate Setting Value = 2 02H

4 bNumEndpoints Number of Endpoints in this Interface (Not Counting
EPO) = 13

0DH

5 bInterfaceClass Interface Class = Vendor Specific FFH

6 bInterfaceSub-
Class

Interface Sub-class = Vendor Specific FFH

7 bInterfaceProto-
col

Interface Protocol = Vendor Specific FFH

8 iInterface Index to String Descriptor for this Interface = None 00H

Table 5-17. Default Interface 0, Alternate Setting 1, INT Endpoint Descriptor

Offset Field Description Value

0 bLength Length of this Endpoint Descriptor 07H

1 bDescriptorType Descriptor Type = Endpoint 05H

2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN1 81H

3 bmAttributes XFR Type = INT 03H

4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H

5 wMaxPacketSize (H) Maximum Packet Size - High 00H

6 bInterval Polling Interval in Milliseconds = 10 ms 0AH
Page 5-18 EZ-USB FX Technical Reference Manual v1.2

Table 5-18. Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptor Type Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN2 82H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT2 02H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN4 84H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT4 04H
3 bmAttributes XFR Type = ISO 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN6 86H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT6 06H
3 bmAttributes XFR Type = BULK 02H
4 wMaxPacketSize (L) Maximum Packet Size = 64 Bytes 40H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds 00H
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-19

EZ-USB FX Technical Reference Manual
The bulk endpoints for Alternate Setting 2 are identical to Alternate Setting 1.

Table 5-19. Default Interface 0, Alternate Setting 2, ISO Endpoint Descriptors

Offset Field Description Value
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN8 88H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 256 Bytes 00H
5 wMaxPacketSize (H) Maximum Packet Size - High 01H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT8 08H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 256 Bytes 00H
5 wMaxPacketSize (H) Maximum Packet Size - High 01H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN9 89H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT9 09H
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = IN10 8AH
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
0 bLength Length of this Endpoint Descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress Endpoint Direction (1 is in) and Address = OUT10 0AH
3 bmAttributes XFR Type = ISO 01H
4 wMaxPacketSize (L) Maximum Packet Size = 16 Bytes 10H
5 wMaxPacketSize (H) Maximum Packet Size - High 00H
6 bInterval Polling Interval in Milliseconds (1 for iso) 01H
Page 5-20 EZ-USB FX Technical Reference Manual v1.2

The only differences between Alternate Settings 1 and 2 are the maximum packet sizes for EP8IN
and EP8OUT. This is a high-bandwidth setting.
Chapter 5. EZ-USB FX Enumeration and ReNumeration Page 5-21

EZ-USB FX Technical Reference Manual
Page 5-22 EZ-USB FX Technical Reference Manual v1.2

Chapter 6. EZ-USB FX Bulk Transfers

6.1 Introduction

Figure 6-1. Two BULK Transfers, IN and OUT

EZ-USB FX provides sixteen endpoints for BULK, CONTROL, and INTERRUPT transfers, num-
bered 0-7 as shown in Table 6-1 This chapter describes BULK and INTERRUPT transfers. INTER-
RUPT transfers are a special case of BULK transfers. EZ-USB FX CONTROL endpoint zero is
described in Chapter 9. "EZ-USB FX Endpoint Zero".

The USB Specification allows maximum packet sizes of 8, 16, 32, or 64 bytes for bulk data, and 1 -
64 bytes for interrupt data. EZ-USB FX provides the maximum 64 bytes of buffer space for each of

Table 6-1. EZ-USB FX Bulk, Control, and Interrupt Endpoints

Endpoint Direction Type Size
0 Bidir Control 64/64
1 IN Bulk/Int 64
1 OUT Bulk/Int 64
2 IN Bulk/Int 64
2 OUT Bulk/Int 64
3 IN Bulk/Int 64
3 OUT Bulk/Int 64
4 IN Bulk/Int 64
4 OUT Bulk/Int 64
5 IN Bulk/Int 64
5 OUT Bulk/Int 64
6 IN Bulk/Int 64
6 OUT Bulk/Int 64
7 IN Bulk/Int 64
7 OUT Bulk/Int 64

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

Pay load
Data

C
R
C
1
6

Data Packet

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Pay load
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt H/S Pkt

D
A
T
A
1

Chapter 6. EZ-USB FX Bulk Transfers Page 6-1

EZ-USB FX Technical Reference Manual
its sixteen endpoints: 0-7 IN and 0-7 OUT. Six of the bulk endpoints, 2-IN, 4-IN, 6-IN, 2-OUT, 4-
OUT, and 6-OUT may be paired with the next consecutively numbered endpoint to provide double-
buffering. This allows one data packet to be serviced by the 8051, while another is in transit over
USB. Six endpoint pairing bits (USBPAIR Register) control double-buffering.

The 8051 sets fourteen endpoint valid bits (IN07VAL, OUT07VAL Registers) at initialization time to
tell the USB core which endpoints are active. The default CONTROL endpoint zero is always
valid.

Bulk data appears in RAM. Each bulk endpoint has a reserved 64-byte RAM space, a 7-bit count
register, and a 2-bit control and status (CS) register. The 8051 can read one bit of the CS Register
to determine endpoint busy, and write the other to force an endpoint STALL condition.

The 8051 should never read or write an endpoint buffer or byte count register while the
endpoint’s busy bit is set.

When an endpoint becomes ready for 8051 service, the USB core sets an interrupt request bit.
The EZ-USB FX vectored interrupt system separates the interrupt requests by endpoint to auto-
matically transfer control to the ISR (Interrupt Service Routine) for the endpoint requiring service.
Chapter 12. "EZ-USB FX Interrupts" fully describes this mechanism.

Figure 6-2 illustrates the registers and bits associated with bulk transfers.
Page 6-2 EZ-USB FX Technical Reference Manual v1.2

Figure 6-2. Registers Associated with Bulk Endpoints

64 Byte
Endpoint

Buffer

5IN 07VAL

U SBPAIR

E nd poin t V alid (1 =va lid)

E nd poin t P airing (1= paire d)

B y te C ou nt

C o ntro l & S tatus

SB IN 07IR Q
In terrup t R equ es t (w rite 1 to c le ar)

IN 07IEN
In terrup t E n able (1= ena bled)

IN 2BC

7 6 4 3 2 1 0

57 6 4 3 2 1 0

i23i45i67o23o45o67

57 6 4 3 2 1 0

In itia liza tion

IN 2BU F

D ata tran sfer

IN 2CS

In terrup t C ontro lB usy and S ta ll

R eg is te rs Assoc ia te d w ith a B u lk IN endpo in t
(EP2IN shown as exam ple)

64 Byte
Endpoint

Buffer

5O UT 07VAL

U SBPAIR

B yte C ou nt

C o ntro l & S tatus

SB O UT 07IR Q

O UT 07IEN O UT 4BC

7 6 4 3 2 1 0

57 6 4 3 2 1 0

i23i45i67o23o45o67

57 6 4 3 2 1 0

O UT 4BU F

D ata tran sfer

O UT 4C S

In terrup t C ontro lB usy and S ta ll

R eg is te rs Assoc ia te d w ith a B u lk O U T end po in t
(EP4O U T shown as exam ple)

In itia liza tion

E nd poin t V alid (1 =va lid)

E nd poin t P airing (1= paire d)

In terrup t E n able (1= ena bled)

In terrup t R equ es t (w rite 1 to c le ar)
Chapter 6. EZ-USB FX Bulk Transfers Page 6-3

EZ-USB FX Technical Reference Manual
6.2 Bulk IN Transfers

Figure 6-3. Anatomy of a Bulk IN Transfer

USB bulk IN data travels from device to host. The host requests an IN transfer by issuing an IN
token to the USB core, which responds with data when it is ready. The 8051 indicates ready by
loading the endpoint’s byte count register. If the USB core receives an IN token for an endpoint
that is not ready, it responds to the IN token with a NAK handshake.

In the bulk IN transfer illustrated in Figure 6-3, the 8051 has previously loaded an endpoint buffer
with a data packet, and then loaded the endpoint’s byte count register with the number of bytes in
the packet to arm the next IN transfer. This sets the endpoint’s BUSY Bit. The host issues an IN
token (1), to which the USB core responds by transmitting the data in the IN endpoint buffer (2).
When the host issues an ACK (3), indicating that the data has been received error-free, the USB
core clears the endpoint’s BUSY Bit and sets its interrupt request bit. This notifies the 8051 that
the endpoint buffer is empty. If this is a multi-packet transfer, the host then issues another IN token
to get the next packet.

If the second IN token (4) arrives before the 8051 has had time to fill the endpoint buffer, the EZ
USB core issues a NAK handshake, indicating busy (5). The host continues to send IN tokens (4)
and (7) until the data is ready. Eventually, the 8051 fills the endpoint buffer with data, and then

I
N

A
D
D
R

E
N
D
P

C
R
C
5

T o ke n P ac ke t

D
A
T
A
1

P ay lo ad
D a ta

C
R
C
1
6

D a ta P ac ke t

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

T o ke n P ac ke tH /S P kt

E P nIN In te rrup t, INn B S Y =0

N
A
K

(IN nB C loaded)

..
.

H DH D H

1 2 3 4 5

I
N

A
D
D
R

E
N
D
P

C
R
C
5

T o ke n P ac ke t

N
A
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

T o ke n P ac ke t

D
A
T
A
0

P ay lo ad
D a ta

C
R
C
1
6

D a ta P ac ke t

A
C
K

H /S P kt

...

Load IN nB C E P nIN In te rrup t, INn B S Y =0

HD H DH

4 5 6 87

...

H /S P kt

N
ot

e:
 H

=H
os

t,
D

=D
ev

ic
e

(E
Z
-U

SB
)...

H /S P kt
Page 6-4 EZ-USB FX Technical Reference Manual v1.2

loads the endpoint’s byte count register (INnBC) with the number of bytes in the packet (6). Load-
ing the byte count re-arms the given endpoint. When the next IN token arrives (7) the USB core
transfers the next data packet (8).

6.3 Interrupt Transfers

Interrupt transfers are handled just like bulk transfers.

The only difference between a bulk endpoint and an interrupt endpoint exists in the endpoint
descriptor, where the endpoint is identified as type interrupt, and a polling interval is specified. The
polling interval determines how often the USB host issues IN/OUT tokens to the interrupt endpoint.

6.4 EZ-USB FX Bulk IN Example

Suppose 220 bytes are to be transferred to the host using endpoint 6-IN. Further assume that
MaxPacketSize of 64 bytes for endpoint 6-IN has been reported to the host during enumeration.
Because the total transfer size exceeds the maximum packet size, the 8051 divides the 220-byte
transfer into four transfers of 64, 64, 64, and 28 bytes.

After loading the first 64 bytes into IN6BUF (at 0x7C00), the 8051 loads the byte count register
IN6BC with the value 64. Writing the byte count register instructs the EZ-USB core to respond to
the next host IN token by transmitting the 64 bytes in the buffer. Until the byte count register is
loaded to arm the IN transfer, any IN tokens issued by the host are answered by EZ-USB FX with
NAK (Not-Acknowledge) tokens, telling the USB host that the endpoint is not yet ready with data.
The host continues to issue IN tokens to endpoint 6-IN until data is ready for transfer—whereupon
the USB core replaces NAKs with valid data.

When the 8051 initiates an IN transfer by loading the endpoint’s byte count register, the EZ-USB
core sets a busy bit to instruct the 8051 to hold off loading IN6BUF until the USB transfer is fin-
ished. When the IN transfer is complete and successfully acknowledged, the EZ-USB core resets
the endpoint 6-IN busy bit and generates an endpoint 6-IN interrupt request. If the endpoint 6-IN
interrupt is enabled, program control automatically vectors to the data transfer routine for further
action (Autovectoring is enabled by setting AVEN=1. Refer to Chapter 12. "EZ-USB FX Inter-
rupts").

The 8051 now loads the next 64 bytes into IN6BUF and then loads the EPINBC Register with 64
for the next two transfers. For the last portion of the transfer, the 8051 loads the final 28 bytes into
IN6BUF, and loads IN6BC with 28. This completes the transfer.
Chapter 6. EZ-USB FX Bulk Transfers Page 6-5

EZ-USB FX Technical Reference Manual
Initialization

The EZ-USB core takes care of USB housekeeping chores, such as handshake verification. When
an endpoint 6-IN interrupt occurs, the user is assured that the data loaded by the 8051 into the
endpoint buffer was received error-free by the host. The EZ-USB core automatically checks the
handshake information from the host and re-transmits the data, if the host indicates an error by not
ACKing.

6.5 Bulk OUT Transfers

USB bulk OUT data travels from host to device. The host requests an OUT transfer by issuing an
OUT token to EZ-USB FX, followed by a packet of data. The USB core then responds with an
ACK, if it correctly received the data. If the endpoint buffer is not ready to accept data, the USB
core discards the host’s OUT data and returns a NAK token, indicating “not ready.” In response,
the host continues to send OUT tokens and data to the endpoint until the USB core responds with
an ACK.

Figure 6-4. Anatomy of a Bulk OUT Transfer

When the EZ-USB FX chip comes out of RESET, or when the USB host issues a bus reset,
the EZ-USB core unarms IN endpoint 1-7 by setting their busy bits to 0. Any IN transfer
requests are NAKd until the 8051 loads the appropriate INxBC Register(s). The endpoint
valid bits are not affected by an 8051 reset or a USB reset. Chapter 13. "EZ-USB FX Resets"
describes the various reset conditions in detail.

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

T oken P acket

D
A
T
A
1

Payload
D ata

C
R
C
1
6

D ata Pa cket

A
C
K

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

T oken P acketH /S Pk t

EP nO U T Interrupt,
O U TnB SY=0

N
A
K

..
.

D DH H

1 2 3 4 6

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

T oken P acket

D
A
T
A
0

Payload
D ata

C
R
C
1
6

D ata Pa cket

A
C
K

H /S Pk t

Load O U TnBC (any va lue),
causes O U TnBSY =1

EP nO U T Interrupt,
O U TnB SY=0

DH H

7 98

H /S Pk t

H
D
A
T
A
0

Payload
D ata

C
R
C
1
6

D ata Pa cket

5

H

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

T oken P acket

N
A
K

..
.

DH

4 6

H /S Pk t

D
A
T
A
0

Payload
D ata

C
R
C
1
6

D ata Pa cket

5

H

(O U TnB C loaded,
O U TnB SY=1)

...

N
ot

e:
 H

=
H

os
t,

D
=D

ev
ic

e
(E

Z
-U

SB
)

Page 6-6 EZ-USB FX Technical Reference Manual v1.2

Each EZ-USB FX bulk OUT endpoint has a byte count register, which serves two purposes. The
8051 reads the byte count register to determine how many bytes were received during the last
OUT transfer from the host. The 8051 writes the byte count register (with any value) to tell the
USB core that is has finished reading bytes from the buffer, making the buffer available to accept
the next OUT transfer. The OUT endpoints come up (after reset) armed, so the byte count register
writes are required only for OUT transfers after the first one.

In the bulk OUT transfer illustrated in Figure 6-4, the 8051 has previously loaded the endpoint’s
byte count register with any value to arm receipt of the next OUT transfer. Loading the byte count
register causes the EZ-USB core to set the OUT endpoint’s busy bit to 1, indicating that the 8051
should not use the endpoint’s buffer.

The host issues an OUT token (1), followed by a packet of data (2), which the USB core acknowl-
edges, clears the endpoint’s busy bit and generates an interrupt request (3). This notifies the 8051
that the endpoint buffer contains valid USB data. The 8051 reads the endpoint’s byte count register
to find out how many bytes were sent in the packet, and transfers that many bytes out of the end-
point buffer.

In a multi-packet transfer, the host then issues another OUT token (4) along with the next data
packet (5). If the 8051 has not finished emptying the endpoint buffer, the EZ-USB FX host issues a
NAK, indicating busy (6). The data at (5) is shaded to indicate that the USB core discards it, and
does not over-write the data in the endpoint’s OUT buffer.

The host continues to send OUT tokens (4, 5, and 6) that are greeted by NAKs until the buffer is
ready. Eventually, the 8051 empties the endpoint buffer data, and then loads the endpoint’s byte
count register (7) with any value to re-arm the USB core. Once armed and when the next OUT
token arrives (8) the USB core accepts the next data packet (9).

Initializing OUT Endpoints

The EZ-USB core takes care of USB housekeeping chores such as CRC checks and data toggle
PIDs. When an endpoint 6-OUT interrupt occurs and the busy bit is cleared, the user is assured
that the data in the endpoint buffer was received error-free from the host. The USB core automati-
cally checks for errors, and requests the host to re-transmit data if it detects any errors using the
built-in USB error checking mechanisms (CRC checks and data toggles).

When the EZ-USB FX chip comes out of reset, or when the USB host issues a bus reset, the
USB core arms OUT endpoints 1-7 by setting their busy bits to 1. Therefore, they are initially
ready to accept one OUT transfer from the host. Subsequent OUT transfers are NAKd until
the appropriate OUTnBC Register is loaded to re-arm the endpoint.
Chapter 6. EZ-USB FX Bulk Transfers Page 6-7

EZ-USB FX Technical Reference Manual
6.6 Endpoint Pairing

The 8051 sets endpoint pairing bits to 1 to enable double-buffering of the bulk endpoint buffers.
With double-buffering enabled, the 8051 can operate on one data packet while another is being
transferred over USB. The endpoint busy and interrupt request bits function identically, so the
8051 code requires little code modification to support double-buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair. The
8051 should not use the paired odd endpoint. For example, suppose it is desired to use endpoint
2-IN as a double-buffered endpoint. This pairs the IN2BUF and IN3BUF buffers, although the
8051 accesses the IN2BUF buffer only. The 8051 sets PR2IN=1 (in the USBPAIR Register) to
enable pairing; sets IN2VAL=1 (in the IN07VAL Register) to make the endpoint valid; and then
uses the IN2BUF buffer for all data transfers. The 8051 should not write the IN3VAL Bit, enable
IN3 interrupts, access the EP3IN buffer, or load the IN3BC byte count register.

6.7 Paired IN Endpoint Status

INnBSY=1 indicates that both endpoint buffers are in use, and the 8051 should not load new IN
data into the endpoint buffer. When INnBSY=0, either one or both of the buffers is available for
loading by the 8051. The 8051 can keep an internal count that increments on EPnIN interrupts
and decrements on byte count loads to determine whether one or two buffers are free. Or, the
8051 can simply check for INnBSY=0 after loading a buffer (and loading its byte count register to
re-arm the endpoint) to determine if the other buffer is free.

If an IN endpoint is paired and it is desired to clear the busy bit for that endpoint, do the
following: (a) write any value to the even endpoint’s byte count register twice, and (b) clear
the busy bit for both endpoints in the pair. This is the only code difference between paired
and unpaired use of an IN endpoint.

A bulk IN endpoint interrupt request is generated whenever a packet is successfully transmitted
over USB. The interrupt request is independent of the busy bit. If both buffers are filled and one is
sent, the busy bit transitions from 1 to 0. If one buffer is filled and then sent, the busy bit starts and
remains at 0. In either case, an interrupt request is generated to tell the 8051 that a buffer is free.

Table 6-2. Endpoint Pairing Bits (in the USB PAIR Register)

Bit 5 4 3 2 1 0

Name PR6OUT PR4OUT PR2OUT PR6IN PR4IN PR2IN

Paired 6 OUT 4 OUT 2 OUT 6 IN 4 IN 2 IN

Endpoints 7 OUT 5 OUT 3 OUT 7 IN 5 IN 3 IN
Page 6-8 EZ-USB FX Technical Reference Manual v1.2

6.8 Paired OUT Endpoint Status

OUTnBSY=1 indicates that both endpoint buffers are empty, and no data is available to the 8051.
When OUTnBSY=0, either one or both of the buffers holds USB OUT data. The 8051 can keep an
internal count that increments on EPnOUT interrupts and decrements on byte count loads to deter-
mine whether one or two buffers contain data. Or, the 8051 can simply check for OUTnBSY=0
after unloading a buffer (and loading its byte count register to re-arm the endpoint) to determine if
the other buffer contains data.

6.9 Reusing Bulk Buffer Memory

Table 6-3 shows the RAM locations for the sixteen 64-byte buffers for endpoints 0-7 IN and OUT.
These buffers are positioned at the bottom of the EZ-USB FX register space so that any buffers not
used for endpoints can be reclaimed as general purpose data RAM. The top of memory for the 8-
KB EZ-USB FX part is at 0x1B3F. However, if the endpoints are allocated in ascending order, start-
ing with the lowest numbered endpoints, the higher numbered unused endpoints can effectively
move the top of memory to utilize the unused endpoint buffer RAM as data memory. For example,
an application that uses endpoint 1-IN, 2-IN/OUT (paired), 4-IN and 4-OUT can use 0x1B40-
0x1CBF as data memory. Chapter 3. "EZ-USB FX Memory" provides full details of the EZ-USB FX
memory map.

Table 6-3. EZ-USB FX Endpoint 0-7 Buffer Addresses

Endpoint
Buffer

Address Mirrored

IN0BUF 7F00-7F3F 1F00-1F3F
OUT0BUF 7EC0-7EFF 1EC0-1EFF

IN1BUF 7E80-7EBF 1E80-1EBF
OUT1BUF 7E40-7E7F 1E40-1E7F

IN2BUF 7E00-7E3F 1E00-1E3F
OUT2BUF 7DC0-7DFF 1DC0-1DFF

IN3BUF 7D80-7DBF 1D80-1DBF
OUT3BUF 7D40-7D7F 1D40-1D7F

IN4BUF 7D00-7D3F 1D00-1D3F
OUT4BUF 7CC0-7CFF 1CC0-1CFF

IN5BUF 7C80-7CBF 1C80-1CBF
OUT5BUF 7C40-7C7F 1C40-1C7F

IN6BUF 7C00-7C3F 1C00-1C3F
OUT6BUF 7BC0-7BFF 1BC0-1BFF

IN7BUF 7B80-7BBF 1B80-1BBF
OUT7BUF 7B40-7B7F 1B40-1B7F
Chapter 6. EZ-USB FX Bulk Transfers Page 6-9

EZ-USB FX Technical Reference Manual
Uploads or Downloads to unused bulk memory can be done only at the Mirrored (low)
addresses shown in Table 6-3.

6.10 Data Toggle Control

The EZ-USB core automatically maintains the data toggle bits during bulk, control and interrupt
transfers. As explained in Chapter 1. "Introducing EZ-USB FX", the toggle bits are used to detect
certain transmission errors so that erroneous data can be re-sent.

In certain circumstances, the host resets its data toggle to “DATA0”:

• After sending a Clear_Feature: Endpoint Stall request to an endpoint.

• After setting a new interface.

• After selecting a new alternate setting.

In these cases, the 8051 can directly clear the data toggle for each of the bulk/interrupt/control
endpoints, using the TOGCTL Register (Figure 6-5).

Figure 6-5. Bulk Endpoint Toggle Control

The I/O bit selects the endpoint direction (1=IN, 0=OUT), and the EP2-EP1-EP0 Bits select the
endpoint number. The Q Bit, which is read-only, indicates the state of the data toggle for the
selected endpoint. Writing R=1 sets the data toggle to DATA0, and writing S=1 sets the data toggle
to DATA1.

Currently, there appears to be no reason to set a data toggle to DATA1. The S Bit is pro-
vided for generality.

TOGCTL Data Toggle Control 7FD7

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO 0 EP2 EP1 EP0

R R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 6-10 EZ-USB FX Technical Reference Manual v1.2

To clear an endpoint’s data toggle, the 8051 performs the following sequence:

1. Selects the endpoint by writing the value 000D0EEE binary to the TOGCTL Register, where D
is the direction and EEE is the endpoint number.

2. Clears the toggle bit by writing the value 001D0EEE binary to the TOGCTL Register.

After Step 1, the 8051 may read the state of the data toggle by reading the TOGCTL Register
checking Bit 7.

6.11 Polled Bulk Transfer Example

The following code sample illustrates the EZ-USB FX registers used for a simple bulk transfer. In
this example, 8051 Register R1 keeps track of the number of endpoint 2-IN transfers and Register
R2 keeps track of the number of endpoint 2-OUT transfers (mod-256). Every endpoint 2-IN trans-
fer consists of 64 bytes of a decrementing count, with the first byte replaced by the number of IN
transfers and the second byte replaced by the number of OUT transfers.

1 start: mov SP,#STACK-1 ; set stack
2 mov dptr,#IN2BUF ; fill EP2IN buffer with
3 mov r7,#64 ; decrementing counter
4 fill: mov a,r7
5 movx @dptr,a
6 inc dptr
7 djnz r7,fill
8 ;
9 mov r1,#0 ; r1 is IN token counter
10 mov r2,#0 ; r2 is OUT token counter
11 mov dptr,#IN2BC ; Point to EP2 Byte Count Register
12 mov a,#40h ; 64-byte transfer
13 movx @dptr,a ; arm the IN2 transfer
14 ;
15 loop: mov dptr,#IN2CS ; poll the EP2-IN Status
16 movx a,@dptr
17 jnb acc.1,serviceIN2 ; not busy--service endpoint
18 mov dptr,#OUT2CS
19 movx a,@dptr
20 jb acc.1,loop ; EP2OUT is busy--keep looping
21 ;
22 serviceOUT2:
23 inc r2 ; OUT packet counter
24 mov dptr,#OUT2BC ; load byte count Register to re-arm
25 movx @dptr,a ; (any value)
26 sjmp loop
27 ;
28 serviceIN2:
29 inc r1 ; IN packet counter
30 mov dptr,#IN2BUF ; update the first data byte
31 mov a,r1 ; in EP2IN buffer
32 movx @dptr,a
33 inc dptr ; second byte in buffer
Chapter 6. EZ-USB FX Bulk Transfers Page 6-11

EZ-USB FX Technical Reference Manual
Figure 6-6. Example Code for a Simple (Polled) BULK Transfer

The code at lines 2-7 fills the endpoint 2-IN buffer with 64 bytes of a decrementing count. Two 8-bit
counts are initialized to zero at lines 9 and 10. An endpoint 2-IN transfer is armed at lines 11-13,
which load the endpoint 2-IN byte count register IN2BC with 64. Then, the program enters a poll-
ing loop at lines 15-20, where it checks two flags for endpoint 2 servicing. Lines 15-17 check the
endpoint 2-IN busy bit in IN2CS Bit 1. Lines 18-20 check the endpoint 2-OUT busy bit in OUT2CS
Bit 1. When busy=1, the EZ-USB core is currently using the endpoint buffers, and the 8051 should
not access them. When busy=0, new data is ready for service by the 8051.

For both IN and OUT endpoints, the busy bit is set when the EZ-USB core is using the buffers, and
cleared by loading the endpoint’s byte count register. The byte count value is meaningful for IN
transfers because it tells the USB core how many bytes to transfer in response to the next IN
token. The 8051 can load any byte count OUT transfers, because only the act of loading the regis-
ter is significant—loading OUTnBC arms the OUT transfer and sets the endpoint’s busy bit.

When an OUT packet arrives in OUT2BUF, the service routine at lines 22-26 increments R2, loads
the byte count (any value) into OUT2BC to re-arm the endpoint (lines 24-25), and jumps back to
the polling routine. This program does not use OUT2BUF data. It simply counts the number of
endpoint 2-OUT transfers.

When endpoint 2-IN is ready for the 8051 to load another packet into IN2BUF, the polling loop
jumps to the endpoint 2-IN service routine at lines 28-39. First, R1 is incremented (line 29). The
data pointer is set to IN2BUF at line 30, and Register R1 is loaded into the first byte of the buffer
(lines 31-32). The data pointer is advanced to the second byte of IN2BUF at line 33, and Register
R2 is loaded into the buffer (lines 34-35). Finally, the byte count 40H (64 decimal bytes) is loaded
into the byte count Register IN2BC to arm the next IN transfer at lines 36-38, and the routine
returns the polling loop.

6.12 Enumeration Note

The code in the example listed above is complete, and it runs on the EZ-USB FX chip. You may be
wondering about the missing step, which reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the EZ-
USB FX chip comes on as a fully-functional USB device with certain endpoints already configured
and reported to the host. Endpoint 2 is included in this default configuration. The full default config-
uration is described in Chapter 5. "EZ-USB FX Enumeration & ReNumeration™".

34 mov a,r2 ; get number of OUT packets
35 movx @dptr,a
36 mov dptr,#IN2BC ; point to EP2IN Byte Count Register
37 mov a,#40h
38 movx @dptr,a ; load bc=64 to re-arm IN2
39 sjmp loop
40 ;
41 END
Page 6-12 EZ-USB FX Technical Reference Manual v1.2

6.13 Bulk Endpoint Interrupts

All USB interrupts activate the 8051 INT 2 interrupt. If enabled, INT2 interrupts cause the 8051 to
push the current program counter onto the stack, and then execute a jump to location 0x43, where
the programmer has inserted a jump instruction to the interrupt service routine (ISR). If the AVEN
(Autovector Enable) bit is set, the USB core inserts a special byte at location 0x45, which directs
the jump instruction to a table of jump instructions that transfer control the endpoint-specific ISR.

*Replaced by EZ-USB Core if AVEN=1.

The byte inserted by the EZ-USB core at address 0x45 depends on which bulk endpoint requires
service. Table 6-5 shows all INT2 vectors, with the bulk endpoint vectors shaded.

The vector values are four bytes apart. This allows the programmer to build a jump table to each of
the interrupt service routines. Note that the jump table must begin on a page (256 byte) boundary

Table 6-4. 8051 INT2 Interrupt Vector

Location Op-Code Instruction
0x43 02 LJMP
0x44 AddrH
0x45 AddrL*

Table 6-5. Byte Inserted by USB Core at Location 0x45 if AVEN=1

Interrupt
Inserted Byte at

0x45
SUDAV 0x00

SOF 0x04
SUTOK 0x08

SUSPEND 0x0C
USBRES 0x10
Reserved 0x14
EP0-IN 0x18

EP0-OUT 0x1C
EP1-IN 0x20

EP1OUT 0x24
EP2IN 0x28

EP2OUT 0x2C
EP3-IN 0x30

EP3-OUT 0x34
EP4-IN 0x38

EP4-OUT 0x3C
EP5-IN 0x40

EP5-OUT 0x44
EP6-IN 0x48

EP6-OUT 0x4C
EP7-IN 0x50

EP7-OUT 0x54
Chapter 6. EZ-USB FX Bulk Transfers Page 6-13

EZ-USB FX Technical Reference Manual
because the first vector starts at 00. If Autovectoring is not used (AVEN=0), the IVEC Register
may be directly inspected to determine the USB interrupt source. (See Section 12.11. "Autovector
Coding").

Each bulk endpoint interrupt has an associated interrupt enable bit (in IN07IEN and OUT07IEN),
and an interrupt request bit (in IN07IRQ and OUT07IRQ). These IRQ bits can be cleared by writ-
ing to the INT2CLR SFR Register.

Any USB ISR should clear the 8051 INT2 interrupt request bit before clearing any of the
EZ-USB FX endpoint IRQ bits, to avoid losing interrupts. Interrupts are discussed in more
detail in Chapter 12. "EZ-USB FX Interrupts"

Individual interrupt request bits are cleared by writing “1” to them to simplify code. For
example, to clear the endpoint 2-IN IRQ, simply write “0000100” to IN07IRQ. This will not
disturb the other interrupt request bits. Do not read the contents of IN07IRQ, logical-OR
the contents with 01, and write it back. This clears all other pending interrupts because
you are writing “1”s to them.

6.14 Interrupt Bulk Transfer Example

This following simple (but fully-functional) example illustrates the bulk transfer mechanism using
interrupts. In the example program, BULK endpoint 6 is used to loop data back to the host. Data
sent by the host over endpoint 6-OUT is sent back over endpoint 6-IN.
Page 6-14 EZ-USB FX Technical Reference Manual v1.2

1. Set up the jump table.

Figure 6-7. Interrupt Jump Table

This table contains all of the USB interrupts, even though only the jumps for endpoint 6 are
used for the example. It is convenient to include this table in any USB application that uses
interrupts. Be sure to locate this table on a page boundary.

CSEG AT 300H ; any page boundary
USB_Jump_Table:

ljmp SUDAV_ISR ; SETUP Data Available
db 0 ; make a 4-byte entry
ljmp SOF_ISR ; SOF
db 0
ljmp SUTOK_ISR ; SETUP Data Loading
db 0
ljmp SUSP_ISR ; Global Suspend
db 0
ljmp URES_ISR ; USB Reset
db 0
ljmp IBN_ISR
db 0
ljmp EP0IN_ISR
db 0
ljmp EP0OUT_ISR
db 0
ljmp EP1IN_ISR
db 0
ljmp EP1OUT_ISR
db 0
ljmp EP2IN_ISR
db 0
ljmp EP2OUT_ISR
db 0
ljmp EP3IN_ISR
db 0
ljmp EP3OUT_ISR
db 0
ljmp EP4IN_ISR
db 0
ljmp EP4OUT_ISR
db 0
ljmp EP5IN_ISR
db 0
ljmp EP5OUT_ISR
db 0
ljmp EP6IN_ISR ; Used by this example
db 0
ljmp EP6OUT_ISR ; Used by this example
db 0
ljmp EP7IN_ISR
db 0
ljmp EP7OUT_ISR
db 0
Chapter 6. EZ-USB FX Bulk Transfers Page 6-15

EZ-USB FX Technical Reference Manual
2. Write the INT2 interrupt vector.

Figure 6-8. INT2 Interrupt Vector

3. Write the interrupt service routine.

Put it anywhere in memory and the jump table in step 1 will automatically jump to it.

Figure 6-9. Interrupt Service Routine (ISR) for Endpoint 6-OUT

In this example, the ISR simply sets the 8051 flag “got_EP6_data” to indicate to the back-
ground program that the endpoint requires service.

; -----------------
; Interrupt Vectors
; -----------------

org 43h ; int2 is the USB vector
ljmp USB_Jump_Table ; Autovector will replace byte 45

; -----------------------------
; USB Interrupt Service Routine
; -----------------------------
EP6OUT_ISR

push acc
;

mov a,EXIF ; clear INT2 (USB) IRQ flag
clr acc.4
mov EXIF,a

;
mov INT2CLR,a ; use whatever value is in acc

;
setb got_EP6-DATA

; Do Interrupt processing here — set flags, whatever . . .
; spend time here or not

pop acc
reti
Page 6-16 EZ-USB FX Technical Reference Manual v1.2

4. Write the endpoint 6 transfer program.

Figure 6-10. Background Program Transfers Endpoint 6-OUT Data to Endpoint 6-IN

The main program loop tests the “got_EP6_data” flag, waiting until it is set by the endpoint 6
OUT interrupt service routine in Figure 6-10. This indicates that a new data packet has arrived
in OUT6BUF. Then the service routine is entered, where the flag is cleared in line 2. The num-
ber of bytes received in OUT6BUF is retrieved from the OUT6BC Register (Endpoint 6 Byte
Count) and saved in Registers R6 and R7 in lines 7-10.

The dual data pointers are initialized to the source (OUT6BUF) and destination (IN6BUF) buff-
ers for the data transfer in lines 15-18. These labels represent the start of the 64-byte buffers
for endpoint 6-OUT and endpoint 6-IN, respectively. Each byte is read from the OUT6BUF
buffer and written to the IN6BUF buffer in lines 19-25. The saved value of OUT6BC is used as
a loop counter in R7 to transfer the exact number of bytes that were received over endpoint 6-
OUT.

1 loop: jnb got_EP6_data,loop
2 clr got_EP6_data ; clear my flag
3 ;
4 ; The user sent bytes to OUT6 endpoint using the USB Control Panel.
5 ; Find out how many bytes were sent.
6 ;
7 mov dptr,#OUT6BC ; point to OUT6 byte count register
8 movx a,@dptr ; get the value
9 mov r7,a ; stash the byte count
10 mov r6,a ; save here also
11 ;
12 ; Transfer the bytes received on the OUT6 endpoint to the IN6 endpoint
13 ; buffer. Number of bytes in r6 and r7.
14 ;
15 mov dptr,#OUT6BUF ; first data pointer points to EP2OUT buffer
16 inc dps ; select the second data pointer
17 mov dptr,#IN6BUF ; second data pointer points to EP2IN buffer
18 inc dps ; back to first data pointer
19 transfer: movx a,@dptr ; get OUT byte
20 inc dptr ; bump the pointer
21 inc dps ; second data pointer
22 movx @dptr,a ; put into IN buffer
23 inc dptr ; bump the pointer
24 inc dps ; first data pointer
25 djnz r7,transfer
26 ;
27 ; Load the byte count into IN6BC. This arms in IN transfer
28 ;
29 mov dptr,#IN6BC
30 mov a,r6 ; get other saved copy of byte count
31 movx @dptr,a ; this arms the IN transfer
32 ;
33 ; Load any byte count into OUT6BC. This arms the next OUT transfer.
34 ;
35 mov dptr,#OUT6BC
36 movx @dptr,a ; use whatever is in acc
37 sjmp loop ; start checking for another OUT6 packet
Chapter 6. EZ-USB FX Bulk Transfers Page 6-17

EZ-USB FX Technical Reference Manual
When the transfer is complete, the program loads the endpoint 6-IN byte count Register
IN6BC with the number of loaded bytes (from R6) to arm the next endpoint 6-IN transfer in
lines 29-31. Finally, the 8051 loads any value into the endpoint 6 OUT byte count Register
OUT6BC to arm the next OUT transfer in lines 35-36. Then the program loops back to check
for more endpoint 6-OUT data.

DMA cannot be used for this Loopback since the source and destination would be in the
same RAM block.

5. Initialize the endpoints and enable the interrupts.

Figure 6-11. Initialization Routine

The initialization routine sets the stack pointer, and enables the EZ-USB FX Autovector by set-
ting USBBAV.0 to 1. Then it enables the endpoint 6-OUT interrupt, all USB interrupts (INT2),
and the 8051 global interrupt (EA) and finally clears the flag indicating that endpoint 6-OUT
requires service.

Once this structure is put into place, it is quite easy to service any or all of the bulk endpoints.
To add service for endpoint 2-IN, for example, simply write an endpoint 2-IN interrupt service
routine with starting address EP2IN_ISR (to match the address in the jump table in step 1),
and add its valid and interrupt enable bits to the “init” routine.

start: mov SP,#STACK-1 ; set stack
;
; Enable USB interrupts and Autovector
;

mov dptr,#USBBAV ; enable Autovector
movx a,@dptr
setb acc.0 ; AVEN bit is bit 0
movx @dptr,a

;
movx dptr,#USBBAV
movx a, @dptr
setb acc.4 ; enable the SFR-clearing feature
movx @dptr, a ; for INT2

;
mov dptr,#OUT07IEN ; ‘EP0-7 OUT int enables’ Register

; mov a,#01000000b ; set bit 6 for EP6OUT interrupt enable
movx @dptr,a ; enable EP6OUT interrupt

;
; Enable INT2 and 8051 global interrupts
;

setb ex2 ; enable int2 (USB interrupt)
setb EA ; enable 8051 interrupts
clr got_EP6_data ; clear my flag
Page 6-18 EZ-USB FX Technical Reference Manual v1.2

6.15 Enumeration Note

The code in the previous example is complete, and runs on the EZ-USB FX chip. You may be won-
dering about the missing step, which reports the endpoint characteristics to the host during the
enumeration process. The reason this code runs without any enumeration code is that the EZ-USB
FX chip comes on as a fully-functional USB device with certain endpoints already configured and
reported to the host. Endpoint 6 is included in this default configuration. The full default configura-
tion is described in Chapter 5. "EZ-USB FX Enumeration & ReNumeration™".

Portions of the above code are not necessary for the default configuration (such as setting the
endpoint valid bits), but the code is included to illustrate all of the EZ-USB FX registers used for
bulk transfers

6.16 The Autopointer

Bulk endpoint data is available in 64-byte buffers in EZ-USB FX RAM. In some cases it is prefera-
ble to access bulk data as a FIFO register rather than as a RAM. The EZ-USB core provides a
special data pointer that automatically increments when data is transferred. Using this Autopointer,
the 8051 can access any contiguous block of internal EZ-USB FX RAM or off-chip memory as a
FIFO.

AUTOPTRH Autopointer Address High 7FE3

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

AUTOPTRL Autopointer Address Low 7FE4

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 6. EZ-USB FX Bulk Transfers Page 6-19

EZ-USB FX Technical Reference Manual
Figure 6-12. Autopointer Registers

The 8051 first loads AUTOPTRH and AUTOPTRL with a RAM address (for example the address
of a bulk endpoint buffer). Then, as the 8051 reads or writes data to the data Register AUTO-
DATA, the address is supplied by AUTOPTRH/L, which automatically increments after every read
or write to the AUTODATA Register. The AUTOPTRH/L Registers may be written or read at any-
time. These registers maintain the current pointer address, so the 8051 can read them to deter-
mine where the next byte will be read or written.

The 8051 code example in Figure 6-13 uses the Autopointer to transfer a block of eight data bytes
from the endpoint 4 OUT buffer to internal 8051 memory.

Figure 6-13. Use of the Autopointer

As the comment in the second to last line indicates, the Autopointer saves an “inc dptr” instruction
that would be necessary if one of the 8051 data pointers were used to access the OUT4BUF RAM
data. This improves the transfer time.

The Autopointer works only with internal program/data RAM. It does not work with mem-
ory outside the chip, or with internal RAM that is made available when ISODISAB=1. See
Section 10.6.1. "Disable ISO" for a description of the ISODISAB bit.

AUTODATA Autopointer Data 7FE5

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

Init: mov dptr,#AUTOPTRH
mov a,#HIGH(OUT4BUF) ; High portion of OUT4BUF buffer
movx @dptr,a ; Load AUTOPTRH
mov dptr,#AUTOPTRL
mov a,#LOW(OUT4BUF) ; Low portion of OUT4BUF buffer address
movx @dptr,a ; Load AUTOPTRL
mov dptr,#AUTODATA ; point to the ‘fifo’ Register
mov r0,#80H ; store data in upper 128 bytes of 8051 RAM
mov r2,#8 ; loop counter

;
loop: movx a,@dptr ; get a ‘fifo’ byte

mov @r0,a ; store it
inc r0 ; bump destination pointer

; (NOTE: no ‘inc dptr’ required here)
djnz r2,loop ; do it eight times
Page 6-20 EZ-USB FX Technical Reference Manual v1.2

The EZ-USB FX chip should never be a speed bottleneck in a USB system since it can DMA Data
at 24Mhz. It also gives the 8051 ample time for other processing duties between endpoint buffer
loads.

The Autopointer can be used to quickly move data anywhere in RAM, not just the bulk endpoint
buffers. For example, it can be used to good effect in an application that calls for transferring a
block of data into RAM, processing the data, and then transferring the data to a bulk endpoint
buffer.
Chapter 6. EZ-USB FX Bulk Transfers Page 6-21

EZ-USB FX Technical Reference Manual
Page 6-22 EZ-USB FX Technical Reference Manual v1.2

Chapter 7. EZ-USB FX Slave FIFOs

7.1 Introduction

Figure 7-1. The Four 64-Byte Slave FIFOs Configured for 16-Bit Mode

Figure 7-1 illustrates the four slave FIFOs in EZ-USB FX. The slave FIFOs, each 64 bytes in
length, serve as general-purpose buffers between external logic and 8051 registers. They are
called “slave” FIFOs because the outside logic can supply the timing signals. The FIFOs are

A S E L

S LR D

sel

S LW R

X C L K

A O E

A F I[7 ..0] (P O R TB p in s)

B S E L

B O E

B F I[7 ..0] (P O R TD p in s)

Aout

Ain

Bout

Bin

AO U TD ATA

AIN D ATA

BO U TD ATA

BIN D ATA

sel

se l

se l

805 1 R eg is te rs D e vice P insS lave F IF O S
Chapter 7. EZ-USB FX Slave FIFOs Page 7-1

EZ-USB FX Technical Reference Manual
grouped into identical A and B pairs, each pair having an IN and OUT FIFO. Figure 7-1 illustrates
16-bit mode, in which outside logic can read or write data either independently or simultaneously
from/to the two 8-bit FIFOs.

7.1.1 8051 FIFO Access

The 8051 accesses the slave FIFOs using four registers in XDATA memory: AOUTDATA, AIN-
DATA, BOUTDATA, and BINDATA. These registers can be read and written by 8051 code (using
the MOVX instruction), or they can serve as sources and destinations for the DMA mechanism,
built into the EZ-USB FX. Section 7.2. "Slave FIFO Register Descriptions" describes these regis-
ters in detail.

7.1.2 External Logic FIFO Access

External logic can access the slave FIFOs either asynchronously or synchronously:

• Asynchronous—SLRD and SLWR pins are read and write strobes.

• Synchronous—SLRD and SLWR pins are enables for the XCLK clock pin.

External logic accesses the FIFOs through two 8-bit data buses, which double as general-purpose
I/O ports PORTB and PORTD. When used for FIFO access, the data buses are bi-directional, with
output drivers controlled by the AOE and BOE pins.

Two FIFO select signals, ASEL and BSEL, are used to select the FIFO in two modes that use both
FIFOs: 8-bit mode, and double-byte mode. These modes and the role of the ASEL and BSEL pins
are illustrated in Figure 7-2 and Figure 7-3.
Page 7-2 EZ-USB FX Technical Reference Manual v1.2

7.1.3 ASEL, BSEL in 8-Bit Mode

Figure 7-2. Slave FIFOs in 8-Bit Mode

In 8-bit mode, data from the PORTB pins can be read/written from either the A or B FIFOs, as
selected by the ASEL and BSEL pins. In 8-bit mode, the input/output port or GPIF data is available
on the PORTD pins.

AS EL

C S

SLR D

C S

SLW R

XC LK

AO E

BS EL

C S

C S

Aout

Ain

Bout

Bin

AF I[7 ..0] (P O R TB p ins)

PD [7 ..0] (PO R T D p ins)

BF I[7 ..0] fo r G P IF

or

GDB[7..0] for GPIF
Chapter 7. EZ-USB FX Slave FIFOs Page 7-3

EZ-USB FX Technical Reference Manual
7.1.4 ASEL, BSEL in Double-Byte Mode

Figure 7-3. Double-Byte Mode with A-FIFO Selected

Figure 7-3 illustrates double-byte mode. For this illustration, signals ASEL, BSEL, AOE, and BOE
are programmed to be active high polarity. In this mode, the ASEL and BSEL pins determine
which of the FIFO pairs, A or B, accept or transmit interleaved byte data, as follows:

• The IN FIFO receives 16-bit data as double bytes, interleaved from PORTB first and then
from PORTD. The data interleaving is automatic, with two bytes written to the FIFO per
external write strobe. The interleave order input from the ports is the same whether the
destination FIFO is A-IN or B-IN.

• The OUT FIFO transmits two bytes, the first to PORTB and the second to PORTD, per
external read strobe. The interleave order output to the ports is the same whether the
source FIFO is A-OUT or B-OUT.

7.1.5 FIFO Registers

The 8051 accesses a variety of control and status registers to control the slave FIFO operation.
These registers perform the following functions:

• Data registers give the 8051/DMA access to IN FIFO and OUT FIFO data.

AS EL

C S

C S

AO E

AF I[7 ..0] (P O R TB pins)

BO E

BF I[7 ..0] (P O R TD p ins)

Aout

Ain

BS EL "LO "

M

L

L

Page 7-4 EZ-USB FX Technical Reference Manual v1.2

• Byte Count registers indicate the number of bytes in each FIFO.

• Flag bits indicate FIFO full, empty, and a programmable level.

• Mode bits control the various FIFO modes.

7.1.6 FIFO Flags and Interrupts

The slave FIFOs have two independent sets of flags, internal and external. The 8051 can directly
test the internal flags, or these flags can automatically create 8051 interrupts using INT4. The
external flags are available as device pins, to be used by external logic. Two independent sets of
programmable flags allow different FIFO fullness levels to be set for internal and external use.

The internal FIFO flags are connected to the 8051 interrupt system using INT4. To streamline the
8051 code that deals with these interrupts, the 8051 INT4 vector locations have a special property
when a mode bit called “AV4EN” (Autovector 4 Enable) is set. Referring to Table 7-1, when a FIFO
flag interrupt occurs with AV4EN=1, internal logic replaces the third byte of the jump instruction at
location 0x55 with a different address for each FIFO interrupt source.

 * (Table 7-2 shows bytes inserted at address 55H)

To set up autovectoring, the user places an LJMP instruction at location 0x53. This jumps to a
table of instructions that jump to the various FIFO ISRs. Then, every FIFO interrupt automatically
vectors to the individual interrupt service routines for the particular FIFO flags. The autovector
mechanism saves the 8051 from having to check for the source of each interrupt shared on INT4.

The FIFO interrupts that share INT4 are shown in Table 7-2. The last three are not FIFO-related,
and are described in other chapters. The bytes inserted by the EZ-USB FX logic (the low-address
byte of the LJMP instruction) are separated by four to allow four bytes per LJMP instruction in the
jump table. (An 8051 LJMP instruction requires three bytes).

Note that the bytes inserted for the INT4 autovector start at 0x80, rather than 0x00. This is
because another EZ-USB FX autovector, for INT2 (used for all USB interrupts), uses jump table
offsets from 0x00 to 0x57. The autovector jump table must start on a page boundary (8051
address XX00). Therefore, separating the two groups of jumps allows a single page of 8051 mem-
ory to be used for both INT2 and INT4 jump tables. The INT2 jump table can start at 0x00, and the
INT4 jump table can start at 0x80, both in the same page.

Table 7-1. Autovector for INT4*

8051 Addr Instruction Notes

0x53 LJMP Loc 53-55 are the INT4 Interrupt Vector.

0x54 AddrH

0x55 * AddrL EZ-USB FX logic replaces this byte when
AV4EN=1.
Chapter 7. EZ-USB FX Slave FIFOs Page 7-5

EZ-USB FX Technical Reference Manual
The first column shows the value in the IVEC4 Register for each FIFO interrupt source.

If two or more INT4 interrupt requests occur simultaneously, they are serviced in the order shown
in Table 7-2, with AINPF having the highest priority and DMADONE the lowest. Interrupt requests
remain pending while a higher level interrupt is serviced.

7.2 Slave FIFO Register Descriptions

In the following FIFO diagrams, the 8051-access side is on the left, and the external pins are on
the right.

Table 7-2. INT4 Autovectors

IVEC4
Value

Byte Inserted
at 0x55

Source Meaning

0x40 0x80 AINPF A-IN FIFO Programmable Flag

0x44 0x84 BINPF B-IN FIFO Programmable Flag

0x48 0x88 AOUTPF A-OUT FIFO Programmable Flag

0x4C 0x8C BOUTPF B-OUT FIFO Programmable Flag

0x50 0x90 AINEF A-IN FIFO Empty Flag

0x54 0x94 BINEF B-IN FIFO Empty Flag

0x58 0x98 AOUTEF A-OUT FIFO Empty Flag

0x5C 0x9C BOUTEF B-OUT FIFO Empty Flag

0x60 0xA0 AINFF A-IN FIFO Full Flag

0x64 0xA4 BINFF B-IN FIFO Full Flag

0x68 0xA8 AOUTFF A-OUT FIFO Full Flag

0x6C 0xAC BOUTFF B-OUT FIFO Full Flag

0x70 0xB0 GPIF-
DONE

See Chapter 8. "General Programmable
Interface (GPIF)"

0x74 0xB4 GPIFWF See Chapter 8. "General Programmable
Interface (GPIF)"

0x78 0xB8 DMADONE See Chapter 8. "General Programmable
Interface (GPIF)"
Page 7-6 EZ-USB FX Technical Reference Manual v1.2

7.2.1 FIFO A Read Data

Figure 7-4. AINDATA’s Role in the FIFO A Register

Figure 7-5. FIFO A Read Data

Each time the 8051 reads a byte from this register, the A-IN FIFO advances to the next byte in the
FIFO, and the AINBC (byte count) decrements. Reading this register when there is one byte
remaining in the A-IN FIFO sets the A-IN FIFO Empty Flag (AINEF, in ABINCS.4). This causes an
interrupt request on INT4 (Table 7-2). Reading this register when the A-IN FIFO is empty returns
indeterminate data and has no effect on the FIFO flags byte counts.

AINDATA FIFO A Read Data 7800

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-7

EZ-USB FX Technical Reference Manual
7.2.2 A-IN FIFO Byte Count

Figure 7-6. AINBC’s Role in the FIFO A Register

Figure 7-7. A-IN FIFO Byte Count

This count reflects the number of bytes remaining in the A-IN FIFO. Valid byte counts are 0-64.
Every byte written by outside logic increments this count, and every 8051 read of AINDATA decre-
ments this count. If AINBC is zero, an 8051 read of AINDATA returns indeterminate data and
results in the byte count in AINBC remaining at zero. Data bytes should never be written to the
FIFO from outside logic when the AINFULL flag is HI.

AINBC A-IN FIFO Byte Count 7801

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Page 7-8 EZ-USB FX Technical Reference Manual v1.2

7.2.3 A-IN FIFO Programmable Flag

Figure 7-8. AINPF’s Role in the FIFO A Register

Figure 7-9. A-IN FIFO Programmable Flag

This register controls the sense and value for the internal A-IN FIFO programmable flag. This flag
is testable by the 8051.

Another register, AINPFPIN (Section 7.2.3.3. "A-IN FIFO Pin Programmable Flag") corre-
sponds to an A-IN FIFO programmable flag that drives an output pin, not an internal flag
bit.

AINPF A-IN FIFO Programmable Flag 7802

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 1 0 0 0 0 0

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-9

EZ-USB FX Technical Reference Manual
The 8051 tests the internal FIFO programmable flag by reading the AINPF Bit in ABINCS.5. This
flag can also be enabled to cause an interrupt request on INT4 (Table 7-2) when it makes a zero-
to-one transition. The default value of the AINPF Register indicates half-empty.

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the AINPF flag goes true, if the number of bytes in the FIFO is less than or equal to
the programmed value in D[6..0].

If LTGT=1, the AINPF flag goes true, if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the A-IN
FIFO becomes active. The 8051 programs this register to indicate various degrees of A-IN
FIFO fullness to suit the application. The following two sections show the interaction of the
LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying FIFO.

7.2.3.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed
level is reached. Because the interrupt request is triggered on a zero-to-one transition of the pro-
grammable flag AINPF, the LTGT Bit should be set to “1.” In Table 7-3, D[6..0] is set to 48 bytes
and the LTGT Bit is set to “1.” When the FIFO reaches 48 bytes, the AINPF Bit goes high, generat-
ing an interrupt request.

7.2.3.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one tran-
sition of the AINPF flag (and therefore the interrupt request) occurs when the byte count descends
to below the programmed value. In Table 7-4, D[6..0] is set to 48 bytes, and when the FIFO goes
from 49 bytes to 48 bytes, the AINPF Bit goes high, generating an interrupt request.

Table 7-3. Filling FIFO

LTGT D[6..0]
Bytes

in
FIFO

AINPF

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1
Page 7-10 EZ-USB FX Technical Reference Manual v1.2

7.2.3.3 A-IN FIFO Pin Programmable Flag

Figure 7-10. AINPFPIN’s Role in the FIFO A Register

Table 7-4. Emptying FIFO

LTGT D[6..0]
Bytes

in
FIFO

AINPF

0 48 51 0

0 48 50 0

0 48 49 0

0 48 48 1

0 48 47 1

0 48 46 1

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-11

EZ-USB FX Technical Reference Manual
Figure 7-11. A-IN FIFO Pin Programmable Flag

This register controls the sense and value for the A-IN FIFO Programmable Flag that appears on
the AINFLAG pin. This pin is used by external logic to regulate external writes to the A-IN FIFO.
The AINPFPIN Register is programmed with the same data format as the previous register,
AINPF. The only operational difference is that the flag drives a hardware pin rather than existing as
an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to
have advance notice over the other side about a FIFO becoming full or empty.

The default value of the AINPFPIN Register indicates empty.

AINPFPIN A-IN FIFO Pin Programmable Flag 7803

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 7-12 EZ-USB FX Technical Reference Manual v1.2

7.2.4 B-IN FIFO Read Data

Figure 7-12. BINDATA’s Role in the FIFO B Register

Figure 7-13. B-IN FIFO Read Data

Each time the 8051 reads a byte from this register, the B-IN FIFO advances to the next byte in the
FIFO, and the BINBC (byte count) decrements. Reading this register when there is one byte
remaining in the FIFO sets the B-IN FIFO Empty Flag (BINEF, in ABINCS.1), which causes an
INT4 request. Reading this register when the B-IN FIFO is empty returns indeterminate data and
has no effect on the FIFO flags or byte count.

BINDATA B-IN FIFO Read Data 7805

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-13

EZ-USB FX Technical Reference Manual
7.2.5 B-IN FIFO Byte Count

Figure 7-14. BINBC’s Role in the FIFO B Register

Figure 7-15. B-IN FIFO Byte Count

This count reflects the number of bytes remaining in the B-IN FIFO. Valid byte counts are 0-64.
Every byte written by outside logic increments this count, and every 8051 read of BINDATA decre-
ments this count. If BINBC is zero, an 8051 read of BINDATA returns indeterminate data. This
results in the byte count in BINBC to remain at zero. Data bytes should never be written to the
FIFO from outside logic when the BINFULL flag is HI.

BINBC B-IN FIFO Byte Count 7806

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Page 7-14 EZ-USB FX Technical Reference Manual v1.2

7.2.6 B-IN FIFO Programmable Flag

Figure 7-16. BINPF’s Role in the FIFO B Register

Figure 7-17. B-IN FIFO Programmable Flag

This register controls the sense and value for the internal B-IN FIFO programmable flag.

Another register, BINPFPIN (Section 7.2.7. "B-IN FIFO Pin Programmable Flag") corre-
sponds to a B-IN FIFO programmable flag that drives an output pin, not an internal flag bit.

BINPF B-IN FIFO Programmable Flag 7807

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 1 0 0 0 0 0

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-15

EZ-USB FX Technical Reference Manual
The 8051 tests the internal FIFO programmable flag by reading the BINPF Bit in ABINCS.2. This
flag can also be enabled to cause an interrupt request on INT4 (Table 7-2) when it makes a zero-
to-one transition. The default value of the BINPF Register indicates half-empty.

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the BINPF flag goes true if the number of bytes in the FIFO is less than or equal to
the programmed value in D[6..0].

If LTGT=1, the BINPF flag goes true if the number of bytes in the FIFO is greater than or equal
to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the B-FIFO
becomes active. The 8051 programs this register to indicate various degrees of B-FIFO full-
ness to suit the application. The following two sections in this chapter show the interaction of
the LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying FIFO.

7.2.6.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed
level is reached. Because the interrupt request is triggered on a zero-to-one transition of the pro-
grammable flag BINPF, the LTGT Bit should be set to “1.” In Table 7-5, D[6..0] is set to 48 bytes
and the LTGT Bit is set to “1.” When the FIFO reaches 48 bytes, the BINPF Bit goes high, generat-
ing an interrupt request.

7.2.6.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one tran-
sition of the BINPF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-6, D[6..0] is set to 48 bytes, and when the FIFO goes
from 49 bytes to 48 bytes, the BINPF Bit goes high, generating an interrupt request.

Table 7-5. Filling FIFO

LTGT D[6..0]
Bytes

in
FIFO

BINPF

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1
Page 7-16 EZ-USB FX Technical Reference Manual v1.2

7.2.7 B-IN FIFO Pin Programmable Flag

Figure 7-18. BINPFPIN’s Role in the FIFO B Register

Table 7-6. Emptying FIFO

LTGT D[6..0]
Bytes

in
FIFO

BINPF

0 48 51 0

0 48 50 0

0 48 49 0

0 48 48 1

0 48 47 1

0 48 46 1

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-17

EZ-USB FX Technical Reference Manual
Figure 7-19. B-IN FIFO Pin Programmable Flag

This register controls the sense and value for the B-IN FIFO Programmable Flag that appears on
the BINFLAG pin. This pin is used by external logic to regulate external writes to the B-IN FIFO.
The BINPFPIN Register is programmed with the same data format as the previous register,
BINPF. The only operational difference is that the flag drives a hardware pin rather than existing as
an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to
have advance notice over the other side about a FIFO becoming full or empty.

The default value of the BINPFPIN Register indicates empty.

7.2.8 Input FIFOs A/B Toggle CTL and Flags

Figure 7-20. 8051 FIFO Toggle Mode vs. Normal Mode Diagram

BINPFPIN B-IN FIFO Pin Programmable Flag 7808

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

AoutA O U T D A TA

A IN D A T A Ain

BoutB O U T D A TA

B IN D A T A Bin

A B O U TT F

A B IN TF

AoutA O U T D A TA

A IN D A T A Ain

BoutB O U T D A TA

B IN D A T A Bin

1

1

0

0

(a) N o rm a l M ode (b) 8051 F IFO T oggle M ode
Page 7-18 EZ-USB FX Technical Reference Manual v1.2

Figure 7-21. Input FIFOs A/B Toggle CTL and Flags

Bit 7: INTOG Enable Input FIFO Toggle

A special FIFO toggle mode switches automatically between the A-IN and B-IN FIFOs each
time the 8051 reads data from the AINDATA Register. The toggle mechanism works only for
programmed 8051 transfers, not DMA transfers.

When INTOG=0, the A-IN and B-IN FIFOs operate in Normal Mode, as illustrated in diagram
(a) in Figure 7-20 on the previous page.

When INTOG=1, the FIFOs operate in Toggle Mode, as illustrated in diagram (b) in Figure 7-
20. The selected FIFO switches between the A-IN and B-IN FIFOs after every 8051 read of the
AINDATA Register. The selected FIFO is indicated by the INSEL Bit (Bit 6).

Bit 6: INSEL Input Toggle Select

If INTOG=1 when enabling the Toggle Mode:

• This bit selects IN FIFO A or B when the 8051 reads the AINDATA Register. When
INSEL=0, the B-IN FIFO is read. When INSEL=1, the A-IN FIFO is read. When INTOG=1,
this bit complements automatically (toggles) after every 8051 read of AINDATA. This has
the effect of automatically toggling between the A-IN and B-IN FIFOs for successive reads
of AINDATA.

• The 8051 can directly write this bit to select manually the A-IN or B-IN FIFO. More com-
monly, the Toggle Mode will be used since it allows 16-bit transfers using the 8051 without
requiring the 8051 to switch between the FIFOs.

If INTOG=0 when enabling the Toggle Mode:

• The INSEL Bit has no effect.

Bit 5: AINPF A-IN FIFO Programmable Flag

AINPF=1 when the A-IN FIFO byte count satisfies the conditions programmed into the pro-
grammable FIFO flag register AINPF; otherwise, AINPF=0. A zero-to-one transition of this flag
sets the interrupt request bit AINPFIR.

ABINCS Input FIFOs A/B Toggle CTL and Flags 780A

b7 b6 b5 b4 b3 b2 b1 b0

INTOG INSEL AINPF AINEF AINFF BINPF BINEF BINFF

R/W R/W R R R R R R

0 1 1 1 0 1 1 0
Chapter 7. EZ-USB FX Slave FIFOs Page 7-19

EZ-USB FX Technical Reference Manual
Bit 4: AINEF A-IN FIFO Empty Flag

AINEF=1 when the A-IN FIFO is empty; otherwise, AINEF=0. The flag goes active after the
8051 or DMA system reads the last byte in the A-IN FIFO. A zero-to-one transition of this flag
sets the interrupt request bit AINEFIR.

AINFF=1 when the A-IN FIFO is full; otherwise, AINFF=0. The flag goes active after external
logic writes the 64th byte into the A-IN FIFO. A zero-to-one transition of this flag sets the inter-
rupt request bit AINFFIR.

Bit 2: BINPF B-IN FIFO Programmable Flag

BINPF=1 when the number of bytes in the B-IN FIFO satisfies the requirements programmed
into the BINPF Register; otherwise, BINPF=0. A zero-to-one transition of this flag sets the
interrupt request bit BINPFIR.

Bit 1: BINEF B-IN FIFO Empty Flag

BINEF=1 when the B-IN FIFO is empty; otherwise, BINEF=0. The flag goes active after the
8051 or DMA system reads the last byte in the B-IN FIFO. A zero-to-one transition of this flag
sets the interrupt request bit BINEFIR.

Bit 0: BINFF B-IN FIFO Full Flag

BINFF=1 when the B-IN FIFO is full. The flag goes valid after external logic writes the 64th
byte into the B-IN FIFO. A zero-to-one transition of this flag sets the interrupt request bit BINF-
FIR.

7.2.9 Input FIFOs A/B Interrupt Enables

Figure 7-22. Input FIFOs A/B Interrupt Enables

Bit 5: AINPFIE A-IN FIFO Programmable Flag Interrupt Enable

The 8051 sets AINPFIE=1 to enable an INT4 interrupt when the AINPFIR interrupt request bit
makes a zero-to-one transition. This transition indicates that the A-IN FIFO byte count has sat-
isfied the fullness level programmed into the programmable FIFO flag register AINPF. The

ABINIE Input FIFOs A/B Interrupt Enables 780B

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AINPFIE AINEFIE AINFFIE BINPFIE BINEFIE BINFFIE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 7-20 EZ-USB FX Technical Reference Manual v1.2

8051 clears AINPFIE to prevent the associated interrupt request bit from causing an INT4
interrupt.

Bit 4: AINEFIE A-IN FIFO Empty Interrupt Enable

The 8051 sets AINEFIE=1 to enable an INT4 interrupt when the AINEFIR interrupt request bit
makes a zero-to-one transition. This indicates an A-IN FIFO byte count of zero. The 8051
clears AINEFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit 3: AINFFIE A-IN FIFO Bull Interrupt Enable

The 8051 sets AINFFIE=1 to enable an INT4 interrupt when the AINFFIR interrupt request bit
makes a zero-to-one transition. This indicates an A-IN FIFO byte count of 64. The 8051 clears
AINFFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit 2: BINPFIE B-IN FIFO Programmable Flag Interrupt Enable

The 8051 sets BINPFIE=1 to enable an INT4 interrupt when the BINPFIR interrupt request bit
makes a zero-to-one transition. This transition indicates that the B-IN FIFO byte count has sat-
isfied the fullness level programmed into the programmable FIFO flag register BINPF. The
8051 clears BINPFIE to prevent the associated interrupt request bit from causing an INT4
interrupt.

Bit 1: BINEFIE B-IN FIFO Empty Interrupt Enable

The 8051 sets BINEFIE=1 to enable an INT4 interrupt when the BINEFIR interrupt request bit
makes a zero-to-one transition. This indicates a B-IN FIFO byte count of zero. The 8051 clears
BINEFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.

Bit 0: BINFFIE B-IN FIFO Full Interrupt Enable

The 8051 sets BINFFIE=1 to enable an INT4 interrupt when the BINFFIR interrupt request bit
makes a zero-to-one transition. This indicates a B-IN FIFO byte count of 64. The 8051 clears
BINFFIE to prevent the associated interrupt request bit from causing an INT4 interrupt.
Chapter 7. EZ-USB FX Slave FIFOs Page 7-21

EZ-USB FX Technical Reference Manual
7.2.10 Input FIFOs A/B Interrupt Requests

Figure 7-23. Input FIFOs A/B Interrupt Requests

Bit 5: AINPFIR A-IN FIFO Programmable Flag Interrupt Request

AINPFIR makes a zero-to-one transition when the A-IN FIFO byte count satisfies the required
condition programmed into the programmable FIFO flag register AINPF. If enabled by the AIN-
PFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINPFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 4: AINEFIR A-IN FIFO Empty Interrupt Request

AINEFIR makes a zero-to-one transition when the A-IN FIFO byte count reaches zero (FIFO
empty). If enabled by the AINEFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINEFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 3: AINFFIR A-IN FIFO Full Interrupt Request

AINFFIR makes a zero-to-one transition when the A-IN FIFO byte count reaches 64 (FIFO
full). If enabled by the AINFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AINFFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 2: BINPFIR B-IN FIFO Programmable Flag Interrupt Request

BINPFIR makes a zero-to-one transition when the B-IN FIFO byte count satisfies the required
condition programmed into the programmable FIFO flag register BINPF. If enabled by the BIN-
PFIE Bit, this transition causes an INT4 interrupt request.

ABINIRQ Input FIFOs A/B Interrupt Requests 780C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AINPFIR AINEFIR AINFFIR BINPFIR BINEFIR BINFFIR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 7-22 EZ-USB FX Technical Reference Manual v1.2

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINPFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 1: BINEFIR B-IN FIFO Empty Interrupt Request

BINEFIR makes a zero-to-one transition when the B-IN FIFO byte count reaches zero (FIFO
empty). If enabled by the BINEFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINEFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.

Bit 0: BINFFIR B-IN FIFO Full Interrupt Request

BINFFIR makes a zero-to-one transition when the B-IN FIFO byte count reaches 64 (FIFO
full). If enabled by the BINFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BINFFIR Bit in the interrupt service routine to guarantee
that pending INT4 interrupts will be recognized.
Chapter 7. EZ-USB FX Slave FIFOs Page 7-23

EZ-USB FX Technical Reference Manual
7.2.11 FIFO A Write Data

Figure 7-24. AOUTDATA’s Role in the FIFO A Register

Figure 7-25. FIFO A Write Data

Each time the 8051/DMA writes a byte to this register, the A-OUT FIFO advances to the next open
position in the FIFO and the AOUTBC (byte count) increments. Writing this register when there are
63 bytes remaining in the A-OUT FIFO sets the A-FIFO Full Flag (AOUTFF, in ABOUTCS.3),
which causes an INT4 request. Writing this register when the A-OUT FIFO is full (64 bytes) does
not update the FIFO or byte count, and has no effect on the FIFO flags or byte count.

AOUTDATA FIFO A Write Data 780E

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

W W W W W W W W

x x x x x x x x

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Page 7-24 EZ-USB FX Technical Reference Manual v1.2

7.2.11.1 A-OUT FIFO Byte Count

Figure 7-26. AOUTBC’s Role in the FIFO A Register

Figure 7-27. Input FIFOs A/B Interrupt Requests

This count reflects the number of bytes remaining in the A-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of
AOUTDATA increments this count. If AOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in AOUTBC remaining at zero.

AOUTBC A-OUT FIFO Byte Count 780F

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-25

EZ-USB FX Technical Reference Manual
7.2.12 A-OUT FIFO Programmable Flag

Figure 7-28. AOUTPF’s Role in the FIFO A Register

Figure 7-29. Input FIFOs A/B Interrupt Requests

This register controls the sense and value for the internal A-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051 and/or enabled to cause an INT4 interrupt request. The
default value of the AOUTPF Register indicates a half-full condition.

The 8051 tests the internal FIFO programmable flag by reading the AOUTPF Bit in ABOUTCS.5
(Register at 0x7818).

AOUTPF A-OUT FIFO Programmable Flag 7810

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 1 0 0 0 0 0

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Page 7-26 EZ-USB FX Technical Reference Manual v1.2

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the AOUTPF flag goes true if the number of bytes in the FIFO is less than or equal
to the programmed value in D[6..0].

If LTGT=1, the AOUTPF flag goes true if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the A-OUT
FIFO becomes active. The 8051 programs this register to indicate various degrees of A-OUT
FIFO fullness to suit the application. The following two sections in this chapter show the inter-
action of the LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying
FIFO.

7.2.12.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed level
is reached. Because the interrupt request is triggered on a zero-to-one transition of the program-
mable flag AOUTPF, the LTGT Bit should be set to “1.” In Table 7-7, D[6..0] is set for 48 bytes,
and the LTGT Bit is set to “1.” When the FIFO reaches 48 bytes, the AINPF Bit goes high, generat-
ing an interrupt request.

7.2.12.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so that the zero-to-one
transition of the PF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-8, D[6..0] is set to 48 bytes, and when the FIFO goes from
49 bytes to 48 bytes, the AOUTPF Bit goes high, generating an interrupt request.

Table 7-7. Filling FIFO

LTGT D[6..0]
Bytes

in
FIFO

AOUTPF

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1
Chapter 7. EZ-USB FX Slave FIFOs Page 7-27

EZ-USB FX Technical Reference Manual
7.2.13 A-OUT FIFO Pin Programmable Flag

Figure 7-30. AOUTPFPIN’s Role in the FIFO A Register

Table 7-8. Emptying FIFO

LTGT D[6..0]
Bytes

in
FIFO

AOUTPF

0 48 51 0

0 48 50 0

0 48 49 0

0 48 48 1

0 48 47 1

0 48 46 1

A O E

A F I[7 . .0] (P O R T B)A O U T D A T A Aout

AinA IN D A T A

A O U T E M T Y

A O U T F L A G

A O U T P F P IN

A O U T B C

A B O U T T F

A O U T P F

A O U T E F

A O U T F F

A B IN T F

A IN B C

A IN P F

A IN E F

A IN F F

A IN F L A G

A IN F U L L

A IN P F P IN

A O U T P F

A IN P F

A B P O L A R
Page 7-28 EZ-USB FX Technical Reference Manual v1.2

Figure 7-31. A-OUT FIFO Pin Programmable Flag

This register controls the sense and value for the A-OUT FIFO Programmable Flag that appears
on the AOUTFLAG pin. This pin is used by external logic to regulate external reads from the A-
OUT FIFO. The AOUTPFPIN Register is programmed with the same data format as the previous
register, AOUTPF. The only operational difference is that the flag drives a hardware pin, rather
than existing as an internal register bit.

Having separate programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to
have advance notice over the other side about a FIFO becoming full or empty.

The default value of the AOUTPFPIN Register indicates full (bytes in FIFO greater than or equal to
64.

AOUTPFPIN A-OUT FIFO Pin Programmable Flag 7811

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 0 0 0 0 0 0
Chapter 7. EZ-USB FX Slave FIFOs Page 7-29

EZ-USB FX Technical Reference Manual
7.2.14 B-OUT FIFO Write Data

Figure 7-32. BOUTDATA’s Role in the FIFO B Register

Figure 7-33. B-OUT FIFO Write Data

Each time the 8051/DMA writes a byte to this register, the B-OUT FIFO advances to the next open
position in the FIFO and the BOUTBC (Byte count) increments. Writing this register when there
are 63 bytes remaining in the B-OUT FIFO sets the B-FIFO Full Flag (BOUTFF, in ABOUTCS.0).
This causes an INT4 interrupt request. Writing this register when the B-OUT FIFO is full (64 bytes)
does not update the FIFO or byte count, and has no effect on the FIFO flags or byte count.

BOUTDATA B-OUT FIFO Write Data 7813

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

W W W W W W W W

x x x x x x x x

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Page 7-30 EZ-USB FX Technical Reference Manual v1.2

7.2.15 B-OUT FIFO Byte Count

Figure 7-34. BOUTBC’s Role in the FIFO B Register

Figure 7-35. B-OUT FIFO Byte Count

This count reflects the number of bytes remaining in the B-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of
BOUTDATA increments this count. If BOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in BOUTBC remaining at zero.

BOUTBC B-OUT FIFO Byte Count 7814

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Chapter 7. EZ-USB FX Slave FIFOs Page 7-31

EZ-USB FX Technical Reference Manual
7.2.16 B-OUT FIFO Programmable Flag

Figure 7-36. BOUTPF’s Role in the FIFO B Register

Figure 7-37. B-OUT FIFO Programmable Flag

This register controls the sense and value for the internal B-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051, and/or enabled to cause an INT4 interrupt request. The
default value of the BOUTPF Register indicates a half-full condition.

The 8051 tests the internal FIFO programmable flag by reading the BOUTPF Bit in ABOUTCS.2.

BOUTPF B-OUT FIFO Programmable Flag 7815

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 1 0 0 0 0 0

B O E
B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Page 7-32 EZ-USB FX Technical Reference Manual v1.2

Bit 7: LTGT Less-than, Greater-than flag

If LTGT=0, the BOUTPF flag goes true if the number of bytes in the FIFO is less than or equal
to the programmed value in D[6..0].

If LTGT=1, the BOUTPF flag goes true if the number of bytes in the FIFO is greater than or
equal to the value programmed into D[6..0].

Bit 6-0: PFVAL Programmable Flag Value

This value, along with the LTGT Bit, determines when the programmable flag for the B-FIFO
becomes active. The 8051 programs this register to indicate various degrees of B-FIFO full-
ness to suit the application. The following two sections of this chapter show the interaction of
the LTGT Bit and the programmed value for two cases, a filling FIFO and an emptying FIFO.

7.2.16.1 Filling FIFO

When a FIFO is filling with data, it is useful to generate an 8051 interrupt when a programmed level
is reached. Because the interrupt request is triggered on a zero-to-one transition of the program-
mable flag BOUTPF, the LTGT Bit should be set to “1.” In Table 7-9, D[6..0] is set for 48 bytes and
the LTGT Bit is set to “1.” When the FIFO reaches 48 bytes, the BOUTPF Bit goes high, generating
an interrupt request.

7.2.16.2 Emptying FIFO

When a FIFO is being emptied of data, the LTGT Bit should be set to “0,” so the zero-to-one transi-
tion of the BOUTPF flag (therefore, the interrupt request) occurs when the byte count descends to
below the programmed value. In Table 7-10, D[6..0] is set to 48 bytes. When the FIFO goes from
49 bytes to 48 bytes, the BOUTPF Bit goes high, generating an interrupt request.

Table 7-9. Filling FIFO

LTGT D[6..0]
Bytes

in
FIFO

BOUTPF

1 48 45 0

1 48 46 0

1 48 47 0

1 48 48 1

1 48 49 1

1 48 50 1
Chapter 7. EZ-USB FX Slave FIFOs Page 7-33

EZ-USB FX Technical Reference Manual
7.2.17 B-OUT FIFO Pin Programmable Flag

Figure 7-38. BOUTPFPIN’s Role in the FIFO B Register

Table 7-10. Emptying FIFO

LTGT D[6..0]
Bytes

in
FIFO

BOUTPF

0 48 51 0

0 48 50 0

0 48 49 0

0 48 48 1

0 48 47 1

0 48 46 1

B O E

B O U T D A T A Bout

BinB IN D A T A

B F I[7 . .0] (P O R T D)

B O U T E M T Y

B O U T F L A G

B O U T P F P IN

B O U T B C

A B O U T T F

B O U T P F

B O U T E F

B O U T F F

A B IN T F

B IN B C

B IN P F

B IN E F

B IN F F

B IN F L A G

B IN F U L L

B IN P F P IN

B O U T P F

B IN P F

A B P O L A R
Page 7-34 EZ-USB FX Technical Reference Manual v1.2

Figure 7-39. B-OUT FIFO Pin Programmable Flag

This register controls the sense and value for the B-OUT FIFO Programmable Flag that appears
on the BOUTFLAG pin. This pin is used by external logic to regulate external reads from the B-
OUT FIFO. The BOUTPFPIN Register is programmed with the same data format as the previous
register, BOUTPF. The only operational difference is that the flag drives a hardware pin rather than
existing as an internal register bit.

Having separate, programmable flags allows the 8051 and external logic to have independent
gauges of FIFO fullness. It may be desirable, for example, for one side (8051 or external logic) to
have advance notice over the other side about a FIFO becoming full or empty.

The default value of the BOUTPFPIN Register indicates full.

7.2.18 Output FIFOs A/B Toggle CTL and Flags

Figure 7-40. 8051 FIFO Toggle Mode vs. Normal Mode Diagram

BOUTPFPIN B-OUT FIFO Pin Programmable Flag 7816

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 0 0 0 0 0 0

AoutA O U T D A TA

A IN D A T A Ain

BoutB O U T D A TA

B IN D A T A Bin

A B O U TT F

A B IN TF

AoutA O U T D A TA

A IN D A T A Ain

BoutB O U T D A TA

B IN D A T A Bin

1

1

0

0

(a) N o rm a l M ode (b) 8051 F IFO T oggle M ode
Chapter 7. EZ-USB FX Slave FIFOs Page 7-35

EZ-USB FX Technical Reference Manual
Figure 7-41. Output FIFOs A/B Toggle CTL and Flags

Bit 7: OUTTOG Enable Output FIFO Toggle

A special FIFO toggle mode switches automatically between the A-OUT and B-OUT FIFOs
each time the 8051 writes data to the AOUTDATA Register. The toggle mechanism works only
for programmed 8051 transfers, not DMA transfers.

When OUTTOG=0, the A-OUT and B-OUT FIFOs operate in Normal Mode, as shown by dia-
gram (a) in Figure 7-40 on the previous page.

When OUTTOG=1, the FIFOs operate in Toggle Mode, as shown by diagram (b) in Figure 7-
40. The selected FIFO switches between the A-OUT and B-OUT FIFOs after every 8051 write
to the AOUTDATA Register. The selected FIFO is indicated by the OUTSEL Bit (Bit 6).

Bit 6: OUTSEL Input Toggle Select

If OUTTOG=1 when enabling the Toggle Mode:

• This bit selects OUT FIFO A or B when the 8051 writes to the AOUTDATA Register. When
OUTSEL=0, the B-OUT FIFO is written. When OUTSEL=1, the A-OUT FIFO is written.
When OUTTOG=1, this bit complements automatically (toggles) after every 8051 write to
AOUTDATA. This has the effect of automatically toggling between the A-OUT and B-OUT
FIFOs for successive 8051 writes to AOUTDATA.

• The 8051 can directly write this bit to select manually the A-OUT or B-OUT FIFO. More
commonly, the Toggle Mode is used, since it allows 16-bit transfers using the 8051 without
requiring the 8051 to switch between the FIFOs.

If OUTTOG=0 when enabling the Toggle Mode:

• The OUTSEL Bit has no effect.

Bit 5: AOUTPF A-OUT FIFO Programmable Flag

AOUTPF=1 when the number of bytes in the A-OUT FIFO satisfies the requirements pro-
grammed into the AOUTPF Register; otherwise, AOUTPF=0. This bit may be tested by the

ABOUTCS Output FIFOs A/B Toggle CTL and Flags 7818

b7 b6 b5 b4 b3 b2 b1 b0

OUTTOG OUTSEL AOUTPF AOUTEF AOUTFF BOUTPF BOUTEF BOUTFF

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 0 1 0 0 1 0
Page 7-36 EZ-USB FX Technical Reference Manual v1.2

8051and/or used to generate an interrupt request. A zero-to-one transition of this flag sets the
interrupt request bit AOUTPFIR.

Bit 4: AOUTEF A-OUT FIFO Empty Flag

AOUTEF=1 when the A-OUT FIFO is empty; otherwise, AOUTEF=0. The flag goes valid after
external logic reads the last byte in the A-OUT FIFO. This bit may be tested by the 8051, and/
or used to generate an interrupt request. A zero-to-one transition of this flag sets the interrupt
request bit AOUTEFIR.

Bit 3: AOUTFF A-OUT FIFO Full Flag

AOUTFF=1 when the A-OUT FIFO is full; otherwise, AOUTFF=0. The flag goes valid after the
8051/DMA writes the 64th byte into the A-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit AOUTFFIR.

Bit 2: BOUTPF B-OUT FIFO Programmable Flag

BOUTPF=1 when the number of bytes in the B-OUT FIFO satisfies the requirements pro-
grammed into the BOUTPF Register; otherwise, BOUTPF=0. A zero-to-one transition of this
flag sets the interrupt request bit BOUTPFIR.

Bit 1: BOUTEF B-OUT FIFO Empty Flag

BOUTEF=1 when the B-OUT FIFO is empty; otherwise, BOUTEF=0. The flag goes valid after
external logic reads the last byte in the B-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit BOUTEFIR.

Bit 0: BOUTFF B-OUT FIFO Full Flag

BOUTFF=1 when the B-OUT FIFO is full; otherwise, BOUTFF=0. The flag goes valid after the
8051/DMA writes the 64th byte into the B-OUT FIFO. A zero-to-one transition of this flag sets
the interrupt request bit BOUTFFIR.

7.2.19 Output FIFOs A/B Interrupt Enables

Figure 7-42. Output FIFOs A/B Interrupt Enables

ABOUTIE Input FIFOs A/B Interrupt Enables 7819

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AOUTPFIE AOUTEFIE AOUTFFIE BOUTPFIE BOUTEFIE BOUTFFIE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 7. EZ-USB FX Slave FIFOs Page 7-37

EZ-USB FX Technical Reference Manual
Bit 5: AOUTPFIE A-OUT FIFO Programmable Flag Interrupt Enable

The 8051 sets AOUTPFIE=1 to enable an INT4 interrupt when the AOUTPFIR interrupt
request bit makes a zero-to-one transition. This transition indicates that the A-OUT FIFO byte
count has satisfied the fullness level programmed into the programmable FIFO flag register
AOUTPF.

Bit 4: AOUTEFIE A-OUT FIFO Empty Interrupt Enable

The 8051 sets AOUTEFIE=1 to enable an INT4 interrupt when the AOUTEFIR interrupt
request bit makes a zero-to-one transition. This indicates an A-OUT FIFO byte count of zero
(FIFO empty).

Bit 3: AOUTFFIE A-OUT FIFO Bull Interrupt Enable

The 8051 sets AOUTFFIE=1 to enable an INT4 interrupt when the AOUTFFIR interrupt
request bit makes a zero-to-one transition. This indicates an A-OUT FIFO byte count of 64
(FIFO full).

Bit 2: BOUTPFIE B-OUT FIFO Programmable Flag Interrupt Enable

The 8051 sets BOUTPFIE=1 to enable an INT4 interrupt when the BOUTPFIR interrupt
request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count has satis-
fied the fullness level programmed into the programmable FIFO flag register BOUTPF.

Bit 1: BOUTEFIE B-OUT FIFO Empty Interrupt Enable

The 8051 sets BOUTEFIE=1 to enable an INT4 interrupt when the BOUTEFIR interrupt
request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count of zero
(FIFO empty).

Bit 0: BOUTFFIE B-OUT FIFO Full Interrupt Enable

The 8051 sets BOUTFFIE=1 to enable an INT4 interrupt when the BOUTFFIR interrupt
request bit makes a zero-to-one transition. This indicates a B-OUT FIFO byte count of 64
(FIFO full).
Page 7-38 EZ-USB FX Technical Reference Manual v1.2

7.2.20 Output FIFOs A/B Interrupt Requests

Figure 7-43. Output FIFOs A/B Interrupt Requests

Bit 5: AOUTPFIR A-OUT FIFO Programmable Flag Interrupt Request

AOUTPFIR makes a zero-to-one transition when the A-OUT FIFO byte count satisfies the
required condition programmed into the programmable FIFO flag register AOUTPF. If enabled
by the AOUTPFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTPFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 4: AOUTEFIR A-OUT FIFO Empty Interrupt Request

AOUTEFIR makes a zero-to-one transition when the A-OUT FIFO byte count reaches zero
(FIFO empty). If enabled by the AOUTEFIE Bit, this transition causes an INT4 interrupt
request.

The 8051 writes “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTEFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 3: AOUTFFIR A-OUT FIFO Full Interrupt Request

AOUTFFIR makes a zero-to-one transition when the A-OUT FIFO byte count reaches 64
(FIFO full). If enabled by the AOUTFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the AOUTFFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

ABOUTIRQ Output FIFOs A/B Interrupt Requests 781A

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AOUTPFIR AOUTEFIR AOUTFFIR BOUTPFIR BOUTEFIR BOUTFFIR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 7. EZ-USB FX Slave FIFOs Page 7-39

EZ-USB FX Technical Reference Manual

Bit 2: BOUTPFIR B-OUT FIFO Programmable Flag Interrupt Request

BOUTPFIR makes a zero-to-one transition when the B-OUT FIFO byte count satisfies the
required condition programmed into the programmable FIFO flag register BOUTPF. If enabled
by the BOUTPFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BOUTPFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 1: BOUTEFIR B-OUT FIFO Empty Interrupt Request

BOUTEFIR makes a zero-to-one transition when the B-OUT FIFO byte count reaches zero
(FIFO empty). If enabled by the BOUTEFIE Bit, this transition causes an INT4 interrupt
request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051
INT4 Bit (EXIF.6) before clearing the BOUTEFIR Bit in the interrupt service routine to guaran-
tee that pending INT4 interrupts will be recognized.

Bit 0: BOUTFFIR B-OUT FIFO Full Interrupt Request

BOUTFFIR makes a zero-to-one transition when the B-OUT FIFO byte count reaches 64 (FIFO
full). If enabled by the BOUTFFIE Bit, this transition causes an INT4 interrupt request.

The 8051 writes a “1” to this bit to clear the interrupt request. The 8051 should clear the 8051 INT4
Bit (EXIF.6) before clearing the BOUTFFIR Bit in the interrupt service routine to guarantee that
pending INT4 interrupts will be recognized.

7.2.21 FIFO A/B Setup

Figure 7-44. FIFO A/B Setup

Bit 5: ASYNC Select SYNC/ASYNC Slave FIFO Clocking

The ASYNC Bit controls how external logic synchronizes accesses to the A and B FIFOs.

ABSETUP FIFO A/B Setup 781C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 ASYNC DBLIN 0 OUTDLY 0 DBLOUT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 7-40 EZ-USB FX Technical Reference Manual v1.2

When the 8051 sets ASYNC=1, the A and B FIFOs operate asynchronously, whereby the
SLRD (Slave FIFO-READ) and SLWR (Slave FIFO-WRITE) pins are used as direct read and
write strobes.

When the 8051 sets ASYNC=0, the A and B FIFOs operate synchronously, whereby the SLRD
and SLWR pins are used as enable signals for the externally supplied FIFO clock XCLK. The
polarity of the enables, active-high or active-low, is controlled by the ABPOLAR Register (Sec-
tion 7.2.22. "FIFO A/B Control Signal Polarities").

Figure 7-45. A-IN FIFO Double-Byte Mode

Bit 4: DBLIN Enable IN Double-Byte Mode

The 8051 sets DBLIN=1 to turn on the IN-FIFO double-byte mode. Figure 7-45 illustrates the
double-byte mode for the A-IN FIFO. The B-IN FIFO may also use this mode, in which case
the outside logic sets ASEL=0 and BSEL=1. For this illustration, signals ASEL, BSEL, AOE,
and BOE are programmed to be active high polarity.

In double-byte mode, external logic writes 16 bits of data into the A-IN or B-IN FIFO each time
it asserts the SLWR signal. The double-byte mode automatically writes two bytes for every
SLWR pulse in ASYNC mode or two bytes for every clock pulse in SYNC mode. The bytes are
taken from PORTD and PORTB, in that order. This provides a very efficient mechanism for
transferring 16-bit data into the 8-bit slave FIFOs.

If synchronous clocking is used in double-byte mode, consecutive writes must be separated by
at least one XCLK period to give the internal logic time to write both bytes into the FIFO. This
clocking restriction applies only to the double-byte mode. In normal operation, one byte per
clock can be loaded into a slave IN-FIFO.

ASEL=1

CS

SLW R

XCLK

AOE=LO

AFI [7..0] (PORTB pins)

BOE=LO

BFI[7..0] (PORTD pins)

Ain

BSEL LO

M

Chapter 7. EZ-USB FX Slave FIFOs Page 7-41

EZ-USB FX Technical Reference Manual
Figure 7-46. A-OUT FIFO Delay Synchronous Reads

Bit 2: OUTDLY Delay Synchronous Reads

The OUTDLY Bit affects only synchronous reads of a slave FIFO. When OUTDLY=0, output
data is valid on the clock edge that corresponds to the SLRD signal being valid. When OUT-
DLY=1, the output data is valid one clock later.

Figure 7-46 shows two synchronous reads of the A-OUT FIFO, with the OUTDLY Bit first
equal to 0, then equal to 1. For this example, the SLRD, AOE, and ASEL signals are pro-
grammed to be active low.

XC LK

D [7 ..0]

AS EL

SLR D

AO E

OUTDLY=0 OUTDLY=1

N N +2N +1
Page 7-42 EZ-USB FX Technical Reference Manual v1.2

Figure 7-47. B-OUT FIFO Double-Byte Mode

Bit 0: DBLOUT Enable FIFO-OUT Double-Byte Mode

The 8051 sets DBLOUT=1 to turn on the OUT-FIFO double-byte mode. Figure 7-47 illustrates the
double-byte mode for the B-OUT FIFO. The A-OUT FIFO may also use this mode, in which case
the outside logic sets ASEL=1 and BSEL=0. For this illustration, signals ASEL, BSEL, AOE, and
BOE are programmed to be active high polarity.

The double-byte mode automatically provides two FIFO bytes on PORTDand PORTB, in that
order, for every SLRD pulse in ASYNC mode or two bytes for every clock pulse in SYNC mode.
This provides a very efficient mechanism for transferring 16-bit data out of the 8-bit slave FIFOs.

In SYNC mode, consecutive reads must be separated by at least one XCLK period, to give the
internal logic time to retrieve both bytes from the FIFO.

7.2.22 FIFO A/B Control Signal Polarities

Figure 7-48. FIFO A/B Control Signal Polarities

ABPOLAR FIFO A/B Control Signal Polarities 781D

b7 b6 b5 b4 b3 b2 b1 b0

0 0 BOE AOE SLRD SLWR ASEL BSEL

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

BSEL=HICS

AOE=HI

AFI[7..0] (PORTB pins)

BOE=HI

BFI[7..0] (PORTD pins)

Bout

ASEL LO

L

L

SLRD

XCLK
Chapter 7. EZ-USB FX Slave FIFOs Page 7-43

EZ-USB FX Technical Reference Manual
These bits define the pin polarities for the indicated signals. The 8051 sets a bit LOW for active
low, and HI for active high. The default setting for all FIFO A/B control signals is active low polarity.

7.2.23 FIFO Flag Reset

Figure 7-49. FIFO Flag Reset

The 8051 writes any value to this register to reset the FIFO byte counts to zero, effectively flushing
the FIFOs. Consequently, the byte counts are set to zero, the empty flags are set, and the full
flags are cleared.

Reading this register returns indeterminate data.

ABFLUSH Reset All FIFO Flags 781E

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x
Page 7-44 EZ-USB FX Technical Reference Manual v1.2

7.3 FIFO Timing

Figure 7-50. Synchronous Write/Read Timing

X C L K

A F I[7 ..0]*

A S E L#

S LW R #

O E A #

X C L K

A F I[7 ..0]

A S E L#

S LR D #

O E A #

1 2 3 4

1 2 3 4 5

x

x x x x x

A IN F U L L

A O U T E M T Y

Synchronous Read (OUTDLY = 0)

Synchronous W rite

* D ata 4 is th e 6 4th b yte; da ta 5 is no t w r itte n
Chapter 7. EZ-USB FX Slave FIFOs Page 7-45

EZ-USB FX Technical Reference Manual
Figure 7-51. Synchronous Double-byte Write/Read

x

x

X C L K

A F I[7 ..0]

A S E L

S L R D

O E A #

LX

Synchronous Double-byte Read

X C L K

A F I[7 ..0]

A S E L

S L W R

O E A #

L L x

Synchronous Double-byte Write

B F I[7 ..0] H

x

Hx x

L

B F I[7 ..0] H HX
Page 7-46 EZ-USB FX Technical Reference Manual v1.2

Chapter 8. General Programmable Interface (GPIF)

8.1 What is GPIF?

The General Programmable InterFace (GPIF) is an extremely flexible 8- or 16-bit parallel interface
that allows designers to reduce system costs by providing a glueless interface between the EZ-
USB FX and many different types of external peripherals.

The GPIF allows the EZ-USB FX to perform local bus mastering to external peripherals using a
wide variety of protocols. For example, EIDE/ATAPI, printer parallel port (IEEE P1284), Utopia,
and other interfaces can be supported using the GPIF block of the EZ-USB FX.

To support a wide range of applications, the GPIF implements an extensive feature set that can be
modified to suit the design. As with other highly configurable chips, some initialization steps are
required. To support a range of interface styles, the GPIF provides multiple programmable I/O pins
and multiple registers to configure those pins.

This chapter provides an overview of GPIF, discusses external connections, and explains the oper-
ation of the GPIF engine.

Figure 8-1 presents a block diagram illustrating GPIF’s place in the FX System.
Chapter 8. General Programmable Interface (GPIF) Page 8-1

EZ-USB FX Technical Reference Manual
Figure 8-1. GPIF’s Place in the FX System

8.2 Applicable Documents and Tools

• EZ-USB FX Data Sheet

• EPP Reference Design

• Mass Storage Reference Design

• GPIF Tool — A Windows application that assists GPIF firmware development. The GPIF
Tool can be found on the EZ-USB FX Developer’s Kit CD.

U SB
EP Buffe rs

D ata
U IA
D M A

C lock

S GLD AT
R /W

Flags
AFI
BFI

79 00

79 7F

G PIF

Program

G PIFAD RL

A DR
R DY

CTL

FIFOs

8051

C ounter

G PIF

D ata
Page 8-2 EZ-USB FX Technical Reference Manual v1.2

8.3 Typical GPIF Interface

The GPIF allows the EZ-USB FX connect directly to external peripherals such as ASICs, DSPs, or
other digital logic that uses an 8- or 16-bit parallel interface.

The GPIF provides external pins that can operate as outputs (CTL0 to CTL5), inputs (RDY0 to
RDY5), Data bus (GDA[7..0] and GDB[7..0]), and Address Lines (ADR0 to ADR5).

A Waveform Descriptor in internal RAM describes the behavior of each of the GPIF signals. The
Waveform Descriptor is loaded into the GPIF registers by the 8051 firmware during initialization,
and it is then used throughout the execution of the 8051 code to perform transactions over the
GPIF interface.

Figure 8-2 shows a block diagram of a typical interface between the EZ-USB FX and a peripheral
function.

Figure 8-2. EZ-USB FX Interfacing to a Peripheral

The following sections detail the features available and steps needed to create an efficient GPIF
design. This includes definition of the external GPIF connections and the internal register settings,
along with 8051 firmware needed to execute data transactions over the interface.

EZ-USB FX

Peripheral

Control Outputs

Ready Inputs

Addresses

Data Bus

GPIF
Chapter 8. General Programmable Interface (GPIF) Page 8-3

EZ-USB FX Technical Reference Manual
8.4 External GPIF Connections

8.4.1 The External GPIF Interface

The GPIF provides many general input and output signals with which to interface your external
peripherals gluelessly to the EZ-USB FX.

The GPIF interface signals are shown in Table 8-1.

Table 8-1. GPIF Pin Descriptions

Refer to the figure EZ-USB FX 128-pin Package on p. 13 of the CY7C64603/613 Data Sheet.

The Control Outputs (CTL0 to CTL5) are intended to be strobes, read/write lines, and other non-
bused outputs.

The Ready Inputs (RDY0 to RDY5) sample a signal to allow a transaction to wait (inserting wait
states), continue, or repeat until the signal is at the appropriate level.

The GPIF Data Bus is a collection of the GDA[7..0] and GDB[7..0] pins.

• A GPIF interface 8 bits wide uses pins GDA[7..0].

• A GPIF interface 16 bits wide uses pins GDA[7..0] and GDB[7..0].

The GPIF Address lines (ADR0 to ADR5) can generate an automatically incrementing address
during a burst transaction. For non-burst transactions, these address lines remain static. For
higher-order address lines that may be needed, other non-GPIF I/O signals should be used.

The GPIF Clock can be either an internal 48MHz clock, or an externally-supplied clock from the
XCLK pin. If the XCLK_SEL pin is tied high, the GPIF clock is the XCLK pin. Otherwise, the GPIF
clock is the 48 MHz internal clock.

PIN IN/OUT Description

ADR[5:0] O Address outputs

GDA[7:0] I/O Bidirectional A-FIFO data bus

GDB[7..0] I/O Bidirectional B-FIFO data bus

CTL[5:0] O Programmable control outputs

RDY[5:0] I Sampleable ready inputs
Page 8-4 EZ-USB FX Technical Reference Manual v1.2

8.4.2 Connecting GPIF Signal Pins to Hardware

The first step in creating the interface between the EZ-USB FX GPIF and your peripheral is to
define the hardware interconnects. This physical connection of GPIF signals to your interface sig-
nals determines the configurations that are necessary by your 8051 firmware.

1. Determine the proper GPIF Data Bus size. If your interface's data bus is 8 bits wide, use the
GDA[7..0] pins. If your interface's data bus is 16 bits wide, use GDA[7..0] and GDB[7..0].

2. Assign the CTL signals to your interface. Make a list of all interface signals to be driven by
your peripheral (inputs to the GPIF), and assign them to the RDY0 to RDY5 Inputs. If there are
more input signals than available RDY inputs, you need to use other, non-GPIF I/O signals and
sample them manually using 8051 firmware. In this case, you should choose the RDY inputs
only for signals that must be sampled in the middle of a data transaction.

3. Assign the RDY signals to your interface. Make a list of all interface signals to be driven by
your peripheral (inputs to the GPIF), and assign them to the RDY0 through RDY5 Inputs. If
there are more input signals than available RDY inputs, you will need to use other non-GPIF I/
O signals and sample them manually using 8051 firmware. In this case, you should choose to
use the RDY inputs only for signals that must be sampled in the middle of a data transaction.

4. Determine the proper GPIF Address connections. If your interface uses an Address Bus,
use the ADR0 through ADR5 signals for the least significant bits, and other non-GPIF I/O sig-
nals for the most significant bits. You may leave these signals unconnected if you do not use
address signals, as with a FIFO.

8.4.3 Example GPIF Hardware Interconnect

The following example illustrates the hardware connections that can be made for a standard inter-
face: a 27C256 EPROM.

The process is the same for larger and more complicated interfaces.

Table 8-2. Example GPIF Hardware Interconnect

Step Result Connection Made

1. Determine the proper GPIF
Data Bus size.

8 bits. Connect GDA[7..0] to
D0..D7 of the EPROM.

2. Assign the CTL signals to
your interface.

CS# and OE# are inputs to the
EPROM.

Connect CTL0 to CS#
and CTL1 to OE#.

3. Assign the RDY signals to
your interface.

There are no output ready/wait
signals from a 27C256 EPROM.

No connection.

4. Determine the proper GPIF
Address connections.

16 bits of address. Connect ADR0..ADR5 to
A0..A5 and other I/O
ports to A6..A15.
Chapter 8. General Programmable Interface (GPIF) Page 8-5

EZ-USB FX Technical Reference Manual
8.5 Internal GPIF Operation

8.5.1 The Internal GPIF Engine

The GPIF Engine is controlled by two blocks of registers in 8051 XDATA space:

• GPIF Configuration Registers — These registers configure the general settings and
report the status of the interface to the 8051, a total of 18 registers from 0x7824 to
0x783C. See the EZ-USB FX Register Summary and the remainder of this chapter for
details.

• Waveform Memories — A block of registers loaded by the 8051 with the Waveform
Descriptors that program the GPIF interface, a total of 128 bytes from 0x7900 to 0x797F.

The GPIF has 4 Waveform Memories. Each Waveform Memory holds a GPIF program con-
taining up to 7 programmed Intervals. Each Interval is a 32-bit instruction for the GPIF Engine.

The 8051 must load these registers before initiating GPIF operation.

8.5.2 Global GPIF Configuration

The GPIF configuration registers allow for various modes of operation. These modes control the
global operation of the GPIF for all waveforms.

8.5.2.1 Data Bus Width

The GPIF can have an 8-bit or 16-bit wide data bus. It is selected by the BUS16 Bit (Bit 2) of the
IFCONFIG Register:

• If BUS16 is 1, the data bus is 16 bits wide.

• If BUS16 is 0, the data bus is 8 bits wide.

Refer to the figure EZ-USB FX 128-pin Package on p. 13 of the CY7C64603/613 Data Sheet.

8.5.2.2 Control Output Modes

The GPIF Control pins (CTL0 to CTL5) have several output modes:

• CTL0 to CTL3 can actively drive CMOS levels 1 and 0, be open-drain, or tristate.

• CTL4 and CTL5 can actively drive CMOS levels 1 and 0, or be open-drain.

If CTL0 to CTL3 are configured to be tristate-able, CTL4 and CTL5 are not available.
Page 8-6 EZ-USB FX Technical Reference Manual v1.2

Important: The TRICTL Bit controls the meaning of the OUTPUT field in all currently loaded
Waveform Programs.

8.5.2.3 Synchronous/Asynchronous Mode

The GPIF interface can be operated in Asynchronous or Synchronous mode:

• In Asynchronous mode, the RDY inputs are double-sampled.

• In Synchronous mode, the RDY inputs are single-sampled, improving performance.

The synchronous/asynchronous mode is selected via the SAS Bit (Bit 6) of the READY Register:

If SAS = 1, the RDY[5..0] Inputs are synchronous to the GPIF Clock, sampled at only one
rising edge of the GPIF Clock.

If SAS = 0, the RDY[5..0] Inputs are sampled at two rising edges of the GPIF Clock before the
appropriate GPIF Branch is taken.

8.5.3 Programming GPIF Waveforms

GPIF Waveforms are programmed by the programmer coding Waveform Descriptors.
Subsequently, the 8051 stores these descriptors into the Waveform Memories. The Waveform
Descriptors are the instructions to the GPIF engine — what to do when that Waveform is
triggered. There are 4 Waveform Memories in the EZ-USB FX, one for each of the following types
of waveforms:

• Single Write Waveform

• Single Read Waveform

• FIFO Write Waveform

• FIFO Read Waveform

Table 8-3. CTL Output Modes

TRICTL
(CTLOUTCFG.7)

CTLOUTCFG[6..0] CTL0[3..0] CTL[5..4]

1 1 0, 1, or tristate Not Available

0 1 0 or open-drain Open-drain

1 0 0, 1, or tri-stateable Not Available

0 0 0 or 1 CMOS
Chapter 8. General Programmable Interface (GPIF) Page 8-7

EZ-USB FX Technical Reference Manual
(See the WF_SELECT Register in Section 8.5.5.5. "Waveform Selector".)

Each Waveform Descriptor consists of up to seven 32-bit instructions that program key transition
points for all GPIF interface signals. These instructions are called Intervals because they have a
one-to-one correspondence to intervals of time in an actual waveform. For that portion of the
Waveform, an Interval defines, the

• state of the CTL outputs

• state of GDA[7..0] and GDB[7..0] (GPIF Data Bus)

• use of the RDY inputs

• behavior of the GPIF address bus.

Intervals always begin at the rising edge of the GPIF Clock.

8.5.3.1 The GPIF IDLE State

A Waveform consists of up to seven programmable Intervals (I0 to I6). Every Waveform termi-
nates when the GPIF program branches to a special IDLE interval or IDLE state, which is by
convention Interval 7 (I7).

To complete a GPIF transaction, the GPIF program always branches to the IDLE state, regard-
less of the interval that the GPIF program is currently executing. For example, it is possible to
have a GPIF Waveform that has 3 Intervals: I0, I1 and I7. The GPIF program branches from I1 (or
I0) to I7 when it wishes to terminate.

The IDLE state is the time between two active GPIF transactions.

The state of the GPIF signals during the IDLE state is determined by the contents of the IDLE_CS
and IDLE_CTLOUT Registers.

The 8051 programmer must make sure the GPIF is IDLE before starting the next Waveform. The
8051 senses completion of a Waveform (the Waveform Program branching to the GPIF IDLE
state) by reading the DONE Bit (Bit 7) in the IDLE_CS Register.

• If DONE is 0, the GPIF is Busy generating a Waveform.

• If DONE is 1, the GPIF is Done (GPIF is in the IDLE state), ready for the 8051 to start the
next GPIF transaction.

Important: It is illegal to initiate any operation (except aborting the current transaction) when the
GPIF is Busy. Doing so yields indeterminate behavior, likely to cause data corruption.
Page 8-8 EZ-USB FX Technical Reference Manual v1.2

8.5.3.1.1 GPIF Data Bus During IDLE

During the IDLE state, the GPIF Data Bus (GDA[7..0] and GDB[7..0]) can be either driven or
tristated, depending on how the 8051 program has set the IDLEDRV bit (bit 0) of the IDLE_CS
Register.

• If IDLEDRV is 0, the GPIF Data Bus tristates during IDLE.

• If IDLEDRV is 1, the GPIF Data Bus is actively driven during IDLE. The value driven is the
last value driven by any GPIF Waveform program.

8.5.3.1.2 CTL Outputs During IDLE

During the IDLE state, the state of CTL[5..0] depends on the following register bits

• TRICTL Bit (Bit 7) in the CTLOUTCFG Register (as described in the previous Control Out-
put Modes.

• IDLE_CTLOUT[5..0] Register bits.

The combination of TRICTL and IDLE_CTLOUT[5..0] define CTL[5..0] during IDLE as follows:

• If TRICTL is 0, IDLE_CTLOUT[5..0] is the output state of CTL[5..0] during the IDLE state.

• If TRICTL is 1, IDLE_CTLOUT[7..4] are the Output Enables for the CTL0 to CTL3 signals,
and IDLE_CTLOUT[3..0] are the Output values for CTL0 to CTL3.

Table 8-4 below illustrates this relationship.

Table 8-4. Control Outputs (CTLn) During the IDLE State

Control Output CTLOUTCFG.7
TRICTL

IDLE_CTLOUT Out-
put Enable

IDLE_CTLOUT
Output Bit

CTL0 0 Not Available Bit 0 (CTL0)

1 Bit 4 (OE0)

CTL1 0 Not Available Bit 1 (CTL1)

1 Bit 5 (OE1)

CTL2 0 Not Available Bit 2 (CTL2)

1 Bit 6 (OE2)

CTL3 0 Not Available Bit 3 (CTL3)

1 Bit 7 (OE3)

CTL4 0 Not Available Bit 4 (CTL4)

1 Not Available Not Available

CTL5 0 Not Available Bit 5 (CTL5)

1 Not Available Not Available
Chapter 8. General Programmable Interface (GPIF) Page 8-9

EZ-USB FX Technical Reference Manual
The CTL[5..0] lines are also affected by the corresponding bit in the CTLOUTCFG Register.

• If the IDLE_CTLOUT Register and TRICTL Bit indicate that a 1 is to be driven, then a 1 in
the corresponding bit in the CTLOUTCFG Register makes the output an open-drain.

• If the IDLE_CTLOUT Register and TRICTL Bit indicate that a 0 is to be driven, then a 0 in
the corresponding bit in the CTLOUTCFG Register makes the output actively drive a
CMOS high level.

8.5.3.2 Defining Intervals

Each Waveform is made up of a number of Intervals. A single Interval is defined by a 4-byte Wave-
form Descriptor, and it is defined as one of two basic types. Each Interval is programmed as either:

• Non-Decision Point (NDP) Interval

• Decision Point (DP) Interval.

It is possible to change only selected bytes of a Waveform Program. It is not necessary to reload
the entire program if only a few bytes change. Hence, the 8051 can quickly reconfigure the GPIF
when it is not Busy.

8.5.3.2.1 Non-Decision Point (NDP) Intervals

For NDP intervals, the control outputs (CTLn) are defined by the GPIF instruction to be either 1, 0,
or tristated during the entire interval. These types of intervals have a programmable fixed duration
in units of XCLK cycles.

For write waveforms, the data bus is either driven or tristated during the interval.

For read waveforms, the data bus is either sampled and stored as the read data or not sampled
during the interval.

Figure 8-3 below illustrates the basic concept for NDP intervals. A write waveform is shown, and
for simplicity all the intervals are shown with equal spacing. There are a total of six programmable
outputs, but only one (CTL 0) is shown in the Figure 8-3.

Remember that the 4-byte Waveform Descriptor defines the characteristics of each interval. For a
detailed definition of the 4-byte Waveform Descriptor, see Section 8.5.5.5. "Waveform Selector".
Page 8-10 EZ-USB FX Technical Reference Manual v1.2

Figure 8-3. Non-Decision Point (NDP) Intervals

The following paragraphs describe Figure 8-3,

In interval I0:
• GDA[7..0] is programmed to be tri-stated
• CTL0 is programmed to be driven to a logic 1.

In interval I1:
• GDA[7..0] is programmed to be driven.
• CTL0 is still programmed to be driven to a logic 1.

In interval I2:
• GDA[7..0] is programmed to be driven.
• CTL0 is programmed to be driven to a logic 0.

In interval I3:
• GDA[7..0] is programmed to be driven.
• CTL0 is still programmed to be driven to a logic 0.

In interval I4:
• GDA[7..0] is programmed to be driven.
• CTL0 is programmed to be driven to a logic 1.

In interval I5:
• GDA[7..0] is programmed to be tri-stated
• CTL0 is still programmed to be driven to a logic 1.

In interval I6:
• GDA[7..0] is programmed to be tri-stated
• CTL0 is still programmed to be driven to a logic 1.

I0 I1 I2 I3 I4 I5 I6

ADR[5..0]

CTL0

'Z' 'Z'VALID

GDA[7..0]
Chapter 8. General Programmable Interface (GPIF) Page 8-11

EZ-USB FX Technical Reference Manual
Since all intervals in this example are coded as NDP intervals, the GPIF automatically branches
from the last interval (I6) to interval 7, the IDLE state. This is the state in which the GPIF waits until
the next GPIF waveform is started by the 8051.

8.5.3.2.2 Decision Point (DP) Intervals

The second type of interval is the Decision Point Interval. Any interval can be designated as a DP
interval. A DP interval allows the GPIF engine to sample one or more of the RDY inputs (or other
internal signals) and branch to other intervals based on the current value.

With a decision point interval, the GPIF can perform simple tasks such as wait until a RDY line is
low before continuing to the next interval. Decision point intervals can also be more complex by
branching to one interval if the sampled signals result in a logic 1, and a different interval if they
result in a logic 0.

In a DP interval, the user specifies which two ‘signals’ to sample. The two ‘signals’ can be selected
from any of:

• six external RDY signals
• programmable FIFO flags
• or the INTERNAL_READY Bit in the READY Register.

The user then specifies a logic function (AND, OR, or XOR) to apply to the two selected signals.
To select only one signal, simply select the same signal twice and specify the logic function as
AND.

In the Waveform Descriptor for the DP interval, the user then specifies which interval to branch to
if the resultant logic expression is a 0, and which interval to branch to if the resultant logic expres-
sion is a 1.

Below is an example waveform created using one decision point interval (I1) and non-decision
point intervals for the rest of the waveform.
Page 8-12 EZ-USB FX Technical Reference Manual v1.2

Figure 8-4. One Decision Point: Wait States Inserted Until RDY0 Goes Low

Figure 8-5. One Decision Point: No Wait States Inserted:
RDY0 is Already Low at Decision Point I1

In Figure 8-4 and Figure 8-5, there is a single decision point defined as interval I1. In this example,
the input ready signal is assumed to be connected to RDY0, and the Waveform Descriptor for I1 is

I0 I1 I2 I3 I4

ADR[5 0]

CTL0

'Z' 'Z'VALID

GDA[7..0]

RDY0

I5 I6

I0

I1

I2 I3 I4 I5 I6

ADR[5..0]

CTL0

'Z' 'Z'VALID

GDA[7..0]

RDY0
Chapter 8. General Programmable Interface (GPIF) Page 8-13

EZ-USB FX Technical Reference Manual
configured to branch to interval I2 if RDY0 is a logic 0 or to branch to interval I1 (wait indefinitely) if
RDY0 is a logic 1.

In Figure 8-4, the interface remains in I1 until the RDY0 signal is asserted.

In Figure 8-5, the RDY0 signal is 0 when I1 is reached, so the GPIF branches to I2.

8.5.3.3 Interval Waveform Descriptor

Each interval must be defined to perform your desired interface. To do this, each GPIF Interval has
a Waveform Descriptor made up of a 4-byte word that defines the interval’s characteristics.

The four bytes that make up a single interval’s Waveform Descriptor are:

• LENGTH/BRANCH

• OPCODE

• LOGIC FUNCTION

• OUTPUT.

Notice that there are 2 definitions for the Waveform Descriptors depending on whether the interval
is a decision point (DP = 1) or a non-decision point (DP = 0).

8.5.3.3.1 Non-Decision Point Waveform Descriptor

LENGTH/BRANCH

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Number of XCLK cycles to stay in this interval (0 means 256 cycles)

OPCODE

7 6 5 4 3 2 1 0

x x x GINT INCAD NEXT DATA DP = 0

LOGIC FUNCTION

7 6 5 4 3 2 1 0

Not Used

OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0

OE3 OE2 OE1 OE0 CTL3 CTL2 CTL1 CTL0

OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0

x x CTL5 CTL4 CTL3 CTL2 CTL1 CTL0
Page 8-14 EZ-USB FX Technical Reference Manual v1.2

8.5.3.3.2 Decision Point Waveform Descriptor

LENGTH/BRANCH

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

x x 1BRANCH 0BRANCH

OPCODE

7 6 5 4 3 2 1 0

x x x GINT INCAD NEXT DATA DP = 1

LOGIC FUNCTION

7 6 5 4 3 2 1 0

LFUNC TERMA TERMB

OUTPUT (if TRICTL Bit = 1)

7 6 5 4 3 2 1 0

OE3 OE2 OE1 OE0 CTL3 CTL2 CTL1 CTL0

OUTPUT (if TRICTL Bit = 0)

7 6 5 4 3 2 1 0

x x CTL5 CTL4 CTL3 CTL2 CTL1 CTL0
Chapter 8. General Programmable Interface (GPIF) Page 8-15

EZ-USB FX Technical Reference Manual
The following paragraphs describe each of the Waveform Descriptor registers and the fields within
each register.

OPCODE Register: This register sets a number of interval characteristics.

DP Bit: indicates whether the interval is a:

1 = Decision Point interval.

0 = Non-Decision Point interval.

DATA Bit: specifies what is to be done with the data bus during this interval.

During a write:

1 = drive the bus with the output data.

0 = tri-state (don’t drive the bus).

During a read:

1 = sample the data bus and store the data.

0 = don’t sample the data bus.

NEXT Bit: at the beginning of this interval, change the output data to the next byte from the
outputs FIFO.

1 = move the next data in the output FIFO to the top

0 = do not advance the FIFO

INCAD Bit: specifies whether to increment the GPIF Address lines ADR0..5.

1 = increment the ADR0..ADR5 bus at the beginning of this interval.

0 = do not increment the ADR0..ADR5 signals.

GINT Bit: specifies whether or not to generate a GPIF interrupt to the 8051 during this inter-
val.

1 = generate 8051 GPIF interrupt when this interval is reached.

0 = do not generate interrupt.
Page 8-16 EZ-USB FX Technical Reference Manual v1.2

OUTPUT Register: This register controls the state of the 6 control outputs (CTL5-0) during the
entire interval corresponding to this Waveform Descriptor. For the following example, refer to
8.5.10 "CTLOUTCFG Register".

OEn Bit: specifies if the corresponding CTL output signal is tristated.

1 = drive CTLn:

• If the CTLn Bit in the CTLOUTCFG Register is set to 1, the output driver will be
and open-drain.

• If the CTLn Bit in the CTLOUTCFG Register is set to 0, the output driver will be
driven to CMOS levels.

0 = Tri-state CTLn.

CTLn Bit: specifies the state to set each CTL signal to during this entire interval.

1 = high level

0 = low level

LOGIC FUNCTION Register: This register is used only for decision point Waveform Descriptors. It
specifies the inputs (TERMA and TERMB) and the Logic Function (LFUN) to apply to those inputs.
Together these define which Branch to take in the LENGTH/BRANCH Register.

TERMA and TERMB Bits:

= 000 : RDY0

= 001 : RDY1

= 010 : RDY2

= 011 : RDY3

= 100 : RDY4

= 101 : RDY5

= 110 : Internal programmable FIFO flag

= 111 : INTERNAL_READY (Bit 7 of the READY Register)

LFUN:

= 00 : perform logical AND on selected inputs

= 01 : perform logical OR on selected inputs

= 10 : perform logical XOR on selected inputs

= 11 : perform logical XOR on selected inputs

The Inputs are sampled at each rising edge of the GPIF Clock (XCLK).
Chapter 8. General Programmable Interface (GPIF) Page 8-17

EZ-USB FX Technical Reference Manual
The resultant logic function (R_LFUN) is then tested by the GPIF engine to determine which
instruction to branch to (see the /LENGTH/BRANCH Register below) before the next rising
edge of the GPIF Clock.

This register is meaningful only for DP Instructions, that is, when the DP Bit of the OPCODE
Register = 1. (When DP = 0, this register is a don’t care.)

LENGTH / BRANCH: This register has two different meanings depending on whether the instruc-
tion is a decision point or a non-decision point Interval:

• For DP = 0 this is a LENGTH field — the fixed duration of this Interval in units of XCLK
(48MHz for internal clocking, XCLK if externally clocked). A value of 0 means an interval
length of 256 clocks.

• For DP = 1 this is a BRANCH field - determines the next interval to branch to.

1BRANCH: specifies which interval to branch to if the logic expression equates to a 1. 0 to
6, or 7 (IDLE)

0BRANCH: specifies which interval to branch to if the logic expression equates to a 0. 0 to
6, or 7 (IDLE)

Decision Point Example

To make the GPIF insert wait states (wait for a RDY signal), a reasonable practice is to code a
Waveform Descriptor that branches to itself if R_LFUN = 0, and to branch to the next instruction if
R_LFUN = 1. This has the effect of extending the Interval (inserting wait states) indefinitely, until
the R_LFUN that is programmed is 1.

8.5.3.4 Physical Structure of the Waveform Memories

Up to four different Waveforms can be defined at one time. Each Waveform is made up of up to 7
Waveform Descriptors and loaded into the Waveform Memory as defined in this section. Each
Waveform Memory is 32 bytes long, so the 4 Waveform Memories together are 128 bytes long.

Table 8-5. Waveform Memory Types

Within each Waveform Memory, the Waveform Descriptors are packed as described in Table 8-6,
“Waveform Memory Descriptors". Waveform Memory 0 is shown as an example. The other Wave-
form Memories follow exactly the same structure but at higher XDATA addresses.

Waveform
Memory

8051
Base XDATA Address

0 0x7900

1 0x7920

2 0x7940

3 0x7960
Page 8-18 EZ-USB FX Technical Reference Manual v1.2

Table 8-6. Waveform Memory Descriptors

XDATA
Address

Contents

0x7900 LENGTH/BRANCH[0] (LENGTH/BRANCH field of Instruction 0 of Waveform Program 0)

0x7901 LENGTH/BRANCH[1] (LENGTH/BRANCH field of Instruction 1 of Waveform Program 0, etc.)

0x7902 LENGTH/BRANCH[2]

0x7903 LENGTH/BRANCH[3]

0x7904 LENGTH/BRANCH[4]

0x7905 LENGTH/BRANCH[5]

0x7906 LENGTH/BRANCH[6]

0x7907 Unused (the Idle state)

0x7908 OPCODE[0] (OPCODE field of Instruction 0 of Waveform Program 0)

0x7909 OPCODE[1] (OPCODE field of Instruction 1 of Waveform Program 0, etc.)

0x790A OPCODE[2]

0x790B OPCODE[3]

0x790C OPCODE[4]

0x790D OPCODE[5]

0x790E OPCODE[6]

0x790F Unused (the Idle state)

0x7910 OUTPUT[0] (OUTPUT field of Instruction 0 of Waveform Program 0)

0x7911 OUTPUT[1] (OUTPUT field of Instruction 1 of Waveform Program 0, etc.)

0x7912 OUTPUT[2]

0x7913 OUTPUT[3]

0x7914 OUTPUT[4]

0x7915 OUTPUT[5]

0x7916 OUTPUT[6]

0x7917 Unused (the Idle state)

0x7918 LOGIC FUNCTION[0] (LOGIC FUNCTION field of Instruction 0 of Waveform Program 0)

0x7919 LOGIC FUNCTION[1] (LOGIC FUNCTION field of Instruction 1 of Waveform Program 0, etc.)

0x791A LOGIC FUNCTION[2]

0x791B LOGIC FUNCTION[3]

0x791C LOGIC FUNCTION[4]

0x791D LOGIC FUNCTION[5]

0x791E LOGIC FUNCTION[6]

0x791F Unused (the Idle state)
Chapter 8. General Programmable Interface (GPIF) Page 8-19

EZ-USB FX Technical Reference Manual
8.5.4 Starting GPIF Waveform Transactions

Important: The following sections are critical to understanding how the GPIF works.

The 8051 can trigger four types of GPIF Transactions:

• Single Read Transactions

• Single Write Transactions

• FIFO Read Transactions

• FIFO Write Transactions.

Single Transactions produce a single data transfer using one of the GPIF Waveforms you have
designed. Single Transactions are typically used to access a control register of a device con-
nected to the GPIF.

FIFO Transactions involve the A and B FIFOs. Multiple bytes of data can be written to a FIFO and
a transaction can be started that transfers all of the data using the GPIF Waveforms you have
designed. FIFO Transactions are typically used to move bursts of data to or from a device con-
nected to the GPIF.

8.5.4.1 Performing a Single Read Transaction

To perform a Single Read Transaction, follow these steps:

1. Program the 8051 to initialize the GPIF registers and Waveform Descriptors.

2. Program the 8051 to read the SGLDATLTRIG Register to start a single transaction (using the
movx instruction).

3. Program the 8051 to wait for the GPIF to indicate that the transaction is complete.

A Transaction is complete when either DONE = 1 (in the IDLE_CS Register), or a GPIF Com-
plete interrupt is generated.

4. Depending on the Bus Width Mode and the programmer’s desire to start another Transaction,
the 8051 can retrieve the data from the SGLDATH, SGLDATLTRIG, and/or the SGLDATLN-
TRIG Register.

In 16-bit mode only, the 8051 reads the most significant byte of data from the SGLDATH Reg-
ister.

In 8- and 16-bit modes, the 8051 reads the least significant byte of data by either:

• reading SGLDATLTRIG, which reads the least significant byte and starts another Single
Read Transaction.

• reading SGLDATLNTRIG, which reads the least significant byte but does not start
another Read Transaction.
Page 8-20 EZ-USB FX Technical Reference Manual v1.2

The following C program fragment illustrates how to perform a single Read transaction in 8-bit
mode:

// Declare some byte-wide variables.
unsigned char dummy, inDataLow, inDataHigh ;

// Initiate a (previously set up) GPIF Read transaction by reading
// the SGLDATLTRIG Register (into the variable dummy).

dummy = SGLDATLTRIG;
// Note: we are not yet ready to get the data; this register read
// merely initiates the Read transaction by starting a GPIF
// microcode routine.

// If the GPIF microcode can take longer than one 8051 instruction,
// we must wait for it to complete.
// Otherwise, when reading the data below, we would be reading it
// prematurely, and it would probably be garbage.

while (IDLE_CS & 0x80) // Spin until the 0x80 bit of
 ; // the IDLE_CS Register is

// cleared.

// Get the LS data byte, but do not start a new Read transaction.
inDataLow = SGLDATLNTRIG;

// For 16-bit mode, we would need to add the following line to
// get the MS data byte.
inDataHigh = SGLDATH;
Chapter 8. General Programmable Interface (GPIF) Page 8-21

EZ-USB FX Technical Reference Manual
8.5.4.2 Performing a Single Write Transaction

Single Write Transactions are simpler than Single Read Transactions. To run a Single Write Trans-
action perform the following steps:

1. Program the 8051 to initialize the GPIF registers and Waveform Descriptors.

2. Program the 8051 to write the SGLDATLTRIG Register to start a single transaction (using the
movx instruction).

• In 16-bit mode, the most significant byte of the data is first written to the SGLDATH Regis-
ter.

• In both 8- and 16-bit modes, the 8051 starts a Single Write Transaction by writing to the
SGLDATLTRIG Register.

3. Program the 8051 to wait for the GPIF to indicate the transaction is complete.

A Transaction is complete when either DONE = 1 (in the IDLE_CS Register) or a GPIF Com-
plete interrupt is generated.

8.5.5 GPIF FIFO Transactions

GPIF FIFO transactions allow single or burst accesses to the slave FIFOs. (See Chapter 7. "EZ-
USB FX Slave FIFOs").’

Important: For GPIF transactions only, the GPIF is master to the slave FIFOs.

• From the FIFOs point of view, the GPIF is the master that an external FIFO master circuit
would have been.

• From the point of view of the GPIF, the GPIF is the master of the slave FIFOs.

8.5.5.1 The GPIF_PF Flag

The slave FIFOs have four Programmable Flags:

• AINPFPIN

• AOUTPFPIN

• BINPFPIN

• BOUTPFPIN

One of these flags is selected to control a given GPIF transaction. The selected flag is called the
GPIF_PF flag.
Page 8-22 EZ-USB FX Technical Reference Manual v1.2

The GPIF_PF flag is selected by the context of the trigger for the GPIF transaction.

8.5.5.2 Performing a FIFO Read Transaction

To perform a FIFO Read Transaction, do the following:

1. Program the 8051 to either read the ATRIG or the BTRIG Register, depending on which FIFO
is to receive the data.

2. Program the 8051 to detect completion of the Transaction. As with all GPIF Transactions, Bit 7
of the IDLE_STATE Register (the DONE bit) signals the completeness of the Transaction.
(See Step 2 of Section 8.5.4.1. "Performing a Single Read Transaction".)

3. Program the 8051 to move the data from the FIFO to an endpoint (or other 8051-accessible
memory) by doing either:

• direct I/O

• setting up and starting a DMA transfer.

8.5.5.3 Performing a FIFO Write Transaction

To perform a FIFO Write Transaction, do the following:

1. Program the 8051 to move the data from an endpoint (or other 8051-accessible memory) to
the desired FIFO (A or B) by doing either:

• direct I/O

• setting up and starting a DMA transfer.

2. Program the 8051 to either write the ATRIG or the BTRIG Register, depending on which FIFO
has received the data in Step 1.

3. Program the 8051 to detect completion of the Transaction. As with all GPIF Transactions, Bit 7
of the IDLE_STATE Register (the DONE bit) signals the completeness of the Transaction (See
Step 2 of Section 8.5.4.1. "Performing a Single Read Transaction".)

Table 8-7. Selecting the GPIF_PF Flag

If the GPIF transaction is triggered by then the GPIF_PF flag is the

Reading ATRIG AINPF flag

Writing ATRIG AOUTPF flag

Reading BTRIG BINPF flag

Writing BTRIG BOUTPF flag
Chapter 8. General Programmable Interface (GPIF) Page 8-23

EZ-USB FX Technical Reference Manual
8.5.5.4 Burst FIFO Transactions

There are two methods to set up the GPIF to automatically start the next transaction when the pre-
vious transaction has finished, repeatedly running Transactions that fetch (in 8-bit mode) a byte at
a time. The two methods for controlling and terminating Burst Transactions (always involving
FIFOs) are:

• using a FIFO’s GPIF_PF flag
• using a Transaction Count.

Bit 7 of the transaction count registers determine which method to use for the appropriate opera-
tion.

There are four Burst Transaction types:

• AIN

• AOUT

• BIN

• BOUT.

Each FIFO Transaction Type is controlled by its own _TC Register.

For example, to perform a burst of reads from a device into the AFIFO using the GPIF_PF flag:

1. Program the 8051 to poll the GPIF_PF flag for the doneness of the Burst of Transactions.

2. Set AIN_TC.7 (FITC Bit) to 1. This tells the GPIF to continue executing read transactions
involving the AFIFO until the GPIF_PF flag is set.

3. To start the series of Transactions, read the GPIF_FIFOA_EXEC Register. The Transaction
runs. The GPIF runs repeated Transactions. The AFIFO fills with data.

4. As with all GPIF Transactions, the IDLE_CS.7 Bit (the DONE Bit) signals the completion of the
Transaction. (See Step 2 of Section 8.5.4.1. "Performing a Single Read Transaction".) In this
case the DONE Bit is set by the GPIF Engine when the AFIFO fills the waterline measured by
the GPIF_PF flag.
Page 8-24 EZ-USB FX Technical Reference Manual v1.2

8.5.5.5 Waveform Selector

Bits 7-6: SNGL_WR_WF Single Write Waveform Index

Index to the Waveform Program to run when a “Single Write” is triggered by the 8051.

Bits 5-4: SNGL_RD_WF Single Read Waveform Index

Index to the Waveform Program to run when a “Single Read” is triggered by the 8051.

Bits 3-2: FIWR_WF FIFO Write Waveform Index

Index to the Waveform Program to run when a “FIFO Write” is triggered by the 8051.

Bits 1-0: FIRD_WF FIFO Read Waveform Index

Index to the Waveform Program to run when a “FIFO Read” is triggered by the 8051.

The default for this register is 11 10 01 00, which points each waveform index to the next Wave-
form Memory. In most applications, it is unnecessary to ever access the WF_SELECTOR Register,
provided the Waveform Memories are loaded with Waveform Programs in a logical way. (0 is
loaded with FIFO Read, 1 is loaded with FIFO Write, etc.).

Here is an example:

If: the 0th Waveform Memory is loaded with a Waveform Program (Waveform0) and the
WF_SELECTOR Register is never accessed (all fields set to their defaults)

Then Waveform0 runs when FIFO Read is triggered by the 8051.

WF_SELECTOR Waveform Selector 7824

b7 b6 b5 b4 b3 b2 b1 b0

SNGL_WR_WF SNGL_RD_WF FIWR_WF FIRD_WF

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 0 0 1 0 0
Chapter 8. General Programmable Interface (GPIF) Page 8-25

EZ-USB FX Technical Reference Manual
8.5.6 Data/Trigger Registers

Bits 7-0: Data to/From GDB[7..0]

16-bit mode: contains the data that gets written to the GDB]7..0] pins

8-bit mode: not used

Bits 7-0: Data To/From GDA[7..0]

Execute the single transaction in Waveform Memory.

Writing to this register causes a Single Write transaction to occur. The data sent to the periph-
eral is the data written to this register.

Reading this register causes a Single Read transaction to occur. The data appears in this reg-
ister after the read. To avoid triggering an additional transaction, use the SGLDATLNTRIG
Register instead of this one.

To avoid triggering an additional read transaction, use the SGLDATLTRIG Register instead of
this one.

SGLDATH GPIF Data H (16-Bit Mode Only) 7834

b7 b6 b5 b4 b3 b2 b1 b0

D15 D14 D13 D12 D11 D10 D9 D8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

SGLDATLTRIG Triggers GPIF Waveform 7835

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 8-26 EZ-USB FX Technical Reference Manual v1.2

Bits 7-0: Data To/From GDA[7..0]

This register contains the data that was read, and mirrors the data in the SGLDATLTRIG Reg-
ister.

Using this register does Not cause additional read transactions to take place, unlike the SGL-
DATLTRIG Register.

SGLDATLNTRIG NO GPIF Waveform Trigger 7836

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x
Chapter 8. General Programmable Interface (GPIF) Page 8-27

EZ-USB FX Technical Reference Manual
8.5.7 FIFO Operation Trigger Registers

There are two registers that initiate execution of the GPIF state machine using the FIFOs: ATRIG
and BTRIG.

Writing to the ATRIG Register causes a write transaction involving A- FIFO. Reading the ATRIG
Register causes a read transaction involving A-FIFO.

Similarly, write and read operations involving B-FIFO are initiated by write and read operations to
the BTRIG Register.

For information on how the GPIF_PF flag is determined by the FIFO trigger Register, which starts
the transactions(s), see Section 8.5.5.1. "The GPIF_PF Flag".

.

Bits 7-0: Single Read/Write FIFO

ATRIG Single Write Transaction of A FIFO 782E

b7 b6 b5 b4 b3 b2 b1 b0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

W W W W W W W W

x x x x x x x x

BTRIG Single Write Transaction of B FIFO 7832

b7 b6 b5 b4 b3 b2 b1 b0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

W W W W W W W W

x x x x x x x x
Page 8-28 EZ-USB FX Technical Reference Manual v1.2

8.5.8 Transaction Count Registers

Four registers contain the Transaction Counts for FIFO Transactions:

Each Transaction Count Register has two bit fields:

Bits 7: FITC FIFO T.C.

1 = Use FIFO GPIF_PF flag.

0 = Use Transaction Count

Bits 6-0: Transaction Count Transaction Count Number

For information on how the GPIF_PF flag is determined by the FIFO trigger Register, which
starts the transactions(s), see Section 8.5.5.1. "The GPIF_PF Flag".

Table 8-8. Addresses of Transaction Count Registers

XDATA
Address

Register
Name

Description

0x782C AIN_TC AIN FIFO Transaction Count

0x782D AOUT_TC AOUT FIFO Transaction Count

0x7830 BIN_TC BIN FIFO Transaction Count

0x7831 BOUT_TC BOUT FIFO Transaction Count

AIN_TC, AOUT_TC,
BIN_TC, BOUT_TC Bit Fields of Transaction Count Registers 782C, 782D,

7830, 7831

b7 b6 b5 b4 b3 b2 b1 b0

FITC FIFO A in Transaction Count

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 1
Chapter 8. General Programmable Interface (GPIF) Page 8-29

EZ-USB FX Technical Reference Manual
8.5.9 READY Register

Figure 8-6. Ready Register

Bits 7: INTERNAL_RDY Force Ready Condition

Bit to allow the 8051 to force a RDY condition to control a Waveform Instruction.

This bit is writable by the 8051. It is one of the bits that can be selected by a DP Instruction to
feed TERM_A or TERM_B of a DP Instruction’s LOGIC FUNCTION.

Bits 6: SAS Bypass Double Sampling of RDY

To achieve improved performance, use this bit to bypass double-sampling of synchronous
RDY inputs.

1 = Assume RDY[5:0] inputs are synchronous to the GPIF Clock, hence are sampled at only
one rising edge of the GPIF Clock.

0 = Re-synch RDY[5:0] inputs by double-sampling at two rising edges of the GPIF Clock.

Bits 5-0: RDY_IN[5:0] Current State RDY Pins

The current state of the RDY[5:0] pins, sampled at each rising edge of the GPIF Clock.

READY
Internal RDY, Sync/

Async, RDY Pin
States

7838

b7 b6 b5 b4 b3 b2 b1 b0

INTRDY SAS RDY5 RDY4 RDY3 RDY2 RDY1 RDY0

B B R R R R R R

1 1 1 0 0 1 0 0
Page 8-30 EZ-USB FX Technical Reference Manual v1.2

8.5.10 CTLOUTCFG Register

CTL_OUT_CFG is a semi-static register (normally set it and forget it) that controls the configura-
tion of the CTL[5:0] outputs.

Bits 7: TRICTL Number active outputs/tristating

This bit controls how many of the CTL[5:0] outputs are active (4 or 6), and whether those out-
puts can be tristated. (Tri-stating is only available only if using 4 CTL outputs).

This bit controls the meaning of the OUTPUT field in all currently loaded Waveform Programs.

If this bit is 1, Use only the four CTL[3:0] pins, where each of the four Outputs can be either
driven or tri-stated.

OUTPUT[7:4] of each Waveform Instruction:

• if a bit is 1, tri-state the corresponding CTL[3:0] output.

• if a bit is 0, drive the corresponding CTL[3:0] output.

OUTPUT[3:0] of each Waveform Instruction. Contains the value of the corresponding four
CTL[3:0] output.

If this bit is 0: Use all six CTL_OUTx signals, none tri-stateable.

See the discussion of the OUTPUT field in Section 8.5.10. "CTLOUTCFG Register".

Bits 6: Reserved Reserved

Bits 5-0: CTL 5-0 Active CTL bits

Configuration of the 6 programmable CTL[5:0] pins.

CTLOUTCFG CTL Out Pin Drive 7827

b7 b6 b5 b4 b3 b2 b1 b0

TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CT0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 8. General Programmable Interface (GPIF) Page 8-31

EZ-USB FX Technical Reference Manual
8.5.11 IDLE State Registers

The IDLE_OUT_CTL and IDLE_CS Registers define the control and data signals during the IDLE
state, i.e., when the GPIF is not currently involved in a bus transaction, between transactions.

Bits 7: DONE GPIF Idle State

0 = Transaction in progress.

1 = Transaction Done (GPIF is idle, hence GPIF is ready for next Transaction). Fires IRQ4 if
enabled.

Bits 6-1: Reserved Reserved

Bits 0: IDLEDRV Set Data Bus when GPIF Idle

When the GPIF is idle:

0 = Tri-state the Data Bus.

1 = Drive the Data Bus.

Figure 8-7. IDLE_CTLOUT 0x7826 Register

Bits 7-6: Reserved Reserved

IDLE_CS
GPIF Done, GPIF
IDLE drive mode

7825

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 0 0 IDLEDRV

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 0 0 0 0 0 0

IDLE_CTLOUT Inactive Bus, CTL States 7826

b7 b6 b5 b4 b3 b2 b1 b0

0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 1 1 1 1 1 1
Page 8-32 EZ-USB FX Technical Reference Manual v1.2

Bits 5-0: CTL[5..0] States of CTLOUT signals

Meaning depends on CTL_OUT_CFG[7]:

If CTL_OUT_CFG[7] == 1

IDLE_CTLOUT[7:4] controls whether to drive or tri-state outputs defined in
IDLE_CTLOUT[3:0] during the bus IDLE state.

If CTL_CTLOUT[7] == 0:

IDLE_CTLOUT[7:6] = RESERVED = 00

IDLE_CTLOUT[5:0] : Contains the values 0 or 1 for the 6 programmable outputs during the
bus IDLE state.

The IDLE_CTLOUT and IDLE_CS Registers define the control and data signals during the
IDLE state, i.e., when the GPIF is not currently involved in a bus transaction, between transac-
tions.

Important: the IDLE_OUT_CTL Register contains the default states of the CTL_OUTx signals.

The IDLE_CS Register contains the ‘done’ indication that tells the user that it is OK to go ahead
with another bus transaction. It also knows whether the data bus is tri-stated or driven when the
bus is not currently in use.

Note well: It is illegal to initiate any operation (except aborting the current transaction) when the
‘done’ Bit (IDLE_CS[7]) is 0. Doing so yields indeterminate behavior, likely to cause data corrup-
tion.
Chapter 8. General Programmable Interface (GPIF) Page 8-33

EZ-USB FX Technical Reference Manual
8.5.12 Address Register GPIFADRL

Bits 7-6: Reserved Reserved

Bits 5-0: ADR[5..0] GPIF Address Bus

Data written to the Register appears as the bus address on the ADR[5:0] pins during a GPIF
transaction.

This address does not change until a GPIF program is running. Specifically, the new value
does not appear on the Address Bus pins until one of the following is written:

• SGLDATLTRIG Register

• ATRIG Register

• BTRIG Register.

GPIFADRL GPIF Address Bus PIns 782A

b7 b6 b5 b4 b3 b2 b1 b0

Reserved Reserved ADR5 ADR4 ADR3 ADR2 ADR1 ADR0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 8-34 EZ-USB FX Technical Reference Manual v1.2

8.5.13 GPIF_ABORT Register

Figure 8-8. GPIF Abort Register

Bits 7-0: D7-D0 Go GPIF IDLE state. Data is D.C.

Writing to the GPIF_ABORT Register aborts the current transaction on the bus, returns the
DONE Bit to 1, and causes the outputs to go to the state as defined in the IDLE_STATE Regis-
ter. This is useful in debugging, and in systems that have a bus time-out or watchdog timer.

GPIF_ABORT Abort GPIF Cycles 7839

b7 b6 b5 b4 b3 b2 b1 b0

Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved

W W W W W W W W

x x x x x x x x
Chapter 8. General Programmable Interface (GPIF) Page 8-35

EZ-USB FX Technical Reference Manual
Page 8-36 EZ-USB FX Technical Reference Manual v1.2

Chapter 9. EZ-USB FX Endpoint Zero

9.1 Introduction

Endpoint Zero has special significance in a USB system. It is a CONTROL endpoint, and it is
required by every USB device. Only CONTROL endpoints accept special SETUP tokens that the
host uses to signal transfers that deal with device control. The USB host sends a suite of standard
device requests over endpoint zero. These standard requests are fully defined in Chapter 9 of the
USB Specification. This chapter describes how the EZ-USB FX chip handles endpoint zero
requests.

Because EZ-USB FX must enumerate without firmware (see Chapter 5. "EZ-USB FX Enumeration
& ReNumeration™"), the USB core contains logic to perform enumeration on its own. This hard-
ware assist of endpoint zero operations is made available to the 8051, simplifying the code
required to service device requests. This chapter deals with 8051 control of endpoint zero
(RENUM=1, Chapter 5. "EZ-USB FX Enumeration & ReNumeration™"), and describes EZ-USB
FX resources, such as the Setup Data Pointer, that simplify 8051 code handling endpoint zero
requests.

Endpoint zero is the only CONTROL endpoint in EZ-USB FX. Although CONTROL endpoints are
bi-directional, the EZ-USB FX chip provides separate 64-byte buffers, IN0BUF and OUT0BUF,
which the 8051 handles exactly like bulk endpoint buffers for the data stages of a CONTROL trans-
fer. A second 8-byte buffer, SETUPDAT, which is unique to endpoint zero, holds data that arrives in
the SETUP stage of a CONTROL transfer. This relieves the 8051 programmer of tracking of the
three CONTROL transfer phases—SETUP, DATA, and STATUS. The USB core also generates
separate interrupt requests for the various transfer phases, further simplifying code.

The IN0BUF and OUT0BUF Buffers have two special properties that result from being used by
CONTROL endpoint zero:

• Endpoints 0-IN and 0-OUT are always valid. The valid bits (LSB of IN07VAL and
OUT07VAL Registers) are permanently set to 1. Writing any value to these two bits has no
effect. Reading these bits always returns a 1.

• Endpoint 0 cannot be paired with endpoint 1, so there is no pairing bit in the USBPAIR
Register for endpoint 0 or 1.
Chapter 9. EZ-USB FX Endpoint Zero Page 9-1

EZ-USB FX Technical Reference Manual
9.2 Control Endpoint EP0

Figure 9-1. A USB Control Transfer (With Data Stage)

Endpoint zero accepts a special SETUP packet, which contains an 8-byte data structure that pro-
vides host information about the CONTROL transaction. CONTROL transfers include a final STA-
TUS phase, constructed from standard PIDs (IN/OUT, DATA1, and ACK/NAK).

Some CONTROL transactions include all required data in their 8-byte SETUP Data packet. Other
CONTROL transactions require more OUT data than will fit into the eight bytes, or require IN data
from the device. These transactions use standard bulk-like transfers to move the data. Note in Fig-
ure 9-1 that the DATA Stage looks exactly like a bulk transfer. As with BULK endpoints, the end-
point zero byte count registers must be loaded to ACK each data transfer stage of a CONTROL
transfer.

8051 c lears H S N A K b it (w rites 1 to it)
or se ts the S TA LL b it.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packe t

D
A
T
A
0

8 bytes
S etup
D ata

C
R
C
1
6

D ata P acke t

A
C
K

H /S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packe t

D
A
T
A
1

Payload
D ata

C
R
C
1
6

D ata P acke t

D
A
T
A
1

D ata P kt

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packe t

D
A
T
A
0

Payload
D ata

C
R
C
1
6

D ata P acke t

A
C
K

H /S Pkt

S
Y
N
C

N
A
K

H /S Pkt

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packe t

C
R
C
1
6

SETUP Stage

S U TO K In te rrup t
C ore se ts H S N A K =1

S U D A V In te rrup t

DATA Stage

E P 0-IN In te rrup t E P 0-IN In te rrup t

STATUS Stage

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packe t

C
R
C
1
6

....

H /S Pkt

D ata P kt

A
C
K

H /S Pkt
Page 9-2 EZ-USB FX Technical Reference Manual v1.2

The STATUS stage consists of an empty data packet with the opposite direction of the data stage,
or an IN if there was no data stage. This empty data packet gives the device a chance to ACK or
NAK the entire CONTROL transfer. The 8051 writes a “1” to a bit call HSNAK (Handshake NAK) to
clear it and instruct the USB core to ACK the STATUS stage.

The HSNAK Bit holds off completing the CONTROL transfer until the device has had time to
respond to a request. For example, if the host issues a Set_Interface Request, the 8051 performs
various housekeeping chores, such as adjusting internal modes and re-initializing endpoints. Dur-
ing this time, the host issues handshake (STATUS stage) packets to which the USB core responds
with NAKs, indicating “busy.” When the 8051 completes the desired operation, it sets HSNAK=1
(by writing a “1” to the bit) to terminate the CONTROL transfer. This handshake prevents the host
from attempting to use a partially configured interface.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero transfer (the
SETUP stage can never stall), the 8051 must set both the STALL and HSNAK Bits for endpoint
zero.

Some CONTROL transfers do not have a DATA stage. Therefore, the 8051 code that processes
the SETUP data should check the length field in the SETUP data (in the 8-byte buffer at SETUP-
DAT) and arm endpoint zero for the DATA phase (by loading IN0BC or OUT0BC) only if the length
field is non-zero.

Two 8051 interrupts provide notification that a SETUP packet has arrived, as shown in Figure 9-2.

Figure 9-2. Two Interrupts Associated with EP0 CONTROL Transfers

The USB core sets the SUTOKIR Bit (SETUP Token Interrupt Request) when the USB core
detects the SETUP token at the beginning of a CONTROL transfer. This interrupt is normally used
for debug only.

The USB core sets the SUDAVIR Bit (Setup Data Available Interrupt Request) when the eight
bytes of SETUP data have been received error-free and transferred to eight EZ-USB FX Registers
starting at SETUPDAT. The USB core takes care of any re-tries if it finds any errors in the SETUP
data. These two interrupt request bits are set by the USB core, and must be cleared by firmware.

An 8051 program responds to the SUDAV interrupt request by either directly inspecting the eight
bytes at SETUPDAT or by transferring them to a local buffer for further processing. Servicing the

D
A
T
A
0

8 by tes
Setup
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt

8 R A M
bytes

SETUPDAT
Chapter 9. EZ-USB FX Endpoint Zero Page 9-3

EZ-USB FX Technical Reference Manual
SETUP data should be a high 8051 priority, since the USB Specification stipulates that CONTROL
transfers must always be accepted and never NAKd. It is, therefore, possible that a CONTROL
transfer could arrive while the 8051 is still servicing a previous one. In this case the previous CON-
TROL transfer service should be aborted and the new one serviced. The SUTOK interrupt gives
advance warning that a new CONTROL transfer is about to over-write the eight SETUPDAT bytes.

If the 8051 stalls endpoint zero (by setting the EP0STALL and HSNAK Bits to 1), the USB core
automatically clears this stall bit when the next SETUP token arrives.

Like all EZ-USB FX interrupt requests, the SUTOKIR and SUDAVIR Bits can be directly tested and
reset by the CPU (reset by writing a “1”). Thus, if the corresponding interrupt enable bits are set to
“0,” the interrupt request conditions can still be directly polled.

Figure 9-3 shows the EZ-USB FX registers that deal with CONTROL transactions over EP0.

Figure 9-3. Registers Associated with EP0 Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero, which
are described in Chapter 6. "EZ-USB FX Bulk Transfers".

Two bits in the USBIEN (USB Interrupt Enable) Register enable the SETUP Token (SUTOKIE)
and SETUP Data interrupts. The actual interrupt request bits are in the USBIRQ (USB Interrupt
Requests) Register. They are called STOKIR (SETUP Token Interrupt Request) and SUDAVIR
(SETUP Data Interrupt Request).

The USB core transfers the eight SETUP bytes into eight bytes of RAM at SETUPDAT. A 16-bit
pointer, SUDPTRH/L provides hardware assistance for handling CONTROL IN transfers, in partic-
ular the USB Get_Descriptor Requests, described later in this chapter.

8 Bytes of
SETUP Data

USBIRQ

Interrupt Request:
T=Setup Token SUTOKIR
D=Setup Data SUDAVIR

USBIEN

Global Enable:
T=Setup Token SUTOKIE
D=Setup Data SUDAVIE

T

Initialization

SETUPDAT

Data transfer

Interrupt Control

Registers Associated with Endpoint Zero
For hand l ing SETUP t ransac t ions

D

T D

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

SUDPTRH

SUDPTRL
Page 9-4 EZ-USB FX Technical Reference Manual v1.2

9.3 USB Requests

The Universal Serial Bus Specification Version 1.1, Chapter 9, "USB Device Framework" defines a
set of Standard Device Requests. When the 8051 is in control (RENUM=1), the USB core handles
one of these requests (Set Address) directly, and relies on the 8051 to support all of the others.
The 8051 acts on device requests by decoding the eight bytes contained in the SETUP packet and
available at SETUPDAT (see Table 9-2). Table 9-1 defines these eight bytes.

The Byte column in the previous table shows the byte offset from SETUPDAT. The Field column
shows the different bytes in the request, where the “bm” prefix means bit-map, “b” means byte, and
“w” means word (16 bits). Table 9-2 shows the different values defined for bRequest, and how the
8051 responds to each request. The remainder of this chapter describes each of the requests in
Table 9-2 in detail.

Table 9-2 applies when RENUM=1, signifying that the 8051, and not the USB core, handles device
requests. Table 9-2 shows how the core handles each of these device requests when RENUM=0,
for example when the chip is first powered and the 8051 is not running.

Table 9-1. The Eight Bytes in a USB SETUP Packet

Byte Field Meaning

0 bmRequestType Request Type, Direction, and Recipient.

1 bRequest The actual request (see Table 9-2).

2 wValueL Word-size value, varies according to bRequest.

3 wValueH

4 wIndexL Word-size field, varies according to bRequest.

5 wIndexH

6 wLengthL Number of bytes to transfer if there is a data phase.

7 wLengthH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-5

EZ-USB FX Technical Reference Manual
In the ReNumerated condition (RENUM=1), the USB core passes all USB requests, except Set
Address, onto the 8051 via the SUDAV interrupt. This, in conjunction with the USB disconnect/
connect feature, allows a completely new and different USB device (yours) to be characterized by
the downloaded firmware.

The USB core implements one vendor-specific request, namely “Firmware Load,” 0xA0. (The
bRequest value of 0xA0 is valid only if byte 0 of the request, bmRequestType, is also “x10xxxxx,”
indicating a vendor-specific request.) The load request is valid at all times, so even after ReNu-
meration™ the load feature may be used. If your application implements vendor-specific USB
requests, and you do not wish to use the Firmware Load feature, be sure to refrain from using the
bRequest value 0xA0 for your custom requests. The Firmware Load feature is fully described in
Chapter 5. "EZ-USB FX Enumeration & ReNumeration™".

To avoid future incompatibilities, vendor requests A0-AF (hex) are reserved by Cypress Semicon-
ductor.

9.3.1 Get Status

The USB Specification defines three USB status requests. A fourth request, to an interface, is
declared in the spec as “reserved.” The four status requests are:

Table 9-2. How the 8051 Handles USB Device Requests (RENUM=1)

bReques
t

Name Action 8051 Response

0x00 Get Status SUDAV Interrupt Supply RemWU, SelfPwr or Stall Bits

0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall Bits

0x02 (reserved) none Stall EP0

0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall Bits

0x04 (reserved) none Stall EP0

0x05 Set Address Update FNADDR Register none

0x06 Get Descriptor SUDAV Interrupt Supply table data over EP0-IN

0x07 Set Descriptor SUDAV Interrupt Application dependent

0x08 Get Configuration SUDAV Interrupt Send current configuration number

0x09 Set Configuration SUDAV Interrupt Change current configuration

0x0A Get Interface SUDAV Interrupt Supply alternate setting No. from RAM

0x0B Set Interface SUDAV Interrupt Change alternate setting No.

0x0C Sync Frame SUDAV Interrupt Supply a frame number over EP0-IN

Vendor Requests
0xA0 (Firmware Load) Up/Download RAM ---

0xA1 - 0xAF SUDAV Interrupt Reserved by Cypress Semiconductor

All except 0xA0 SUDAV Interrupt Depends on application
Page 9-6 EZ-USB FX Technical Reference Manual v1.2

• Remote Wakeup (Device request)

• Self-Powered (Device request)

• Stall (Endpoint request)

• Interface request (reserved).

The USB core activates the SUDAV interrupt request to tell the 8051 to decode the SETUP packet
and supply the appropriate status information.

Figure 9-4. Data Flow for a Get_Status Request

As Figure 9-4 illustrates, the 8051 responds to the SUDAV interrupt by decoding the eight bytes
the USB core has copied into RAM at SETUPDAT. The 8051 answers a Get_Status Request
(bRequest=0) by loading two bytes into the IN0BUF Buffer and loading the byte count register
IN0BC with the value “2.” The USB core transmits these two bytes in response to an IN token.
Finally, the 8051 clears the HSNAK Bit (by writing “1” to it) to instruct the USB core to ACK the sta-
tus stage of the transfer.

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

2
Bytes

C
R
C
1
6

Data Packet

D
A
T
A
1

Data Pkt

A
C
K

H/S Pkt

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt

DATA Stage

STATUS Stage

8 RAM
bytes

S E T U P D A T

IN0BUF
64-byte
Buffer

2 IN0BC

A
C
K

H/S Pkt

A
C
K

H/S Pkt
Chapter 9. EZ-USB FX Endpoint Zero Page 9-7

EZ-USB FX Technical Reference Manual
The following tables show the eight SETUP bytes for Get_Status Requests.

Get_Status-Device queries the state of two bits, Remote Wakeup and Self-Powered. The Remote
Wakeup Bit indicates whether or not the device is currently enabled to request remote wakeup.
Remote wakeup is explained in Chapter 14. "EZ-USB FX Power Management." The Self-Powered
Bit indicates whether or not the device is self-powered (as opposed to USB bus-powered).

The 8051 returns these two bits by loading two bytes into IN0BUF, and then loading a byte count
of two into IN0BC.

Each bulk endpoint (IN or OUT) has a STALL Bit in its Control and Status Register (bit 0). If the
CPU sets this bit, any requests to the endpoint return a STALL handshake rather than ACK or
NAK. The Get Status-Endpoint Request returns the STALL state for the endpoint indicated in byte
4 of the request. Note that bit 7 of the endpoint number EP (byte 4) specifies direction.

Endpoint zero is a CONTROL endpoint, which by USB definition is bi-directional. Therefore, it has
only one stall bit.

Table 9-3. Get Status-Device (Remote Wakeup and Self-Powered Bits)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device

1 bRequest 0x00 “Get Status” Load two bytes into IN0BUF

2 wValueL 0x00

3 wValueH 0x00 Byte 0 : bit 0 = Self Powered Bit

4 wIndexL 0x00 : bit 1 = Remote Wakeup

5 wIndexH 0x00 Byte 1 : zero.

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Table 9-4. Get Status-Endpoint (Stall Bits)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x82 IN, Endpoint Load two bytes into IN0BUF

1 bRequest 0x00 “Get Status” Byte 0 : bit 0 = Stall Bit for EP(n)

2 wValueL 0x00 Byte 1 : zero

3 wValueH 0x00

4 wIndexL EP Endpoint Number EP(n):

5 wIndexH 0x00 0x00-0x07: OUT0-OUT7

6 wLengthL 0x02 Two bytes requested 0x80-0x87: IN0-IN7.

7 wLengthH 0x00
Page 9-8 EZ-USB FX Technical Reference Manual v1.2

About STALL

The USB STALL handshake indicates that something unexpected has happened. For
instance, if the host requests an invalid, alternate setting or attempts to send data to a non-
existent endpoint, the device responds with a STALL handshake over endpoint zero instead
of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which do not employ hand-
shakes. Every EZ-USB FX bulk endpoint has its own stall bit. The 8051 sets the stall condi-
tion for an endpoint by setting the stall bit in the endpoint’s CS Register. The host tells the
8051 to set or clear the stall condition for an endpoint using the Set_Feature/Stall and
Clear_Feature/Stall Requests.

An example of the 8051 setting a stall bit is a routine that handles endpoint zero device
requests. If an undefined or non-supported request is decoded, the 8051 should stall EP0.
(EP0 has a single stall bit because it is a bi-directional endpoint.)

Once the 8051 stalls an endpoint, it should not remove the stall until the host issues a
Clear_Feature/Stall Request. An exception to this rule is endpoint 0, which reports a stall
condition only for the current transaction, and then automatically clears the stall condition.
This prevents endpoint 0, the default CONTROL endpoint, from locking out device requests.
Chapter 9. EZ-USB FX Endpoint Zero Page 9-9

EZ-USB FX Technical Reference Manual
Get_Status/Interface is easy: the 8051 returns two zero bytes through IN0BUF and clears the
HSNAK Bit. The requested bytes are shown as “Reserved (Reset to zero)” in the USB Specifica-
tion.

9.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stage is required.

The only Set_Feature/Device Request presently defined in the USB Specification is to set the
remote wakeup bit. This is the same bit reported back to the host as a result of a Get Status-
Device Request (Table 9-3). The host uses this bit to enable or disable remote wakeup by the
device.

Table 9-5. Get Status-Interface

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x81 IN, Endpoint Load two bytes into IN0BUF

1 bRequest 0x00 “Get Status” Byte 0 : zero

2 wValueL 0x00 Byte 1 : zero

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Table 9-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Set the Remote Wakeup Bit

1 bRequest 0x03 “Set Feature”

2 wValueL 0x01 Feature Selector:
Remote Wakeup

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00
Page 9-10 EZ-USB FX Technical Reference Manual v1.2

The only Set_Feature/Endpoint Request presently defined in the USB Specification is to stall an
endpoint. The 8051 should respond to this request by setting the stall bit in the Control and Status
Register for the indicated endpoint EP (byte 4 of the request). The 8051 can either stall an end-
point on its own or in response to the device request. Endpoint stalls are cleared by the host
Clear_Feature/Stall Request.

The 8051 should respond to the Set_Feature/Stall Request by performing the following tasks:

1. Set the stall bit in the indicated endpoint’s CS Register.

2. Reset the data toggle for the indicated endpoint.

3. For an IN endpoint, clear the busy bit in the indicated endpoint’s CS Register.

4. For an OUT endpoint, load any value into the endpoint’s byte count register.

5. Clear the HSNAK Bit in the EP0CS Register (by writing 1 to it) to terminate the Set_Feature/
Stall CONTROL transfer.

Steps 3 and 4 restore the stalled endpoint to its default condition, ready to send or accept data
after the stall condition is removed by the host (using a Clear_Feature/Stall Request). These steps
are also required when the host sends a Set_Interface Request.

Table 9-7. Set Feature-Endpoint (Stall)

Byte Field Value Meaning 8051 Response
0 bmRequestType 0x02 OUT, Endpoint Set the STALL Bit for the
1 bRequest 0x03 “Set Feature” indicated endpoint:.
2 wValueL 0x00 Feature Selector:

STALL

3 wValueH 0x00

4 wIndexL EP EP(n):

5 wIndexH 0x00 0x00-0x07: OUT0-OUT7

6 wLengthL 0x00 0x80-0x87: IN0-IN7

7 wLengthH 0x00

Data Toggles

The USB core automatically maintains the endpoint toggle bits to ensure data integrity for
USB transfers. The 8051 should directly manipulate these bits only for a very limited set of
circumstances:

• Set_Feature/Stall

• Set_Configuration

• Set_Interface
Chapter 9. EZ-USB FX Endpoint Zero Page 9-11

EZ-USB FX Technical Reference Manual
9.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

If the USB device supports remote wakeup (reported in its descriptor table when the device enu-
merates), the Clear_Feature/Remote Wakeup Request disables the wakeup capability.

The Clear_Feature/Stall removes the stall condition from an endpoint. The 8051 should respond
by clearing the stall bit in the indicated endpoint’s CS Register.

9.3.4 Get Descriptor

During enumeration, the host queries a USB device to learn its capabilities and requirements
using Get_Descriptor Requests. Using tables of descriptors, the device sends back (over EP0-IN)

Table 9-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Clear the remote wakeup bit.

1 bRequest 0x01 “Clear Feature”

2 wValueL 0x01 Feature Selector:
Remote Wakeup

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Table 9-9. Clear Feature-Endpoint (Clear Stall)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x02 OUT, Endpoint Clear the STALL Bit for the

1 bRequest 0x01 “Clear Feature” indicated endpoint:.

2 wValueL 0x00 Feature Selector:
STALL

3 wValueH 0x00

4 wIndexL EP EP(n):

5 wIndexH 0x00 0x00-0x07: OUT0-OUT7

6 wLengthL 0x00 0x80-0x87: IN0-IN7

7 wLengthH 0x00
Page 9-12 EZ-USB FX Technical Reference Manual v1.2

such information as what device driver to load, how many endpoints it has, its different configura-
tions, alternate settings it may use, and informative text strings about the device.

The USB core provides a special Setup Data Pointer to simplify 8051 service for Get_Descriptor
Requests. The 8051 loads this 16-bit pointer with the beginning address of the requested descrip-
tor, clears the HSNAK Bit (by writing “1” to it), and the USB core does the rest.

Figure 9-5. Using Setup Data Pointer (SUDPTR) for Get_Descriptor Requests

Figure 9-5 illustrates use of the Setup Data Pointer. This pointer is implemented as two registers,
SUDPTRH and SUDPTRL. Most Get_Descriptor Requests involve transferring more data than fits
into one packet. In the Figure 9-5 example, the descriptor data consists of 91 bytes.

The CONTROL transaction starts in the usual way, with the USB core transferring the eight bytes
in the SETUP packet into RAM at SETUPDAT and activating the SUDAV interrupt request. The
8051 decodes the Get_Descriptor Request, and responds by clearing the HSNAK Bit (by writing
“1” to it), and then loading the SUDPTR Registers with the address of the requested descriptor.
Loading the SUDPTRL Register causes the USB core to automatically respond to two IN transfers

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

8 bytes
Setup
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
1

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

I
N

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

D
A
T
A
0

Payload
Data

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

SETUP Stage

SUDAV Interrupt

DATA Stage

EP0IN
Interrupt

EP0IN
Interrupt

STATUS Stage

D
A
T
A
1

O
U
T

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

C
R
C
1
6

H/S Pkt

Data Pkt

A
C
K

H/S Pkt

SUDPTRH/L

64 bytes

27 bytes

8 RAM
bytes

SETUPDAT
Chapter 9. EZ-USB FX Endpoint Zero Page 9-13

EZ-USB FX Technical Reference Manual
with 64 bytes and 27 bytes of data using SUDPTR as a base address, and then to respond to
(ACK) the STATUS stage.

The usual endpoint zero interrupts, SUDAV and EP0IN, remain active during this automated trans-
fer. The 8051 normally disables these interrupts because the transfer requires no 8051 interven-
tion.

Three types of descriptors are defined: Device, Configuration, and String.

9.3.4.1 Get Descriptor-Device

As illustrated in Figure 9-5, the 8051 loads the 2-byte SUDPTR with the starting address of the
Device Descriptor table. When SUDPTRL is loaded, the USB core performs the following opera-
tions:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the SETUP packet
(LenL and LenH in Table 9-10).

2. Reads the requested descriptor’s length field to determine the actual descriptor length.

3. Sends the smaller of (a) the requested number of bytes or (b) the actual number of bytes in
the descriptor, over IN0BUF using the Setup Data Pointer as a data table index. This consti-
tutes the second phase of the three-phase CONTROL transfer. The core packetizes the data
into multiple data transfers, as necessary.

4. Automatically checks for errors and re-transmits data packets if necessary.

5. Responds to the third (handshake) phase of the CONTROL transfer to terminate the opera-
tion.

The Setup Data Pointer can be used for any Get_Descriptor Request; for example,
Get_Descriptor-String. It can also be used for vendor-specific requests (you define), as long as
bytes 6-7 contain the number of bytes in the transfer (Step 1).

It is possible for the 8051 to do manual CONTROL transfers, directly loading the IN0BUF Buffer
with the various packets and keeping track of which SETUP phase is in effect. This is a good USB

Table 9-10. Get Descriptor-Device

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” Device Descriptor table in RAM.

2 wValueL 0x00

3 wValueH 0x01 Descriptor Type:
Device

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH
Page 9-14 EZ-USB FX Technical Reference Manual v1.2

training exercise, but not necessary due to the hardware support built into the USB core for CON-
TROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the IN0BUF Buffer and then
loading the EP0INBC Register with the byte count would be equivalent to loading the Setup Data
Pointer. However, this would waste 8051 overhead because the Setup Data Pointer requires no
byte transfers into the IN0BUF Buffer.

9.3.4.2 Get Descriptor-Configuration

9.3.4.3 Get Descriptor-String

Configuration and string descriptors are handled similarly to device descriptors. The 8051 firmware
reads byte 2 of the SETUP data to determine which configuration or string is being requested, then
loads the corresponding table pointer into SUDPTRH-L. The USB core does the rest.

Table 9-11. Get Descriptor-Configuration

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” requested Configuration Descriptor

2 wValueL CFG Config Number table in RAM

3 wValueH 0x02 Descriptor Type:
Configuration

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Table 9-12. Get Descriptor-String

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” requested string Descriptor table

2 wValueL STR String Number in RAM.

3 wValueH 0x03 Descriptor Type:
String

4 wIndexL 0x00 (Language ID L)

5 wIndexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-15

EZ-USB FX Technical Reference Manual
9.3.5 Set Descriptor

Table 9-13. Set Descriptor-Device

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Read device descriptor data over

1 bRequest 0x07 “Set_Descriptor” OUT0BUF.

2 wValueL 0x00

3 wValueH 0x01 Descriptor Type:
Device

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH

Table 9-14. Set Descriptor-Configuration

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Read configuration descriptor

1 bRequest 0x07 “Set_Descriptor” data over OUT0BUF.

2 wValueL 0x00

3 wValueH 0x02 Descriptor Type:
Configuration

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL

7 wLengthH LenH
Page 9-16 EZ-USB FX Technical Reference Manual v1.2

The 8051 handles Set_Descriptor Requests by clearing the HSNAK Bit (by writing “1” to it), then
reading descriptor data directly from the OUT0BUF Buffer. The USB core keeps track of the num-
ber of byes transferred from the host into OUT0BUF, and compares this number with the length
field in bytes 6 and 7. When the proper number of bytes has been transferred, the USB core auto-
matically responds to the status phase, which is the third and final stage of the CONTROL transfer.

The 8051 controls the flow of data in the Data Stage of a Control Transfer. After the 8051 pro-
cesses each OUT packet, it loads any value into the OUT endpoint’s byte count register to re-arm
the endpoint.

Table 9-15. Set Descriptor-String

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 IN, Device Read string descriptor data over

1 bRequest 0x07 “Get_Descriptor” OUT0BUF.

2 wValueL 0x00 Config Number

3 wValueH 0x03 Descriptor Type:
String

4 wIndexL 0x00 (Language ID L)

5 wIndexH 0x00 (Language ID H)

6 wLengthL LenL

7 wLengthH LenH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-17

EZ-USB FX Technical Reference Manual
Configurations, Interfaces, and Alternate Settings

A USB device has one or more configu-
rations. Only one configuration is active
at any time.

A configuration has one or more inter-
faces, all of which are concurrently
active. Multiple interfaces allow different
host-side device drivers to be associated
with different portions of a USB device.

Each interface has one or more alternate
settings. Each alternate setting has a
collection of one or more endpoints.

This structure is a software model; the USB core takes no action when these settings
change. However, the 8051 must re-initialize endpoints when the host changes configura-
tions or interfaces alternate settings.

As far as 8051 firmware is concerned, a configuration is simply a byte variable that indicates
the current setting.

The host issues a Set_Coniguration Request to select a configuration, and a
Get_Configuration Request to determine the current configuration.

Device

Config 2
Low Power

Config 1
High Power

Interface 1
audio

Interface 0
CDROM
control

Alt Setting
0

Alt Setting
1

Alt Setting
3

Interface 2
video

Interface 3
data

storage
Concurrent

One at a time

ep ep ep

One at a time
Page 9-18 EZ-USB FX Technical Reference Manual v1.2

9.3.5.1 Set Configuration

When the host issues the Set_Configuration Request, the 8051 saves the configuration number
(byte 2 in Table 9-16), performs any internal operations necessary to support the configuration,
and finally clears the HSNAK Bit (by writing “1” to it) to terminate the Set_Configuration CONTROL
transfer.

After setting a configuration, the host issues Set_Interface commands to set up the various inter-
faces contained in the configuration.

9.3.6 Get Configuration

The 8051 returns the current configuration number. It loads the configuration number into EP0IN,
loads a byte count of one into EP0INBC, and finally clears the HSHAK Bit (by writing “1” to it) to
terminate the Set_Configuration CONTROL transfer.

Table 9-16. Set Configuration

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Read and stash byte 2, change

1 bRequest 0x09 “Set_Configuration” configurations in firmware.

2 wValueL CFG Config Number

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

Table 9-17. Get Configuration

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x80 IN, Device Send CFG over IN0BUF after

1 bRequest 0x08 “Get_Configuration” re-configuring.

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-19

EZ-USB FX Technical Reference Manual
9.3.7 Set Interface

This confusingly named USB command actually sets alternate settings for a specified interface.

USB devices can have multiple concurrent interfaces. For example, a device may have an audio
system that supports different sample rates, and a graphic control panel that supports different
languages. Each interface has a collection of endpoints. Except for endpoint 0, which each inter-
face uses for device control, endpoints may not be shared between interfaces.

Interfaces may report alternate settings in their descriptors. For example, the audio interface may
have setting 0, 1, and 2 for 8-KHz, 22-KHz, and 44-KHz sample rates. The panel interface may
have settings 0 and 1 for English and Spanish. The Set/Get_Interface Requests select between
the various alternate settings in an interface.

The 8051 should respond to a Set_Interface Request by performing the following steps:

1. Perform the internal operation requested (such as adjusting a sampling rate).

2. Reset the data toggles for every endpoint in the interface.

3. For an IN endpoint, clear the busy bit for every endpoint in the interface.

4. For an OUT endpoint, load any value into the byte count register for every endpoint in the
interface.

5. Clear the HSNAK Bit (by writing “1” to it) to terminate the Set_Feature/Stall CONTROL trans-
fer.

Table 9-18. Set Interface (Actually, Set Alternate Setting AS for Interface IF)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x00 OUT, Device Read and stash byte 2 (AS) for

1 bRequest 0x0B “Set_Interface” Interface IF, change setting for

2 wValueL AS Alt Setting Number Interface IF in firmware.

3 wValueH 0x00

4 wIndexL IF For this interface

5 wIndexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00
Page 9-20 EZ-USB FX Technical Reference Manual v1.2

9.3.8 Get Interface

The 8051 simply returns the alternate setting for the requested interface IF, and clears the HSNAK
Bit by writing “1” to it.

9.3.9 Set Address

When a USB device is first plugged in, it responds to device address 0 until the host assigns it a
unique address using the Set_Address Request. The USB core copies this device address into the
FNADDR (Function Address) Register, and subsequently responds only to requests to this
address. This address is in effect until the USB device is unplugged, the host issues a USB Reset,
or the host powers down.

The FNADDR Register can be read, but not written by the 8051. Whenever the USB core ReNu-
merates™, it automatically resets the FNADDR to zero, allowing the device to come back as new.

An 8051 program does not need to know the device address, because the USB core automatically
responds only to the host-assigned FNADDR value. The USB core makes it readable by the 8051
for debug/diagnostic purposes.

Table 9-19. Get Interface (Actually, Get Alternate Setting AS for interface IF)

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x81 IN, Device Send AS for Interface IF over

1 bRequest 0x0A “Get_Interface” OUT0BUF (1 byte).

2 wValueL 0x00

3 wValueH 0x00

4 wIndexL IF For this interface

5 wIndexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-21

EZ-USB FX Technical Reference Manual
9.3.10 Sync Frame

The Sync_Frame Request is used to establish a marker in time so the host and USB device can
synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300 byte packets
transmitted from host to device over EP8-OUT. Both host and device maintain sequence counters
that count repeatedly from 1 to 5 to keep track of the packets inside a transmission. To start up in
sync, both host and device need to reset their counts to “0” at the same time (in the same frame).

To get in sync, the host issues the Sync_Frame Request with EP=EP-OUT (byte 4). The 8051
firmware responds by loading IN0BUF with a two-byte frame count for some future time; for exam-
ple, the current frame plus 20. This marks frame “current+20” as the sync frame, during which
both sides initialize their sequence counters to “0.” The 8051 reads the current frame count in the
USBFRAMEL and USBFRAMEH Registers.

Multiple isochronous endpoints can be synchronized in this manner. The 8051 would keep sepa-
rate internal sequence counts for each endpoint.

Table 9-20. Sync Frame

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x82 IN, Endpoint Send a frame number over

1 bRequest 0x0C “Sync_Frame” IN0BUF to synchronize endpoint.

2 wValueL 0x00 EP

3 wValueH 0x00

4 wIndexL EP Endpoint number

5 wIndexH 0x00 EP(n):

6 wLengthL 2 LenL 0x08-0x0F: OUT8-OUT15

7 wLengthH 0 LenH 0x88-0x8F: IN8-IN15

About USB Frames

The USB host issues a SOF (Start Of Frame) packet once every millisecond. Every SOF
packet contains an 11-bit (mod-2048) frame number. The 8051 services all isochronous
transfers at SOF time, using a single SOF interrupt request and vector. If the USB core
detects a missing SOF packet, it uses an internal counter to generate the SOF interrupt.
Page 9-22 EZ-USB FX Technical Reference Manual v1.2

9.3.11 Firmware Load

The USB endpoint zero protocol provides a mechanism for mixing vendor-specific requests with
standard device requests. Bits 6:5 of the bmRequestType field are set to 00 for a standard device
request, and to 10 for a vendor request.

The USB core responds to two endpoint zero vendor requests, RAM Download and RAM Upload.
These requests are active in all modes (RENUM=0 or 1).

Because bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest value
(0xA0) is required for the upload and download requests. These RAM load commands are avail-
able to any USB device that uses the EZ-USB FX chip.

A host loader program typically writes 0x01 to the CPUCS Register to put the 8051 into RESET,
loads all or part of the EZ-USB FX internal RAM with 8051 code, and finally reloads the CPUCS
Register with 0 to take the 8051 out of RESET. The CPUCS Register is the only USB register that
can be written using the Firmware Download command.

Table 9-21. Firmware Download

Byte Field Value Meaning 8051 Response

0 bmRequestType 0x40 Vendor Request, OUT None required.

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of bytes

7 wLengthH LenH

Table 9-22. Firmware Upload

Byte Field Value Meaning 8051 Response

0 bmRequestType 0xC0 Vendor Request, IN None Required.

1 bRequest 0xA0 “Firmware Load”

2 wValueL AddrL Starting address

3 wValueH AddrH

4 wIndexL 0x00

5 wIndexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH
Chapter 9. EZ-USB FX Endpoint Zero Page 9-23

EZ-USB FX Technical Reference Manual
Page 9-24 EZ-USB FX Technical Reference Manual v1.2

Chapter 10. EZ-USB FX Isochronous Transfers

10.1 Introduction

Isochronous endpoints typically handle time-critical, streamed data delivered or consumed in byte-
sequential order. Examples are audio data sent to a DAC over USB or teleconferencing video data
sent from a camera to the host. Due to the byte-sequential nature of this data, the EZ-USB FX chip
makes isochronous data available as a single byte that represents the head or tail of an endpoint
FIFO.

The EZ-USB FX chips that support isochronous transfers implement sixteen isochronous end-
points, IN8-IN15 and OUT8-OUT15. 1,024 bytes of FIFO memory can be distributed over the 16
endpoint addresses. FIFO sizes for the isochronous endpoints are programmable.

Figure 10-1. EZ-USB FX Isochronous Endpoints 8-15

The 8051 reads or writes isochronous data using sixteen FIFO data registers, one per endpoint.
These FIFO registers are shown in Figure 10-1 as INnDATA (Endpoint n IN Data) and OUTnDATA
(Endpoint n OUT Data).

OUTnDATA Register

USB
OUT
Data

USB
IN

Data

8051 FIFO

USB FIFO

8051 FIFO

USB FIFO

INnDATA Register

SOF

SOF
(n=8-15)

(n=8-15)
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-1

EZ-USB FX Technical Reference Manual
The USB core provides a total of 2,048 bytes of FIFO memory (1,024 bytes, double-buffered) for
ISO endpoints. This memory is in addition to the 8051 program/data memory, and normally exists
outside of the 8051 memory space. The 1,024 FIFO bytes may be divided among the sixteen iso-
chronous endpoints. The 8051 writes sixteen EZ-USB FX registers to allocate the FIFO buffer
space to the isochronous endpoints. The 8051 also sets endpoint valid bits to enable isochronous
endpoints.

10.2 Isochronous IN Transfers

IN transfers travel from device to host. Figure 10-2 shows the EZ-USB FX registers and bits asso-
ciated with isochronous IN transfers.

Figure 10-2. Isochronous IN Endpoint Registers

10.2.1 Initialization

To initialize an isochronous IN endpoint, the 8051 performs the following:

1. Sets the endpoint valid bit for the endpoint.

2. Sets the endpoint’s FIFO size by loading a starting address (Section 10.4. "Setting Isochro-
nous FIFO Sizes").

3. Sets the ISOSEND0 Bit in the USBPAIR Register for the desired response.

13I N I S O V A L 0

Endpoint Val id (1=val id)

U S B I E N

SOFIE (1=enabled)

I N 8 D A T A15 14 12 11 810 9

57 6 4 3 12 0

Initialization Data transfer

Registers Associated with an ISO IN endpoint
(EP8IN shown as examp le)

U S B I R Q

SOFIR (1=clear request)

57 6 4 3 12 0

1234567

Data to USB

U S B P A I R

ISOSEND0 (see text)

5 26 4 37 1 0

I N 8 A D D R

FIFO Star t Address (see text)

A7 A4A8 A6 A5A9 0 0
Page 10-2 EZ-USB FX Technical Reference Manual v1.2

4. Enables the SOF Interrupt. All isochronous endpoints are serviced in response to the SOF
Interrupt.

5. Sets the INT2SFR Bit in USBBAV to enable INT 2 clearing via the INT2CLR SFR Register.

The USB core uses the ISOSEND0 Bit to determine what to do if:

• The 8051 does not load any bytes to an INnDATA Register during the previous frame, and

• An IN token for that endpoint arrives from the host.

If ISOSEND0=0 (the default value), the USB core does not respond to the IN token. If
ISOSEND0=1, the USB core sends a zero-length data packet in response to the IN token. The
action to take depends on the overall system design. The ISOSEND0 Bit applies to all of the isoch-
ronous IN endpoints, EP8IN through EP15IN.

10.2.2 IN Data Transfers

When an SOF Interrupt occurs, the 8051 is presented with empty IN FIFOs that it fills with data to
be transferred to the host during the next frame. The 8051 has 1 ms to transfer data into these
FIFOs before the next SOF Interrupt arrives.

To respond to the SOF Interrupt, the 8051 clears the USB Interrupt (8051 INT2) by clearing EXIF.4,
and clears the SOFIR (Start Of Frame Interrupt Request) Bit by writing any value to the INT2CLR
Register. Then, the 8051 loads data into the appropriate isochronous INnDATA FIFO Register(s).
The USB core keeps track of the number of bytes the 8051 loads to each INnDATA Register, and
subsequently transfers the correct number of bytes in response to the USB IN token during the
next frame.

The isochronous FIFO swap occurs every SOF, even if during the previous frame the host did not
issue an IN token to read the isochronous FIFO data, or if the host encountered an error in the
data. USB isochronous data has no re-try mechanism, like bulk data.

10.3 Isochronous OUT Transfers

OUT transfers travel from host to device. Figure 10-3 shows the EZ-USB FX registers and bits
associated with isochronous OUT transfers.
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-3

EZ-USB FX Technical Reference Manual
Figure 10-3. Isochronous OUT Registers

10.3.1 Initialization

To initialize an isochronous OUT endpoint, the 8051:

• Sets the endpoint valid bit for the endpoint.

• Sets the endpoint’s FIFO size by loading a starting address (Section 10.4. "Setting Isoch-
ronous FIFO Sizes").

• Enables the SOF Interrupt. All isochronous endpoints are serviced in response to the SOF
Interrupt.

• Sets the INT2SFR Bit in USBBAV to enable INT 2 clearing via the INT2CLR SFR.

10.3.2 OUT Data Transfer

When an SOF Interrupt occurs, the 8051 is presented with FIFOs containing OUT data sent from
the host in the previous frame, along with 10-bit byte counts, indicating how many bytes are in the
FIFOs. The 8051 has 1 ms to transfer data out of these FIFOs before the next SOF Interrupt
arrives.

Reg is te rs Assoc ia ted w i th an ISO OUT endpo in t
(EP15OUT shown as example)

13OUTISOVAL

Endpoint Valid (1=valid)

USBIEN
SOFIE (1=enabled)

814 12 1115 10 9

57 6 4 3 12 0

Ini t ial izat ion

0OUT15DATA

Data t ransfer

USBIRQ
SOFIR (1=clear request)

57 6 4 3 12 0

1234567

Received Byte Count (H)

89234567

Received Byte Count (L)

01234567

OUT15BCH

OUT15BCL

ISOERR
OUT15 CRC Error (1=error)

13 1014 12 1115 9 8

Data from USB

OUT15ADDR

FIFO Start Address (see text)

A7 A4A8 A6 A5A9 0 0
Page 10-4 EZ-USB FX Technical Reference Manual v1.2

To respond to the SOF Interrupt, the 8051 clears the USB Interrupt (8051 INT2), and clears the
SOFIR Bit by writing “1” to it. Then, the 8051 reads data from the appropriate OUTnDATA FIFO
Register(s). The 8051 can check an error bit in the ISOERR Register to determine if a CRC error
occurred for the endpoint data. Isochronous data is never re-sent, so the firmware must decide
what to do with bad-CRC data.

10.4 Setting Isochronous FIFO Sizes

Up to sixteen EZ-USB FX isochronous endpoints share an EZ-USB FX 1,024-byte RAM, which
can be configured as one to sixteen FIFOs. The 8051 initializes the endpoint FIFO sizes by speci-
fying the starting address for each FIFO within the 1,024 bytes, starting at address zero. The iso-
chronous FIFOs can exist anywhere in the 1,024 bytes, but the user must take care to ensure that
there is sufficient space between start addresses to accommodate the endpoint FIFO size.

Sixteen start address registers set the isochronous FIFO sizes (Table 10-1). The USB core con-
structs the address writing the 1,024 byte range from the register value as shown in Figure 10-4.

Figure 10-4. FIFO Start Address Format

A9 A8 A7 A6 A5 A4 0 0 0 0

Register

Address
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-5

EZ-USB FX Technical Reference Manual
The size of an isochronous endpoint FIFO is determined by subtracting consecutive addresses in
Table 10-1, and multiplying by four. Values written to these registers must have the two LSBs set
to zero. The last endpoint, EP15IN, has a size of 1,024 minus IN15ADDR times four
[(1024-IN15ADDR)4]. Because the 10-bit effective address has the four LSBs set to zero (Figure
10-4), the FIFO sizes are allocated in increments of 16 bytes. For example, if OUT8ADDR=0x00
and OUT9ADDR=0x04, EP8OUT has a FIFO size of the difference multiplied by four or 16 bytes.

An 8051 assembler or C compiler may be used to translate FIFO sizes into starting addresses.
The assembler example in Figure 10-5 shows a block of equates for the 16 isochronous FIFO
sizes, followed by assembler equations to compute the corresponding FIFO relative address val-
ues. To initialize all sixteen FIFO sizes, the 8051 merely copies the table starting at 8OUTAD to the
sixteen EZ-USB FX registers starting at OUT8ADDR.

Table 10-1. Isochronous Endpoint FIFO Starting Address Registers

Register Function b7 b6 b5 b4 b3 b2 b1 b0

OUT8ADDR Endpoint 8 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT9ADDR Endpoint 9 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT10ADDR Endpoint 10 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT11ADDR Endpoint 11 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT12ADDR Endpoint 12 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT13ADDR Endpoint 13 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT14ADDR Endpoint 14 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

OUT15ADDR Endpoint 15 OUT Start Address A9 A8 A7 A6 A5 A4 0 0

IN8ADDR Endpoint 8 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN9ADDR Endpoint 9 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN10ADDR Endpoint 10 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN11ADDR Endpoint 11 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN12ADDR Endpoint 12 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN13ADDR Endpoint 13 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN14ADDR Endpoint 14 IN Start Address A9 A8 A7 A6 A5 A4 0 0

IN15ADDR Endpoint 15 IN Start Address A9 A8 A7 A6 A5 A4 0 0
Page 10-6 EZ-USB FX Technical Reference Manual v1.2

Figure 10-5. Using Assembler to Translate the FIFO Sizes to Addresses

The assembler computes starting addresses (Figure 10-5) by adding the previous endpoint’s
address to the desired size shifted right twice. This aligns A9 with bit 7 as shown in Table 10-1. The
LOW operator takes the low byte of the resulting 16-bit expression

The user of this code must ensure that the sizes given in the first equate block are all multiples of
16. This is easy to tell by inspection—the least significant digit of the hex values in the first column
should be zero.

10.5 Isochronous Transfer Speed

The amount of data USB can transfer during a 1-ms frame is slightly more than 1,000 bytes per
frame (1,500 bytes theoretical, without accounting for USB overhead and bus utilization). A

0100 EP8INSZ equ 256 ; Iso FIFO sizes in bytes
0100 EP8OUTSZ equ 256
0010 EP9INSZ equ 16
0010 EP9OUTSZ equ 16
0010 EP10INSZ equ 16
0010 EP10OUTSZ equ 16
0000 EP11INSZ equ 0
0000 EP11OUTSZ equ 0
0000 EP12INSZ equ 0
0000 EP12OUTSZ equ 0
0000 EP13INSZ equ 0
0000 EP13OUTSZ equ 0
0000 EP14INSZ equ 0
0000 EP14OUTSZ equ 0
0000 EP15INSZ equ 0
0000 EP15OUTSZ equ 0
;
0000 8OUTAD equ 0 ; Load these 16 bytes into ADDR regs starting OUT8ADDR
0040 9OUTAD equ 8OUTAD + Low(EP8OUTSZ/4)
0044 10OUTAD equ 9OUTAD + Low(EP9OUTSZ/4)
0048 11OUTAD equ 10OUTAD + Low(EP10OUTSZ/4)
0048 12OUTAD equ 11OUTAD + Low(EP11OUTSZ/4)
0048 13OUTAD equ 12OUTAD + Low(EP12OUTSZ/4)
0048 14OUTAD equ 13OUTAD + Low(EP13OUTSZ/4)
0048 15OUTAD equ 14OUTAD + Low(EP14OUTSZ/4)
0048 8INAD equ 15OUTAD + Low(EP15OUTSZ/4)
0088 9INAD equ 8INAD + Low(EP8INSZ/4)
008C 10INAD equ 9INAD + Low(EP9INSZ/4)
0090 11INAD equ 10INAD + Low(EP10INSZ/4)
0090 12INAD equ 11INAD + Low(EP11INSZ/4)
0090 13INAD equ 12INAD + Low(EP12INSZ/4)
0090 14INAD equ 13INAD + Low(EP13INSZ/4)
0090 15INAD equ 14INAD + Low(EP14INSZ/4)
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-7

EZ-USB FX Technical Reference Manual
device’s actual isochronous transfer bandwidth is usually determined by how fast the CPU can
move data in and out of its isochronous endpoint FIFOs.

The 8051 code example in Figure 10-6 shows a typical transfer loop for moving external FIFO
data into an IN endpoint FIFO. This code assumes that the 8051 is moving data from an external
FIFO attached to the EZ-USB FX data bus and strobed by the RD signal, into an internal isochro-
nous IN FIFO.

Figure 10-6. 8051 Data Transfer to Isochronous FIFO (IN8DATA) w/DMA

This code sets up a transfer in thirty-five 8051 cycles and then completes the transfer via DMA in
64 clocks for 256 bytes. Using 99 cycles for 256 bytes provides a net ISO transfer rate of
31Mbytes/second (with a 48Mhz 8051). In other words, performing the ISO transfer only uses
3.3% of the processor MIPS, leaving the entire 8051 available for other processing.

mov dptr, #DMASRCH ; (3) Set up the DMA source to be 0x8000 in external memory
mov a, #080h ; (2)
movx @dptr, a ; (2)
mov dptr, #DMASRCL ; (2)
clr a ; (1)
movx @dptr, a ; (2)
mov dptr, #DMADESTH ; (3) Set up the DMA destination to be the IN8DATA fifo
mov a, #low(IN8DATA) ; (2)
movx @dptr, a ; (2)
mov dptr, #DMADESTL ; (2)
mov a, #hi(IN8DATA) ; (2)
movx @dptr, a ; (2)
mov dptr, #DMALEN ; (3) Load the length register. Note that this code

; will only support up to 0xff bytes.
mov a, #nbytes ; (2)
movx @dptr, a ; (2)
mov dptr, #DMAGO ; (3) Start the DMA. It will run in parallel with the

; 8051 code for nbytes/4 8051 cyclesexternal
; Note that this code must be running in internal memory and
; that memory cannot be used during the DMA (Maximum 64 8051
; clocks long)

movx @dptr, a ; (2)
Page 10-8 EZ-USB FX Technical Reference Manual v1.2

10.6 Other Isochronous Registers

Two additional registers, ISOCTL and ZBCOUT, provide additional isochronous endpoint features.

10.6.1 Disable ISO

Figure 10-7. ISOCTL Register

Bit zero of the ISOCTL Register is called ISODISAB. When the 8051 sets ISODISAB=1, all sixteen
of EZ-USB FX endpoints are disabled. If ISODISAB=1, EP8IN-EP15IN and EP8OUT-EP15OUT
should not be used. ISODISAB is cleared at power-on.

When ISODISAB=1, the 2,048 bytes of RAM normally used for isochronous buffers is available to
the 8051 as XDATA RAM (not program memory), from 0x2000 to 0x27FF in internal memory.
When ISODISAB=1, the behavior of the RD# and WR# strobe signals changes to reflect the addi-
tional 2 KB of memory inside the EZ-USB FX chip. This is shown in Table 10-2.

ISOCTL Register bits listed as MBZ (must be zero) in Figure 10-7 must be written with zeros. The
PPSTAT Bit toggles every SOF, and may be written with any value (no effect). Therefore, to disable
the isochronous endpoints, the 8051 should write the value 0x01 to the ISOCTL Register.

Caution! — If you use this option, be absolutely certain that the host never sends isochronous
data to your device. Isochronous data directed to a disabled isochronous endpoint system causes
unpredictable operation.

ISOCTL Isochronous Control 7FA1

b7 b6 b5 b4 b3 b2 b1 b0

- - - - PPSTAT MBZ MBZ ISODISAB

Table 10-2. Addresses for RD# and WR# vs. ISODISAB Bit

ISODISAB RD#, WR#

0
(default)

2000-
7B40,
8000-FFFF

1 2800-
7B40,
8000-FFFF
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-9

EZ-USB FX Technical Reference Manual
The Autopointer is not usable from 0x2000-0x27FF (the reclaimed ISO buffer RAM) when ISO-
DISAB=1.

10.6.2 Zero Byte Count Bits

Figure 10-8. ZBCOUT Register

When the SOF Interrupt is asserted, the 8051 normally checks the isochronous OUT endpoint
FIFOs for data. Before reading the byte count registers and unloading an isochronous FIFO, the
firmware may wish to check for a zero byte count. In this case, the 8051 can check bits in the
ZBCOUT Register. Any endpoint bit set to “1” indicates that no OUT bytes were received for that
endpoint during the previous frame. Figure 10-8 shows this register.

The USB core updates these bits every SOF.

10.7 ISO IN Response with No Data

Figure 10-9. ISOIN Register

The ISOSEND0 Bit (bit 7 in the USBPAIR Register) is used when the EZ-USB FX chip receives an
isochronous IN token while the IN FIFO is empty. If ISOSEND0=0 (the default value), the USB
core does not respond to the IN token. If ISOSEND0=1, the USB core sends a zero-length data
packet in response to the IN token. The action to take depends on the overall system design. The
ISOSEND0 Bit applies to all of the isochronous IN endpoints, IN-8 through IN-15.

ZBCOUT Zero Byte Count OUT 7FA2

b7 b6 b5 b4 b3 b2 b1 b0

EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8

USBPAIR USB Endpoint Pairing 7FDD

b7 b6 b5 b4 b3 b2 b1 b0

ISOEND0 - PR6OUT PR4OUT PR2OUT PR6IN PR4IN PR2IN

R/W R/W R/W R/W R/W R/W R/W R/W

0 x 0 0 0 0 0 0
Page 10-10 EZ-USB FX Technical Reference Manual v1.2

10.8 Restrictions Near SOF

The EZ-USB FX does not restrict FIFO accesses near SOF events.
Chapter 10. EZ-USB FX Isochronous Transfers Page 10-11

EZ-USB FX Technical Reference Manual
Page 10-12 EZ-USB FX Technical Reference Manual v1.2

Chapter 11. EZ-USB FX DMA System

11.1 Introduction

The EZ-USB FX incorporates a Direct Memory Access (DMA) system that transfers byte data
between on-chip or off-chip resources without 8051 intervention. Data can be transferred very
quickly (as fast as one byte per 48-MHz clock) using the following sources and destinations:

• Isochronous endpoint buffers

• Bulk endpoint buffers

• Internal Slave FIFOs (A and B)

• External FIFOs

• Internal RAM

• External RAM.

The 8051 sets up a DMA transfer by initializing registers with a source address, a destination
address, and a byte transfer count. Up to 256 bytes can be programmed per transfer. Then the
8051 writes a control register to initiate the DMA transfer. The DMA unit signals end-of-transfer
with a vectored DMADONE Interrupt request through 8051 INT4.

Most source-destination pairs are supported. The exceptions are explained in this chapter.

Normally a RAM or ROM is connected to the EZ-USB FX address and data bus, which uses the
RD# and WR# pins for strobes. It is also possible to connect an external FIFO to the data bus and
use a second set of strobe signals, FRD# (Fast Read) and FWR# (Fast Write).
Chapter 11. EZ-USB FX DMA System Page 11-1

EZ-USB FX Technical Reference Manual
11.2 DMA Register Descriptions

11.2.1 Source, Destination, Transfer Length Address Registers

Figure 11-1. Upper Byte of the DMA Source Address

Figure 11-2. Lower Byte of the DMA Source Address

Figure 11-3. Upper Byte of the DMA Destination Address

DMASRCH DMA Source Address (H) 784F

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMASRCL DMA Source Address (L) 7850

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMADESTH DMA Destination Address (H) 7851

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 11-2 EZ-USB FX Technical Reference Manual v1.2

Figure 11-4. Lower Byte of the DMA Destination Address

Figure 11-5. DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes)

There are some restrictions on DMA source-destination pairs. Table 11-1 shows all possible
sources and destinations, and which transfers are permitted. The main restriction is that transfers
may not occur in the same 2-KB RAM block in which the 8051 code is running.

To elaborate, the internal 8-KB RAM is divided into four 2-KB blocks, as follows:

Block0 0000-07FF

Block1 0800-0FFF

Block2 1000-17FF

Block3 1800-1FFF

Because the internal RAM combines 8051 program and data RAM, the 8051 is normally running in
(fetching code from) one of these RAM blocks. The RAM block in which the 8051 code is running
during a DMA transfer may not be used simultaneously as a DMA source or destination.

Block 3 has some special considerations. While doing DMA transfers in or out of Block 3 (a com-
mon case, because Block 3 contains the endpoint buffers), you may not simultaneously run code
in this block, or access the following resources:

• Bulk Endpoint buffer memory

• Bulk Endpoint byte count registers.

DMADESTL DMA Destination Address (L) 7852

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMALEN DMA Transfer Length 7854

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 11. EZ-USB FX DMA System Page 11-3

EZ-USB FX Technical Reference Manual
When doing DMA transfers in Block 3, you may simultaneously access:

• Block 3 RAM

• Any of the other USB control/status registers.

Some care should be exercised to observe the rule that you can’t run 8051 code in RAM that is
simultaneously involved in a DMA transfer. For example, if the 8051 is running code in Block 1 and
doing a DMA transfer to/from Block 0, an 8051 interrupt would skip to Block 0 to fetch the interrupt
vector, and violate the rule.

The safest way to do internal RAM DMA transfers is to put your data buffer into Block 2 or Block 3,
and the background code (which runs during the DMA transfer) in Block 0 or Block 1.

This restriction applies only when internal RAM is used as a DMA source or destination.

* A cell with an asterisk is permitted as long as the 8051 is not executing code in either the
source or destination memory block.

N A shaded cell with an “N” is not permitted. The results are unpredictable.

DMA transfers involving mixed internal and external access are not permitted. For example, trans-
ferring across the 0x2800 boundary with ISODISAB=1 is illegal. So is transferring across the
0xFFFF (external) to 0x00 (internal) boundary and crossing the 7FFF to 8000 boundary.

Table 11-1. DMA Sources and Destinations

D
M

A
 S

o
u

rc
e

RAM
0

RAM
1

RAM
2

RAM3/
Bulk

Buffers

WF
Desc

ISO
IN

EXT
MEM

Recl
ISO

AOUT
FIFO

BOUT
FIFO

EXT
FIFO

RAM0 N * * * * * * * * * *

RAM1 * N * * * * * * * * *

RAM2 * * N * * * * * * * *

RAM3/Bulk
Buffers

* * * N * * * * * * *

ISO OUT * * * * N * N

EXT MEM * * * * * * N * * * N

Reclaimed ISO * * * * N * N

AIN FIFO * * * * *

BIN FIFO * * * * *

EXT FIFO * * * * N N
Page 11-4 EZ-USB FX Technical Reference Manual v1.2

Table 11-1 shows all DMA source and destinations, and indicates which DMA transfers are permit-
ted. Table 11-2 explains the legends used in Table 11-1.

• A blank cell indicates a legal source and destination under all conditions.

• RAM3 contains the bulk buffers. Executing code RAM3 precludes DMA access to the bulk
buffers. The bulk buffer area may not be used as program space.

* Accessible only if IFCONFIG[1..0]=10.

Table 11-2. Legends Used in Table 11-1

Source/
Destination

Description

RAM0 RAM Block 0 from 0000-07FF.

RAM1 RAM Block 0 from 0800-0FFF.

RAM2 RAM Block 0 from 1000-17FF.

RAM3 RAM Block 0 from 1800-1FFF.

Bulk Buffers XDATA Registers at 7B40-7FFF. In the 8-KB part, these registers also
appear at 1B40-1FFF.

WF Descriptors Destination only. GPIF waveform descriptors at 7900-797F.*

ISO OUT Source only. Endpoint 8OUT-15OUT FIFO Registers, which are
XDATA Registers at 7F60-7F67.

ISO IN Destination only. Endpoint 8IN-15IN Registers, which are XDATA Reg-
isters at 7F68-7F6F.

EXT MEM If isochronous endpoints are disabled, 2000-FFFF (ISODISAB = 1).
If any isochronous endpoints are used, 2800-FFFF (ISODISAB = 0).

Reclaimed ISO RAM at 2000-27FF is available as XDATA memory if ISODISAB=1.

AIN FIFO Source only. Slave FIFO A-IN. FIFO register is at XDATA 7800 (AIN-
DATA).

AOUT FIFO Destination only. Slave FIFO A-OUT. FIFO register is at XDATA 780E
(AOUTDATA).

BIN FIFO Source only. Slave FIFO B-IN. FIFO register is at XDATA 7805 (BIN-
DATA).

BOUT FIFO Destination only. Slave FIFO B-OUT. FIFO register is at XDATA 7813
(BOUTDATA).

EXT FIFO XDATA location 7858, used to access external RAM as a FIFO.
Chapter 11. EZ-USB FX DMA System Page 11-5

EZ-USB FX Technical Reference Manual
11.2.2 DMA Start and Status Register

Figure 11-6. DMA Start and Status Register

The 8051 writes any value to this register to initiate a DMA transfer.

Bit 7: DONE DMA Transfer Done

This read-only bit indicates that the DMA transfer specified by the source and destination
addresses and byte count has completed. DONE=0 indicates DMA is in progress; DONE=1
indicates completion. If enabled, a vectored INT4 Interrupt request is generated on a zero-to-
one transition of the DONE Bit.

11.2.3 DMA Synchronous Burst Enables Register

* This register is shown only for reference.

Figure 11-7. Fast Transfer Control Register

Figure 11-8. Synchronous Burst Enables

DMAGO DMA Start and Status 7855

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 0 0 0

R/W x x x x x x x

0 x x x x x x x

FASTXFR Fast Transfer Control* 7FE2

b7 b6 b5 b4 b3 b2 b1 b0

FISO FBLK RPOL RMOD1 RMOD0 WPOL WMOD1 WMOD0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

DMABURST Synchronous Burst Enables 7857

b7 b6 b5 b4 b3 b2 b1 b0

x x x DSTR2 DSTR1 DSTR0 RB WB

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 0 0
Page 11-6 EZ-USB FX Technical Reference Manual v1.2

This register enables synchronous burst reads and writes on the 8051 address/data bus (RB and
WB), and selects cycle stretch values for the read and write strobes (DSTR[2..0]). Refer to Section
11.4.1. "DMA External Writes" and Section 11.4.2. "DMA External Reads" for more information on
DMA Stretch.

Bit 4-2: DSTR[2..0] DMA Stretch

The read and write strobes used in external DMA transfers are controlled by the following bits:

For DMA Reads:

• One of four read strobe waveforms (synonymous with modes) is selected by the
RMOD[1..0] Bits in the FASTXFR Register.

• Read strobe polarity is set by the RPOL Bit in the FASTXFR Register.

• Read strobe duration is set by the DMA Stretch Bits (DSTR[2..0]) in the DMABURST Reg-
ister. This overrides the 8051 stretch bits in PCON that set RD/WR pulse widths (DMA
only).

For DMA Writes:

• One of four write strobe waveforms is selected by the WMOD[1..0] Bits in the FASTXFR
Register.

• Write strobe polarity is set by the WPOL Bit in the FASTXFR Register.

• Write strobe duration is set by the DSTR[2..0] Bits in the DMABURST Register.

The external DMA read and write stretch values are the same, as set by the DSTR[2..0] Bits.

Bit 1: RB DMA Burst Read

When RB=1, a burst read DMA transfer is performed over the EZ-USB FX data bus. The term
“burst” means that the read strobe stays low during multiple-byte transfers, and the CLKOUT
signal (“CLK24/48” in Figure 11-8. and Figure 11-9.) synchronizes the data. DMA burst reads
work only for two read waveforms, Mode 0 and Mode 1. The stretch value DSTR[2..0] has no
effect in burst read mode.
Chapter 11. EZ-USB FX DMA System Page 11-7

EZ-USB FX Technical Reference Manual
Figure 11-9. Effect of the RB Bit on DMA Mode 0 Reads

Figure 11-10. Effect of the RB Bit on DMA Mode 1 Reads

In non-burst mode (RB=0), the DMA read transfers occur every other clock, and a read strobe is
generated for each byte. In burst mode (RB=1), the read strobe remains low for the entire multi-
byte transfer, and a byte is transferred every clock. The only difference between Mode 0 and Mode
1 is that the data is sampled one clock later in Mode 1.

Bit 0: WB DMA Burst Write

When WB=1, a burst write DMA transfer is performed over the EZ-USB FX data bus. The term
“burst” means that the write strobe stays low during multiply-byte transfers, and the CLKOUT
signal (shown as “CLK24/48” in Figure 11-10.) synchronizes the output data. DMA burst writes

FR D /R D
(D M A R B =1)

D [7 ..0] In

C LK 24 /48

tC L
4 1.66 n s
o r 2 0.83

n s

In

D [7..0] In InIn

FR D /R D
(D M AR B =0)

(RB=0)

(RB=1)

D [7 ..0] In

C L K 2 4/4 8

tC L
4 1 .6 6 n s
o r 2 0 .8 3

n s

In

D [7 ..0] In InIn

F R D /R D
(D MA RB =0)

F R D /R D
(D MA RB =1)

(RB=0)

(RB=1)
Page 11-8 EZ-USB FX Technical Reference Manual v1.2

work only for the Mode 0 waveform (WMOD[1..0] must be programmed to 00). The DMA
stretch value DSTR[2..0] has no effect in burst write.

Figure 11-11. Effect of the WB Bit on DMA Mode 0 Writes

In non-burst mode (DMAWR=0), the DMA write transfers occur every third clock, and a write
strobe is generated for every byte. In burst mode (DMAWR=1), the write strobe remains low for
the entire multi-byte transfer, and a byte is transferred every clock.

11.2.4 Dummy Register

Figure 11-12. DMAEXTFIFO Register. Data is “Don’t Care”.

This is a dummy register, containing no data bits. Programming the DMAEXTFIFO address into
the DMA source or destination address causes the EZ-USB FX data bus to be used in the follow-
ing way for DMA cycles:

DMAEXTFIFO Use A/D Buses as External FIFO 7858

b7 b6 b5 b4 b3 b2 b1 b0

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

W R /FW R
(D M AW B =0)

O utput O utputO utput

C LK24/48

D [7..0]

W R /FW R
(D M AW B =1)

D [7..0] out out out out out out out

C LK24/48

(WB=1)

(WB=0)
Chapter 11. EZ-USB FX DMA System Page 11-9

EZ-USB FX Technical Reference Manual
• The FRD# or FWR# pins are used as strobes instead of the RD# and WR# pins.

• The address bus follows the 8051 program counter rather than incrementing.

• The typical use for this transfer type is to connect a FIFO to the EZ-USB FX data bus.

11.3 External DMA Transfers - Strobes

11.3.1 Selection of RD/FRD and WR/FWR DMA Strobes

The preceding section explains how to select waveforms and timing for read and write strobes to
external memory. These strobes can correspond with two different sets of read-write signals, RD#/
WR#, the normal 8051 external bus strobes, or FRD#/FWR#, the EZ-USB FX fast transfer
strobes. Which of the read and write strobes is active is controlled by the DMA address loaded into
a DMA source or destination register, according to Table 11-3. The table also shows what the
address bus does for the two strobe types.

For external DMA transfers, the timing of the DMA strobe signals is governed by two registers,
FASTXFR and DMABURST, as previously described. Internal DMA transfers (both source and
destination inside the EZ-USB FX), occur at one byte per clock, independent of stretch value or
settings of the FASTXFR or DMABURST Registers.

For normal (non-DMA) 8051 external transfers (these use the MOVX instruction), the timing of the
RD# and WR# strobes is governed by the stretch value programmed into the 8051 CKCON Regis-
ter CKCON[2..0].

11.4 Interaction of DMA Strobe Waveforms and Stretch Bits

Figure 11-13 and Figure 11-14 illustrate how the DMA read and write strobes are lengthened using
the DSTR[2..0] Bits in the DMABURST Register, for each of the four waveforms that can be
selected by the read and write mode bits in the FASTXFR Register.

Table 11-3. DMA External RAM Control

DMA Source/Destination
Active

Strobes
Address Bus

Any external memory address RD#, WR# Increments

DMAEXTFIFO (0x7858) FRD#, FWR# Follows 8051 PC
Page 11-10 EZ-USB FX Technical Reference Manual v1.2

11.4.1 DMA External Writes

Figure 11-13. DMA Write Strobe Timing: 4 Modes Selected by FASTXFR[4..3]

The DMA Write strobes (WR# or FWR#) exhibit the four basic waveforms shown in Figure 11-13.
for the four modes selected by FASTXFR[1..0]. The waveforms in Figure 11-13. apply for a stretch
value of 000, with one exception: Mode 3 requires a stretch value of 001 or higher. When DMA
burst writes are enabled (WB=1), the stretch values DSTR[2..0] and waveform select values
(WMOD[1.0]) have no effect.

The timing relationship between the onset of output data and the leading edges of the write strobe
(Figure 11-11.) are independent of stretch value. The effect of stretch values greater than zero is to
lengthen the data valid time and the trailing edges of the write strobes, as shown in Table 11-4.

CLK24/48

Mode 00

D[7..0] Output

tCL
41.66 ns

or 20.83 ns

Mode 01

Mode 10

Mode 11

Note

Note

Note

Note

Note

Note: These edges extend in time for stretch values greater than 000
Chapter 11. EZ-USB FX DMA System Page 11-11

EZ-USB FX Technical Reference Manual
11.4.2 DMA External Reads

Figure 11-14. DMA Read Strobe Timing: 4 Modes Selected by FASTXFR[4..3]

Table 11-4. Effect of Stretch Values on a Write Strobe

DSTR[2..0] Data Valid Time Write Strobe Width

000 3 clocks (Figure 11-13.) [only modes 0-2 apply]

001 6 clocks Add 2 clocks

010 10 clocks Add 6 clocks

011 14 clocks Add 10 clocks

100 18 clocks Add 14 clocks

101 22 clocks Add 18 clocks

110 26 clocks Add 22 clocks

111 30 clocks Add 26 clocks

Mode 0

D[7..0] In

Mode 2

Mode 3

D[7..0] In

D[7..0]

D[7..0] In

In

Mode 1

CLK24/48

tCL
41.66 ns

or 20.83 ns

Note

Note

Note

Note

Note: These edges extend in time for stretch values greater than 000
Page 11-12 EZ-USB FX Technical Reference Manual v1.2

The DMA Read strobes (RD# or FRD#) exhibit the four basic waveforms shown in Figure 11-14.
for the four modes selected by FASTXFR[4..3].

11.4.2.1 Modes 0 and 1

Mode 0 and Mode 1 read strobes are intended for synchronous memories, and are unaffected by
the programmed stretch value. Note that the only difference between Mode 0 and Mode 1 is that
Mode 1 captures the data one clock later than Mode 0.

11.4.2.2 Modes 2 and 3

Mode 2 and Mode 3 read strobes are intended for asynchronous memories. The strobe widths are
affected by the stretch values programmed into the DSTR[2..0]. Stretch values greater than zero
have the effect of lengthening the data sampling time and the trailing edge of the read strobe, as
shown in Table 11-5. In Mode 2, the data is always captured on the same clock edge on which the
read strobe goes inactive. In Mode 3, the data is always captured one clock earlier than in Mode 2.

Table 11-5. Effect of Stretch Values on a Write Strobe

DSTR[2..0]
Mode 2 Read
Strobe Width

Mode 3 Read
Strobe Width

000 2 clocks 3 clocks

001 4 clocks 5 clocks

010 8 clocks 9 clocks

011 12 clocks 13 clocks

100 16 clocks 17 clocks

101 20 clocks 21 clocks

110 24 clocks 25 clocks

111 28 clocks 29 clocks
Chapter 11. EZ-USB FX DMA System Page 11-13

EZ-USB FX Technical Reference Manual
Page 11-14 EZ-USB FX Technical Reference Manual v1.2

Chapter 12. EZ-USB FX Interrupts

12.1 Introduction

The EZ-USB FX enhanced 8051 responds to the interrupts shown in Table 12-1. Interrupt sources
that are not present in the standard 8051 are marked with an “X” in the New column of the table.
The three interrupts used by the USB core are shown in bold type.

The Natural Priority column in Table 12-1 shows the 8051 interrupt priorities. As explained in
Chapter 18. "8051 Hardware Description", the 8051 can assign each interrupt to a high or low pri-
ority group. The 8051 resolves priorities within the groups using the natural priorities.

Table 12-1. EZ-USB FX Interrupts

New 8051 Interrupt (IRQ name) Source
Vector
(hex)

Natural
Priority

IE0 INT0# Pin 03 1

TF0 Timer 0 Overflow 0B 2

IE1 INT1# Pin 13 3

TF1 Timer 1 Overflow 1B 4

RI_0 & TI_0 UART0 Rx & Tx 23 5

X TF2 Timer 2 Overflow 2B 6

X Resume (WAKEUP) WAKEUP# Pin or USB Core 33 0

X RI_1 & TI_1 UART1 Rx & Tx 3B 7

X USB (INT2) USB Core 43 8

X I2C-compatible (INT3) USB Core 4B 9

X IE4 (FIFOs) Slave FIFOs/INT4 pin 53 10

X IE5 INT5# Pin 5B 11

X IE6 INT6 Pin 63 12
Chapter 12. EZ-USB FX Interrupts Page 12-1

EZ-USB FX Technical Reference Manual
12.2 USB Core Interrupts

The USB core provides four interrupt groups types, which are described in the following sections:

• Wakeup — After the EZ-USB FX chip detects USB suspend and the 8051 has entered its
idle state, the USB core responds to an external signal on its WAKEUP# pin or resumption
of USB bus activity by re-starting the EZ-USB FX oscillator and resuming 8051 operation.

• USB Signaling — These include 16 bulk endpoint interrupts, three interrupts not specific
to a particular endpoint (SOF, Suspend, USB Reset), and two interrupts for CONTROL
transfers (SUTOK, SUDAV). These interrupts share the USB interrupt (INT2). Also
included is an interrupt indicating that a bulk packet was NAKd.

• I2C-compatible Transfers — (INT3).

• Slave FIFO Flags — (INT4)

12.3 Resume Interrupt

Chapter 14. "EZ-USB FX Power Management" describes suspend-resume signaling in detail, and
presents a code example that uses the Wakeup Interrupt.

12.4 USB Signaling Interrupts

Figure 12-1. shows the 21 USB requests that share the 8051 USB (INT2) Interrupt. The bottom
IRQ, EP7-OUT, is expanded in the diagram to show the logic associated with each USB interrupt
request.
Page 12-2 EZ-USB FX Technical Reference Manual v1.2

Figure 12-1. USB Interrupts

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt request
latch. The USB core sets an IRQ Bit, and the 8051 clears an IRQ Bit by writing a “1” to it. The out-
put of each latch is ANDed with an IEN (Interrupt Enable) Bit and then ORed with all the other USB
interrupt request sources.

The USB core prioritizes the USB interrupts and constructs an Autovector, which appears in the
AVEC register. The interrupt vector values IV[4..0] are shown to the left of the interrupt sources
(shaded boxes). 00 is the highest priority, 15 is the lowest. If two USB interrupts occur simulta-
neously, the prioritization affects which one is first indicated in the AVEC register. If the 8051 has
enabled Autovectoring, the AVEC Byte replaces byte 0x45 in 8051 program memory. This causes

8051EZ-USB

EP0-IN

EP0-OUT

EP1-IN

EP1-OUT

EP2-IN

EP2-OUT

EP3-IN

EP3-OUT

SUTOK

SUDAV

SOF

SUSP

EIE.0

EXIF.4(rd)

EXIF.4(0)

S

R

8051 "USB"
Interrupt

OUT07IEN.7

IN07IRQ.7(1)

S

R IN07IRQ.7 (rd)

URES

EP4-IN

EP4-OUT

EP5-IN

EP5-OUT

EP6-IN

EP6-OUT

EP7-IN

EP7-OUT

0 IV4 IV3 IV2 IV1 IV0 0 0AVEC

00

01

02

03

04

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

Interrupt Request Latch

IBN05
Chapter 12. EZ-USB FX Interrupts Page 12-3

EZ-USB FX Technical Reference Manual
the USB interrupt to automatically vector to different addresses for each USB interrupt source.
This mechanism is explained in detail in Section 12.10 "USB Autovectors".

Due to the OR gate in Figure 12-1., any of the USB interrupt sources sets the 8051 USB interrupt
request latch, whose state appears as an interrupt request in the 8051 SFR Bit EXIF.4. The 8051
enables the USB interrupt by setting SFR Bit EIE.0. To clear the USB interrupt request the 8051
writes a zero to the EXIF.4 Bit. Note that this is the opposite of clearing any of the individual USB
interrupt sources, which the 8051 does by writing a “1” to the IRQ Bit.

When a USB resource requires service (for example, a SOF token arrives or an OUT token arrives
on a BULK endpoint), two things happen. First, the corresponding Interrupt Request Latch is set.
Second, a pulse is generated, ORd with the other USB interrupt logic, and routed to the 8051 INT2
input. The pulse is required because INT2 is edge triggered.

When the 8051 finishes servicing a USB interrupt, it clears the particular IRQ Bit by writing a “1” to
it. If any other USB interrupts are pending, the act of clearing the IRQ causes the USB core logic
to generate another pulse for the highest-priority pending interrupt. If more that one is pending,
they are serviced in the priority order shown in Figure 12-1., starting with SUDAV (priority 00) as
the highest priority, and ending with EP7-OUT (priority 15) as the lowest.

Important

It is important in any USB Interrupt Service Routine (ISR) to clear the 8051 INT2 Interrupt
before clearing the particular USB interrupt request latch. This is because as soon as the
USB interrupt is cleared, any pending USB interrupt will pulse the 8051 INT2 Input. If the
INT2 Interrupt Request latch has not been previously cleared the pending interrupt is lost.
Page 12-4 EZ-USB FX Technical Reference Manual v1.2

Figure 12-2. illustrates a typical USB ISR for endpoint 2-IN.

Figure 12-2. The Order of Clearing Interrupt Requests is Important

USB_ISR: push dps
push dpl
push dph
push dpl1
push dph1
push acc

;
mov a,EXIF ; FIRST clear the USB (INT2) interrupt request
clr acc.4
mov EXIF,a ; Note: EXIF reg is not 8051 bit-addressable

;
mov dptr,#IN07IRQ ; now clear the USB interrupt request
mov a,#00000100b ; use IN2 as example
movx @dptr,a

;
; (perform interrupt routine stuff)
;

pop acc
pop dph1
pop dpl1
pop dph
pop dpl
pop dps

;
reti

IN07IRQ Endpoints 0-7 IN Interrupt Requests 7FA9

b7 b6 b5 b4 b3 b2 b1 b0

IN7IR IN6IR IN5IR IN4IR IN3IR IN2IR IN1IR IN0IR

OUT07IRQ Endpoints 0-7 OUT Interrupt Requests 7FAA

b7 b6 b5 b4 b3 b2 b1 b0

OUT7IR OUT6IR OUT5IR OUT4IR OUT3IR OUT2IR OUT1IR OUT0IR
Chapter 12. EZ-USB FX Interrupts Page 12-5

EZ-USB FX Technical Reference Manual
Figure 12-3. EZ-USB FX Interrupt Registers

Figure 12-3. shows the registers associated with the USB interrupts. Each interrupt source has an
enable (IEN) and a request (IRQ) Bit. The 8051 sets the IEN Bit to enable the interrupt. The USB
core sets an IRQ Bit high to request an interrupt, and the 8051 clears an IRQ Bit by writing a “1” to
it.

The USBIEN and USBIRQ registers control the first five interrupts shown in Figure 12-3.. The
IN07IEN and OUT07 registers control the remaining 16 USB interrupts, which correspond to the
16 bulk endpoints IN0-IN7 and OUT0-OUT7.

The following sections describe the USB interrupts in detail.

USBIRQ USB Interrupt Request 7FAB

b7 b6 b5 b4 b3 b2 b1 b0

- - IBNIR URESIR SUSPIR SUTOKIR SOFIR SUDAVIR

IN07IEN Endpoints 0-7 IN Interrupt Enables 7FAC

b7 b6 b5 b4 b3 b2 b1 b0

IN7IEN IN6IEN IN5IEN IN4IEN IN3IEN IN2IEN IN1IEN IN0IEN

OUT07IEN Endpoints 0-7 OUT Interrupt Enables 7FAD

b7 b6 b5 b4 b3 b2 b1 b0

OUT7IEN OUT6IEN OUT5IEN OUT4IEN OUT3IEN OUT2IEN OUT1IEN OUT0IEN

USBIEN USB Interrupt Enables 7FAE

b7 b6 b5 b4 b3 b2 b1 b0

- - IBNIE URESIE SUSPIE SUTOKIE SOFIE SUDAVIE
Page 12-6 EZ-USB FX Technical Reference Manual v1.2

12.5 SUTOK, SUDAV Interrupts

Figure 12-4. SUTOK and SUDAV Interrupts

SUTOK and SUDAV are supplied to the 8051 by EZ-USB FX CONTROL endpoint zero. The first
portion of a USB CONTROL transfer is the SETUP stage shown in Figure 12-4.. (A full CONTROL
transfer is shown in Figure 9-1..) When the USB core decodes a SETUP packet, it asserts the
SUTOK (SETUP Token) Interrupt Request. After the USB core has received the eight bytes error-
free and copied them into eight internal registers at SETUPDAT, it asserts the SUDAV Interrupt
Request.

The 8051 program responds to the SUDAV Interrupt by reading the eight SETUP data bytes in
order to decode the USB request (Chapter 9. "EZ-USB FX Endpoint Zero").

The SUTOK Interrupt is provided to give advance warning that the eight register bytes at SETUP-
DAT are about to be over-written. It is useful for debug and diagnostic purposes.

12.6 SOF Interrupt

Figure 12-5. A Start Of Frame (SOF) Packet

USB Start of Frame Interrupt Requests occur every millisecond. When the USB core receives an
SOF packet, it copies the eleven-bit frame number (FRNO in Figure 12-5.) into the USBFRAMEH
and USBFRAMEL registers, and activates the SOF Interrupt Request. The 8051 services all isoch-
ronous endpoint data as a result of the SOF Interrupt.

D
A
T
A
0

8 by tes
Setup
Da ta

C
R
C
1
6

Data Packet

A
C
K

H/S Pkt

S
E
T
U
P

A
D
D
R

E
N
D
P

C
R
C
5

Token Packet

SETUP Stage

SUTOK
Interrupt

SUDAV
Interrupt

S
O
F

F
R
N
O

C
R
C
5

Token Pkt
Chapter 12. EZ-USB FX Interrupts Page 12-7

EZ-USB FX Technical Reference Manual
12.7 Suspend Interrupt

If the EZ-USB FX detects 3 ms of no bus activity, it activates the SUSP (Suspend) Interrupt
Request. A full description of Suspend-Resume signaling appears in Chapter 14. "EZ-USB FX
Power Management".

12.8 USB RESET Interrupt

The USB signals a bus reset by driving both D+ and D- low for at least 10 ms. When the USB core
detects the onset of USB bus reset, it activates the URES Interrupt Request.

12.9 Bulk Endpoint Interrupts

The remaining 16 USB interrupt requests are indexed to the 16 EZ-USB FX bulk endpoints. The
USB core activates a bulk interrupt request when the endpoint buffer requires service. For an OUT
endpoint, the interrupt request signifies that OUT data has been sent from the host, validated by
the USB core, and is sitting in the endpoint buffer memory. For an IN endpoint, the interrupt
request signifies that the data previously loaded by the 8051 into the IN endpoint buffer has been
read and validated by the host, making the IN endpoint buffer ready to accept new data.

The USB core sets an endpoint’s interrupt request bit when the endpoint’s busy bit (in the endpoint
CS register) goes low, indicating that the endpoint buffer is available to the 8051. For example,
when endpoint 4-OUT receives a data packet, the busy bit in the OUT4CS register goes low, and
OUT07IRQ.4 goes high, requesting the endpoint 4-OUT Interrupt.

12.10 USB Autovectors

The USB interrupt is shared by 22 interrupt sources. To save the code and processing time
required to sort out which USB interrupt occurred, the USB core provides a second level of inter-
rupt vectoring, called Autovectoring. When the 8051 takes a USB interrupt, it pushes the program
counter onto its stack, and then executes a jump to address 43, where it expects to find a jump
instruction to the INT2 service routine. The 8051 jump instruction is encoded as follows:
Page 12-8 EZ-USB FX Technical Reference Manual v1.2

If Autovectoring is enabled (AVEN=1 in the USBBAV register), the USB core substitutes its AVEC
Byte for the byte at address 0x0045. Therefore, if the programmer pre-loads the high byte (“page”)
of a jump table address at location 0x0044, the core-inserted byte at 0x45 will automatically direct
the JUMP to one of 21 addresses within the page. In the jump table, the programmer then puts a
series of jump instructions to each particular ISR.

Table 12-2. 8051 JUMP Instruction

Address Op-Code Hex Value

0043 Jump 0x02

0044 AddrH 0xHH

0045 AddrL 0xLL
Chapter 12. EZ-USB FX Interrupts Page 12-9

EZ-USB FX Technical Reference Manual
12.11 Autovector Coding

A detailed example of a program that uses Autovectoring is presented in Section 6.14 "Interrupt
Bulk Transfer Example". The coding steps are summarized here. To employ EZ-USB FX Autovec-
toring:

1. Insert a jump instruction at 0x43 to a table of jump instructions to the various USB interrupt
service routines. Make sure the jump table starts on a 0x100 byte page boundary.

2. Code the jump table with jump instructions to each individual USB interrupt service routine.
This table has two important requirements, arising from the format of the AVEC Byte (zero-
based, with 2 LSBs set to 0):

Table 12-3. A Typical USB Jump Table

Table
Offset Instruction

00 JMP SUDAV_ISR

04 JMP SOF_ISR

08 JMP SUTOK_ISR

0C JMP SUSPEND_ISR

10 JMP USBRESET_ISR

14 JMP IBN_ISR

18 JMP EP0IN _ISR

1C JMP EP0OUT_ISR

20 JMP IN1BUF_ISR

24 JMP EP1OUT_ISR

28 JMP EP2IN_ISR

2C JMP EP2OUT_ISR

30 JMP EP3IN_ISR

34 JMP EP3OUT_ISR

38 JMP EP4IN_ISR

3C JMP EP4OUT_ISR

40 JMP EP5IN_ISR

44 JMP EP5OUT_ISR

48 JMP EP6IN_ISR

4C JMP EP6OUT_ISR

50 JMP EP7IN_ISR

54 JMP EP7OUT_ISR
Page 12-10 EZ-USB FX Technical Reference Manual v1.2

• It must begin on a page boundary (address 0xNN00).

• The jump instructions must be four bytes apart.

3. The interrupt service routines can be placed anywhere in memory.

4. Write initialization code to enable the USB interrupt (INT2) and Autovectoring.

Figure 12-6. The Autovector Mechanism in Action

Figure 12-6. illustrates an ISR that services endpoint 2-OUT. When endpoint 2-OUT requires ser-
vice, the USB core activates the USB interrupt request, vectoring the 8051 to location 0x43. The
jump instruction at this location, which was originally coded as “LJMP 04-00” becomes “LJMP 04-
2C” due to the USB core substituting 2C as the Autovector byte for Endpoint 2-OUT (Table 12-3).
The 8051 jumps to 042C, where it executes the jump instruction to the endpoint 2-OUT ISR,
shown in this example at address 0119. Once the 8051 takes the vector at 0043, initiation of the
endpoint-specific ISR takes only eight 8051 cycles.

EP2OUT_ISR:

USB_Jmp_Table:

LJMP

04

(00)2C

0043

0044

0045

2CA V E C

USB core
LJMP EP2OUT_ISR

01

19

042C

042D

042E

0400

0119

8051 USB
Interrupt

Vector
Chapter 12. EZ-USB FX Interrupts Page 12-11

EZ-USB FX Technical Reference Manual
12.12 I2C-Compatible Interrupt

Figure 12-7. I2C-Compatible Interrupt Enable Bits and Registers

Chapter 4. "EZ-USB FX Input/Output" describes the 8051 interface to the EZ-USB FX I2C-com-

patible controller. The 8051 uses two registers, I2CS (I2C-compatible Control and Status) and

I2DAT (I2C-compatible Data) to transfer data over the I2C-compatible bus. The USB core signals

completion of a byte transfer by setting the DONE Bit (I2CS.0) high, which also sets an I2C-com-
patible Interrupt Request latch (Figure 12-7.). This interrupt request is routed to the 8051 INT3
Interrupt.

The 8051 enables the I2C-compatible interrupt by setting EIE.1=1. The 8051 determines the state
of the interrupt request flag by reading EXIF.5, and resets the INT3 Interrupt Request by writing a

zero to EXIF.5. Any 8051 read or write to the I2DAT or I2CS register automatically clears the I2C-
compatible Interrupt Request.

12.13 In Bulk NAK Interrupt

The EZ-USB FX family responds to an IN token from the host by transmitting bytes that the 8051
has loaded into an IN endpoint buffer, and armed by loading the IN endpoint’s byte count register.
After the host successfully receives the IN data, the 8051 receives an EP-IN Interrupt, signifying
that the IN endpoint buffer is once again ready to accept data.

In some situations, the host may send IN tokens before the 8051 has loaded and armed an IN
endpoint. To alert the 8051 that an IN endpoint is being pinged, a set of interrupts, one per IN end-
point, indicates that an IN endpoint just sent a NAK to the host. This happens when the host sends

EIE.1

EXIF.5(rd)

EXIF.5(0)

S

R

8051 I 2C
Interrupt
(INT3)

I2C Interrupt
Request

DONE S

R
RD or WR

I2DAT register

I2CS

I2DAT

START STOP LASTRD ID1 ID0 BERR ACK

D7 D6 D5 D4 D3 D2 D1 D0

DONE

EZ-USB 8051
Page 12-12 EZ-USB FX Technical Reference Manual v1.2

an IN token and the IN endpoint does not have data (yet) for the host. This set of interrupts is
called “IBN” (IN Bulk NAK). Its INT2 Autovector is 05, which was previously reserved in the EZ-
USB family.

The IBN Interrupt Requests and enables are controlled by two registers:

Figure 12-8. IN Bulk NAK Interrupt Request Register

Figure 12-9. IN Bulk NAK Interrupt Enable Register

As with all other EZ-USB FX interrupt requests, the 8051 clears an IBNIRQ Bit by writing a “1” to it.
Each of the individual IN endpoints may be enabled for an IBN Interrupt using the IBNEN register.

12.14 I2C-Compatible STOP Complete Interrupt

Figure 12-10. I2C-Compatible Mode Register

IBNIRQ IN Bulk NAK Interrupt Requests 7FB0

b7 b6 b5 b4 b3 b2 b1 b0

EP7IR EP6IR EP5IR EP4IR EP3IR EP2IR EP1IR EP0IR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IBNEN IN Bulk NAK Interrupt Enables 7FB1

b7 b6 b5 b4 b3 b2 b1 b0

EP7IE EP6IE EP5IE EP4IE EP3IE EP2IE EP1IE EP0IE

R/W R/W R/W R/W R/W R/W R/W R/W

x 0 0 0 0 0 0 0

I2CMODE I2C-Compatible Mode 7FA7

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 STOPIE 400KHZ

R R R R R R R/W R/W

0 0 0 0 0 0 0 0
Chapter 12. EZ-USB FX Interrupts Page 12-13

EZ-USB FX Technical Reference Manual
The I2C-compatible interrupt includes one additional interrupt source, a 1-0 transition of the STOP
Bit. To enable this interrupt, set the STOPIE Bit in the I2CMODE register. The 8051 determines the
interrupt source by checking the DONE and STOP Bits in the I2CS register.

Figure 12-11. I2C-Compatible Control and Status Register

Figure 12-12. I2C-Compatible Data

The two registers that the 8051 uses to control I2C-compatible transfers are shown above. In the

EZ-USB family, an I2C-compatible Interrupt Request occurs on INT3 whenever:

• The DONE Bit (I2CS.0) makes a zero-to-one transition, or

(This interrupt signals the 8051 that the I2C-compatible controller is ready for another
command.)

• The STOP Bit (I2CS.6) makes a one-to-zero transition.

The 8051 concludes I2C-compatible transfers by setting the STOP Bit (I2CS.6). When the STOP

condition has been sent over the I2C-compatible bus, the I2C-compatible controller resets I2CS.6

to zero. During the time the I2C-compatible controller is generating the stop condition, it ignores
accesses to the I2CS and I2DAT registers. The 8051 code should therefore check the STOP Bit
for zero before writing new data to I2CS or I2DAT.

The STOP Bit completion interrupt is enabled by setting I2CMODE.1 to “1.”

I2CS I2C-Compatible Control and Status 7FA5

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 X X 0 0 0

I2DAT I2C-Compatible Data 7FA6

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 12-14 EZ-USB FX Technical Reference Manual v1.2

12.15 Slave FIFO Interrupt (INT4)

Figure 12-13. Interrupt 4 Autovector

The EZ-USB FX slave FIFOs contain various flags to alert the 8051 when a FIFO needs attention.
These flags are encoded into the INT4 autovector, which the 8051 can read in the INT4IVEC regis-
ter. The encoded values for each INT4 source are shown in Table 12-4.

Figure 12-14. Interrupt 4 Setup

Bit 0: AV4EN Enable INT4 Autovector

To streamline the 8051 code that deals with the FIFO interrupts, the 8051 INT4 vector loca-
tions use the same autovectoring mechanism as the USB (INT2) Interrupt when the AV4EN Bit
(INT4SETUP.0) is set. Referring to Table 12-4, when a FIFO flag interrupt occurs with
AV4EN=1, internal logic replaces the third byte of the jump instruction at location 0x53 with a
different address for each FIFO interrupt source.

*Table 12-5 shows bytes inserted at Address 55H

INT4IVEC Interrupt 4 Autovector 785D

b7 b6 b5 b4 b3 b2 b1 b0

0 0 I4V3 I4V2 I4V1 I4V0 0 0

R R R R R R R R

0 0 0 0 0 0 0 0

INT4SETUP Interrupt 4 Setup 785E

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 INT4SFR INTRNL AV4EN

R R R R R R/W R/W R/W

0 0 0 0 0 0 0 0

Table 12-4. Autovector for INT4*

8051
Addr

Instruction Notes

0x53 LJMP Loc 53-55 are the INT4 Interrupt Vector

0x54 AddrH

0x55 AddrL EZ-USB FX logic replaces this byte when AV4EN=1
Chapter 12. EZ-USB FX Interrupts Page 12-15

EZ-USB FX Technical Reference Manual
To set up autovectoring, the user places an LJMP instruction at location 0x53, which jumps to a
table of instructions, which jump to the various FIFO ISRs. Then, every FIFO interrupt automati-
cally vectors to the individual interrupt service routine for the particular FIFO flag. The autovector
mechanism saves the 8051 from having to check for the source of each interrupt shared on INT4.

Table 12-4 shows the IVEC4 values for the various FIFO interrupts. The last three interrupt vectors
in Table 12-4 are not FIFO related, and are described in other chapters. The bytes inserted by the
EZ-USB FX logic (the low-address byte of the LJMP instruction) are separated by four to allow
four bytes per LJMP instruction in the jump table. (An 8051 LJMP instruction requires 3 bytes).

Note that the bytes inserted for the INT4 autovector start at0x80, rather that 0x00. This is because
another EZ-USB FX autovector, for INT2 (used for all USB interrupts), uses jump table offsets
from 0x00 to 0x57. The autovector jump table must start on a page boundary (8051 address
XX00). Therefore, separating the two groups of jumps allows a single page of 8051 memory to be
used for both INT2 and INT4 jump tables. The INT2 jump table can start at 0x00, and the INT4
jump table can start at 0x80, sharing the same page.

If two or more INT4 Interrupt Requests occur simultaneously, they are serviced in the order shown
in Table 12-5, with AINPF having the highest priority and DMADONE the lowest. Pending interrupt
requests remain pending while a higher level interrupt is serviced.

Table 12-5. INT4 Autovectors

IVEC4
Value

Byte
Inserted
at 0x55

Source Meaning

0x40 0x80 AINPF A-IN FIFO Programmable Flag

0x44 0x84 BINPF B-IN FIFO Programmable Flag

0x48 0x88 AOUTPF A-OUT FIFO Programmable Flag

0x4C 0x8C BOUTPF B-OUT FIFO Programmable Flag

0x50 0x90 AINEF A-IN FIFO Empty Flag

0x54 0x94 BINEF B-IN FIFO Empty Flag

0x58 0x98 AOUTEF A-OUT FIFO Empty Flag

0x5C 0x9C AINEF B-OUT FIFO Empty Flag

0x60 0xA0 AINFF A-IN FIFO Full Flag

0x64 0xA4 BINFF B-IN FIFO Full Flag

0x68 0xA8 AOUTFF AOUT FIFO Full Flag

0x6C 0xAC BOUTFF B-OUT FIFO Full Flag

0x70 0xB0 GPIFDONE (See Chapter 8. "General Programmable Interface
(GPIF)")

0x74 0xB4 GPIFWR (See Chapter 8. "General Programmable Interface
(GPIF)"

0x78 0xB8 DMADONE (See Chapter 8. "General Programmable Interface
(GPIF)")
Page 12-16 EZ-USB FX Technical Reference Manual v1.2

As with the USB (INT2) Interrupts, the INT4 Interrupt Request must be cleared in the ISR (Interrupt
Service Routine) before clearing the individual slave FIFO interrupt request bit.

Bit 1: INTRNL INT4 Source

This bit selects the interrupt source for 8051 INT4. If INTRNL=0, INT4 is supplied from the EZ-
USB FX INT4 pin. If INTRNL=1, INT4 is supplied from the slave FIFO interrupt unit, with the
interrupt sources shown in Table 12-5.

To enable the INT4 pin instead of PB4, set PORTBCFG.4=1.

Bit 2: INT4SFR Enable SFR clearing of INT4

The 8051 sets INT4SFR=1 to enable clearing of the pending INT4 Interrupt Request currently
being serviced by writing any value to INT4CLR (SFR at 0xA2).
Chapter 12. EZ-USB FX Interrupts Page 12-17

EZ-USB FX Technical Reference Manual
Page 12-18 EZ-USB FX Technical Reference Manual v1.2

Chapter 13. EZ-USB FX Resets

13.1 Introduction

The EZ-USB FX chip has three resets:

• A Power-On Reset (POR), which turns on the EZ-USB FX chip in a known state.

• An 8051 reset, controlled by the USB core.

• A USB bus reset, sent by the host to reset a device.

This chapter describes the effects of these three resets.

13.2 EZ-USB FX Power-On Reset (POR)

Figure 13-1. EZ-USB FX Resets

RES

8051

CPUCS.0
(1 at P WR ON)

RES

EZ-USB FX Core

USB Bus
Reset

24 MHz

CLKOUT

2

48 MHz

O scilla tor P LL

XOUT

RESET

XIN

Vcc

12
MHz
Chapter 13. EZ-USB FX Resets Page 13-1

EZ-USB FX Technical Reference Manual
When power is first applied to the EZ-USB FX chip, the external R-C circuit holds the USB core in
reset until the on-chip PLL stabilizes. The CLKOUT pin is active as soon as power is applied. The
8051 may clear an EZ-USB FX control bit, CLKOUTOE (CPUCS.1), to inhibit the CLKOUT output
pin for EMI-sensitive applications that do not need this signal. External logic can force a chip reset
by pulling the active-low RESET pin LO. The RESET pin is normally connected to GND through a
1 ΩF capacitor and to Vcc through a 10-K resistor (Figure 13-1). The oscillator and PLL are unaf-
fected by the state of the RESET pin.

The CLKOUT signal is active while RESET = LO. When RESET returns HI, the activity on the
CLKOUT pin depends on whether or not the EZ-USB FX chip is in suspend state. If in suspend,
CLKOUT stops. Resumption of USB bus activity or asserting the WAKEUP# pin LO re-starts the
CLKOUT signal.

Power-on default values for all EZ-USB FX register bits are shown in Chapter 15. "EZ-USB FX
Registers". Table 13-1 summarizes reset states that affect USB device operation. Note that the
term “Power-On Reset” refers to a reset initiated by application of power, or by assertion of the
RESET pin.

Table 13-1. EZ-USB FX States After Power-On Reset (POR)

Item Register
Default
Value

Comment

1 Endpoint Data xxxxxxxx

2 Byte Counts xxxxxxxx

3 CPUCS rrrr0011 rrrr=rev number, b1 =CLKOUTOE, b0=8051RES

4 PORT Configs 00000000 IO, not alternate functions

5 PORT Registers xxxxxxxx

6 PORT OEs 00000000 Inputs

7 Interrupt Enables 00000000 Disabled

8 Interrupt Reqs 00000000 Cleared

9 Bulk IN C/S 00000000 Bulk IN endpoints not busy (unarmed)

10 Bulk OUT C/S* 00000000 Bulk OUT endpoints busy (armed)

11 Toggle Bits 00000000 Data toggles = 0

12 USBCS 00000100 RENUM=0, DISCOE=1 (Discon pin drives)

13 FNADDR 00000000 USB Function Address

14 IN07VAL 01010111 EP0,1,2,4,6 IN valid

15 OUT07VAL 01010101 EP0,2,4,6 OUT valid

16 INISOVAL 00000111 EP8,9,10 IN valid

17 OUTISOVAL 00000111 EP8,9,10 OUT valid

18 USBPAIR 0x000000 ISOsend0 (b7) = 0, no pairing

19 USBBAV 00000000 Break condition cleared, no Autovector

20 Configuration 00000000 Internal USB core value

21 Alternate Setting 00000000 Internal USB core value
Page 13-2 EZ-USB FX Technical Reference Manual v1.2

* In this state (8051 reset) an OUT endpoint ACKs all OUT requests.

* When the 8051 is released from reset, the EZ-USB FX automatically
arms the Bulk OUT endpoints by setting their CS Registers to
000000010b. This causes the next OUT request to be ACK’d and subse-
quent OUT transfers to be NAK’d until the 8051 loads the endpoint byte
count register.

Table 13-1 documents the following summary list of states at power on.

• Endpoint data buffers and byte counts are un-initialized (1,2).

• The 8051 is held in reset, and the CLKOUT pin is enabled (3).

• All port pins are configured as input ports (4-6).

• USB interrupts are disabled, and USB interrupt requests are cleared (7-8).

• Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared (9). The USB
core will NAK IN tokens and ACK OUT tokens while the 8051 is reset. OUT endpoints are
enabled for one OUT transfer when the 8051 is released from reset.

• Endpoint toggle bits are cleared (11).

• The RENUM Bit is cleared. This means that the USB core, and not the 8051, initially
responds to USB device requests (12).

• The USB function address register is set to zero (13).

• The endpoint valid bits are set to match the endpoints used by the default USB device (14-
17).

• Endpoint pairing is disabled. Also, ISOSend0=0, meaning that if an Isochronous endpoint
receives an IN token without being loaded by the 8051 in the previous frame, the USB
core does not generate any response (18).

• The breakpoint condition is cleared, and autovectoring is turned off (19).

• Configuration Zero, Alternate Setting Zero is in effect (20-21).

13.3 Releasing the 8051 Reset

The EZ-USB FX register bit CPUCS.0 resets the 8051. This bit is LO at power-on, initially holding
the 8051 in reset. There are three ways to release the 8051 from reset:

• By the host, as the final step of a RAM download.
Chapter 13. EZ-USB FX Resets Page 13-3

EZ-USB FX Technical Reference Manual
• Automatically, at the end of an EEPROM load (assuming the EEPROM is correctly pro-
grammed).

• Automatically, when external ROM is used (EA=1).

13.3.1 RAM Download

Once enumerated, the host can download code into the EZ-USB FX RAM using the “Firmware
Load” vendor request (Chapter 9. "EZ-USB FX Endpoint Zero"). The last packet loaded writes 0 to
the CPUCS Register, which clears the 8051 RESET Bit.

The other bit in the CPUCS Register, CLKOUTOE, is writable only by the 8051. The host writing a
zero byte to this register does not turn off the CLKOUT signal.

13.3.2 EEPROM Load

Chapter 5 describes the EEPROM boot loads in detail. Briefly, at power-on, the USB core checks

for the presence of an EEPROM on its I2C-compatible bus. If found, it reads the first EEPROM
Byte. If it reads 0xB6 as the first byte, the USB core downloads 8051 code from the EEPROM into
internal RAM. The last operation in a “B6” load writes 0x00 to the CPUCS Register (at 0x7F92),
which releases the 8051 from reset.

13.3.3 External ROM

EZ-USB FX systems can use external program memory containing 8051 code and USB device

descriptors, which include the VID/DID/PID Bytes. Because these systems do not require an I2C-
compatible EEPROM to supply the VID/DID/PID, the USB core automatically releases 8051 reset
when:

• EA=1 (External code memory), and

• No “B4/B6” EEPROM is detected on the I2C-compatible bus.

Under these conditions, the USB core also sets the RENUM Bit to “1,” giving USB control to the
8051.

13.4 8051 Reset Effects

Once the 8051 is running, the USB host may reset the 8051 by downloading the value 0x01 to the
CPUCS Register. The host might do this in preparation for loading code overlays, effectively mag-
nifying the size of the internal EZ-USB FX RAM. For such applications it is important to know the
state of the EZ-USB FX chip during and after an 8051 reset. In this section, this particular reset is
Page 13-4 EZ-USB FX Technical Reference Manual v1.2

called an “8051 Reset,” and should not be confused with the POR described in Section 13.2. "EZ-
USB FX Power-On Reset (POR)". This discussion applies only to the condition where the EZ-USB
FX chip is powered, and the 8051 is reset by the host setting the CPUCS Register to 0.

The basic USB device configuration remains intact through an 8051 reset. Valid endpoints remain
valid, the USB function address remains the same, and the I/O ports retain their configurations and
values. Stalled endpoints remain stalled, and data toggles don’t change. The only effects of an
8051 reset are as follows:

• USB (INT2) interrupts are disabled, but pending interrupt requests remain pending.

When the 8051 comes out of reset, pending interrupts are kept pending, but disabled. This
gives the firmware writer the choice of acting on pre-8051-reset USB events, or ignoring
them by clearing the pending interrupt(s) before enabling INT2.

• During the 8051 Reset, all bulk IN endpoints are unarmed, causing the USB core to NAK
IN tokens; OUT tokens are ACK’d.

• After the 8051 Reset is removed, the OUT bulk endpoints are automatically armed. OUT
endpoints are thus ready to accept one OUT packet before 8051 intervention is required.

• The breakpoint condition is cleared.

USBBAV.3, the breakpoint BREAK Bit, is cleared.

The other bits in the USBBAV Register are unaffected. The RENUM Bit is not affected by an 8051
reset.

13.5 USB Bus Reset

The host signals a USB Bus Reset by driving an SE0 state (both D+ and D- data lines low) for a
minimum of 10 ms. The USB core senses this condition, requests the 8051 USB Interrupt (INT2),
and supplies the interrupt vector for a USB Reset. A USB reset affects the EZ-USB FX resources
as shown in Table 13-2.
Chapter 13. EZ-USB FX Resets Page 13-5

EZ-USB FX Technical Reference Manual
A USB bus reset leaves most EZ-USB FX resources unchanged. From Table 13-2, after USB bus
reset:

• The USB core unarms all Bulk IN endpoints (9). Data loaded by the 8051 into an IN end-
point buffer remains there, and the 8051 firmware can either re-send it by loading the end-
point byte count register to re-arm the transfer, or send new data by re-loading the IN
buffer before re-arming the endpoint.

• Bulk OUT endpoints retain their busy states (10). Data sent by the host to an OUT end-
point buffer remains in the buffer, and the 8051 firmware can either read the data or reject
it as stale simply by not reading it. In either case, the 8051 loads a dummy value to the
endpoint byte count Register to re-arm OUT transfers.

• Toggle bits are cleared (11).

• The device address is reset to zero (13).

Table 13-2. EZ-USB FX States After a USB Bus Reset

Item Register
Default
Value

Comment

1 Endpt Data uuuuuuuu u = unchanged

2 Byte Counts uuuuuuuu

3 CPUCS uuuuuuuu

4 PORT Configs uuuuuuuu

5 PORT Registers uuuuuuuu

6 PORT OEs uuuuuuuu

7 Interrupt Enables uuuuuuuu

8 Interrupt Reqs uuuuuuuu

9 Bulk IN C/S 00000000 unarm

10 Bulk OUT C/S uuuuuuuu retain armed/unarmed state

11 Toggle Bits 00000000

12 USBCS uuuuuuuu RENUM Bit unchanged

13 FNADDR 00000000 USB Function Address

14 IN07VAL uuuuuuuu

15 OUT07VAL uuuuuuuu

16 INISOVAL uuuuuuuu

17 OUTISOVAL uuuuuuuu

18 USBPAIR uuuuuuuu

19 Configuration 00000000

20 Alternate Setting 00000000
Page 13-6 EZ-USB FX Technical Reference Manual v1.2

Note from item 12 of Table 13-2 that the RENUM Bit is unchanged after a USB bus reset. There-
fore, if a device has ReNumerated™ and loaded a new personality, it retains the new personality
through a USB bus reset.

13.6 EZ-USB FX Disconnect

Although not strictly a “reset,” when the EZ-USB FX simulates a disconnect-reconnect to ReNu-
merate™, there are effects on the USB core:

• Bulk IN endpoints are unarmed, and bulk OUT endpoints are armed (9-10).

• Endpoint STALL Bits are cleared (9-10).

• Data toggles are reset (11).

• The function address is reset to zero (13).

Table 13-3. Effects of an EZ-USB FX Disconnect and Re-connect

Item Register Default Value Comment

1 Endpt Data uuuuuuuu u = unchanged

2 Byte Counts uuuuuuuu

3 CPUCS uuuuuuuu

4 PORT Configs uuuuuuuu

5 PORT Registers uuuuuuuu

6 PORT OEs uuuuuuuu

7 Interrupt Enables uuuuuuuu

8 Interrupt Reqs uuuuuuuu

9 Bulk IN C/S 00000000 unarm, clear stall bit

10 Bulk OUT C/S 00000010 Arm, clear stall bit

11 Toggle Bits 00000000 reset

12 USBCS uuuuuuuu RENUM Bit unchanged

13 FNADDR 00000000 USB Function Address

14 IN07VAL uuuuuuuu

15 OUT07VAL uuuuuuuu

16 INISOVAL uuuuuuuu

17 OUTISOVAL uuuuuuuu

18 USBPAIR uuuuuuuu

19 Configuration 00000000

20 Alternate Setting 00000000
Chapter 13. EZ-USB FX Resets Page 13-7

EZ-USB FX Technical Reference Manual
• The configuration is reset to zero (19).

• Alternate settings are reset to zero (20).

13.7 Reset Summary

Table 13-4 summarizes the effects of the four EZ-USB FX resets.

The I2C-compatible controller is not reset for any of the conditions laid out in Table 13-4. Only the
EZ-USB FX RESET pin resets it.

Table 13-4. Effects of Various EZ-USB FX Resets (“U” Means “Unaffected”)

Resource
RESET

pin
USB Bus

Reset
Disconnect 8051 Reset

8051 Reset reset U U N/A

EP0-7 IN EPs unarm unarm unarm unarm

EP0-7 OUT EPs arm U arm arm all /arm one

Breakpoint reset U U reset

Stall Bits reset U reset U

Interrupt Enables reset U U reset

Interrupt Reqs reset U U U

CLKOUT run U U U

Data Toggles reset reset reset U

Function Address reset reset reset U

Configuration 0 0 0 U

ReNum 0 U U U
Page 13-8 EZ-USB FX Technical Reference Manual v1.2

Chapter 14. EZ-USB FX Power Management

14.1 Introduction

The USB host can suspend a device to put it into power-down mode. When the USB signals a
SUSPEND operation, the EZ-USB FX chip goes through a sequence of steps to allow the 8051 to
first turn off external power-consuming subsystems, and then enter an ultra-low-power mode by
turning off its oscillator, its D+ and D- drivers, and other SIE circuits. Once suspended, the EZ-USB
FX chip is awakened either by resumption of USB bus activity or by assertion of its WAKEUP# pin.
This chapter describes the suspend-resume mechanism.

Figure 14-1. Suspend-Resume Control

PLL

Oscillator

div by
2

8051

48 MHz

CLK24

12 MHz

START
USB RESUME
WAKEUP# pin

 PCON.0

STOP

USB
 "SUSPEND"

Interrupt

No USB activity
for 3 msec.

 "RESUME" INT
Signal

Resume
(USBCS.0)

Restart
Delay
Chapter 14. EZ-USB FX Power Management Page 14-1

EZ-USB FX Technical Reference Manual
Figure 14-1 illustrates the EZ-USB FX logic that implements USB suspend and resume. These
operations are explained in the next sections.

14.2 Suspend

Figure 14-2. EZ-USB FX Suspend Sequence

A USB device recognizes SUSPEND as 3 ms of a bus idle (“J”) state. The USB core alerts the
8051 by asserting the USB (INT2) Interrupt and the SUSPEND Interrupt vector. This gives the
8051 code a chance to perform power conservation housekeeping before shutting down the oscil-
lator (by setting PCON.0=1).

Oscillator

8051

12 MHz

STOP

USB
"SUSPEND"

Interrupt

No USB activity
for 3 msec.

INT2

PCON.0

PLL

div by 2

CLKOUT

Mux

48 MHz
Page 14-2 EZ-USB FX Technical Reference Manual v1.2

For bus-powered devices, the 8051 code must respond to the SUSPEND Interrupt by taking the
following steps:

1. Perform any necessary housekeeping, such as shutting off external power-consuming
devices.

2. Set bit 0 of the PCON SFR (Special Function Register). This has two effects:

• The 8051 enters its idle mode.

• The 8051 sends an internal signal to the USB core, causing it to turn off the oscillator and
PLL.

These actions put the EZ-USB FX chip into a low-power mode, as required by the USB Specifica-
tion.

Self-powered devices may perform the above power saving steps, but it is not required by the USB
Specification.

14.3 Resume

Figure 14-3. EZ-USB FX Resume Sequence

Oscillator

8051

12 MHz

STARTUSB Resume
WAKEUP# pin

Resume INT
Signal

Resume
(USBCS.0)

Restart
Delay

PLL

div by 2

CLKOUT

Mux

48 MHz
Chapter 14. EZ-USB FX Power Management Page 14-3

EZ-USB FX Technical Reference Manual
When the 8051 sets PCON.0, it enters an idle state. 8051 execution is resumed by activation of its
RESUME Interrupt (Vector 33). When external logic pulls WAKEUP# low (for example, when a
keyboard key is pressed or a modem receives a ring signal) or USB bus activity resumes, the USB
core re-starts the 12-MHz oscillator, allowing the 8051 to recognize the RESUME Interrupt and
continue executing instructions.

Figure 14-4. EZ-USB FX RESUME Interrupt

Figure 14-4 shows the two 8051 EICON SFR Bits associated with the RESUME Interrupt. The
USB core asserts the resume signal when the USB core senses a USB Global Resume, or when
the EZ-USB FX WAKEUP# pin is pulled low.

The 8051 enables the RESUME Interrupt by setting EICON.5.

The 8051 can read the RESUME Interrupt request bit in EICON.4.

The 8051 clears the interrupt request bit by writing a zero to EICON.4.

The EZ-USB FX oscillator re-starts when:

• USB bus activity resumes (labelled “USB Resume” in Figure 14-3), or

• External logic asserts the EZ-USB FX WAKEUP# pin low.

After an oscillator stabilization time, the USB core asserts the 8051 Resume Interrupt. (See Figure
12-1). This causes the 8051 to exit its idle mode. The Resume Interrupt is the highest priority 8051

setb EICON.5 ; enable Resume Int

Resume_isr: clr EICON.4 ; clear the RESUME
 ; Interrupt Request Bit
 reti

E IC O N .5

E IC O N .4 (rd)

E IC O N .4 (0)

S

R

8051
"R E SU M E"

In te rrup t

F ro m "R E S T A R T
D E L A Y "

R e su m e IR Q B it

E n a b le R E S U M E IN T

R e a d R E S U M E IR Q B it

C le a r R E S U M E IR Q B it
Page 14-4 EZ-USB FX Technical Reference Manual v1.2

interrupt. It is always enabled, unaffected by the EA Bit. However, it is affected by the EICON.5 Bit
(ERESI).

The resume ISR clears the interrupt request flag, and executes a “reti” (return from interrupt)
instruction. This causes the 8051 to continue program execution at the instruction following the
one that set PCON.0 to initiate the suspend operation.

14.4 Remote Wakeup

Figure 14-5. USB Control and Status Register

Any device can ask to be enabled by the host to wakeup the host. (Additional information is pro-
vided in the section "Remote Wakeup: The Big Picture", later in this chapter.

Two bits in the USBCS Register are used for remote wakeup, WAKESRC and SIGRSUME.

After exiting the idle state, the 8051 reads the WAKESRC Bit in the USBCS Register to discover
how the wakeup was initiated. WAKESRC=1 indicates assertion of the WAKEUP# pin, and
WAKESRC=0 indicates a resumption of USB bus activity. The 8051 clears the WAKESRC Bit by
writing a “1” to it.

About the ‘Resume’ Interrupt

The 8051 enters the idle mode when PCON.0 is set to “1.” Although the 8051 exits its idle
state when any interrupt occurs, the EZ-USB FX logic supports only the RESUME Interrupt
for the USB resume operation. This is because the USB core asserts this particular interrupt
after restarting the 8051 clock.

USBCS USB Control and Status 7FD6

b7 b6 b5 b4 b3 b2 b1 b0

WAKESRC - - - DISCON DISCOE RENUM SIGRSUME
Chapter 14. EZ-USB FX Power Management Page 14-5

EZ-USB FX Technical Reference Manual
When a USB device is suspended, the upstream driver is tri-stated, and the bus pullup and pull-
down resistors cause the bus to assume the “J,” or idle state. A suspended device signals a
remote wakeup by asserting the “K” state for 1-15 ms. The 8051 controls this using the SIGR-
SUME Bit in the USBCS Register.

If the 8051 finds WAKESRC=1 after exiting the idle mode, it must drive the “K” state for 1-15 ms to
signal the USB remote wakeup. It does this by setting SIGRSUME=1, waiting 10-15 ms, and then
setting SIGRSUME=0. The resume routine should also write a “1” to the WAKESRC Bit to clear it.

More about Wakeup

If your design does not assert remote wakeup (that is your device is not one of the pre-
enabled devices that can wakeup the host), tie the WAKEUP# pin high.

Holding the WAKEUP# pin low inhibits the EZ-USB FX chip from suspending.

Suspend Flop. There is a flip flop in the FX that is set when the FX has seen the 3 ms of no
SOFs on the USB. It’s called Suspend Flop.

The WAKEUP# pin is tied to the clear of the Suspend Flop. Then the WAKEUP#pin is driven
low:

The Suspend Flop clears, and the oscillator and Restart Delay start.

When the Suspend Flop is set (among other FX-local power saving steps), the D+ and D-
drivers are powered down. Hence, until the Suspend Flop is cleared, the FX cannot signal
the host.

When the FX wants to signal a Remote Wakeup Pulse to the host, the Suspend Flop must be
cleared (or never allowed to set) to allow the D+ and D- drivers to be powered up before
asserting the Remote Wakeup Pulse on the USB. In other words:

• Holding WAKEUP# low prevents the Suspend Flop from ever setting. (As it says
above, “Holding the WAKEUP#pin low inhibits the FX chip from suspending.”)

• Pulsing WAKEUP# low clears the Suspend Flop.

This applies especially to self-powered devices where the designer elects to not save power
during suspend, devices such as those powered from a wall transformer (as opposed to a
battery.) You should tie the WAKEUP#pin low for these “power-rich” devices that will signal a
remote wakeup.

In summary, for all devices that wish to assert a K-state wakeup pulse to the host (Remote
Wakeup), the Suspend Flop must be cleared before asserting the K-state wakep pulse.
Page 14-6 EZ-USB FX Technical Reference Manual v1.2

The USB Default device does not support remote wakeup. This fact is reported at enumeration
time in byte 7 of the built-in Configuration Descriptor (Table 5-10).

J and K States

The USB Specification uses differential data signals D+ and D-. Instead of defining a logical
“1” and “0,” it defines the “J” and “K” states. For a high speed device, the “J” state means
(D+ > D-).

Remote Wakeup: The Big Picture

Additional factors besides the EZ-USB FX suspend-resume mechanism described in this
section determine whether remote wakeup is possible. These are:

• The device must report that it is capable of signaling a remote wakeup in the “bAt-
tributes” field of its Configuration Descriptor. For an example of this description, see
Table 5-10.

• The host must issue a “Set_Feature/Device” request with the feature selector field
set to 0x01 to enable remote wakeup. For a detailed request, see Table 9-6.
Chapter 14. EZ-USB FX Power Management Page 14-7

EZ-USB FX Technical Reference Manual
Page 14-8 EZ-USB FX Technical Reference Manual v1.2

Chapter 15. EZ-USB FX Registers

15.1 Introduction

This section describes the EZ-USB FX registers in the order they appear in the EZ-USB FX mem-
ory map. The registers are named according to the following conventions.

Most registers deal with endpoints. The general register format is DDDnFFF, where:

DDD is endpoint direction, IN or OUT with respect to the USB host.

n is the endpoint number, where:

• “07” refers to endpoints 0-7 as a group.

• 0-7 refers to each individual BULK/INTERRUPT/CONTROL endpoint.

• “ISO” indicates isochronous endpoints as a group.

FFF is the function, where:

• CS is a control and status register

• IRQ is an Interrupt Request Bit

• IE is an Interrupt Enable Bit

• BC, BCL, and BCH are byte count registers. BC is used for single byte counts, and
BCL/H are used as the low and high bytes of 16-bit byte counts.

• DATA is a single-register access to a FIFO.

• BUF is the start address of a buffer.

15.1.1 Example Register Formats

• IN7BC is the Endpoint 7 IN byte count.
Chapter 15. EZ-USB FX Registers Page 15-1

EZ-USB FX Technical Reference Manual
• OUT07IRQ is the register containing interrupt request bits for OUT endpoints 0-7.

• INISOVAL contains valid bits for the isochronous IN endpoints (EP8IN-EP15IN).

15.1.2 Other Conventions

USB Indicates a global (not endpoint-specific) USB function.

ADDR Is an address.

VAL Means valid.

FRAME Is a frame count.

PTR Is an address pointer.

Figure 15-1. Register Description Format

Figure 15-1. illustrates the register description format used in this chapter.

• The top line shows the register name, functional description, and address in the EZ-USB
FX memory.

• The second line shows the bit position in the register.

• The third line shows the name of each bit in the register.

• The fourth line shows 8051 accessibility: R(ead), W(rite), or R/W.

• The fifth line shows the default value. These values apply after a Power-On-Reset (POR).

Register Name Register Function Address

b7 b6 b5 b4 b3 b2 b1 b0

bitname bitname bitname bitname bitname bitname bitname bitname

R, W access R, W access R, W access R, W access R, W access R, W access R, W access R, W access

Default val Default val Default val Default val Default val Default val Default val Default val
Page 15-2 EZ-USB FX Technical Reference Manual v1.2

15.2 Slave FIFO Registers

15.2.1 FIFO A Read Data

Figure 15-2. FIFO A Read Data

Each time the 8051 reads a byte from this register, the A-IN FIFO advances to the next byte in the
FIFO and the AINBC (byte count) decrements. Reading this register when there is one byte
remaining in the A-IN FIFO sets the A-IN FIFO Empty Flag (AINEF, in ABINCS.4), which causes
an interrupt request on INT4 (Table 2). Reading this register when the A-IN FIFO is empty returns
indeterminate data and has no effect on the FIFO flags byte counts. For more information, see
Section 7.2.1. "FIFO A Read Data".

15.2.2 A-IN FIFO Byte Count

Figure 15-3. A-IN FIFO Byte Count

This count reflects the number of bytes remaining in the A-IN FIFO. Valid byte counts are 0-64.
When non-zero, every byte written by outside logic increments this count, and every 8051 read of
AINDATA decrements this count. If AINBC is zero, an 8051 read of AINDATA returns indeterminate
data and results in the byte count in AINBC remaining at zero. Data bytes should never be written
to the FIFO from outside logic when the AINFULL flag is HI. For more information, see Section
7.2.2. "A-IN FIFO Byte Count".

AINDATA FIFO A Read Data 7800

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

AINBC A-IN FIFO Byte Count 7801

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-3

EZ-USB FX Technical Reference Manual
15.2.3 A-IN FIFO Programmable Flag

Figure 15-4. A-IN FIFO Programmable Flag

This register controls the sense and value for the internal A-IN FIFO programmable flag. This flag
is testable by the 8051. For more information including a list of bit definitions for this register, see
Section 7.2.3. "A-IN FIFO Programmable Flag".

15.2.4 A-IN FIFO Pin Programmable Flag

Figure 15-5. A-IN FIFO Pin Programmable Flag

This register controls the sense and value for the A-IN FIFO Programmable Flag that appears on
the AINFLAG pin. This pin is used by external logic to regulate external writes to the A-IN FIFO.
The AINPFPIN Register is programmed with the same data format as the previous register,
AINPF. The only operational difference is that the flag drives a hardware pin rather than existing as
an internal register bit. For more information, see Section 7.2.3.3. "A-IN FIFO Pin Programmable
Flag".

AINPF A-IN FIFO Programmable Flag 7802

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

AINPFPIN A-IN FIFO Pin Programmable Flag 7803

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-4 EZ-USB FX Technical Reference Manual v1.2

15.2.5 B-IN FIFO Read Data

Figure 15-6. B-IN FIFO Read Data

Each time the 8051 reads a byte from this register, the B-IN FIFO advances to the next byte in the
FIFO and the BINBC (byte count) decrements. Reading this register when there is one byte
remaining in the FIFO sets the B-IN FIFO Empty Flag (BINEF, in ABINCS.1), which causes an
INT4 Request. Reading this register when the B-IN FIFO is empty returns indeterminate data and
has no effect on the FIFO flags or byte count. For more information, see Section 7.2.4. "B-IN FIFO
Read Data".

15.2.6 B-IN FIFO Byte Count

Figure 15-7. B-IN FIFO Byte Count

This count reflects the number of bytes remaining in the B-IN FIFO. Valid byte counts are 0-64.
When non-zero, every byte written by outside logic increments this count, and every 8051 read of
BINDATA decrements this count. If BINBC is zero, an 8051 read of BINDATA returns indeterminate
data and results in the byte count in BINBC remaining at zero. Data bytes should never be written
to the FIFO from outside logic when the BINFULL flag is HI. For more information, see Section
7.2.5. "B-IN FIFO Byte Count."

BINDATA B-IN FIFO Read Data 7805

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

BINBC B-IN FIFO Byte Count 7806

b7 b6 b5 b4 b3 b2 b1 b0

0 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-5

EZ-USB FX Technical Reference Manual
15.2.7 B-IN FIFO Programmable Flag

Figure 15-8. B-IN FIFO Programmable Flag

This register controls the sense and value for the internal B-IN FIFO programmable flag. For more
information including a list of bit descriptions, see Section 7.2.6. "B-IN FIFO Programmable Flag."

15.2.8 B-IN FIFO Pin Programmable Flag

Figure 15-9. B-IN FIFO Pin Programmable Flag

This register controls the sense and value for the B-IN FIFO Programmable Flag that appears on
the BINFLAG pin. This pin is used by external logic to regulate external writes to the B-IN FIFO.
The BINPFPIN Register is programmed with the same data format as the previous register,
BINPF. The only operational difference is that the flag drives a hardware pin rather than existing as
an internal register bit. For more information see Section 7.2.7. "B-IN FIFO Pin Programmable
Flag."

BINPF B-IN FIFO Programmable Flag 7807

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

BINPFPIN B-IN FIFO Pin Programmable Flag 7808

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-6 EZ-USB FX Technical Reference Manual v1.2

15.2.9 Input FIFOs A/B Toggle CTL and Flags

Figure 15-10. Input FIFOs A/B Toggle CTL and Flags

For information about this register, including a list of bit descriptions, see Section 7.2.8. "Input
FIFOs A/B Toggle CTL and Flags."

15.2.10 Input FIFOs A/B Interrupt Enables

Figure 15-11. Input FIFOs A/B Interrupt Enables

For information about this register, including a list of bit descriptions, see Section 7.2.9. "Input
FIFOs A/B Interrupt Enables."

15.2.11 Input FIFOs A/B Interrupt Requests

Figure 15-12. Input FIFOs A/B Interrupt Requests

ABINTCS Input FIFOs A/B Toggle CTL and Flags 780A

b7 b6 b5 b4 b3 b2 b1 b0

INTOG INSEL AINPF AINEF AINFF BINPF BINEF BINFF

R/W R/W R R R R R R

0 1 0 1 0 0 1 0

ABINIE Input FIFOs A/B Interrupt Enables 780B

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AINPFIE AINEFIE AINFFIE BINPFIE BINEFIE BINFFIE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

ABINIRQ Input FIFOs A/B Interrupt Enables 780C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AINPFIR AINEFIR AINFFIR BINPFIR BINEFIR BINFFIR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-7

EZ-USB FX Technical Reference Manual
For information about the ABINIRQ Register, including a list of bit descriptions, see Section 7.2.10.
"Input FIFOs A/B Interrupt Requests."

15.2.12 FIFO A Write Data

Figure 15-13. FIFO A Write Data

A-OUT FIFO Write Data. Each time the 8051/DMA writes a byte to this register, the A-OUT FIFO
advances to the next open position in the FIFO and the AOUTBC (byte count) increments. Writing
this register when there are 63 bytes remaining in the A-OUT FIFO sets the A-FIFO Full Flag
(AOUTFF, in ABOUTCS.3), which causes an INT4 Request. Writing this register when the A-OUT
FIFO is full (64 bytes) does not update the FIFO or byte count, and has no effect on the FIFO flags
or byte count. For more information, see Section 7.2.11. "FIFO A Write Data."

15.2.13 A-OUT FIFO Byte Count

Figure 15-14. Input FIFOs A/B Interrupt Requests

This count reflects the number of bytes remaining in the A-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of
AOUTDATA increments this count. If AOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in AOUTBC remaining at zero. For more informa-
tion, see Section 7.2.11.1. "A-OUT FIFO Byte Count."

AOUTDATA FIFO A Write Data 780E

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

AOUTBC A-OUT FIFO Byte Count 780F

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0
Page 15-8 EZ-USB FX Technical Reference Manual v1.2

15.2.14 A-OUT FIFO Programmable Flag

Figure 15-15. Input FIFOs A/B Interrupt Requests

This register controls the sense and value for the internal A-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051, and/or enabled to cause an INT4 Interrupt Request. The
8051 tests the internal FIFO programmable flag by reading the AOUTPF Bit in ABOUTCS.5 (regis-
ter at 0x7818). For more information including a list of bit descriptions, see Section 7.2.12. "A-OUT
FIFO Programmable Flag."

15.2.15 A-OUT FIFO Pin Programmable Flag

Figure 15-16. A-OUT FIFO Pin Programmable Flag

This register controls the sense and value for the A-OUT FIFO Programmable Flag that appears
on the AOUTFLAG pin. This pin is used by external logic to regulate external reads from the A-
OUT FIFO. The AOUTPFPIN Register is programmed with the same data format as the previous
register, AOUTPF. The only operational difference is that the flag drives a hardware pin rather than
existing as an internal register bit. For more information, see Section 7.2.13. "A-OUT FIFO Pin
Programmable Flag."

AOUTPF A-OUT FIFO Programmable Flag 7810

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 1 0 0 0 0 0

AOUTPFPIN A-OUT FIFO Pin Programmable Flag 7811

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 1 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-9

EZ-USB FX Technical Reference Manual
15.2.16 B-OUT FIFO Write Data

Figure 15-17. B-OUT FIFO Write Data

Each time the 8051/DMA writes a byte to this register, the B-OUT FIFO advances to the next open
position in the FIFO and the BOUTBC (Byte count) increments. Writing this register when there
are 63 bytes remaining in the B-OUT FIFO sets the B-FIFO Full Flag (BOUTFF, in ABOUTCS.0),
which causes an INT4 Interrupt Request. Writing this register when the B-OUT FIFO is full (64
bytes) does not update the FIFO or byte count, and has no effect on the FIFO flags or byte count.
For more information, see Section 7.2.14. "B-OUT FIFO Write Data."

15.2.17 B-OUT FIFO Byte Count

Figure 15-18. B-OUT FIFO Byte Count

This count reflects the number of bytes remaining in the B-OUT FIFO. Valid byte counts are 0-64.
When non-zero, every byte read by outside logic decrements this count, and every 8051 write of
BOUTDATA increments this count. If BOUTBC is zero, reading a data byte by outside logic returns
indeterminate data and results in the byte count in BOUTBC remaining at zero. For more informa-
tion, see Section 7.2.15. "B-OUT FIFO Byte Count."

BOUTDATA B-OUT FIFO Write Data 7813

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

BOUTBC B-OUT FIFO Byte Count 7814

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

0 0 0 0 0 0 0 0
Page 15-10 EZ-USB FX Technical Reference Manual v1.2

15.2.18 B-OUT FIFO Programmable Flag

Figure 15-19. B-OUT FIFO Programmable Flag

This register controls the sense and value for the internal B-OUT FIFO Programmable Flag. The
internal flag may be tested by the 8051, and/or enabled to cause an INT4 Interrupt Request. For
more information including a list of bit descriptions, see Section 7.2.16. "B-OUT FIFO Programma-
ble Flag."

15.2.19 B-OUT FIFO Pin Programmable Flag

Figure 15-20. B-OUTFIFO Pin Programmable Flag

This register controls the sense and value for the B-OUT FIFO Programmable Flag that appears
on the BOUTFLAG pin. This pin is used by external logic to regulate external reads from the B-
OUT FIFO. The BOUTPFPIN Register is programmed with the same data format as the previous
register, BOUTPF. The only operational difference is that the flag drives a hardware pin rather than
existing as an internal register bit. For more information including a list of bit descriptions, see Sec-
tion 7.2.17. "B-OUT FIFO Pin Programmable Flag."

BOUTPF B-OUT FIFO Programmable Flag 7815

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

1 0 1 0 0 0 0 0

BOUTPFPIN B-OUT FIFO Pin Programmable Flag 7816

b7 b6 b5 b4 b3 b2 b1 b0

LTGT D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-11

EZ-USB FX Technical Reference Manual
15.2.20 Output FIFOs A/B Toggle CTL and Flags

Figure 15-21. Output FIFOs A/B Toggle CTL and Flags

For information about this register, including a list of bit descriptions, see Section 7.2.18. "Output
FIFOs A/B Toggle CTL and Flags."

15.2.21 Output FIFOs A/B Interrupt Enables

Figure 15-22. Output FIFOs A/B Interrupt Enables

For information about this register, including a list of bit descriptions, see Section 7.2.19. "Output
FIFOs A/B Interrupt Enables."

15.2.22 Output FIFOs A/B Interrupt Requests

Figure 15-23. Output FIFOs A/B Interrupt Requests

ABOUTCS Output FIFOs A/B Toggle CTL and Flags 7818

b7 b6 b5 b4 b3 b2 b1 b0

OUTINTOG OUTSEL AOUTPF AOUTEF AOUTFF BOUTPF BOUTEF BOUTFF

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 0 1 0 0 1 0

ABOUTIE Output FIFOs A/B Interrupt Enables 7819

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AOUTPFIE AOUTEFIE AOUTFFIE BOUTPFIE BOUTEFIE BOUTFFIE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

ABOUTIRQ Output FIFOs A/B Interrupt Requests 781A

b7 b6 b5 b4 b3 b2 b1 b0

0 0 AOUTPFIR AOUTEFIR AOUTFFIR BOUTPFIR BOUTEFIR BOUTFFIR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-12 EZ-USB FX Technical Reference Manual v1.2

For information about this register, including a list of bit descriptions, see Section 7.2.20. "Output
FIFOs A/B Interrupt Requests."

15.2.23 FIFO A/B Setup

Figure 15-24. FIFO A/B Setup

For information about this register, including a list of bit descriptions, see Section 7.2.21. "FIFO A/
B Setup."

15.2.24 FIFO A/B Control Signal Polarities

Figure 15-25. FIFO A/B Control Signal Polarities

These bits define the pin polarities for the indicated signals. The 8051 sets a bit LOW for active
low, and HI for active high. For more information including a list of bit descriptions, see Section
7.2.22. "FIFO A/B Control Signal Polarities."

ABSETUP FIFO A/B Setup 781C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 ASYNC DBLIN 0 OUTDLY 0 DBLOUT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

ABPOLAR FIFO A/B Control Signal Polarities 781D

b7 b6 b5 b4 b3 b2 b1 b0

0 0 BOE AOE SLRD SLWR ASEL BSEL

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-13

EZ-USB FX Technical Reference Manual
15.2.25 FIFO Flag Reset

Figure 15-26. FIFO Flag Reset

The 8051 writes any value to this register to reset the FIFO byte counts to zero, effectively flushing
the FIFOs. Consequently, the byte counts are set to zero, the empty flags are set, and the full flags
are cleared. Reading this register returns indeterminate data. For more information including a list
of bit descriptions, see Section 7.2.23. "FIFO Flag Reset."

15.3 Waveform Selector

Figure 15-27. Waveform Selector

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

ABFLUSH Reset All FIFO Flags 781E

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x

WFSELECT Waveform Selector 7824

b7 b6 b5 b4 b3 b2 b1 b0

SINGLEWR0-3 SINGLERD0-3 FIFOWR0-3 FIFORD0-3

W W R R W W R R

x x x x x x x x
Page 15-14 EZ-USB FX Technical Reference Manual v1.2

15.4 GPIF Done, GPIF IDLE Drive Mode

Figure 15-28. GPIF Done, GPIF IDLE Drive Mode

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

15.5 Inactive Bus, CTL States

Figure 15-29. Inactive Bus, CTL States

Figure 15-30. CTLOUT Pin Drive

IDLECS GPIF Done, GPIF IDLE Drive Mode 7825

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 0 0 IDLEDRV

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IDLECTLOUT Inactive Bus, CTL States 7826

b7 b6 b5 b4 b3 b2 b1 b0

IOE3 IOE2 IOE1/CTL5 IOE0/CTL4 CTL3 CTL2 CTL1 CTL0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

CTLOUTCFG CTLOUT Pin Drive 7827

b7 b6 b5 b4 b3 b2 b1 b0

TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-15

EZ-USB FX Technical Reference Manual
15.6 GPIF Address LSB

Figure 15-31. GPIF Address Low

15.7 FIFO A IN Transaction Count

Figure 15-32. FIFO A IN Transaction Count

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

GPIFADRL GPIF Address Low 782A

b7 b6 b5 b4 b3 b2 b1 b0

x x A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

AINTC FIFO A IN Transaction Count 782C

b7 b6 b5 b4 b3 b2 b1 b0

FITC AINTC6 AINTC5 AINTC4 AINTC3 AINTC2 AINTC1 AINTC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-16 EZ-USB FX Technical Reference Manual v1.2

15.8 FIFO A OUT Transaction Count

Figure 15-33. FIFO A OUT Transaction Count

See Chapter 8. "General Programmable Interface (GPIF)" for detailed information.

15.9 FIFO A Transaction Trigger

Figure 15-34. FIFO A Transaction Trigger

See Chapter 8. "General Programmable Interface (GPIF)" for detailed information.

AOUTTC FIFO A OUT Transaction Count 782D

b7 b6 b5 b4 b3 b2 b1 b0

FITC AOUTTC6 AOUTTC5 AOUTTC4 AOUTTC3 AOUTTC2 AOUTTC1 AOUTTC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

ATRIG FIFO A Transaction Trigger 782E

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-17

EZ-USB FX Technical Reference Manual
15.10 FIFO B IN Transaction Count

Figure 15-35. FIFO B IN Transaction Count

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

15.11 FIFO B OUT Transaction Count

Figure 15-36. FIFO B OUT Transaction Count

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

BINTC FIFO B IN Transaction Count 7830

b7 b6 b5 b4 b3 b2 b1 b0

BINTC7 BINTC6 BINTC5 BINTC4 BINTC3 BINTC2 BINTC1 BINTC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

BOUTTC FIFO B OUT Transaction Count 7831

b7 b6 b5 b4 b3 b2 b1 b0

BOUTTC7 BOUTTC6 BOUTTC5 BOUTTC4 BOUTTC3 BOUTTC2 BOUTTC1 BOUTTC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-18 EZ-USB FX Technical Reference Manual v1.2

15.12 FIFO B Transaction Trigger

Figure 15-37. FIFO B Transaction

For detailed information, see Chapter 8. "General Programmable Interface (GPIF)".

15.13 GPIF Data H (16-bit mode only)

Figure 15-38. GPIF Data H (16-bit mode only)

15.14 Read or Write GPIF Data L and Trigger Read Transaction

Figure 15-39. Read or Write GPIF Data L and Trigger Read Transaction

BTRIG FIFO B Transaction Trigger 7832

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

SGLDATH GPIF Data H (16-bit mode only) 7834

b7 b6 b5 b4 b3 b2 b1 b0

D15 D14 D13 D12 D11 D10 D9 D8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

SGLDATLTRIG R/W GPIF DataL/Trig Rd Transaction 7835

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-19

EZ-USB FX Technical Reference Manual
15.15 Read GPIF Data L, No Read Transaction Trigger

Figure 15-40. Read GPIF Data L, No Read Transaction Trigger

15.16 Internal READY, Sync/Async, READY Pin States

Figure 15-41. Internal READY, Sync/Async, READY Pin States

15.17 Abort GPIF Cycles

Figure 15-42. Abort GPIF Cycles

SGLDATLNTRIG Rd GPIF Data L/No Trig Rd Transaction 7836

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

READY Internal Rdy, Sync/Async, Rdy Pin States 7838

b7 b6 b5 b4 b3 b2 b1 b0

INTRDY SAS RDY5 RDY4 RDY3 RDY2 RDY1 RDY0

R/W R/W R R R R R R

x x x x x x x x

ABORT Abort GPIF Cycles 7839

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

W W W W W W W W

x x x x x x x x
Page 15-20 EZ-USB FX Technical Reference Manual v1.2

15.18 General Purpose I/F Interrupt Enable

Figure 15-43. Generic Interrupt Enable

15.19 Generic Interrupt Request

Figure 15-44. Generic Interrupt Request

GENIE General Purpose I/F Interrupt Enable 783B

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 DMADONE GPIFWF GPIFDONE

W W W W W W W W

x x x x x x x x

GENIRQ Generic Interrupt Request 783C

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 DMADONE GPIFWF GPIFDONE

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-21

EZ-USB FX Technical Reference Manual
15.20 Input/Output Port Registers D and E

For more information, see Section 4.3. "Input/Output Port Registers".

15.20.1 Port D Outputs

Figure 15-45. Port D Outputs

15.20.2 Input Port D Pins

Figure 15-46. Input Port D Pins

15.20.3 Port D Output Enable

Figure 15-47. Port D Output Enable Register

OUTD Port D Outputs 7841

b7 b6 b5 b4 b3 b2 b1 b0

OUTD7 OUTD6 OUTD5 OUTD4 OUTD3 OUTD2 OUTD1 OUTD0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PINSD Port D Pins 7842

b7 b6 b5 b4 b3 b2 b1 b0

PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0

R R R R R R R R

x x x x x x x x

OED Port D Output Enable 7843

b7 b6 b5 b4 b3 b2 b1 b0

OED7 OED6 OED5 OED4 OED3 OED2 OED1 OED0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-22 EZ-USB FX Technical Reference Manual v1.2

15.20.4 Port E Outputs

Figure 15-48. Port E Outputs

15.20.5 Input Port E Pins

Figure 15-49. Input Port E Pins

15.20.6 Port E Output Enable

Figure 15-50. Port E Output Enable Register

OUTE Port E Outputs 7845

b7 b6 b5 b4 b3 b2 b1 b0

OUTE7 OUTE6 OUTE5 OUTE4 OUTE3 OUTE2 OUTE1 OUTE0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PINSE Port E Pins 7846

b7 b6 b5 b4 b3 b2 b1 b0

PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0

R R R R R R R R

x x x x x x x x

OEE Port E Output Enable 7847

b7 b6 b5 b4 b3 b2 b1 b0

OEE7 OEE6 OEE5 OEE4 OEE3 OEE2 OEE1 OEE0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-23

EZ-USB FX Technical Reference Manual
15.21 PORTSETUP

Figure 15-51. PORTSETUP

15.22 Interface Configuration

Figure 15-52. Interface Configuration

Bit 7: 52ONE Set to “1” for the 52-pin package

This bit must be set to “1” for the 52-pin versions of EZ-USB FX. This ensures that certain sig-
nals that are driven properly for EZ-USB FX low power operation.

Bit 6-4: Reserved Reserved bits, read as 0

Bit 3: GSTATE Output GSTATE

When GSTATE=1, three bits in Port A take on the signals shown in Table 15-1. The GSTATE
bits, which indicate GPIF states, are used for diagnostic purposes.

PORTSETUP Timer0 Clock Source, Port to SFR Mapping 7849

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 TOCLK SFRPORT

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

IFCONFIG Interface Configuration 784A

b7 b6 b5 b4 b3 b2 b1 b0

52ONE 0 0 0 GSTATE BUS16 IF1 IF0

R/W R R R R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-24 EZ-USB FX Technical Reference Manual v1.2

Bit 2: BUS16 8- or 16-Bit Slave FIFO Operation

This bit selects 8-bit (BUS16=0) or 16-bit (BUS16=1) operation for slave FIFOs A and B. See
Chapter 7. "EZ-USB FX Slave FIFOs" for full details.

Bit 1-0: Interface Select Reconfigure I/O ports

These bits, along with the BUS16 bit, select different groups of signals for various EZ-USB FX
pins. Table 15-2 shows the selections.

Table 15-1. Port A Alternate Functions When GSTATE=1.

IO
Pin

Alternate
Function

PA0 GSTATE[0]

PA1 GSTATE[1]

PA2 GSTATE[2]
Chapter 15. EZ-USB FX Registers Page 15-25

EZ-USB FX Technical Reference Manual
NC -Package pin must be left unconnected.
Strap -Package pin must be either pulled-up to VDD or pulled-down to GND.

Table 15-2. Pin Configurations Based on IFCONFIG[1..0]

IFCONFIG[1..0]

00 01 10 11

BUS16=1 BUS16=0 BUS16=1 BUS16-=0

PE0 PE0 adr0 adr0 BOUTFLAG BOUTFLAG

PE1 PE1 adr1 adr1 AINFULL AINFULL

PE2 PE2 adr2 adr2 BINFULL BINFULL

PE3 PE3 adr3 adr3 AOUTEMTY AOUTEMTY

PE4 PE4 adr4 adr4 BOUTEMTY BOUTEMTY

PE5 PE5 CTL3 CTL3 PE5 PE5

PE6 PE6 CTL4 CTL4 PE6 PE6

PE7 PE7 CTL5 CTL5 PE7 PE7

NC NC CTL0 CTL0 AINFLAG AINFLAG

NC NC CTL1 CTL1 BINFLAG BINFLAG

NC NC CTL2 CTL2 AOUTFLAG AOUTFLAG

Strap Strap RDY0 RDY0 ASEL ASEL

Strap Strap RDY1 RDY1 BSEL BSEL

Strap Strap RDY2 RDY2 AOE AOE

Strap Strap RDY3 RDY3 BOE BOE

Strap Strap RDY4 RDY4 SLWR SLWR

Strap Strap RDY5 RDY5 SLRD SLRD

Strap Strap adr5 adr5 X X

Strap Strap XCLK XCLK XCLK XCLK

PORTB D[7..0] GDA[7..0] GDA7..0] AFI[7..0] AFI[7..0]

PORTD PORTD GDB[7..0] PORTD BFI[7..0] PORTD
Page 15-26 EZ-USB FX Technical Reference Manual v1.2

15.23 PORTA and PORTC Alternate Configurations

15.23.1 Port A Alternate Configuration #2

Figure 15-53. Port A Alternate Configuration #2

Bit 5: SLRD Select SLRD/RDY5 signal on PA5 pin

This bit, in conjunction with the PORTACFG.5 Bit and the IFCONFIG[1..0] bits, determines the
function of PA5, as shown in Table 15-3.

Bit 4: SLWR Select SLWR/RDY4 signal on PA4 pin

This bit, in conjunction with the PORTACFG.4 Bit and the IFCONFIG[1..0] bits, determines the
function of PA4, as shown in Table 15-4.

PORTACF2 PORTA Alternate Configuration #2 784B

b7 b6 b5 b4 b3 b2 b1 b0

0 0 SLRD SLWR 0 0 0 0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Table 15-3. Port A Bit 5

PORTA Bit 5
PORT-

ACFG.5=0
PORTACFG.5=1

PORTACF2.5=0 PORTACF2.5=1
IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PA5 FRD# RDY5 SLRD

Table 15-4. Port A Bit 4

PORTA Bit 4
PORT-

ACFG.4=0
PORTACFG.4=1

PORTACF2.4=0 PORTACF2.4=1
IFCONFIG[1..0]=10 IFCONFIG[1..0]=11

Port pin PA4 FWR# RDY4 SLWR
Chapter 15. EZ-USB FX Registers Page 15-27

EZ-USB FX Technical Reference Manual
15.23.2 Port C Alternate Configuration #2

Figure 15-54. Port C Alternate Configuration #2

Bit 7: CTL5 Select CTL5 on PC7 pin

This bit, in conjunction with the PORTCCFG.7 Bit, determines the function of PC7, as shown
in Table 15-5.

Bit 6: CTL4 Select CTL4 on PC6 pin

This bit, in conjunction with the PORTCCFG.6 Bit, determines the function of PC6, as shown
in Table 15-6.

PORTCCF2 PORTC Alternate Configuration #2 784C

b7 b6 b5 b4 b3 b2 b1 b0

CTL5 CTL4 CTL3 CTL1 RDY3 0 RDY1 RDY0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

Table 15-5. Port C Bit 7

PORTC Bit 7
PORTCCFG.7=0 PORTCCFG.7=1

PORTCCF2.7=0 PORTCCF2.7=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC7 RD# CTL5 X

Table 15-6. Port C Bit 6

PORTC Bit 6
PORTCCFG.6=0 PORTCCFG.6=1

PORTCCF2.6=0 PORTCCF2.6=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC6 WR# CTL4 X
Page 15-28 EZ-USB FX Technical Reference Manual v1.2

Bit 5: CTL3 Select CTL3 on PC5 pin

This bit, in conjunction with the PORTCCFG.5 Bit, determines the function of PC5, as shown in
Table 15-7.

Bit 4: CTL1 Select CTL1 on PC4 pin

This bit, in conjunction with the PORTCCFG.4 Bit, determines the function of PC4, as shown in
Table 15-8.

Bit 3: RDY3 Select RDY3 on PC3 pin

This bit, in conjunction with the PORTCCFG.3 Bit, determines the function of PC3, as shown in
Table 15-9.

Table 15-7. Port C Bit 5

PORTC Bit 5
PORTCCFG.5=0 PORTCCFG.5=1

PORTCCF2.5=0 PORTCCF2.5=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC5 T1 CTL3 X

Table 15-8. Port C Bit 4

PORTC Bit 4
PORTCCFG.4=0 PORTCCFG.4=1

PORTCCF2.4=0 PORTCCF2.4=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC4 T0 CTL1 X

Table 15-9. Port C Bit 3

PORTC Bit 3
PORTCCFG.3=0 PORTCCFG.3=1

PORTCCF2.3=0 PORTCCF2.3=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC3 INT1 RDY3 X
Chapter 15. EZ-USB FX Registers Page 15-29

EZ-USB FX Technical Reference Manual
Bit 2: Reserved Reads as 0

Bit 1: RDY1 Select RDY1 on PC1 pin

This bit, in conjunction with the PORTCCFG.1 Bit, determines the function of PC1, as shown
in Table 15-10.

Bit 0: CTL5 Select CTL5 on PC0 pin

This bit, in conjunction with the PORTCCFG.0 Bit, determines the function of PC0, as shown
in Table 15-11.

Table 15-10. Port C Bit 1

PORTC Bit 1
PORTCCFG.1=0 PORTCCFG.1=1

PORTCCF2.1=0 PORTCCF2.1=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC1 TxD0 RDY1 X

Table 15-11. Port C Bit 0

PORTC Bit 0
PORTCCFG.0=0 PORTCCFG.0=1

PORTCCF2.0=0 PORTCCF2.0=1
IFCONFIG[1..0]=10 00, 01, 11 not valid

Port pin PC0 RxD0 RDY0 X
Page 15-30 EZ-USB FX Technical Reference Manual v1.2

15.24 DMA Registers

For more information on these DMA registers, see Section 11.2. "DMA Register Descriptions".

15.24.1 Source, Destination, Transfer Length Address Registers

Figure 15-55. Upper Byte of the DMA Source Address

Figure 15-56. Lower Byte of the DMA Source Address

Figure 15-57. Upper Byte of the DMA Destination Address

DMASRCH DMA Source Address (H) 784F

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMASRCL DMA Source Address (L) 7850

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMADESTH DMA Destination Address (H) 7851

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-31

EZ-USB FX Technical Reference Manual
Figure 15-58. Lower Byte of the DMA Destination Address

Figure 15-59. DMA Transfer Length (0=256 Bytes, 1=1 Byte, ... 255=255 Bytes)

15.24.2 DMA Start and Status Register

For further information on DMA Registers, see Section 11.2. "DMA Register Descriptions".

Figure 15-60. DMA Start and Status Register

DMADESTL DMA Destination Address (L) 7852

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMALEN DMA Transfer Length 7854

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

DMAGO DMA Start and Status 7855

b7 b6 b5 b4 b3 b2 b1 b0

DONE 0 0 0 0 0 0 0

R/W x x x x x x x

0 x x x x x x x
Page 15-32 EZ-USB FX Technical Reference Manual v1.2

15.24.3 DMA Synchronous Burst Enables Register

Figure 15-61. Synchronous Burst Enables

15.24.4 Select 8051 A/D busses as External FIFO

Figure 15-62. Dummy Register

DMABURST Synchronous Burst Enables 7857

b7 b6 b5 b4 b3 b2 b1 b0

x x x DSTR2 DSTR1 DSTR0 BR BW

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 0 0

DMAEXTFIFO Use A/D Buses as External FIFO 7858

b7 b6 b5 b4 b3 b2 b1 b0

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a
Chapter 15. EZ-USB FX Registers Page 15-33

EZ-USB FX Technical Reference Manual
15.25 Slave FIFO Interrupt (INT4)

The EZ-USB FX slave FIFOs contain various flags to alert the 8051 when a FIFO needs attention.
These flags are encoded into the INT4 Autovector, which the 8051 can read in the INT4IVEC Reg-
ister. The encoded values for each INT4 source are shown in Table 12-4. For more information
including bit descriptions, see Section 12.15. "Slave FIFO Interrupt (INT4)".

15.25.1 Interrupt 4 Autovector

Figure 15-63. Interrupt 4 Autovector

15.25.2 Interrupt 4 Autovector

Figure 15-64. Interrupt 4 Setup

INT4IVEC Interrupt 4 Autovector 785D

b7 b6 b5 b4 b3 b2 b1 b0

0 0 I4V3 I4V2 I4V1 I4V0 0 0

R R R R R R R R

0 0 0 0 0 0 0 0

INT4SETUP Interrupt 4 Setup 785E

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 INT4FC INTRNL AV4EN

R R R R R R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-34 EZ-USB FX Technical Reference Manual v1.2

15.26 Waveform Descriptors

Figure 15-65. Waveform Descriptors

For detailed information, see Section 8.1. "What is GPIF?".

15.27 Bulk Data Buffers

* See Table 15-12 for individual endpoint buffer addresses.

Figure 15-66. Bulk Data Buffers

WFDESC Waveform Descriptors 7900

b7 b6 b5 b4 b3 b2 b1 b0

x x x x x x x x

R R R R R R R R

0 0 0 0 0 0 0 0

INnBUF,OUTnBUF Endpoint 0-7 IN/OUT Data Buffers 7B40-7F3F*

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-35

EZ-USB FX Technical Reference Manual
Sixteen 64-byte bulk data buffers appear at 0x1B40 and 0x7B40 in the 8K version of EZ-USB FX.
The endpoints are ordered to permit the reuse of the buffer space as contiguous RAM when the
higher numbered endpoints are not used. These registers default to unknown states.

Table 15-12. Bulk Endpoint Buffer Memory Addresses

Address Address Name Size

1F00-1F3F 7F00-7F3F IN0BUF 64

1EC0-1EFF 7EC0-7EFF OUT0BUF 64

1E80-1EBF 7E80-7EBF IN1BUF 64

1E40-1E7F 7E40-7E7F OUT1BUF 64

1E00-1E3F 7E00-7E3F IN2BUF 64

1DC0-1DFF 7DC0-7DFF OUT2BUF 64

1D80-1DBF 7D80-7DBF IN3BUF 64

1D40-1D7F 7D40-7D7F OUT3BUF 64

1D00-1D3F 7D00-7D3F IN4BUF 64

1CC0-1CFF 7CC0-7CFF OUT4BUF 64

1C80-1CBF 7C80-7CBF IN5BUF 64

1C40-1C7F 7C40-7C7F OUT5BUF 64

1C00-1C3F 7C00-7C3F IN6BUF 64

1BC0-1BFF 7BC0-7BFF OUT6BUF 64

1B80-1BBF 7B80-7BBF IN7BUF 64

1B40-1B7F 7B40-7B7F OUT7BUF 64
Page 15-36 EZ-USB FX Technical Reference Manual v1.2

15.28 Isochronous Data FIFOs

* See Table 15-13 for individual endpoint buffer addresses.

Figure 15-67. Isochronous Data FIFOs

OUTnDATA EP8OUT-EP15OUT FIFO Registers 7F60-7F67*

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

INnDATA EP8IN-EP15IN FIFO Registers 7F68-7F6F*

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

W W W W W W W W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-37

EZ-USB FX Technical Reference Manual
Sixteen addressable data registers hold data from the eight isochronous IN endpoints and the
eight isochronous OUT endpoints. Reading a data register reads a FIFO byte (USB OUT data);
writing a Data Register loads a FIFO byte (USB IN data).

Table 15-13. Isochronous Endpoint FIFO Register Addresses

Address Isochronous Data Name

7F60 Endpoint 8 OUT Data OUT8DATA

7F61 Endpoint 9 OUT Data OUT9DATA

7F62 Endpoint 10 OUT Data OUT10DATA

7F63 Endpoint 11 OUT Data OUT11DATA

7F64 Endpoint 12 OUT Data OUT12DATA

7F65 Endpoint 13 OUT Data OUT13DATA

7F66 Endpoint 14 OUT Data OUT14DATA

7F67 Endpoint 15 OUT Data OUT15DATA

7F68 Endpoint 8 IN Data IN8DATA

7F69 Endpoint 9 IN Data IN9DATA

7F6A Endpoint 10 IN Data IN10DATA

7F6B Endpoint 11 IN Data IN11DATA

7F6C Endpoint 12 IN Data IN12DATA

7F6D Endpoint 13 IN Data IN13DATA

7F6E Endpoint 14 IN Data IN14DATA

7F6F Endpoint 15 IN Data IN15DATA
Page 15-38 EZ-USB FX Technical Reference Manual v1.2

15.29 Isochronous Byte Counts

* See Table 15-14 for individual endpoint buffer addresses.

Figure 15-68. Isochronous Byte Counts

OUTnBCH OUT(8-15) Byte Count High 7F70-7F7F*

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 BC9 BC8

R R R R R R R R

x x x x x x x x

INnBCL OUT(8-15) Byte Count Low 7F70-7F7F*

b7 b6 b5 b4 b3 b2 b1 b0

BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0

R R R R R R R R

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-39

EZ-USB FX Technical Reference Manual
The USB core uses the byte count registers to report isochronous data payload sizes for OUT
data transferred from the host to the USB core. Ten bits of byte count data allow payload size up to
1,023 bytes. A byte count of zero is valid, meaning that the host sent no isochronous data during
the previous frame. The default values of these registers are unknown.

Byte counts are valid only for OUT endpoints. The byte counts indicate the number of bytes
remaining in the endpoint’s OUT FIFO. Every time the 8051 reads a byte from the ISODATA Reg-
ister, the byte count decrements by one.

To read USB OUT data, the 8051 first reads byte count registers OUTnBCL and OUTnBCH to
determine how many bytes to transfer out of the OUT FIFO. (The 8051 can also quickly test ISO
output endpoints for zero byte counts using the ZBCOUT Register.) Then, the CPU reads that
number of bytes from the ISODATA Register. Separate byte counts are maintained for each end-
point, so the CPU can read the FIFOs in a discontinuous manner. For example, if EP8 indicates a
byte count of 100, and EP9 indicates a byte count of 50, the CPU could read 50 bytes from EP8,
then read 10 bytes from EP9, and resume reading EP8.

There are no byte count registers for the IN endpoints. The USB core automatically tracks the
number of bytes loaded by the 8051.

If the 8051 does not load an IN isochronous endpoint FIFO during a 1-ms frame, and the host
requests data from that endpoint during the next frame (IN token), the USB core responds accord-
ing to the setting of the ISOSEND0 Bit (USBPAIR.7). If ISOSEND0=1, the core returns a zero-

Table 15-14. Isochronous Endpoint Byte Count Register Addresses

Address Isochronous Data Name

7F70 Endpoint 8 Byte Count High OUT8BCH

7F71 Endpoint 8 Byte Count Low OUT8BCL

7F72 Endpoint 9 Byte Count High OUT9BCH

7F73 Endpoint 9 Byte Count Low OUT9BCL

7F74 Endpoint 10 Byte Count High OUT10BCH

7F75 Endpoint 10 Byte Count Low OUT10BCL

7F76 Endpoint 11 Byte Count High OUT11BCH

7F77 Endpoint 11 Byte Count Low OUT11BCL

7F78 Endpoint 12 Byte Count High OUT12BCH

7F79 Endpoint 12 Byte Count Low OUT12BCL

7F7A Endpoint 13 Byte Count High OUT13BCH

7F7B Endpoint 13 Byte Count Low OUT13BCL

7F7C Endpoint 14 Byte Count High OUT14BCH

7F7D Endpoint 14 Byte Count Low OUT14BCL

7F7E Endpoint 15 Byte Count High OUT15BCH

7F7F Endpoint 15 Byte Count Low OUT15BCL
Page 15-40 EZ-USB FX Technical Reference Manual v1.2

length data packet in response to the host IN token. If ISOSEND=0, the core does not respond to
the IN token.

It is the responsibility of the 8051 programmer to ensure that the number of bytes written to the IN
FIFO does not exceed the maximum packet size as reported during enumeration.

15.30 CPU Registers

Figure 15-69. CPU Control and Status Register

This register enables the CLKOE output and permits the host to reset the 8051 using a firmware
download.

Bit 7-4: RV[3..0] Silicon Revision

These register bits define the silicon revision. Consult individual Cypress Semiconductor data
sheets for values.

Bit 3: 24/48 8051 Clock Frequency

This read-only bit indicates that the 8051 clock rate is 24 or 48 MHz. This bit is set at power-on

according to a bit in the EEPROM connected to the EZ-USB FX I2C-compatible bus. If no
EEPROM is connected, the EZ-USB FX defaults to a 24-MHz 8051 clock. Once running (after
boot), the 8051 cannot change the clock rate.

Bit 2: CLKINV Invert the CLKOUT signal

This read-only bit indicates that the CLKOUT signal is inverted. This bit is set at power-on

according to a bit in the EEPROM connected to the EZ-USB FX I2C-compatible bus. If no
EEPROM is connected, the EZ-USB FX defaults to a non-inverted 24-MHz 8051 clock.

When CLKINV=0, the clock has the polarity shown in all the timing diagrams in this manual.
When CLKINV=1, the clock is inverted.

CPUCS CPU Control and Status 7F92

b7 b6 b5 b4 b3 b2 b1 b0

RV3 RV2 RV1 RV0 24/48 CLKINV CLKOE 8051RES

R R R R R R R/W R

RV3 RV2 RV1 RV0 0 0 1 1
Chapter 15. EZ-USB FX Registers Page 15-41

EZ-USB FX Technical Reference Manual
Bit 1: CLKOE CLKOUT pin output enable

The CLKOUT signal may be disabled by floating the CLKOUT pin. The 8051 does this by
clearing CLKOE. This is a good idea if the CLKOUT pin is not used since it reduces EMI.

Bit 0: 8051RES 8051 reset

The USB host writes “1” to this bit to reset the 8051, and “0” to run the 8051. Only the USB
host can write this bit.

15.31 Port Configuration

Figure 15-70. I/O Port Configuration Registers

These three registers select between I/O ports and various alternate functions for I/O ports
PORTA, PORTB, and PORTC. They are read/write by the 8051.

When PORTnCFG=0, the port pin functions as I/O, using the OUT, PINS, and OE control bits.
Data written to an OUTn Registers appears on an I/O Port pin if the corresponding output enable
bit (OEn) is HI.

PORTACFG I/O Port A Configuration 7F93

b7 b6 b5 b4 b3 b2 b1 b0

RxD1OUT RxD0OUT FRD FWR CS OE T1OUT T0OUT

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PORTBCFG I/O Port B Configuration 7F94

b7 b6 b5 b4 b3 b2 b1 b0

T2OUT INT6 INT5 INT4 TXD1 RXD1 T2EX T2

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

PORTCCFG I/O Port C Configuration 7F95

b7 b6 b5 b4 b3 b2 b1 b0

RD WR T1 T0 INT1 INT0 TXD0 RXD0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-42 EZ-USB FX Technical Reference Manual v1.2

When PORTnCFG=1, the pin assumes the alternate function shown in Table 15-15 on the follow-
ing page.

For more information, see Section 4.3. "Input/Output Port Registers".

These registers are used in conjunction with the IFCONFIG PORTACF2 Registers to define the pin
functions.

Table 15-15. I/O Pin Alternate Functions

I/O Name Alternate Functions

PA0 T0OUT Timer 0 Output

PA1 T1OUT Timer 1 Output

PA2 OE# External Memory Output Enable

PA3 CS# External Memory Chip Select

PA4 FWR# Fast Access Write Strobe

PA5 FRD# Fast Access Read Strobe

PA6 RXD0OUT Mode 0: UART0 Synchronous Data Output

PA7 RXD1OUT Mode 0: UART1 Synchronous Data Output

PB0 T2 Timer/Counter 2 Clock Input

PB1 T2EX Timer/Counter 2 Capture/Reload Input

PB2 RxD1 Serial Port 1 Input

PB3 TxD1 Mode 0: Clock Output
Modes 1-3: Serial Port 1 Data Output

PB4 INT4 INT4 Interrupt Request

PB5 INT5# INT5 Interrupt Request

PB6 INT6 INT6 Interrupt Request

PB7 T2OUT Timer/Counter 2 Overflow Indication

PC0 RxD0 Serial Port 0 Input

PC1 TxD0 Mode 0: Clock Output
Modes 1-3: Serial Port 0 Data Output

PC2 INT0# INT0 Interrupt Request

PC3 INT1# INT1 Interrupt Request

PC4 T0 Timer/Counter 0 External Input

PC5 T1 Timer/Counter 1 External Input

PC6 WR# External Memory Write Strobe

PC7 RD# External Memory Read Strobe
Chapter 15. EZ-USB FX Registers Page 15-43

EZ-USB FX Technical Reference Manual
15.32 Input/Output Port Registers A - C

For more information, see Section 4.3. "Input/Output Port Registers."

15.32.1 Outputs

The OUTn Registers provide the data that drives the port pin when OE=1 and the pin is configured
for port output. If the port pin is selected as an input (OE=0), the value stored in the corresponding
OUTn Bit is stored in an output latch but not used.

Figure 15-71. Port A Outputs

Figure 15-72. Port B Outputs

Figure 15-73. Port C Outputs

OUTA Port A Outputs 7F96

b7 b6 b5 b4 b3 b2 b1 b0

OUTA7 OUTA6 OUTA5 OUTA4 OUTA3 OUTA2 OUTA1 OUTA0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OUTB Port B Outputs 7F97

b7 b6 b5 b4 b3 b2 b1 b0

OUTB7 OUTB6 OUTB5 OUTB4 OUTB3 OUTB2 OUTB1 OUTB0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OUTC Port C Outputs 7F98

b7 b6 b5 b4 b3 b2 b1 b0

OUTC7 OUTC6 OUTC5 OUTC4 OUTC3 OUTC2 OUTC1 OUTC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-44 EZ-USB FX Technical Reference Manual v1.2

15.32.2 Pins

The PINSn Registers contain the current value of the port pins, whether they are selected as I/O
ports or as alternate functions.

Figure 15-74. Port A Pins

Figure 15-75. Port B Pins

Figure 15-76. Port C Pins

PINSA Port A Pins 7F99

b7 b6 b5 b4 b3 b2 b1 b0

PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0

R R R R R R R R

x x x x x x x x

PINSB Port B Pins 7F9A

b7 b6 b5 b4 b3 b2 b1 b0

PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0

R R R R R R R R

x x x x x x x x

OUTC Port C Pins 7F98

b7 b6 b5 b4 b3 b2 b1 b0

PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0

R R R R R R R R

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-45

EZ-USB FX Technical Reference Manual
15.32.3 Output Enables

The OE Registers control the output enables on the tri-state drivers connected to the port pins.
When these bits are “1,” the port is an output, unless the corresponding PORTnCFG Bit is set to a
“1.”

Figure 15-77. Port A Output Enable

Figure 15-78. Port B Output Enable

Figure 15-79. Port C Output Enable

OEA Port A Output Enable 7F9C

b7 b6 b5 b4 b3 b2 b1 b0

OEA7 OEA6 OEA5 OEA4 OEA3 OEA2 OEA1 OEA0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OEB Port B Output Enable 7F9D

b7 b6 b5 b4 b3 b2 b1 b0

OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEB0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

OEC Port C Output Enable 7F9E

b7 b6 b5 b4 b3 b2 b1 b0

OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OEC0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-46 EZ-USB FX Technical Reference Manual v1.2

15.33 Isochronous Control/Status Registers

Figure 15-80. Isochronous OUT Endpoint Error Register

The ISOERR bits are updated at every SOF. They indicate that a CRC error was received on a
data packet for the current frame. The ISOERR Bit status refers to the USB data received in the
previous frame, and which is currently in the endpoint’s OUT FIFO. If the ISOERR Bit = 1, indicat-
ing a bad CRC check, the data is still available in the OUTnDATA Register.

Figure 15-81. Isochronous Control Register

Bit 3: PPSTAT Ping-Pong Status

This bit indicates the isochronous buffer currently in use by the USB core. It is used only for
diagnostic purposes.

Bits 2,1: MBZ Must be zero

These bits must always be written with zeros.

Bit 0: ISODISAB ISO Endpoints Disable

ISODISAB=0 enables all 16 isochronous endpoints

ISODISAB=1 disables all 16 isochronous endpoints, making the 2,048 bytes of isochronous
FIFO memory available as 8051 data memory at 0x2000-0x27FF.

ISOERR Isochronous OUT EP Error 7FA0

b7 b6 b5 b4 b3 b2 b1 b0

ISO15ERR ISO14ERR ISO13ERR ISO12ERR ISO11ERR ISO10ERR ISO9ERR ISO8ERR

R R R R R R R R

x x x x x x x x

ISOCTL Isochronous Control 7FA1

b7 b6 b5 b4 b3 b2 b1 b0

- - - - PPSTAT MBZ MBZ ISODISAB

R R R R R R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-47

EZ-USB FX Technical Reference Manual
Figure 15-82. Zero Byte Count Register

Bits 0-7: EP(n) Zero Byte Count for ISO OUT Endpoints

The 8051 can check these bits as a fast way to check all of the OUT isochronous endpoints at
once for no data received during the previous frame. A “1” in any bit position means that a
zero byte Isochronous OUT packet was received for the indicated endpoint.

15.34 I 2C-Compatible Registers

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of
time between performing the following instructions back-to-back: (1) write-write (2) write-read.

Figure 15-83. I2C-Compatible Transfer Registers

ZBCOUT Zero Byte Count Bits 7FA2

b7 b6 b5 b4 b3 b2 b1 b0

EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8

R R R R R R R R

x x x x x x x x

I2CS I2C-Compatible Control and Status 7FA5†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

START STOP LASTRD ID1 ID0 BERR ACK DONE

R/W R/W R/W R R R R R

0 0 0 x x 0 0 0

I2DAT I2C-Compatible Data 7FA6†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-48 EZ-USB FX Technical Reference Manual v1.2

The 8051 uses these registers to transfer data over the EZ-USB FX I2C-compatible bus. For I2C-

compatible peripherals that support it, the EZ-USB FX I2C-compatible bus can run at 400 KHz. For
compatibility, the EZ-USB FX powers-up at the 100-KHz frequency.

In the EZ-USB FX family, an I2C-compatible Interrupt Request occurs on INT3 whenever the

DONE Bit (I2CS.0) makes a zero-to-one transition. This interrupt signals the 8051 that the I2C-

compatible controller is ready for another command. For more information on the I2C-compatible
interrupt, see Section 12.14. "I2C-Compatible STOP Complete Interrupt."

Bit 7: START Signal START condition

The 8051 sets the START Bit to “1” to prepare an I2C-compatible bus transfer. If START=1, the
next 8051 load to I2DAT will generate the start condition followed by the serialized byte of data

in I2DAT. The 8051 loads byte data into I2DAT after setting the START Bit. The I2C-compatible
controller clears the START Bit during the ACK interval.

Bit 6: STOP Signal STOP condition

The 8051 sets STOP=1 to terminate an I2C-compatible bus transfer. The I2C-compatible con-
troller clears the STOP Bit after completing the STOP condition. If the 8051 sets the STOP Bit
during a byte transfer, the STOP condition will be generated immediately following the ACK
phase of the byte transfer. If no byte transfer is occurring when the STOP Bit is set, the STOP
condition will be carried out immediately on the bus. Data should not be written to I2CS or
I2DAT until the STOP Bit returns low.

Bit 5: LASTRD Last Data Read

To read data over the I2C-compatible bus, an I2C-compatible master floats the SDA line and
issues clock pulses on the SCL line. After every eight bits, the master drives SDA low for one
clock to indicate ACK. To signal the last byte of the read transfer, the master floats SDA at
ACK time to instruct the slave to stop sending. This is controlled by the 8051 by setting Las-

tRD=1 before reading the last byte of a read transfer. The I2C-compatible controller clears the
LastRD Bit at the end of the transfer (at ACK time).

Setting LastRD does not automatically generate a STOP condition. The 8051 should also set the
STOP Bit at the end of a read transfer.

Bit 4-3: ID1,ID0 Boot EEPROM ID

These bits are set by the boot loader to indicate whether an 8-bit address or 16-bit address
EEPROM at slave address 000 or 001 was detected at power-on. Normally, they are used for
debug purposes only.
Chapter 15. EZ-USB FX Registers Page 15-49

EZ-USB FX Technical Reference Manual
Bit 2: BERR Bus Error

This bit indicates an I2C-compatible bus error. BERR=1 indicates that there was bus conten-
tion, which results when an outside device drives the bus LO when it shouldn’t, or when
another bus master wins arbitration, taking control of the bus. BERR is cleared when 8051
reads or writes the IDATA Register.

Bit 1: ACK Acknowledge Bit

Every ninth SCL or a write transfer the slave indicates reception of the byte by asserting ACK.
The EZ-USB FX controller floats SDA during this time, samples the SDA line, and updates the
ACK Bit with the complement of the detected value. ACK=1 indicates acknowledge, and
ACK=0 indicates not-acknowledge. The USB core updates the ACK Bit at the same time it
sets DONE=1. The ACK Bit should be ignored for read transfers on the bus.

Bit 0: DONE I2C-CompatibleTransfer DONE

The I2C-compatible controller sets this bit whenever it completes a byte transfer, right after the

ACK stage. The controller also generates an I2C-compatible Interrupt Request (8051 INT3)

when it sets the DONE Bit. The I2C-compatible controller automatically clears the DONE Bit

and the I2C-compatible Interrupt Request bit whenever the 8051 reads or writes the I2DAT
Register.

Figure 15-84. I2C-Compatible Mode Register

The I2C-compatible STOP Bit Interrupt Request is activated when the STOP Bit makes a 1-0 tran-
sition. To enable this interrupt, set the STOPIE Bit in the I2CMODE Register. The 8051 determines
the interrupt source by checking the DONE and STOP bits in the I2CS Register.

I2CMODE I2C-Compatible Mode 7FA7†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 STOPIE 0

R R R R R R R/W R

0 0 0 0 0 0 0 0
Page 15-50 EZ-USB FX Technical Reference Manual v1.2

15.35 Interrupts

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of
time between performing the following instructions back-to-back: (1) write-write (2) write-read.

Figure 15-85. Interrupt Vector Register

IVEC indicates the source of an interrupt from the USB Core. When the USB core generates an
INT2 (USB) Interrupt Request, it updates IVEC to indicate the source of the interrupt. The interrupt
sources are encoded on IV[4..0] as shown in Figure 12-1.

Figure 15-86. IN/OUT Interrupt Request (IRQ) Registers

These interrupt request (IRQ) registers indicate the pending interrupts for each bulk endpoint. An
interrupt request (IR) Bit becomes active when the BSY Bit for an endpoint makes a transition from
one to zero (when the endpoint becomes un-busy, giving access to the 8051). The IR bits function

IVEC Interrupt Vector 7FA8

b7 b6 b5 b4 b3 b2 b1 b0

0 IV4 IV3 IV2 IV1 IV0 0 0

R R R R R R R R

0 0 0 0 0 0 0 0

IN07IRQ Endpoint 0-7 IN Interrupt Request 7FA9†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

IN7IR IN6IR IN5IR IN4IR IN3IR IN2IR IN1IR IN0IR

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OUT07IRQ Endpoint 0-7 OUT Interrupt Requests 7FAA†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

OUT7IR OUT6IR OUT5IR OUT4IR OUT3IR OUT2IR OUT1IR OUT0IR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-51

EZ-USB FX Technical Reference Manual
independently of the Interrupt Enable (IE) bits, so interrupt requests are held whether or not the
interrupts are enabled.

The 8051 clears an interrupt request bit by writing a “1” to it. (See the following Note).

Do not clear an IRQ Bit by reading an IRQ Register, ORing its contents with a bit mask, and writ-
ing back the IRQ Register. This will clear ALL pending interrupts. Instead, simply write the bit mask
value (with a “1” in the bit position of the IRQ you want to clear) directly to the IRQ Register.

Figure 15-87. USB Interrupt Request (IRQ) Registers

USBIRQ indicates the interrupt request status of the USB reset, suspend, setup token, start of
frame, and setup data available interrupts.

Bit 5: IBNIR IN Bulk NAK Interrupt Request

The USB core sets this bit when any of the IN bulk endpoints responds to an IN token with a
NAK. This interrupt occurs when the host sends an IN token to a bulk IN endpoint which has
not been armed by the 8051 writing its byte count register. Individual enables and requests
(per endpoint) are controlled by the IBNIRQ and IBNIEN Registers (7FB0, 7FB1). Write a “1”
to this bit to clear the interrupt request.

Bit 4: URESIR USB Reset Interrupt Request

The USB core sets this bit to “1” when it detects a USB bus reset.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset. Write a “1” to this bit to clear
the interrupt request. See Chapter 13. "EZ-USB FX Resets" for more information about this
bit.

USBIRQ USB Interrupt Request 7FAB†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- - IBNIR USESIR SUSPIR SUTOKIR SOFIR SUDAVIR

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-52 EZ-USB FX Technical Reference Manual v1.2

Bit 3: SUSPIR USB Suspend Interrupt Request

The USB core sets this bit to “1” when it detects USB SUSPEND signaling (no bus activity for
3 ms). Write a “1” to this bit to clear the interrupt request.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset. See Chapter 14. "EZ-USB
FX Power Management" for more information about this bit.

Bit 2: SUTOKIR SETUP Token Interrupt Request

The USB core sets this bit to “1” when it receives a SETUP token. Write a “1” to this bit to clear
the interrupt request. See Chapter 9. "EZ-USB FX Endpoint Zero" for more information on the
handling of SETUP tokens.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.

Bit 1: SOFIR Start of frame Interrupt Request

The USB core sets this bit to “1” when it receives a SOF packet. Write a “1” to this bit to clear
the interrupt request.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.

Bit 0: SUDAVIR SETUP data available Interrupt Request

The USB core sets this bit to “1” when it has transferred the eight data bytes from an endpoint
zero SETUP packet into internal registers (at SETUPDAT). Write a “1” to this bit to clear the
interrupt request.

Because this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it is reset to “0” by a power-on reset.
Chapter 15. EZ-USB FX Registers Page 15-53

EZ-USB FX Technical Reference Manual
Figure 15-88. IN/OUT Interrupt Enable Registers

The Endpoint Interrupt Enable individually enable the BULK endpoint interrupts. They do not affect
the endpoint action, only the generation of an interrupt in response to endpoint events.

When the IEN Bit for an endpoint is “0,” the interrupt request bit for that endpoint is ignored, but
saved. When the IEN Bit for an endpoint is “1,” any IRQ Bit equal to “1” generates an 8051 INT2
Request.

The INT2 interrupt (EIE.0) and the 8051 global interrupt enable (EA) must be enabled for the end-
point interrupts to propagate to the 8051. Once the INT2 interrupt is active, it must be cleared by
software.

Figure 15-89. USB Interrupt Enable Register

IN07EN Endpoint 0-7 IN Interrupt Enables 7FAC†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

IN7IEN IN6IEN IN5IEN IN4IEN IN3IEN IN2IEN IN1IEN IN0IEN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OUT07IEN Endpoint 0-7 OUT Interrupt Enables 7FAD†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

OUT7IEN OUT6IEN OUT5IEN OUT4IEN OUT3IEN OUT2IEN OUT1IEN OUT0IEN

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

USBIEN USB Interrupt Enable 7FAE†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- - IBNIE* URESIE SUSPIE SUTOKIE SOFIE SUDAVIE

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-54 EZ-USB FX Technical Reference Manual v1.2

USBIEN bits gate the interrupt request to the 8051 for USB reset, suspend, SETUP token, start of
frame, and SETUP data available.

Bit 5: IBNIE IN bulk NAK Interrupt Enable

The 8051 sets this bit to enable the IN-bulk-NAK interrupt. This interrupt occurs when the host
sends an IN token to a bulk IN endpoint which has not been armed by the 8051 writing its byte
count register. Individual enables and requests (per endpoint) are controlled by the IBNIRQ
and IBNIEN Registers (7FB0, 7FB1).

Bit 4: URESIE USB Reset Interrupt Enable

This bit is the interrupt mask for the URESIR Bit. When this bit is “1,” the interrupt is enabled,
when it is “0,” the interrupt is disabled.

Bit 3: SUSPIE USB Suspend Interrupt Enable

This bit is the interrupt mask for the SUSPIR Bit. When this bit is “1,” the interrupt is enabled,
when it is “0,” the interrupt is disabled.

Bit 2: SUTOKIE SETUP Token Interrupt Enable

This bit is the interrupt mask for the SUTOKIR Bit. When this bit is “1,” the interrupt is enabled,
when it is “0,” the interrupt is disabled.

Bit 1: SOFIE Start of frame Interrupt Enable

This bit is the interrupt mask for the SOFIE Bit. When this bit is “1,” the interrupt is enabled,
when it is “0,” the interrupt is disabled.

Bit 0: SUDAVIE SETUP data available Interrupt Enable

This bit is the interrupt mask for the SUDAVIE Bit. When this bit is “1,” the interrupt is enabled,
when it is “0,” the interrupt is disabled.

Figure 15-90. Breakpoint and Autovector Register

USBBAV Breakpoint and Autovector 7FAF

b7 b6 b5 b4 b3 b2 b1 b0

- - - INT2SFC BREAK BPPULSE BPEN AVEN

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-55

EZ-USB FX Technical Reference Manual
Bit 4: INT2SFC Interrupt 2 cleared by SFR

If INT2SFC=1, the IRQ2 flag can be quickly cleared by writing any value to the INT2CLR SFR .

Bit 3: BREAK Breakpoint enable

The BREAK Bit is set when the 8051 address bus matches the address held in the bit break-
point address registers (7FB2, 7FB3). The BKPT pin reflects the state of this bit. The 8051
writes a “1” to the BREAK Bit to clear it. It is not necessary to clear the BREAK Bit if the pulse
mode bit (BPPULSE) is set.

Bit 2: BPPULSE Breakpoint pulse mode

The 8051 sets this bit to “1” to pulse the BREAK Bit (and BKPT pin) high for 8 CLKOUT cycles
when the 8051 address bus matches the address held in the breakpoint address registers.
When this bit is set to “0,” the BREAK Bit (and BKPT pin) remains high until it is cleared by the
8051.

Bit 1: BPEN Breakpoint enable

If this bit is “1,” a BREAK signal is generated whenever the 16-bit address lines match the
value in the Breakpoint Address Registers (BPADDRH/L). The behavior of the BREAK Bit and
associated BKPT pin signal is either latched or pulsed, depending on the state of the
BPPULSE Bit.

Bit 0: AVEN Auto-vector enable

If this bit is “1,” the EZ-USB FX Auto-vector feature is enabled for USB (INT2) interrupts. If it is
0, the auto-vector feature is disabled. See Chapter 12. "EZ-USB FX Interrupts" for more infor-
mation on the auto-vector feature. Note: a separate bit, AV4EN in the INT4SETUP (785E)
enables the INT4 autovector.

Figure 15-91. IN Bulk NAK Interrupt Request Register

These bits are set when a bulk IN endpoint (0-6) received an IN token while the endpoint was not
armed for data transfer. In this case the SIE automatically sends a NAK response, and sets the
corresponding IBNIRQ Bit. If the IBN interrupt is enabled (USBIEN.5=1), and the endpoint inter-
rupt is enabled in the IBNIEN Register, an interrupt is request generated. The 8051 can test the

IBNIRQ IN Bulk NAK Interrupt Requests 7FB0†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- EP6IR EP5IR EP4IR EP3IR EP2IR EP1IR EP0IR

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-56 EZ-USB FX Technical Reference Manual v1.2

IBNIRQ Register to determine which of the endpoints caused the interrupt. The 8051 clears an
IBNIRQ Bit by writing a “1” to it.

Figure 15-92. IN Bulk NAK Interrupt Enable Register

Each of the individual IN endpoints may be enabled for an IBN interrupt using the IBNEN Register.
The 8051 sets an interrupt enable bit to 1 to enable the corresponding interrupt.

Figure 15-93. IN/OUT Interrupt Enable Registers

When the current 16-bit address (code or XDATA) matches the BPADDRH/BPADDRL address, a
breakpoint event occurs. The BPPULSE and BPEN bits in the USBBAV Register control the action
taken on a breakpoint event.

If the BPEN Bit is “0,” address breakpoints are ignored. If BPEN is “1” and BPPULSE is “1,” an 8
CLKOUT wide pulse appears on the BKPT pin. If BPEN is “1” and BPPULSE is “0,” the BKPT pin
remains active until the 8051 clears the BREAK Bit by writing “1” to it.

IBNIEN IN Bulk NAK Interrupt Enables 7FB1†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- EP6IE EP5IE EP4IE EP3IE EP2IE EP1IE EP0IE

R/W R/W R/W R/W R/W R/W R/W R/W

x x 0 0 0 0 0 0

BPADDRH Breakpoint Address High 7FB2

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

BPADDRL Breakpoint Address Low 7FB3

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-57

EZ-USB FX Technical Reference Manual
15.36 Endpoint 0 Control and Status Registers

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of
time between performing the following instructions back-to-back: (1) write-write (2) write-read.

Figure 15-94. Port Configuration Registers

These registers control EZ-USB FX CONTROL endpoint zero. Because endpoint zero is a bi-
directional endpoint, the IN and OUT functionality is controlled by a single control and status (CS)
register, unlike endpoints 1-7, which have separate INCS and OUTCS Registers.

Bit 3: OUTBSY OUT Endpoint Busy

OUTBSY is a read-only bit that is automatically cleared when a SETUP token arrives. The
8051 sets the OUTBSY Bit by writing a byte count to EPOUTBC.

EP0CS Endpoint Zero Control and Status 7FB4†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- - - - OUTBSY INBSY HSNAK EP0STALL

R R R R R R R/W R/W

0 0 0 0 1 0 0 0

IN0BC Endpoint Zero IN Byte Count 7FB5†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- BC6 BC5 BC4 BC3 BC2 BC1 BC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0

OUT0BC Endpoint Zero OUT Byte Count 7FC5†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- BC6 BC5 BC4 BC3 BC2 BC1 BC0

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 0 0 0
Page 15-58 EZ-USB FX Technical Reference Manual v1.2

If the CONTROL transfer uses an OUT data phase, the 8051 must load a dummy byte count
into OUT0BC to arm the OUT endpoint buffer. Until it does, the USB core will NAK the OUT
tokens.

Bit 2: INBSY IN Endpoint Busy

INBSY is a read-only bit that is automatically cleared when a SETUP token arrives. The 8051
sets the INBSY Bit by writing a byte count to IN0BC.

If the CONTROL transfer uses an IN data phase, the 8051 loads the requested data into the
IN0BUF buffer, and then loads the byte count into IN0BC to arm the data phase of the CON-
TROL transfer. Alternatively, the 8051 can arm the data transfer by loading an address into
the Setup Data Pointer Registers SUDPTRH/L. Until armed, the USB core will NAK the IN
tokens.

Bit 1: HSNAK Handshake NAK

HSNAK (Handshake NAK) is a read/write bit that is automatically set when a SETUP token
arrives. The 8051 clears HSNAK by writing a “1” to the register bit.

While HSNAK=1, the USB core NAKs the handshake (status) phase of the CONTROL trans-
fer. When HSNAK=0, it ACKs the handshake phase. The 8051 can clear HSNAK at any time
during a CONTROL transfer.

Bit 0: EP0STALL Endpoint Zero Stall

EP0STALL is a read/write bit that is automatically cleared when a SETUP token arrives. The
8051 sets EP0STALL by writing a “1” to the register bit.

While EP0STALL=1, the USB core sends the STALL PID for any IN or OUT token. This can
occur in either the data or handshake phase of the CONTROL transfer.

To indicate an endpoint stall on endpoint zero, set both EP0STALL and HSNAK bits. Setting the
EP0STALL Bit alone causes endpoint zero to NAK forever because the host keeps the control
transfer pending.
Chapter 15. EZ-USB FX Registers Page 15-59

EZ-USB FX Technical Reference Manual
15.37 Endpoint 1-7 Control and Status Registers

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of
time between performing the following instructions back-to-back: (1) write-write (2) write-read.

Endpoints 1-7 IN and OUT are used for bulk or interrupt data. Table 15-16 shows the addresses
for the control/status and byte count registers associated with these endpoints. The bi-directional
CONTROL endpoint zero registers are described in Section 15.36. "Endpoint 0 Control and Status
Registers."

Table 15-16. Control and Status Register Addresses for Endpoints 0-7

Address Function Name
7FB4† Control and Status - Endpoint IN0 EP0CS

7FB5† Byte Count - Endpoint IN0 IN0BC

7FB6† Control and Status - Endpoint IN1 IN1CS

7FB7† Byte Count - Endpoint IN1 IN1BC

7FB8† Control and Status - Endpoint IN2 IN2CS

7FB9† Byte Count - Endpoint IN2 IN2BC

7FBA† Control and Status - Endpoint IN3 IN3CS

7FBB† Byte Count - Endpoint IN3 IN3BC

7FBC† Control and Status - Endpoint IN4 IN4CS

7FBD† Byte Count - Endpoint IN4 IN4BC

7FBE† Control and Status - Endpoint IN5 IN5CS

7FBF† Byte Count - Endpoint IN5 IN5BC

7FC0† Control and Status - Endpoint IN6 IN6CS

7FC1† Byte Count - Endpoint IN6 IN6BC

7FC2† Control and Status - Endpoint IN7 IN7CS

7FC3† Byte Count - Endpoint IN7 IN7BC

7FC4 Reserved
7FC5† Byte Count - Endpoint OUT0 OUT0BC

7FC6† Control and Status - Endpoint OUT1 OUT1CS

7FC7† Byte Count - Endpoint OUT1 OUT1BC

7FC8† Control and Status - Endpoint OUT2 OUT2CS

7FC9† Byte Count - Endpoint OUT2 OUT2BC

7FCA† Control and Status - Endpoint OUT3 OU37CS

7FCB† Byte Count - Endpoint OUT3 OUT3BC

7FCC† Control and Status - Endpoint OUT4 OUT4CS

7FCD† Byte Count - Endpoint OUT4 OUT4BC

7FCE† Control and Status - Endpoint OUT5 OUT5CS

7FCF† Byte Count - Endpoint OUT5 OUT5BC

7FD0† Control and Status - Endpoint OUT6 OUT6CS

7FD1† Byte Count - Endpoint OUT6 OUT6BC

7FD2† Control and Status - Endpoint OUT7 OUT7CS

7FD3† Byte Count - Endpoint OUT7 OUT7BC
Page 15-60 EZ-USB FX Technical Reference Manual v1.2

* See Table 15-16 for individual control/status register addresses.

Figure 15-95. IN Control and Status Registers

Bit 1: INnBSY IN Endpoint (1-7) Busy

The BSY Bit indicates the status of the endpoint’s IN Buffer INnBUF. The USB core sets
BSY=0 when the endpoint’s IN buffer is empty and ready for loading by the 8051. The 8051
causes BSY=1 by loading the endpoint’s byte count register.

When BSY=1, the 8051 should not write data to an IN endpoint buffer, because the endpoint
FIFO could be in the act of transferring data to the host over the USB. BSY=0 when the USB
IN transfer is complete and endpoint RAM data is available for 8051 access. USB IN tokens
for the endpoint are NAKd while BSY=0 (the 8051 is still loading data into the endpoint buffer).

A 1-to-0 transition of BSY (indicating that the 8051 can access the buffer) generates an inter-
rupt request for the IN endpoint. After the 8051 writes the data to be transferred to the IN end-
point buffer, it loads the endpoint’s byte count register with the number of bytes to transfer,
which automatically sets BSY=1. This enables the IN transfer of data to the host in response
to the next IN token. Again, the CPU should never load endpoint data while BSY=1.

The 8051 writes a “1” to an IN endpoint busy bit to disarm a previously armed endpoint. (This
sets BSY=0.) The 8051 program should do this only after a USB bus reset, or when the host
selects a new interface or alternate setting that uses the endpoint. This prevents stale data
from a previous setting from being accepted by the host’s first IN transfer that uses the new
setting.

Even though the register description shows bit 1 as “R/W,” the 8051 can only clear this bit by writ-
ing a “1” to it. The 8051 can not directly set this bit.

To disarm a paired IN endpoint, write a “1” to the busy bit for both endpoints in the pair.

INnCS Endpoint (1-7) IN Control and Status 7FB6-7FC2*†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - INnBSY INnSTL

R R R R R R R/W R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-61

EZ-USB FX Technical Reference Manual
Bit 0: INnSTL IN Endpoint (1-7) Stall

The 8051 sets this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL Handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:

1. The host sends a “Set_Feature—Endpoint Stall” Request to the specific endpoint.

2. The 8051 encounters any show stopper error on the endpoint, and sets the stall bit to tell
the host to halt traffic to the endpoint.

The 8051 clears an endpoint’s stall bit under two circumstances:

1. The host sends a “Clear_Feature—Endpoint Stall” Request to the specific endpoint.

2. The 8051 receives some other indication from the host that the stall should be cleared
(this is referred to as “host intervention” in the USB Specification). This indication could
be a USB bus reset.

All stall bits are automatically cleared when the EZ-USB FX chip ReNumerates™ by pulsing
the DISCON Bit HI.

* See Table 15-16 for individual byte count register addresses.

Figure 15-96. IN Byte Count Registers

The 8051 writes this register with the number of bytes it loaded into the IN endpoint buffer INn-
BUF. Writing this register also arms the endpoint by setting the endpoint BSY Bit to 1.

Legal values for these registers are 0-64. A zero transfer size is used to terminate a transfer
that is an integral multiple of MaxPacketSize. For example, a 256-byte transfer with max-
PacketSize = 64, would require four packets of 64 bytes each plus one packet of 0 bytes.

The IN byte count should never be written while the endpoint’s BUSY Bit is set.

When the register pairing feature is used (Chapter 6. "EZ-USB FX Bulk Transfers") IN2BC is
used for the EP2/EP3 pair, IN4BC is used for the EP4/EP5 pair, and IN6BC is used for the
EP6/EP7 pair. In the paired (double-buffered) mode, after the first write to the even-numbered

INnBC Endpoint (1-7) IN Byte Count 7FB7-7FC3*†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-62 EZ-USB FX Technical Reference Manual v1.2

byte count register, the endpoint BSY Bit remains at 0, indicating that only one of the buffers is
full, and the other is still empty. The odd numbered byte count register is not used when end-
points are paired.

* See Table 15-16 for individual control/status register addresses.

Figure 15-97. OUT Control and Status Registers

Bit 1: OUTnBSY OUT Endpoint (1-7) Busy

The BSY Bit indicates the status of the endpoint’s OUT Buffer OUTnBUF. The USB core sets
BSY=0 when the host data is available in the OUT buffer. The 8051 sets BSY=1 by loading
the endpoint’s byte count register.

When BSY=1, endpoint RAM data is invalid--the endpoint buffer has been emptied by the
8051 and is waiting for new OUT data from the host, or it is the process of being loaded over
the USB. BSY=0 when the USB OUT transfer is complete and endpoint RAM data in OUTn-
BUF is available for the 8051 to read. USB OUT tokens for the endpoint are NAKd while
BSY=1 (the 8051 is still reading data from the OUT endpoint).

A 1-to-0 transition of BSY (indicating that the 8051 can access the buffer) generates an inter-
rupt request for the OUT endpoint. After the 8051 reads the data from the OUT endpoint
buffer, it loads the endpoint’s byte count register with any value to re-arm the endpoint, which
automatically sets BSY=1. This enables the OUT transfer of data from the host in response to
the next OUT token. The CPU should never read endpoint data while BSY=1.

Bit 0: OUTnSTL OUT Endpoint (1-7) Stall

The 8051 sets this bit to “1” to stall an endpoint, and to “0” to clear a stall.

When the stall bit is “1,” the USB core returns a STALL Handshake for all requests to the end-
point. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:

1.The host sends a “Set_Feature—Endpoint Stall” Request to the specific endpoint.

2.The 8051 encounters any show stopper error on the endpoint, and sets the stall bit to tell the
host to halt traffic to the endpoint.

OUTnCS Endpoint (1-7) OUT Control and Status 7FC6-7FD2*†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- - - - - - OUTnBSY OUTnSTL

R R R R R R R R/W

0 0 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-63

EZ-USB FX Technical Reference Manual
The 8051 clears an endpoint’s stall bit under two circumstances:

1.The host sends a “Clear_Feature—Endpoint Stall” Request to the specific endpoint.

2.The 8051 receives some other indication from the host that the stall should be cleared (this
is referred to as “host intervention” in the USB Specification).

All stall bits are automatically cleared when the EZ-USB FX chip ReNumerates™.

* See Table 15-16 for individual control/status register addresses.

Figure 15-98. OUT Byte Count Registers

The 8051 reads this register to determine the number of bytes sent to an OUT endpoint.
Legal sizes are 0 - 64 bytes.

Each EZ-USB FX bulk OUT endpoint has a byte count register, which serves two purposes.
The 8051 reads the byte count register to determine how many bytes were received during the
last OUT transfer from the host. The 8051 writes the byte count register (with any value) to tell
the USB core that it has finished reading bytes from the buffer, making the buffer available to
accept the next OUT transfer. Writing the byte count register sets the endpoint’s BSY Bit to
“1.”

When the register-pairing feature is used, OUT2BC is used for the EP2/EP3 pair, OUT4BC is
used for the EP4/EP5 pair, and OUT6BC is used for the EP6/EP7 pair. The odd-numbered
byte count registers should not be used. When the 8051 writes a byte to the even numbered
byte count register, the USB core switches buffers. If the other buffer already contains data to
be read by the 8051, the OUTnBSY Bit remains at “0.”

All OUT tokens are NAKd until the 8051 is released from RESET, whereupon the ACK/NAK
behavior is based on pairing.

OUTnBC Endpoint (1-7) OUT Byte Count 7FC7-7FD3*†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

- D6 D5 D4 D3 D2 D1 D0

R R R R R R R R/W

0 0 0 0 0 0 0 0
Page 15-64 EZ-USB FX Technical Reference Manual v1.2

15.38 Global USB Registers

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of
time between performing the following instructions back-to-back: (1) write-write (2) write-read.

Figure 15-99. Setup Data Pointer High/Low Registers

When the EZ-USB FX chip receives a “Get_Descriptor” Request on endpoint zero, it can instruct
the USB core to handle the multi-packet IN transfer by loading these registers with the address of
an internal table containing the descriptor data. The descriptor data tables may be placed in inter-
nal program/data RAM or in unused Endpoint 0-7 RAM. The SUDPTR does not operate with
external memory. The SUDPTR Registers should be loaded in HIGH/LOW order.

In addition to loading SUDPTRL, the 8051 must also clear the HSNAK Bit in the EP0CS Register
(by writing a “1” to it) to complete the CONTROL transfer.

Any host request that uses the EZ-USB FX Setup Data Pointer to transfer IN data must indicate
the number of bytes to transfer in bytes 6 (wLenghthL) and 7 (wLengthH) of the SETUP packet.
These bytes are pre-assigned in the USB Specification to be length bytes in all standard device
requests such as “Get_Descriptor.” If vendor-specific requests are used to transfer large blocks of
data using the Setup Data Pointer, they must include this pre-defined length field in bytes 6-7 to tell
the USB core how many bytes to transfer using the Setup Data Pointer.

SUDPTRH Setup Data Pointer High 7FD4†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

SUDPTRL Setup Data Pointer Low 7FD5†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-65

EZ-USB FX Technical Reference Manual
The USB core transfers the lesser of (a) the bytes requested in the SETUP packet, and (b) the
bytes in the length field of the descriptor pointed to by the Setup Data Pointer.

Figure 15-100. USB Control and Status Registers

Bit 7: WAKESRC Wakeup source

This bit indicates that a high to low transaction was detected on the WAKEUP# pin. Writing a
“1” to this bit resets it to “0.”

Bit 3: DISCON Signal a Disconnect on the DISCON# pin

The EZ-USB FX DISCON# pin reflects the complement of this bit. This bit is normally set to 0.

Bit 2: DISCOE Disconnect Output Enable

DISCOE controls the output buffer on the DISCON# pin. When DISCOE=0, the pin floats, and
when DISCOE=1, it drives to the complement of the DISCON Bit (above).

DISCOE is used in conjunction with the RENUM Bit to perform ReNumeration™, (Chapter 5.
"EZ-USB FX Enumeration & ReNumeration™").

Bit 1: RENUM ReNumerate

This bit controls which entity, the USB core or the 8051, handles USB device requests. When
RENUM=0, the USB core handles all device requests. When RENUM=1, the 8051 handles all
device requests except Set_Address.

The 8051 sets RENUM=1 during a bus disconnect to transfer USB control to the 8051. The
USB core automatically sets RENUM=1 under two conditions:

1. Completion of a “B6” boot load (Chapter 5. "EZ-USB FX Enumeration & ReNumera-
tion™".

2. When external memory is used (EA=1) and no boot I2C-compatible EEPROM is used
(see Section 13.3.3. "External ROM").

USBCS USB Control and Status 7FD6†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

WAKESRC - - - DISCON DISCOE RENUM SIGRSUME

R/W R R R R/W R/W R/W R/W

0 0 0 0 0 1 0 0
Page 15-66 EZ-USB FX Technical Reference Manual v1.2

Bit 0: SIGRSUME Signal remote device resume

The 8051 sets SIGRSUME=1 to drive the “K” state onto the USB bus. This should be done
only by a device that is capable of remote wakeup, and then only during the SUSPEND state.
To signal RESUME, the 8051 sets SIGRSUME=1, waits 10-15 ms, then sets SIGRSUME=0.

Figure 15-101. Data Toggle Control Register

Bit 7: Q Data Toggle Value

Q=0 indicates DATA0 and Q=1 indicates DATA1, for the endpoint selected by the I/O and
EP[2..0] bits. The 8051 writes the endpoint select bits (IO and EP[2..0]), before reading this
value.

Bit 6: S Set Data Toggle to DATA1

After selecting the desired endpoint by writing the endpoint select bits (IO and EP[2..0]) the
8051 sets S=1 to set the data toggle to DATA1. The endpoint selection bits should not be
changed while this bit is written.

At this writing there is no known reason to set an endpoint data toggle to 1. This bit is provided for
generality and testing only.

Bit 5: R Set Data Toggle to DATA0

After selecting the desired endpoint by writing the endpoint select bits (IO and EP[2..0]) the
8051 sets R=1 to set the data toggle to DATA0. The endpoint selection bits should not be
changed while this bit is written. For advice on when to reset the data toggle, see Chapter 9.
"EZ-USB FX Endpoint Zero".

Bit 4: IO Select IN or OUT endpoint

The 8051 sets this bit to select an endpoint direction prior to setting its R or S Bit. IO=0 selects
an OUT endpoint, IO=1 selects an IN endpoint.

TOGCTL Data Toggle Control 7FD7†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

Q S R IO 0 EP2 EP1 EP0

R R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-67

EZ-USB FX Technical Reference Manual
Bit 2-0: EP Select endpoint

The 8051 sets these bits to select an endpoint prior to setting its R or S Bit. Valid values are 0-
7 to correspond to bulk endpoints IN0-IN7 and OUT0-OUT7.

Figure 15-102. USB Frame Count High/Low Registers

Every millisecond the host sends a SOF token indicating “Start Of Frame,” along with an 11-bit
incrementing frame count. The EZ-USB FX copies the frame count into these registers at
every SOF. One use of the frame count is to respond to the USB SYNC_FRAME Request
(Chapter 9. "EZ-USB FX Endpoint Zero").

If the USB core detects a missing or garbled SOF, it generates an internal SOF and incre-
ments USBFRAMEL-USBRAMEH.

Figure 15-103. Function Address Register

During the USB enumeration process, the host sends a device a unique 7-bit address, which
the USB core copies into this register. There is normally no reason for the CPU to know its

USBFRAMEL USB Frame Count Low 7FD8

b7 b6 b5 b4 b3 b2 b1 b0

FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0

R R R R R R R R

x x x x x x x x

USBFRAMEH USB Frame Count High 7FD9

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 FC10 FC9 FC8

R R R R R R R R

x x x x x x x x

FNADDR Function Address 7FDB

b7 b6 b5 b4 b3 b2 b1 b0

0 FA6 FA5 FA4 FA3 FA2 FA1 FA0

R R R R R R R R

x x x x x x x x
Page 15-68 EZ-USB FX Technical Reference Manual v1.2

USB device address because the USB Core automatically responds only to its assigned
address.

During ReNumeration™ the USB Core sets register to 0 to allow the EZ-USB FX chip to respond
to the default address 0.

Figure 15-104. USB Endpoint Pairing Register

Bit 7: ISOSEND0 Isochronous Send Zero Length Data Packet

The ISOSEND0 Bit is used when the EZ-USB FX chip receives an isochronous IN token while
the IN FIFO is empty. If ISOSEND0=0 (the default value), the USB core does not respond to
the IN token. If ISOSEND0=1, the USB core sends a zero-length data packet in response to
the IN token. Which action to take depends on the overall system design. The ISOSEND0 Bit
applies to all of the isochronous IN endpoints, IN8BUF through IN15BUF.

Bit 5-3: PRnOUT Pair Bulk OUT Endpoints

Set the endpoint pairing bits (PRxOUT) to “1” to enable double-buffering of the bulk OUT end-
point buffers. With double buffering enabled, the 8051 can operate on one buffer while
another is being transferred over USB. The endpoint busy and interrupt request bits function
identically, so the 8051 code requires no code modification to support double buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair. The
8051 should not use the paired odd endpoint’s IRQ, IEN, VALID bits or the buffer associated
with the odd numbered endpoint.

Bit 2-0: PRnIN Pair Bulk IN Endpoints

Set the endpoint pairing bits (PRxIN) to “1” to enable double-buffering of the bulk IN endpoint
buffers. With double buffering enabled, the 8051 can operate on one buffer while another is
being transferred over USB.

When an endpoint is paired, the 8051 should access only the even-numbered endpoint of the
pair. The 8051 should not use the IRQ, IEN, VALID bits or the buffer associated with the odd
numbered endpoint.

USBPAIR USB Endpoint Pairing 7FDD†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

ISOSEND0 - PR6OUT PR4OUT PR2OUT PR6IN PR4IN PR2IN

R/W R/W R/W R/W R/W R/W R/W R/W

0 x 0 0 0 0 0 0
Chapter 15. EZ-USB FX Registers Page 15-69

EZ-USB FX Technical Reference Manual
Figure 15-105. IN/OUT Valid Bits Register

The 8051 sets VAL=1 for any active endpoints, and VAL=0 for inactive endpoints. These bits
instruct the USB core to return a “no response” if an invalid endpoint is addressed, instead of
a NAK.

The default values of these registers are set to support all endpoints that exist in the default
USB device (see Table 5-1).

IN07VAL Endpoints 0-7 IN Valid Bits 7FDE†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

IN7VAL IN6VAL IN5VAL IN4VAL IN3VAL IN2VAL IN1VAL IN0VAL

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 0 1 0 1 1 1

OUT07VAL Endpoints 0-7 OUT Valid Bits 7FDF†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

OUT7VAL OUT6VAL OUT5VAL OUT4VAL OUT3VAL OUT2VAL OUT1VAL OUT0VAL

R/W R/W R/W R/W R/W R/W R/W R/W

0 1 0 1 0 1 0 1
Page 15-70 EZ-USB FX Technical Reference Manual v1.2

Figure 15-106. Isochronous IN/OUT Endpoint Valid Bits Register

The 8051 sets VAL=1 for active endpoints, and VAL=0 for inactive endpoints. These bits
instruct the USB core to return a “no response” if an invalid endpoint is addressed.

The default values of these registers are set to support all endpoints that exist in the default
USB device (Table 5-1).

15.39 Fast Transfers

Figure 15-107. Fast Transfer Control Register

The USB core provides a fast transfer mode designed for attaching external FIFOs to the isochro-
nous and bulk endpoint buffers. The FASTXFR Register enables the modes for bulk and/or isoch-
ronous transfers, and selects the timing waveforms for the FRD# and FWR# signals.

INISOVAL Isochronous IN Endpoint Valid Bits 7FE0†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

IN15VAL IN14VAL IN13VAL IN12VAL IN11VAL IN10VAL IN9VAL IN8VAL

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 1 1

OUTISOVAL Isochronous OUT Endpoint Valid Bits 7FE1†

Read/write latency applies

b7 b6 b5 b4 b3 b2 b1 b0

OUT15VAL OUT14VAL OUT13VAL OUT12VAL OUT11VAL OUT10VAL OUT9VAL OUT8VAL

R/W R/W R/W R/W R/W R/W R/W R/W

0 0 0 0 0 1 1 1

FASTXFR Fast Transfer Control 7FE2

b7 b6 b5 b4 b3 b2 b1 b0

FISO FBLK RPOL RMOD1 RMOD0 WPOL WMOD1 WMOD0

R R R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-71

EZ-USB FX Technical Reference Manual
Bit 7: FISO Enable Fast ISO Transfers

The 8051 sets FISO=1 to enable fast isochronous transfers for all16 isochronous endpoint
FIFOs. When FISO=0, fast transfers are disabled for all 16 isochronous endpoints.

Bit 6: FBLK Enable Fast BULK Transfers

The 8051 sets FBLK=1 to enable fast bulk transfers using the Autopointer (see Section 15.40.
"SETUP Data") with BULK endpoints. When FBLK=0 fast transfers are disabled for BULK
endpoints.

Bit 5: RPOL FRD# Pulse Polarity

The 8051 sets RPOL=0 for active-low FRD# pulses, and RPOL=1 for active high FRD#
pulses.

Bit 4-3: RMOD FRD# Pulse Mode

These bits select the phasing and width of the FRD# pulse.

Bit 2: WPOL FWR# Pulse Polarity

The 8051 sets WPOL=0 for active-low FWR# pulses, and WPOL=1 for active high FWR#
pulses.

Bit 1-0: WMOD FWR# Pulse Mode

These bits select the phasing and width of the FWR# pulse.
Page 15-72 EZ-USB FX Technical Reference Manual v1.2

Figure 15-108. Auto Pointer Registers

These registers control the EZ-USB FX Autopointer.

15.39.1 AUTOPTRH/L

The 8051 loads a 16-bit address into the AUTOPTRH/L Registers. Subsequent reads or writes to
the AUTODATA Register increment the 16-bit value in these registers. The loaded address must
be in internal EZ-USB FX RAM. The 8051 can read these registers to determine the address of the
next byte to be accessed via the AUTODATA Register.

15.39.2 AUTODATA

8051 data read or written to the AUTODATA Register accesses the memory addressed by the
AUTOPTRH/L Registers, and increments the address after the read or write.

These registers allow FIFO access to the bulk endpoint buffers, as well as being useful for internal
data movement. Chapter 6. "EZ-USB FX Bulk Transfers" and Chapter 10. "EZ-USB FX Isochro-
nous Transfers" explain how to use the Autopointer for fast transfers to and from the EZ-USB FX
endpoint buffers.

AUTOPTRH Auto Pointer Address High 7FE3

b7 b6 b5 b4 b3 b2 b1 b0

A15 A14 A13 A12 A11 A10 A9 A8

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

AUTOPTRL Auto Pointer Address Low 7FE4

b7 b6 b5 b4 b3 b2 b1 b0

A7 A6 A5 A4 A3 A2 A1 A0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

AUTODATA Auto Pointer Data 7FE5

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Chapter 15. EZ-USB FX Registers Page 15-73

EZ-USB FX Technical Reference Manual
15.40 SETUP Data

Figure 15-109. SETUP Data Buffer

This buffer contains the 8 bytes of SETUP packet data from the most recently received CONTROL
transfer.

The data in SETUPBUF is valid when the SUDAVIR (Setup Data Available Interrupt Request) Bit
is set.

15.41 Isochronous FIFO Sizes

* See Table 15-17 for individual start address register addresses.

Figure 15-110. SETUP Data Buffer

SETUPBUF SETUP Data Buffer (8 Bytes) 7FE8-7FEF

b7 b6 b5 b4 b3 b2 b1 b0

D7 D6 D5 D4 D3 D2 D1 D0

R R R R R R R R

x x x x x x x x

OUTnADDR ISO OUT Endpoint Start Address 7FF0-7FF7*

b7 b6 b5 b4 b3 b2 b1 b0

A9 A8 A7 A6 A5 A4 0 0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x

INnADDR ISO IN Endpoint Start Address 7FF8-7FFF*

b7 b6 b5 b4 b3 b2 b1 b0

A9 A8 A7 A6 A5 A4 0 0

R/W R/W R/W R/W R/W R/W R/W R/W

x x x x x x x x
Page 15-74 EZ-USB FX Technical Reference Manual v1.2

EZ-USB FX Isochronous endpoints use a pool of 1,024 double-buffered FIFO bytes. The 1,024
FIFO bytes can be divided between any or all of the isochronous endpoints. The 8051 sets isoch-
ronous endpoint FIFO sizes by writing starting addresses to these registers, starting with address
0. Address bits A3-A0 are internally set to zero, so the minimum FIFO size is 16 bytes.

Table 15-17. Isochronous FIFO Start Address Registers

Address Endpoint Start Address

7FF0 Endpoint 8 OUT Start Address

7FF1 Endpoint 9 OUT Start Address

7FF2 Endpoint 10 OUT Start Address

7FF3 Endpoint 11 OUT Start Address

7FF4 Endpoint 12 OUT Start Address

7FF5 Endpoint 13 OUT Start Address

7FF6 Endpoint 14 OUT Start Address

7FF7 Endpoint 15 OUT Start Address

7FF8 Endpoint 8 IN Start Address

7FF9 Endpoint 9 IN Start Address

7FFA Endpoint 10 IN Start Address

7FFB Endpoint 11 IN Start Address

7FFC Endpoint 12 IN Start Address

7FFD Endpoint 13 IN Start Address

7FFE Endpoint 14 IN Start Address

7FFF Endpoint 15 IN Start Address
Chapter 15. EZ-USB FX Registers Page 15-75

EZ-USB FX Technical Reference Manual
Page 15-76 EZ-USB FX Technical Reference Manual v1.2

Chapter 16. 8051 Introduction

16.1 Introduction

The EZ-USB FX contains an 8051 core that is binary-compatible with the industry standard 8051
instruction set.

Figure 16-1. 8051 Features

This chapter provides an overview of the 8051 core features. The topics are:

8 -b it C P U

O scilla to r

C rysta l

In te rna l B us

R egis te r
R AM

(256 bytes) Seria l Port0 T im er0

Seria l Port1
T im er1

T im er2

Bus C on tro l
In te rrup t
C on tro l

I/O Ports*

* T he E Z -U S B fam ily im p lem ents I/O ports d iffe ren tly than in the s tandard 8051
Chapter 16. 8051 Introduction Page 16-1

EZ-USB FX Technical Reference Manual
• New 8051 Features

• Performance Overview

• Software Compatibility

• 803x/805x Feature Comparison

• 8051/DS80C320 Differences.

16.2 8051 Features

The 8051 core provides the following design features and enhancements to the standard 8051
micro-controller:

• Compatible with industry standard 803x/805x:

- Standard 8051 instruction set

- Two full-duplex serial ports

- Three timers

• High-speed architecture:

- 4 clocks/instruction cycle

- 2.5X average improvement in instruction execution time over the standard 8051

- Wasted bus cycles eliminated

- Dual data pointers

• 256 Bytes internal data RAM

• High-speed external memory interface with 16-bit address bus

• Variable length MOVX to access fast/slow RAM peripherals

• Supports industry standard compilers, assemblers, emulators, and ROM monitors

16.3 Performance Overview

The 8051 core has been designed to offer increased performance by executing instructions in a 4-
clock bus cycle, as opposed to the 12-clock bus cycle in the standard 8051. (See Figure 16-2).
The shortened bus timing improves the instruction execution rate for most instructions by a factor
of three over the standard 8051 architectures.
Page 16-2 EZ-USB FX Technical Reference Manual v1.2

Some instructions require a different number of instruction cycles on the 8051 core than they do on
the standard 8051. In the standard 8051, all instructions except for MUL and DIV take one or two
instruction cycles to complete. In the 8051 core, instructions can take between one and five
instruction cycles to complete. The average speed improvement for the entire instruction set is
approximately 2.5X. Table 16-1 catalogs the speed improvements.

Figure 16-2. 8051/Standard 8051 Timing Comparison

Table 16-1. 8051/Standard 8051 Speed Comparison

Number of Opcodes Speed Improvement

150 3.0X

51 1.5X

43 2.0X

2 2.4X

 Total: 255 Average: 2.5X

Note: Comparison is for 8051 and standard 8051
running at the same clock frequency.

PSEN#

ALE

XTAL1

AD0-AD7

PSEN#

ALE

PORT2

8051 Timing

Standard 8051 Timing

PORT2

single byte single cycle instruction

single byte single cycle instruction

AD0-AD7

4

12
Chapter 16. 8051 Introduction Page 16-3

EZ-USB FX Technical Reference Manual
16.4 Software Compatibility

The 8051 core is object code compatible with the industry standard 8051 micro-controller. That is,
object code compiled with an industry standard 8051 compiler or assembler executes on the 8051
core and is functionally equivalent. However, because the 8051 core uses a different instruction
timing than the standard 8051, existing code with timing loops may require modification.

The “Instruction Set” in Table 16-2 lists the number of instruction cycles required to perform each
instruction on the 8051 core. The 8051 instruction cycle timing and number of instruction cycles
required for each instruction are compatible with the Dallas Semiconductor DS80C320.

16.5 803x/805x Feature Comparison

Table 16-2 provides a feature-by-feature comparison of the 8051 core and several common 803x/
805x configurations.

Table 16-2. Features of 8051 Core & Common 803x/805x Configurations

Feature
Intel Dallas

DS80C320
Anchor

80518031 8051 80C32 80C52

Clocks per instruction cycle 12 12 12 12 4 4

Program / Data Memory - 4 KB ROM - 8 KB ROM - 8 K RAM

Internal RAM 128 bytes 128 bytes 256 bytes 256 bytes 256 bytes 256 bytes

Data Pointers 1 1 1 1 2 2

Serial Ports 1 1 1 1 2 2

16-bit Timers 2 2 3 3 3 3

Interrupt sources (total of int.
and ext.)

5 5 6 6 13 13

Stretch memory cycles no no no no yes yes
Page 16-4 EZ-USB FX Technical Reference Manual v1.2

16.6 8051 Core/DS80C320 Differences

The 8051 core is similar to the DS80C320 in terms of hardware features and instruction cycle tim-
ing. However, there are some important differences between the 8051 core and the DS80C320.

16.6.1 Serial Ports

The 8051 core does not implement serial port framing error detection and does not implement
slave address comparison for multiprocessor communications. Therefore, the 8051 core also does
not implement the following SFRs: SADDR0, SADDR1, SADEN0, and SADEN1.

16.6.2 Timer 2

The 8051 core does not implement Timer 2 downcounting mode or the downcount enable bit
(TMOD2, Bit 0). Also, the 8051 core does not implement Timer 2 output enable (T2OE) bit
(TMOD2, Bit 1). Therefore, the TMOD2 SFR is also not implemented in the 8051 core.

Also, the 8051 core Timer 2 overflow output is active for one clock cycle. In the DS80C320, the
Timer 2 overflow output is a square wave with a 50% duty cycle.

It is possible to float the T2OUT pin by setting OEB.7=0 and PORTBCFG.7=0. This selects the
PORTB (not T2OUT) signal, and turns off its output buffer.

16.6.3 Timed Access Protection

The 8051 core does not implement timed access protection and therefore, does not implement the
TA SFR.

16.6.4 Watchdog Timer

The EZ-USB FX/8051 does not implement a watchdog timer. It also does not implement I/O ports
0-3. Instead, it uses ports A-E.
Chapter 16. 8051 Introduction Page 16-5

EZ-USB FX Technical Reference Manual
Page 16-6 EZ-USB FX Technical Reference Manual v1.2

Chapter 17. 8051 Architectural Overview

17.1 Introduction

This chapter provides a technical overview and description of the 8051 core architecture.

17.1.1 Memory Organization

Memory organization in the 8051 core is similar to that of the industry standard 8051. There are
three distinct memory areas: registers, program memory, and data memory.

17.1.1.1 Registers

Register memory is implemented inside the 8051 core. The 8051 accesses registers in two
regions using direct addressing, providing the fastest available 8051 data access. The two directly
addressable regions are 128 general purpose registers at addresses 00-7F, and 128 bytes of Spe-
cial Function Registers (SFRs) at 80-FF. The SFR address space, which is not fully populated,
contains 8051 control and status registers, plus added EZ-USB FX control and status registers.
Chapter 17. 8051 Architectural Overview Page 17-1

EZ-USB FX Technical Reference Manual
Figure 17-1. Internal RAM Organization

Some examples of direct addressing are:

• MOV A,22H ; load accumulator from register at address 22

• MOV A,IOE ; read the EZ-USB FX PORTE pins (added SFR)

• MOV IOD,A ; write the PORTD Bits (added SFR)

An additional 128 registers overlap the SFRs at addresses 80-FF. The 8051 keeps these sepa-
rate from the SFRs by using a different addressing mode, 8-bit indirect, to access them. For
example, to read the register at location 90(hex):

• MOV R0,#90H ;point to register RAM at 90(hex)

• MOV A,@R0 ;read it using 8-bit indirect addressing

The 8051 uses two registers, R0 and R1, to hold the 8-bit index. This addressing mode may also
access register memory from 0-127, although it is faster and more efficient to use the direct
addressing available in this lower region.

00h

FFh

7Fh
80h

Lower 128
bytes

Upper 128
bytes
(optional)

SFR space

FFh

80h

Lower 128 bytes

00 Bank 0
07h
08h

Bank 10Fh
10h

Bank 2

Bank 3

17h
18h
1Fh
20h

2Fh
30h

7Fh

0007

787F . . .

. . .

.

.Bit-Addressable
Registers

Direct RAM

Direct or indirect addressing

Indirect addressing only

Direct addressing
only

00

01

10

11

Bank
Select
(PSW
bits 4,3)
Page 17-2 EZ-USB FX Technical Reference Manual v1.2

Since the 8051 stack is internally accessed using indirect addressing, it is a good idea to put the
stack in the upper 128 bytes of register memory, which is addressable using indirect addressing
only. This frees the lower 128 register bytes for use by the more efficient direct addressing.

17.1.1.2 Program Memory

The 8051 has separate address spaces for program and data memory. Program memory can only
be read, not written. The read strobe for program memory is PSEN (Program Store Enable). The
8051 generates PSEN strobes for two conditions, instruction fetches and the MOVC (move code
memory into the accumulator) instruction.

17.1.1.3 Data Memory

Data memory occupies a separate address space from program memory. Data memory can be
read or written, using the RD and WR strobes. Up to 64 KB of data memory can be added to the
EZ-USB FX versions that bring out the 8051 address and data bus pins. As the next section
explains, a portion of this external data memory is actually implemented inside the FX chip.

17.1.1.4 EZ-USB FX Program/Data Memory

The EZ-USB FX family contains internal RAM, which in most systems provides all the memory for
a single-chip solution. Therefore, this internal RAM must serve both as 8051 program and data
memory. To accomplish this, the 8051 reads internal RAM using the logical OR of the PSEN and
RD strobes. It is the responsibility of the system designer to ensure that the program and data
memory spaces do not overlap. This is done using linker directives that place the code and data
modules.

It is possible to add external program and data memory to the EZ-USB FX parts that provide the
8051 address and data bus pins. To avoid conflict with the internal combined program/data mem-
ory, the EZ-USB FX logic gates the memory strobes to be inactive when the 8051 accesses inter-
nal memory. These strobes include the RD#, WR#, CS#, and OE# pins. Because of this internal
gating, a 64-KB memory (data and/or program) can be added without requiring external logic to
inhibit access to the bottom 8 KB that are inside the FX part. Note that the PSEN and RD signals
are available on separate pins, so the program and data spaces are not combined as they are
inside the FX part.

The EA (external access) pin allows all external memory to be program memory. When EA is tied
high, the 8051 reads the internal RAM using only the RD strobe—the combining of RD and PSEN
is disabled. With EA=1, the internal RAM becomes data memory only, and program memory starts
at 0000 in external memory. The other effect of tying the EA pin high is that the 8051 powers up
running (not in RESET), ready to run the external code.

17.1.1.5 Accessing Data Memory

The 8051 reads and writes data memory using the MOVX instruction. Either an 8-bit or a 16-bit
index (address pointer) can be used. 8-bit addressing uses either R0 or R1 to supply the lower
address byte, and the MPAGE Register (SFR address 92H) to supply the high address byte. 16-bit
addressing uses the 16-bit data pointer (DPTR) to supply the full address.
Chapter 17. 8051 Architectural Overview Page 17-3

EZ-USB FX Technical Reference Manual
EZ-USB FX registers exist in the upper portion of internal memory. The 8051 accesses them
using the MOVX instruction. A limited set of EZ-USB FX registers are in the SFR address space
to provide fastest possible access.

17.1.2 Instruction Set

All 8051 instructions are binary code compatible and perform the same functions as they do with
the industry standard 8051. The effects of these instructions on bits, flags, and other status func-
tions is identical to the industry standard 8051. However, the timing of the instructions is different,
both in terms of number of clock cycles per instruction cycle and timing within the instruction cycle.

Table 17-2 lists the 8051 instruction set and the number of instruction cycles required to complete
each instruction. Table 17-1 defines the symbols and mnemonics used in Table 17-2.

Table 17-1. Legend for Instruction Set Table

Symbol Function

A Accumulator

Rn Register R7–R0

direct Internal register address

@Ri Internal register pointed to by R0 or R1

rel Two’s complement offset byte

bit Direct bit address

#data 8-bit constant

#data 16 16-bit constant

addr 16 16-bit destination address

addr 11 11-bit destination address
Page 17-4 EZ-USB FX Technical Reference Manual v1.2

Table 17-2. 8051 Instruction Set

Mnemonic Description Byte
Instr.

Cycles
Hex

Code

Arithmetic

ADD A, Rn Add register to A 1 1 28-2F

ADD A, direct Add direct byte to A 2 2 25

ADD A, @Ri Add data memory to A 1 1 26-27

ADDC A, #data Add immediate to A 2 2 24

ADDC A, Rn Add register to A with carry 1 1 38-3F

ADDC A, direct Add direct byte to A with carry 2 2 35

ADDC A, @Ri Add data memory to A with carry 1 1 36-37

ADDC A, #data Add immediate to A with carry 2 2 34

SUBB A, Rn Subtract register from A with borrow 1 1 98-9F

SUBB A, direct Subtract direct byte from A with borrow 2 2 95

SUBB A, @Ri Subtract data memory from A with borrow 1 1 96-97

SUBB A, #data Subtract immediate from A with borrow 2 2 94

INC A increment A 1 1 04

INC Rn Increment register 1 1 08-0F

INC direct Increment direct byte 2 2 05

INC @ Ri Increment data memory 1 1 06-07

DEC A Decrement A 1 1 14

DEC Rn Decrement Register 1 1 18-1F

DEC direct Decrement direct byte 2 2 15

DEC @Ri Decrement data memory 1 1 16-17

INC DPTR Increment data pointer 1 3 A3

MUL AB Multiply A by B 1 5 A4

DIV AB Divide A by B 1 5 84

DA A Decimal adjust A 1 1 D4

Logical

ANL, Rn AND register to A 1 1 58-5F

ANL A, direct AND direct byte to A 2 2 55

ANL A, @Ri AND data memory to A 1 1 56-57

ANL A, #data AND immediate to A 2 2 54

ANL direct, A AND A to direct byte 2 2 52

ANL direct, #data AND immediate data to direct byte 3 3 53

ORL A, Rn OR register to A 1 1 48-4F

ORL A, direct OR direct byte to A 2 2 45

ORL A, @Ri OR data memory to A 1 1 46-47

ORL A, #data OR immediate to A 2 2 44

ORL direct, A OR A to direct byte 2 2 42
Chapter 17. 8051 Architectural Overview Page 17-5

EZ-USB FX Technical Reference Manual
ORL direct, #data OR immediate data to direct byte 3 3 43

XORL A, Rn Exclusive-OR register to A 1 1 68-6F

XORL A, direct Exclusive-OR direct byte to A 2 2 65

XORL A, @Ri Exclusive-OR data memory to A 1 1 66-67

XORL A, #data Exclusive-OR immediate to A 2 2 64

XORL direct, A Exclusive-OR A to direct byte 2 2 62

XORL direct, #data Exclusive-OR immediate data to direct byte 3 3 63

CLR A Clear A 1 1 E4

CPL A Complement A 1 1 F4

SWAP A Swap nibbles of a 1 1 C4

RL A Rotate A left 1 1 23

RLC A Rotate A left through carry 1 1 33

RRA Rotate A right 1 1 03

RRC A Rotate A right through carry 1 1 13

Data Transfer

MOV A, Rn Move register to A 1 1 E8-EF

MOV A, direct Move direct byte to A 2 2 E5

MOV A, @Ri Move data memory to A 1 1 E6-E7

MOV A, #data Move immediate to A 2 2 74

MOV Rn, A Move A to register 1 1 F8-FF

MOV Rn, direct Move direct byte to register 2 2 A8-AF

MOV Rn, #data Move immediate to register 2 2 78-7F

MOV direct, A Move A to direct byte 2 2 F5

MOV direct, Rn Move register to direct byte 2 2 88-8F

MOV direct, direct Move direct byte to direct byte 3 3 85

MOV direct, @Ri Move data memory to direct byte 2 2 86-87

MOV direct, #data Move immediate to direct byte 3 3 75

MOV @Ri, A MOV A to data memory 1 1 F6-F7

MOV @Ri, direct Move direct byte to data memory 2 2 A6-A7

MOV @Ri, #data Move immediate to data memory 2 2 76-77

MOV DPTR, #data Move immediate to data pointer 3 3 90

MOVC A, @A+DPTR Move code byte relative DPTR to A 1 3 93

MOVC A, @A+PC Move code byte relative PC to A 1 3 83

MOVX A, @Ri Move external data (A8) to A 1 2-9* E2-E3

MOVX A, @DPTR Move external data (A16) to A 1 2-9* E0

MOVX @Ri, A Move A to external data (A8) 1 2-9* F2-F3

MOVX @DPTR, A Move A to external data (A16) 1 2-9* F0

PUSH direct Push direct byte onto stack 2 2 C0

Table 17-2. 8051 Instruction Set

Mnemonic Description Byte
Instr.

Cycles
Hex

Code
Page 17-6 EZ-USB FX Technical Reference Manual v1.2

POP direct Pop direct byte from stack 2 2 D0

XCH A, Rn Exchange A and register 1 1 C8-CF

XCH A, direct Exchange A and direct byte 2 2 C5

XCH A, @Ri Exchange A and data memory 1 1 C6-C7

XCHD A, @Ri Exchange A and data memory nibble 1 1 D6-D7

* Number of cycles is user-selectable. See Section 17.1.5. "Stretch Memory Cycles (Wait States)" .

Boolean

CLR C Clear carry 1 1 C3

CLR bit Clear direct bit 2 2 C2

SETB C Set carry 1 1 D3

SETB bit Set direct bit 2 2 D2

CPL C Complement carry 1 1 B3

CPL bit Complement direct bit 2 2 B2

ANL C, bit AND direct bit to carry 2 2 82

ANL C, /bit AND direct bit inverse to carry 2 2 B0

ORL C, bit OR direct bit to carry 2 2 72

ORL C, /bit OR direct bit inverse to carry 2 2 A0

MOV C, bit Move direct bit to carry 2 2 A2

MOV bit, C Move carry to direct bit 2 2 92

Branching

ACALL addr 11 Absolute call to subroutine 2 3 11-F1

LCALL addr 16 Long call to subroutine 3 4 12

RET Return from subroutine 1 4 22

RETI Return from interrupt 1 4 32

AJMP addr 11 Absolute jump unconditional 2 3 01-E1

LJMP addr 16 Long jump unconditional 3 4 02

SJMP rel Short jump (relative address) 2 3 80

JC rel Jump on carry = 1 2 3 40

JNC rel Jump on carry = 0 2 3 50

JB bit, rel Jump on direct bit = 1 3 4 20

JNB bit, rel Jump on direct bit = 0 3 4 30

JBC bit, rel Jump on direct bit = 1 and clear 3 4 10

JMP @ A+DPTR Jump indirect relative DPTR 1 3 73

JZ rel Jump on accumulator = 0 2 3 60

JNZ rel Jump on accumulator /= 0 2 3 70

CJNE A, direct, rel Compare A, direct JNE relative 3 4 B5

CJNE A, #d, rel Compare A, immediate JNE relative 3 4 B4

CJNE Rn, #d, rel Compare reg, immediate JNE relative 3 4 B8-BF

Table 17-2. 8051 Instruction Set

Mnemonic Description Byte
Instr.

Cycles
Hex

Code
Chapter 17. 8051 Architectural Overview Page 17-7

EZ-USB FX Technical Reference Manual
17.1.3 Instruction Timing

Instruction cycles in the 8051 core are 4 clock cycles in length, as opposed to the 12 clock cycles
per instruction cycle in the standard 8051. This translates to a 3X improvement in execution time
for most instructions.

Some instructions require a different number of instruction cycles on the 8051 core than they do
on the standard 8051. In the standard 8051, all instructions except for MUL and DIV take one or
two instruction cycles to complete. In the 8051 core, instructions can take between one and five
instruction cycles to complete.

For example, in the standard 8051, the instructions MOVX A, @DPTR and MOV direct, direct
each take 2 instruction cycles (24 clock cycles) to execute. In the 8051 core, MOVX A, @DPTR
takes two instruction cycles (8 clock cycles) and MOV direct, direct takes three instruction
cycles (12 clock cycles). Both instructions execute faster on the 8051 core than they do on the
standard 8051, but require different numbers of clock cycles.

For timing of real-time events, use the numbers of instruction cycles from Table 17-2 to calculate
the timing of software loops. The bytes column indicates the number of memory accesses (bytes)
needed to execute the instruction. In most cases, the number of bytes is equal to the number of
instruction cycles required to complete the instruction. However, as indicated, there are some
instructions (for example, DIV and MUL) that require a greater number of instruction cycles than
memory accesses.

By default, the 8051 core timer/counters run at 12 clock cycles per increment so that timer-based
events have the same timing as with the standard 8051. The timers can also be configured to run
at 4 clock cycles per increment to take advantage of the higher speed of the 8051 core.

CJNE @ Ri, #d, rel Compare Ind, immediate JNE relative 3 4 B6-B7

DJNZ Rn, rel Decrement register, JNZ relative 2 3 D8-DF

DJNZ direct, rel Decrement direct byte, JNZ relative 3 4 D5

Miscellaneous

NOP No operation 1 1 00

There is an additional reserved opcode (A5) that performs the same function as NOP. All mnemonics are
copyrighted. Intel Corporation 1980.

Table 17-2. 8051 Instruction Set

Mnemonic Description Byte
Instr.

Cycles
Hex

Code
Page 17-8 EZ-USB FX Technical Reference Manual v1.2

17.1.4 CPU Timing

As previously stated, an 8051 core instruction cycle consists of 4 CLKOUT cycles. Each CLKOUT
cycle forms a CPU cycle. Therefore, an instruction cycle consists of 4 CPU cycles: C1, C2, C3,
and C4, as illustrated in Figure 17-2. Various events occur in each CPU cycle, depending on the
type of instruction being executed. The labels C1, C2, C3, and C4 in timing descriptions refer to
the 4 CPU cycles within a particular instruction cycle.

The execution for instruction n is performed during the fetch of instruction n+1. Data writes occur
during fetch of instruction n+2. The level sensitive interrupts are sampled with the rising edge of
CLKOUT at the end of C3.

Figure 17-2. CPU Timing for Single-Cycle Instruction

17.1.5 Stretch Memory Cycles (Wait States)

The stretch memory cycle feature enables application software to adjust the speed of data memory
(not code memory) access. The 8051 core can execute the MOVX instruction in as few as 2
instruction cycles. However, it is sometimes desirable to stretch this value; for example to access
slow memory or slow memory-mapped peripherals such as UARTs or LCDs.

The three LSBs of the Clock Control Register (at SFR location 8Eh) control the stretch value. You
can use stretch values between zero and seven. A stretch value of zero adds zero instruction
cycles, resulting in MOVX instructions executing in two instruction cycles. A stretch value of seven
adds seven instruction cycles, resulting in MOVX instructions executing in nine instruction cycles.
The stretch value can be changed dynamically under program control.

By default, the stretch value resets to one (three cycle MOVX). For full-speed data memory access,
the software must set the stretch value to zero. The stretch value affects only data memory access
(not program memory).

The stretch value affects the width of the read/write strobe and all related timing. Using a higher
stretch value results in a wider read/write strobe, which allows the memory or peripheral more time
to respond.

CLK24

Instruction cycle

CPU cycle

n + 1 n + 2

C1 C2 C3 C4 C1 C2 C3 C4 C1
Chapter 17. 8051 Architectural Overview Page 17-9

EZ-USB FX Technical Reference Manual
Table 17-3 lists the data memory access speeds for stretch values zero through seven. MD2–0
are the three LSBs of the Clock Control Register (CKCON.2–0).

17.1.6 Dual Data Pointers

The 8051core employs dual data pointers to accelerate data memory block moves. The standard
8051 data pointer (DPTR) is a 16-bit value used to address external data RAM or peripherals. The
8051 maintains the standard data pointer as DPTR0 at SFR locations 82h (DPL0) and 83h
(DPH0). It is not necessary to modify existing code to use DPTR0.

The 8051 core adds a second data pointer (DPTR1) at SFR locations 84h (DPL1) and 85h
(DPH1). The SEL Bit in the DPTR Select Register, DPS (SFR 86h), selects the active pointer.
When SEL = 0, instructions that use the DPTR will use DPL0 and DPH0. When SEL = 1, instruc-
tions that use the DPTR will use DPL1 and DPH1. SEL is the bit 0 of SFR location 86h. No other
bits of SFR location 86h are used.

All DPTR-related instructions use the data pointer selected by the SEL Bit. To switch the active
pointer, toggle the SEL Bit. The fastest way to do so is to use the increment instruction (INC DPS).
This requires only one instruction to switch from a source address to a destination address, saving
application code from having to save source and destination addresses when doing a block move.

Using dual data pointers provides significantly increased efficiency when moving large blocks of
data.

Table 17-3. Data Memory Stretch Values

MD2 MD1 MD0
Memory
Cycles

Read/Write
Strobe Width

(Clocks)

Strobe Width
@ 24MHz

Strobe Width
@ 48MHz

0 0 0 2 2 83.3 ns 41.65 ns

0 0 1 3 (default) 4 166.7 ns 83.35 ns

0 1 0 4 8 333.3 ns 166.66 ns

0 1 1 5 12 500 ns 250 ns

1 0 0 6 16 666.7 ns 333.35 ns

1 0 1 7 20 833.3 ns 416.65 ns

1 1 0 8 24 1000 ns 500 ns

1 1 1 9 28 1166.7 ns 583.35 ns
Page 17-10 EZ-USB FX Technical Reference Manual v1.2

The SFR locations related to the dual data pointers are:

82h DPL0 DPTR0 low byte
83h DPH0 DPTR0 high byte
84h DPL1 DPTR1 low byte
85h DPH1 DPTR1 high byte
86h DPS DPTR Select (Bit 0)

17.1.7 Special Function Registers

The Special Function Registers (SFRs) control several of the features of the 8051 and EZ-USB
FX. Most of the 8051 core SFRs are identical to the standard 8051 SFRs. However, there are
additional SFRs that control features that are not available in the standard 8051, plus some EZ-
USB FX features.

Table 17-4 lists the 8051 core SFRs and indicates which SFRs are not included in the standard
8051 SFR space. See Section 4.12. "SFR Addressing" for the EZ-USB FX added SFRs.

In Table 17-5, SFR Bit positions that contain a 0 or a 1 cannot be written to and, when read, always
return the value shown (0 or 1). SFR Bit positions that contain “-” are available but not used. Table
17-5 lists the reset values for the SFRs.

The following SFRs are related to CPU operation and program execution:

81h SP Stack Pointer
D0h PSW Program Status Word ()
E0h ACC Accumulator Register
F0h B B Register

Table 17-6 lists the functions of the bits in the PSW SFR. Detailed descriptions of the remaining
SFRs appear with the associated hardware descriptions in Chapter 4. "EZ-USB FX Input/Output"
of this manual.
Chapter 17. 8051 Architectural Overview Page 17-11

EZ-USB FX Technical Reference Manual
Table 17-4. Special Function Registers

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr

SP 81h

DPL0 82h

DPH0 83h

DPL1(1) 84h

DPH1(1) 85h

DPS(1) 0 0 0 0 0 0 0 SEL 86h

PCON SMOD0 - 1 1 GF1 GF0 STOP IDLE 87h

TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 88h

TMOD GATE C/T M1 M0 GATE C/T M1 M0 89h

TL0 8Ah

TL1 8Bh

TH0 8Ch

TH1 8Dh

CKCON(1) - - T2M T1M T0M MD2 MD1 MD0 8Eh

SPC_FNC(1) 0 0 0 0 0 0 0 WRS 8Fh

EXIF(1) IE5 IE4 I2CINT USBINT 1 0 0 0 91h

MPAGE(1) 92h

SCON0 SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 98h

SBUF0 99h

IE EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 A8h

IP 1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 B8h

SCON1(1) SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 C0h

SBUF1(1) C1h

T2CON TF2 EXF2 RCLK TCLK EXEN2 TR2 C/T2 CP/RL2 C8h

RCAP2L CAh

RCAP2H CBh

TL2 CCh

TH2 CDh

PSW CY AC F0 RS1 RS0 OV F1 P D0h

EICON(1) SMOD1 1 ERESI RESI INT6 0 0 0 D8h

ACC E0H

EIE(1) 1 1 1 EWDI EX5 EX4 EI2C EUSB E8h

B F0h

EIP(1) 1 1 1 PX6 PX5 PX4 PI2C PUSB F8h

(1) Not part of standard 8051 architecture.
Page 17-12 EZ-USB FX Technical Reference Manual v1.2

Table 17-5. Special Function Register Reset Values

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Addr

SP 0 0 0 0 0 1 1 1 81h

DPL0 0 0 0 0 0 0 0 0 82h

DPH0 0 0 0 0 0 0 0 0 83h

DPL1(1) 0 0 0 0 0 0 0 0 84h

DPH1(1) 0 0 0 0 0 0 0 0 85h

DPS(1) 0 0 0 0 0 0 0 0 86h

PCON 0 0 1 1 0 0 0 0 87h

TCON 0 0 0 0 0 0 0 0 88h

TMOD 0 0 0 0 0 0 0 0 89h

TL0 0 0 0 0 0 0 0 0 8Ah

TL1 0 0 0 0 0 0 0 0 8Bh

TH0 0 0 0 0 0 0 0 0 8Ch

TH1 0 0 0 0 0 0 0 0 8Dh

CKCON(1) 0 0 0 0 0 0 0 1 8Eh

SPC_FNC(1) 0 0 0 0 0 0 0 0 8Fh

EXIF(1) 0 0 0 0 1 0 0 0 91h

MPAGE(1) 0 0 0 0 0 0 0 0 92h

SCON0 0 0 0 0 0 0 0 0 98h

SBUF0 0 0 0 0 0 0 0 0 99h

IE 0 0 0 0 0 0 0 0 A8h

IP 1 0 0 0 0 0 0 0 B8h

SCON1(1) 0 0 0 0 0 0 0 0 C0h

SBUF1(1) 0 0 0 0 0 0 0 0 C1h

T2CON 0 0 0 0 0 0 0 0 C8h

RCAP2L 0 0 0 0 0 0 0 0 CAh

RCAP2H 0 0 0 0 0 0 0 0 CBh

TL2 0 0 0 0 0 0 0 0 CCh

TH2 0 0 0 0 0 0 0 0 CDh

PSW 0 0 0 0 0 0 0 0 D0h

EICON(1) 0 1 0 0 0 0 0 0 D8h

ACC 0 0 0 0 0 0 0 0 E0H

EIE(1) 1 1 1 0 0 0 0 0 E8h

B 0 0 0 0 0 0 0 0 F0h

EIP(1) 1 1 1 0 0 0 0 0 F8h

(1) Not part of standard 8051 architecture.
Chapter 17. 8051 Architectural Overview Page 17-13

EZ-USB FX Technical Reference Manual
Table 17-6. PSW Register - SFR D0h

Bit Function

PSW.7 CY - Carry flag. This is the unsigned carry bit. The CY flag is set when an arithmetic operation
results in a carry from bit 7 to bit 8, and cleared otherwise. In other words, it acts as a virtual bit

8. The CY flag is cleared on multiplication and division.

PSW.6 AC - Auxiliary carry flag. Set to 1 when the last arithmetic operation resulted in a carry into (dur-
ing addition) or borrow from (during subtraction) the high order nibble, otherwise cleared to 0 by

all arithmetic operations.

PSW.5 F0 - User flag 0. Bit-addressable, general purpose flag for software control.

PSW.4 RS1 - Register bank select bit 1. used with RS0 to select a register bank in internal RAM.

PSW.3 RS0 - Register bank select bit 0, decoded as:
RS1RS0 Banks Selected

00 Register bank 0, addresses 00h-07h
01 Register bank 1, addresses 08h-0Fh
10 Register bank 2, addresses 10h-17h
11 Register bank 3, addresses 18h-1Fh

PSW.2 OV - Overflow flag. This is the signed carry bit. The OV flag is set when a positive sum exceeds
7fh, or a negative sum (in two’s compliment notation) exceeds 80h. On a multiply, if OV = 1, the

result of the multiply is greater than FFh. On a divide, OV = 1 on a divide by 0.

PSW.1 F1 - User flag 1. Bit-addressable, general purpose flag for software control.

PSW.0 P - Parity flag. Set to 1 when the modulo-2 sum of the 8 bits in the accumulator is 1 (odd parity),
cleared to 0 on even parity.
Page 17-14 EZ-USB FX Technical Reference Manual v1.2

Chapter 18. 8051 Hardware Description

18.1 Introduction

This chapter provides technical data about the 8051 core hardware operation and timing. The top-
ics are:

• Timers/Counters

• Serial Interface

• Interrupts

• 8051 Reset

• Power Saving Modes.

18.2 Timers/Counters

The 8051 core includes three timer/counters (Timer 0, Timer 1, and Timer 2). Each timer/counter
can operate as either a timer with a clock rate based on the CLKOUT pin or as an event counter
clocked by the T0 pin (Timer 0), T1 pin (Timer 1), or the T2 pin (Timer 2).

Each timer/counter consists of a 16-bit register that is accessible to software as two SFRs:

• Timer 0 — TL0 and TH0

• Timer 1 — TL1 and TH1

• Timer 2 — TL2 and TH2.
Chapter 18. 8051 Hardware Description Page 18-1

EZ-USB FX Technical Reference Manual
18.2.1 803x/805x Compatibility

The implementation of the timers/counters is similar to that of the Dallas Semiconductor
DS80C320. Table 18-7 summarizes the differences in timer/counter implementation between the
Intel 8051, the Dallas Semiconductor DS80C320, and the 8051 core.

18.2.2 Timers 0 and 1

Timers 0 and 1 each operate in four modes, as controlled through the TMOD SFR (Table 18-8)
and the TCON SFR (Table 18-9). The four modes are:

• 13-bit timer/counter (mode 0)

• 16-bit timer/counter (mode 1)

• 8-bit counter with auto-reload (mode 2)

• Two 8-bit counters (mode 3, Timer 0 only)

18.2.2.1 Mode 0

Mode 0 operation, illustrated in Figure 18-3, is the same for Timer 0 and Timer 1. In mode 0, the
timer is configured as a 13-bit counter that uses bits 0-4 of TL0 (or TL1) and all 8 bits of TH0 (or
TH1). The timer enable bit (TR0/TR1) in the TCON SFR starts the timer. The C/T Bit selects the
timer/counter clock source, CLKOUT or the T0/T1 pins.

The timer counts transitions from the selected source as long as the GATE Bit is 0, or the GATE
Bit is 1 and the corresponding interrupt pin (INT0# or INT1#) is 1.

When the 13-bit count increments from 1FFFh (all ones), the counter rolls over to all zeros, the
TF0 (or TF1) Bit is set in the TCON SFR, and the T0OUT (or T1OUT) pin goes high for one clock
cycle.

Table 18-7. Timer/Counter Implementation Comparison

Feature Intel 8051 Dallas DS80C320 8051

Number of timers 2 3 3

Timer 0/1 overflow
available as output signals

not implemented not implemented T0OUT, T1OUT
(one CLKOUT pulse)

Timer 2 output enable n/a implemented not directly implemented

Timer 2 downcount enable n/a implemented not implemented

Timer 2 overflow
available as output signal

n/a implemented T2OUT
(one CLKOUT pulse)
Page 18-2 EZ-USB FX Technical Reference Manual v1.2

The upper 3 bits of TL0 (or TL1) are indeterminate in mode 0 and must be masked when the soft-
ware evaluates the register.

Figure 18-3. Timer 0/1 - Modes 0 and 1

18.2.2.2 Mode 1

Mode 1 operation is the same for Timer 0 and Timer 1. In mode 1, the timer is configured as a 16-
bit counter. As illustrated in Figure 18-3, all 8 bits of the LSB Register (TL0 or TL1) are used. The
counter rolls over to all zeros when the count increments from FFFFh. Otherwise, mode 1 opera-
tion is the same as mode 0.

TL0 (or TL1)
0 74

Divide by 12

Divide by 4

CLKOUT

T0 (or T1) pin

TR0 (or TR1)

GATE

INT0# pin
(or INT1#)

70

TF0 (or TF1) INT

TH0 (or TH1)

T0M (or T1M)

Mode 0

Mode 1

0

1 0

1

To Serial Port
(Timer 1 only)

CLK

C/ T
Chapter 18. 8051 Hardware Description Page 18-3

EZ-USB FX Technical Reference Manual
Table 18-8. TMOD Register — SFR 89h

Bit Function

TMOD.7 GATE - Timer 1 gate control. When GATE = 1, Timer 1 will clock only when INT1# = 1 and
TR1 (TCON.6) = 1. When GATE = 0, Timer 1 will clock only when TR1 = 1, regardless of the
state of INT1#.

TMOD.6 C/T - Counter/Timer select. When C/T = 0, Timer 1 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T1M (CKCON.4). When C/T = 1, Timer 1 is clocked by the T1
pin.

TMOD.5 M1 - Timer 1 mode select bit 1.

TMOD.4 M0 - Timer 1 mode select bit 0, decoded as:
M1 M0 Mode
0 0 Mode 0 : 13-bit counter
0 1 Mode 1 : 16-bit counter
1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Timer 1 stopped

TMOD.3 GATE - Timer 0 gate control, When GATE = 1, Timer 0 will clock only when INT0 = 1 and
TR0 (TCON.4) = 1. When GATE = 0, Timer 0 will clock only when TR0 = 1, regardless of the
state of INT0.

TMOD.2 C/T - Counter/Timer select. When C/T = 0, Timer 0 is clocked by CLKOUT/4 or CLKOUT/
12, depending on the state of T0M (CKCON.3). When C/T = 1, Timer 0 is clocked by the T0
pin.

TMOD.1 M1 - Timer 0 mode select bit 1.

TMOD.0 M0 - Timer 0 mode select bit 0, decoded as:
M1 M0 Mode
0 0 Mode 0 : 13-bit counter
0 1 Mode 1 : 16-bit counter
1 0 Mode 2 : 8-bit counter with auto-reload
1 1 Mode 3 : Two 8-bit counters
Page 18-4 EZ-USB FX Technical Reference Manual v1.2

18.2.2.3 Mode 2

Mode 2 operation is the same for Timer 0 and Timer 1. In mode 2, the timer is configured as an 8-
bit counter, with automatic reload of the start value. The LSB Register (TL0 or TL1) is the counter
and the MSB Register (TH0 or TH1) stores the reload value.

As illustrated in Figure 18-4, mode 2 counter control is the same as for mode 0 and mode 1. How-
ever, in mode 2, when TLn increments from FFh, the value stored in THn is reloaded into TLn.

Table 18-9. TCON Register — SRF 88h

Bit Function
TCON.7 TF1 - Timer 1 overflow flag. Set to 1 when the Timer 1 count overflows and cleared when the

processor vectors to the interrupt service routine.
TCON.6 TR1 - Timer 1 run control. Set to 1 to enable counting on Timer 1.
TCON.5 TF0 - Timer 0 overflow flag. Set to 1 when the Timer 0 count overflows and cleared when the

processor vectors to the interrupt service routine.
TCON.4 TR0 - Timer 0 run control. Set to 1 to enable counting on Timer 0.
TCON.3 IE1 - Interrupt 1 edge detect. If external interrupt 1 is configured to be edge-sensitive (IT1 =

1), IE1 is set by hardware when a negative edge is detected on the INT1 pin and is automat-
ically cleared when the CPU vectors to the corresponding interrupt service routine. In this
case, IE1 can also be cleared by software. If external interrupt 1 is configured to be level-
sensitive (IT1 = 0), IE1 is set when the INT1# pin is 0 and cleared when the INT1# pin is 1. In
level-sensitive mode, software cannot write to IE1.

TCON.2 IT1 - Interrupt 1 type select. INT1 is detected on falling edge when IT1 = 1; INT1 is detected
as a low level when IT1 = 0.

TCON.1 IE0 - Interrupt 0 edge detect. If external interrupt 0 is configured to be edge-sensitive (IT0 =
1), IE0 is set by hardware when a negative edge is detected on the INT0 pin and is automat-
ically cleared when the CPU vectors to the corresponding interrupt service routine. In this
case, IE0 can also be cleared by software. If external interrupt 0 is configured to be level-
sensitive (IT0 = 0), IE0 is set when the INT0# pin is 0 and cleared when the INT0# pin is 1. In
level-sensitive mode, software cannot write to IE0.

TCON.0 IT0 - Interrupt 0 type select. INT0 is detected on falling edge when IT0 = 1; INT0 is detected
as a low level when IT0 = 0.
Chapter 18. 8051 Hardware Description Page 18-5

EZ-USB FX Technical Reference Manual
Figure 18-4. Timer 0/1 - Mode 2

18.2.2.4 Mode 3

In mode 3, Timer 0 operates as two 8-bit counters and Timer 1 stops counting and holds its value.

As shown in Figure 18-5, TL0 is configured as an 8-bit counter controlled by the normal Timer 0
control bits. TL0 can either count CLKOUT cycles (divided by 4 or by 12) or high-to-low transitions
on T0, as determined by the C/T Bit. The GATE function can be used to give counter enable con-
trol to the INT0# pin.

TH0 functions as an independent 8-bit counter. However, TH0 can only count CLKOUT cycles
(divided by 4 or by 12). The Timer 1 control and flag bits (TR1 and TF1) are used as the control
and flag bits for TH0.

When Timer 0 is in mode 3, Timer 1 has limited usage because Timer 0 uses the Timer 1 control
bit (TR1) and interrupt flag (TF1). Timer 1 can still be used for baud rate generation and the Timer
1 count values are still available in the TL1 and TH1 Registers.

Control of Timer 1 when Timer 0 is in mode 3 is through the Timer 1 mode bits. To turn Timer 1 on,
set Timer 1 to mode 0, 1, or 2. To turn Timer 1 off, set it to mode 3. The Timer 1 C/T Bit and T1M
Bit are still available to Timer 1. Therefore, Timer 1 can count CLKOUT/4, CLKOUT/12, or high-to-
low transitions on the T1 pin. The Timer 1 GATE function is also available when Timer 0 is in mode
3.

TL0 (or TL1)
0 7

Divide by 12

Divide by 4

T0 (or T1) pin

TR0 (or TR1)

GATE

INT0# pin
(or INT1# pin)

70

TF0 (or TF1)

TH0 (or TH1)

T0M (or T1M)

RELOAD

INT

0

1 0

1

To Serial Port
(Timer 1 only)

CLKOUT

CLK

C/ T
Page 18-6 EZ-USB FX Technical Reference Manual v1.2

Figure 18-5. Timer 0 - Mode 3

18.2.3 Timer Rate Control

The default timer clock scheme for the 8051 timers is 12 CLKOUT cycles per increment, the same
as in the standard 8051. However, in the 8051, the instruction cycle is 4 CLKOUT cycles.

Using the default rate (12 clocks per timer increment) allows existing application code with real-
time dependencies, such as baud rate, to operate properly. However, applications that require fast
timing can set the timers to increment every 4 CLKOUT cycles by setting bits in the Clock Control
Register (CKCON) at SFR location 8Eh. (See Table 18-10).

The CKCON Bits that control the timer clock rates are:

When a CKCON Register Bit is set to 1, the associated counter increments at 4-CLKOUT inter-
vals. When a CKCON Bit is cleared, the associated counter increments at 12-CLKOUT intervals.
The timer controls are independent of each other. The default setting for all three timers is 0 (12-
CLKOUT intervals). These bits have no effect in counter mode.

CKCON Bit Counter/Timer

5 Timer 2

4 Timer 1

3 Timer 0

TL00 7

Divide by 12

Divide by 4

T0 pin

TR0

GATE

INT0# pin 70

TF0

TH0

T0M

INT

TR1

TF1 INT

0

1 0

1

CLKOUT CLK
C/ T
Chapter 18. 8051 Hardware Description Page 18-7

EZ-USB FX Technical Reference Manual
18.2.4 Timer 2

Timer 2 runs only in 16-bit mode and offers several capabilities not available with Timers 0 and 1.
The modes available with Timer 2 are:

• 16-bit timer/counter

• 16-bit timer with capture

• 16-bit auto-reload timer/counter

• Baud rate generator.

The SFRs associated with Timer 2 are:

• T2CON — SFR C8h (Table 18-12)

• RCAP2L — SFR CAh - Used to capture the TL2 value when Timer 2 is configured for cap-
ture mode, or as the LSB of the 16-bit reload value when Timer 2 is configured for auto-
reload mode.

• RCAP2H — SFR CBh - Used to capture the TH2 value when Timer 2 is configured for
capture mode, or as the MSB of the 16-bit reload value when Timer 2 is configured for
auto-reload mode.

• TL2 - SFR CCh — Lower 8 bits of the 16-bit count.

• TH2 - SFR CDh — Upper 8 bits of the 16-bit count.

Table 18-10. CKCON Register — SRF 8Eh

Bit Function

CKCON.7,6 Reserved

CKCON.5 T2M - Timer 2 clock select. When T2M = 0, Timer 2 uses CLKOUT/12 (for compati-
bility with 80C32); when T2M = 1, Timer 2 uses CLKOUT/4. This bit has no effect
when Timer 2 is configured for baud rate generation.

CKCON.4 T1M - Timer 1 clock select. When T1M = 0, Timer 1 uses CLKOUT/12 (for compati-
bility with 80C32); when T1M = 1, Timer 1 uses CLKOUT/4.

CKCON.3 T0M - Timer 0 clock select. When T0M = 0, Timer 0 uses CLKOUT/12 (for compati-
bility with 80C32); when T0M = 1, Timer 0 uses CLKOUT/4.

CKCON.2-0 MD2, MD1, MD0 - Control the number of cycles to be used for external MOVX
instructions.
Page 18-8 EZ-USB FX Technical Reference Manual v1.2

18.2.4.1 Timer 2 Mode Control

Table 18-11 summarizes how the SFR Bits determine the Timer 2 mode.

18.2.5 16-Bit Timer/Counter Mode

Figure 18-6 illustrates how Timer 2 operates in timer/counter mode with the optional capture fea-
ture. The C/T2 Bit determines whether the 16-bit counter counts CLKOUT cycles (divided by 4 or
12), or high-to-low transitions on the T2 pin. The TR2 Bit enables the counter. When the count
increments from FFFFh, the TF2 flag is set, and the T2OUT pin goes high for one CLKOUT cycle.

Table 18-11. Timer 2 Mode Control Summary

RCLK TCLK CP/RL2 TR2 Mode

0 0 1 1 16-bit timer/counter with capture

0 0 0 1 16-bit timer/counter with auto-reload

1 X X 1 Baud rate generator

X 1 X 1 Baud rate generator

X X X 0 Off

X = Don’t care.
Chapter 18. 8051 Hardware Description Page 18-9

EZ-USB FX Technical Reference Manual
18.2.5.1 6-Bit Timer/Counter Mode with Capture

The Timer 2 capture mode (Figure 18-6) is the same as the 16-bit timer/counter mode, with the
addition of the capture registers and control signals.

The CP/RL2 Bit in the T2CON SFR enables the capture feature. When CP/RL2 = 1, a high-to-low
transition on the T2EX pin when EXEN2 = 1 causes the Timer 2 value to be loaded into the cap-
ture registers RCAP2L and RCAP2H.

Table 18-12. T2CON Register — SFR C8h

Bit Function

T2CON.7 TF2 - Timer 2 overflow flag. Hardware will set TF2 when the Timer 2 overflows from FFFFh.
TF2 must be cleared to 0 by the software. TF2 will only be set to a 1 if RCLK and TCLK are
both cleared to 0. Writing a 1 to TF2 forces a Timer 2 interrupt if enabled.

T2CON.6 EXF2 - Timer 2 external flag. Hardware will set EXF2 when a reload or capture is caused by
a high-to-low transition on the T2EX pin, and EXEN2 is set. EXF2 must be cleared to 0 by
the software. Writing a 1 to EXF2 forces a Timer 2 interrupt if enabled.

T2CON.5 RCLK - Receive clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of received data in serial mode 1 or 3. RCLK =1 selects Timer 2 overflow as the
receive clock. RCLK =0 selects Timer 1 overflow as the receive clock.

T2CON.4 TCLK - Transmit clock flag. Determines whether Timer 1 or Timer 2 is used for Serial Port 0
timing of transmit data in serial mode 1 or 3. RCLK =1 selects Timer 2 overflow as the trans-
mit clock. RCLK =0 selects Timer 1 overflow as the transmit clock.

T2CON.3 EXEN2 - Timer 2 external enable. EXEN2 = 1 enables capture or reload to occur as a result
of a high-to-low transition on the T2EX pin, if Timer 2 is not generating baud rates for the
serial port. EXEN2 = 0 causes Timer 2 to ignore all external events on the T2EX pin.

T2CON.2 TR2 - Timer 2 run control flag. TR2 = 1 starts Timer 2. TR2 = 0 stops Timer 2.

T2CON.1 C/T2 - Counter/timer select. C/T2 = 0 selects a timer function for Timer 2. C/T2 = 1 selects a
counter of falling transitions on the T2 pin. When used as a timer, Timer 2 runs at 4 clocks
per tick or 12 clocks per tick as programmed by CKCON.5, in all modes except baud rate
generator mode. When used in baud rate generator mode, Timer 2 runs at 2 clocks per tick,
independent of the state of CKCON.5.

T2CON.0 CP/RL2 - Capture/reload flag. When CP/RL2 = 1, Timer 2 captures occur on high-to-low
transitions of the T2EX pin, if EXEN2 = 1. When CP/RL2 = 0, auto-reloads occur when Timer
2 overflows or when high-to-low transitions occur on the T2EX pin, if EXEN2 = 1. If either
RCLK or TCLK is set to 1, CP/RL2 will not function and Timer 2 will operate in auto-reload
mode following each overflow.
Page 18-10 EZ-USB FX Technical Reference Manual v1.2

Figure 18-6. Timer 2 - Timer/Counter with Capture

18.2.6 16-Bit Timer/Counter Mode with Auto-Reload

When CP/RL2 = 0, Timer 2 is configured for the auto-reload mode illustrated in Figure 18-7 Control
of counter input is the same as for the other 16-bit counter modes. When the count increments
from FFFFh, Timer 2 sets the TF2 flag and the starting value is reloaded into TL2 and TH2. The
software must preload the starting value into the RCAP2L and RCAP2H Registers.

When Timer 2 is in auto-reload mode, a reload can be forced by a high-to-low transition on the
T2EX pin, if enabled by EXEN2 = 1.

0 7

Divide by 12

Divide by 4

CLKOUT

T2 pin

TR2

CLK

70

EXF2

T2M

INT

RCAP2L

TL2 TH2

RCAP2H

8 15

8 15

EXEN2

T2EX pin

CAPTURE
TF2

0

1 0

1

C/ T2
Chapter 18. 8051 Hardware Description Page 18-11

EZ-USB FX Technical Reference Manual
Figure 18-7. Timer 2 - Timer/Counter with Auto Reload

18.2.7 Baud Rate Generator Mode

Setting either RCLK or TCLK to 1 configures Timer 2 to generate baud rates for Serial Port 0 in
serial mode 1 or 3. In baud rate generator mode, Timer 2 functions in auto-reload mode. However,
instead of setting the TF2 flag, the counter overflow is used to generate a shift clock for the serial
port function. As in normal auto-reload mode, the overflow also causes the pre-loaded start value
in the RCAP2L and RCAP2H Registers to be reloaded into the TL2 and TH2 Registers.

When either TCLK = 1 or RCLK = 1, Timer 2 is forced into auto-reload operation, regardless of the
state of the CP/RL2 Bit.

When operating as a baud rate generator, Timer 2 does not set the TF2 Bit. In this mode, a Timer
2 interrupt can only be generated by a high-to-low transition on the T2EX pin setting the EXF2 Bit,
and only if enabled by EXEN2 = 1.

The counter time base in baud rate generator mode is CLKOUT/2. To use an external clock
source, set C/T2 to 1 and apply the desired clock source to the T2 pin.

0 7

Divide by 12

Divide by 4

CLKOUT

T2 pin

TR2

CLK

70

EXF2

T2M

INT

RCAP2L

TL2 TH2

RCAP2H

8 15

8 15

EXEN2

T2EX pin

TF2

0

1 0

1

C/ T2
Page 18-12 EZ-USB FX Technical Reference Manual v1.2

Figure 18-8. Timer 2 - Baud Rate Generator Mode

18.3 Serial Interface

The 8051 core provides two serial ports. Serial Port 0 is identical in operation to the standard 8051
serial port. Serial Port 1 is identical to Serial Port 0, except that Timer 2 cannot be used as the
baud rate generator for Serial Port 1.

Each serial port can operate in synchronous or asynchronous mode. In synchronous mode, 8051
generates the serial clock and the serial port operates in half-duplex mode. In asynchronous
mode, the serial port operates in full-duplex mode. In all modes, 8051 buffers received data in a
holding register, enabling the UART to receive an incoming byte before the software has read the
previous value.

Each serial port can operate in one of four modes, as outlined in Table 18-13.

0 7

Divide
by 2

T2 pin

TR2

70

EXF2 TIMER 2 INTERRUPT

RCAP2L

TL2 TH2

RCAP2H

8 15

8 15EXEN2

T2EX pin

Divide
by 2

TIMER 1 OVERFLOW

Divide
by 16

Divide
by 16

RX
CLOCK

TX
CLOCK

SMOD1

RCLK

TCLK

0

0

0

0

1

1

1

1

CLK

CLKOUT
C/ T2
Chapter 18. 8051 Hardware Description Page 18-13

EZ-USB FX Technical Reference Manual
The SFRs associated with the serial ports are:

• SCON0 - SFR 98h — Serial Port 0 control (Table 18-14).

• SBUF0 - SFR 99h — Serial Port 0 buffer.

• SCON1 - SFR C0h — Serial Port 1 control (Table 18-15).

• SBUF1 - SFR C1h — Serial Port 1 buffer.

18.3.1 803x/805x Compatibility

The implementation of the serial interface is similar to that of the Intel 8052.

18.3.2 Mode 0

Serial mode 0 provides synchronous, half-duplex serial communication. For Serial Port 0, serial
data output occurs on the RXD0OUT pin, serial data is received on the RXD0 pin, and the TXD0
pin provides the shift clock for both transmit and receive. For Serial Port 1, the corresponding pins
are RXD1OUT, RXD1, and TXD1.

The serial mode 0 baud rate is either CLKOUT/12 or CLKOUT/4, depending on the state of the
SM2_0 Bit (or SM2_1 for Serial Port 1). When SM2_0 = 0, the baud rate is CLKOUT/12, when
SM2_0 = 1, the baud rate is CLKOUT/4.

Mode 0 operation is identical to the standard 8051. Data transmission begins when an instruction
writes to the SBUF0 (or SBUF1) SFR. The UART shifts the data, LSB first, at the selected baud
rate, until the 8-bit value has been shifted out.

Mode 0 data reception begins when the REN_0 (or REN_1) Bit is set and the RI_0 (or RI_1) Bit is
cleared in the corresponding SCON SFR. The shift clock is activated and the UART shifts data in
on each rising edge of the shift clock until 8 bits have been received. One machine cycle after the
8th bit is shifted in, the RI_0 (or RI_1) Bit is set and reception stops until the software clears the RI
Bit.

Table 18-13. Serial Port Modes

Mode
Sync/
Async

Baud Clock Data Bits Start/Stop 9th Bit Function

0 Sync CLKOUT/4 or CLKOUT/12 8 None None

1 Async Timer 1 or Timer 21 8 1 start, 1 stop None

2 Async CLKOUT/32 or CLKOUT/64 9 1 start, 1 stop 0, 1, parity

3 Async Timer 1 or Timer 21 9 1 start, 1 stop 0, 1, parity

(1) Timer 2 available for Serial Port 0 only.
Page 18-14 EZ-USB FX Technical Reference Manual v1.2

Figure 18-9 through Figure 18-12 illustrate Serial Port Mode 0 transmit and receive timing for both
low-speed (CLKOUT/12) and high-speed (CLKOUT/4) operation.

Table 18-14. SCON0 Register — SFR 98h

Bit Function

SCON0.7 SM0_0 - Serial Port 0 mode bit 0.

SCON0.6 SM1_0 - Serial Port 0 mode bit 1, decoded as:

SM0_0 SM1_0 Mode

0 0 0

0 1 1

1 0 2

1 1 3

SCON0.5 SM2_0 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the multi-
processor communication feature. If SM2_0 = 1 in mode 2 or 3, then RI_0 will not be activated
if the received 9th bit is 0.

If SM2_0=1 in mode 1, then RI_0 will only be activated if a valid stop is received. In mode 0,
SM2_0 establishes the baud rate: when SM2_0=0, the baud rate is CLKOUT/12; when
SM2_0=1, the baud rate is CLKOUT/4.

SCON0.4 REN_0 - Receive enable. When REN_0=1, reception is enabled.

SCON0.3 TB8_0 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON0.2 RB8_0 - In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. In mode 1, RB8_0
indicates the state of the received stop bit. In mode 0, RB8_0 is not used.

SCON0.1 TI_0 - Transmit interrupt flag. indicates that the transmit data word has been shifted out. In
mode 0, TI_0 is set at the end of the 8th data bit. In all other modes, TI_0 is set when the stop
bit is placed on the TXD0 pin. TI_0 must be cleared by firmware.

SCON0.0 RI_0 - Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_0 is set at the end of the 8th data bit. In mode 1, RI_0 is set after the last sample of the
incoming stop bit, subject to the state of SM2_0. In modes 2 and 3, RI_0 is set at the end of the
last sample of RB8_0. RI_0 must be cleared by firmware.
Chapter 18. 8051 Hardware Description Page 18-15

EZ-USB FX Technical Reference Manual
Table 18-15. SCON1 Register — SFR C0h

Bit Function

SCON1.7 SM0_1 - Serial Port 1 mode bit 0.

SCON1.6 SM1_1 - Serial Port 1 mode bit 1, decoded as:

SM0_1 SM1_1 Mode

0 0 0

0 1 1

1 0 2

1 1 3

SCON1.5 SM2_1 - Multiprocessor communication enable. In modes 2 and 3, this bit enables the
multiprocessor communication feature. If SM2_1 = 1 in mode 2 or 3, then RI_1 will not be
activated if the received 9th bit is 0.

If SM2_1=1 in mode 1, then RI_1 will only be activated if a valid stop is received. In mode
0, SM2_1 establishes the baud rate: when SM2_1=0, the baud rate is CLKOUT/12; when
SM2_1=1, the baud rate is CLKOUT/4.

SCON1.4 REN_1 - Receive enable. When REN_1=1, reception is enabled.

SCON1.3 TB8_1 - Defines the state of the 9th data bit transmitted in modes 2 and 3.

SCON1.2 RB8_1 - In modes 2 and 3, RB8_0 indicates the state of the 9th bit received. In mode 1,
RB8_1 indicates the state of the received stop bit. In mode 0, RB8_1 is not used.

SCON1.1 TI_1 - Transmit interrupt flag. indicates that the transmit data word has been shifted out. In
mode 0, TI_1 is set at the end of the 8th data bit. In all other modes, TI_1 is set when the
stop bit is placed on the TXD0 pin. TI_1 must be cleared by the software.

SCON1.0 RI_1 - Receive interrupt flag. Indicates that serial data word has been received. In mode 0,
RI_1 is set at the end of the 8th data bit. In mode 1, RI_1 is set after the last sample of the
incoming stop bit, subject to the state of SM2_1. In modes 2 and 3, RI_1 is set at the end
of the last sample of RB8_1. RI_1 must be cleared by the software.
Page 18-16 EZ-USB FX Technical Reference Manual v1.2

Figure 18-9. Serial Port Mode 0 Receive Timing - Low Speed Operation

Figure 18-10. Serial Port Mode 0 Receive Timing - High Speed Operation

CLKOUT

D 0 D 1 D 2 D 3 D 4 D 5 D 6 D 7

RI

TXD0

RXD0

RXD0OUT

PSEN

TI

D0 D1 D2 D3 D4 D5 D6 D7

CLKOUT

RI

TXD0

RXD0

RXD0OUT

PSEN

TI
Chapter 18. 8051 Hardware Description Page 18-17

EZ-USB FX Technical Reference Manual
Figure 18-11. Serial Port Mode 0 Transmit Timing - Low Speed Operation

Figure 18-12. Serial Port Mode 0 Transmit Timing - High Speed Operation

CLKOUT

RI

TXD0

RXD0

RXD0OUT

PSEN

TI

D0 D1 D2 D3 D4 D5 D6 D7

CLKOUT

RI

TXD0

RXD0

RXD0OUT

PSEN

TI

D0 D1 D2 D3 D4 D5 D6 D7
Page 18-18 EZ-USB FX Technical Reference Manual v1.2

18.3.3 Mode 1

Mode 1 provides standard asynchronous, full-duplex communication, using a total of 10 bits: 1
start bit, 8 data bits, and 1 stop bit. For receive operations, the stop bit is stored in RB8_0 (or
RB8_1). Data bits are received and transmitted LSB first.

18.3.3.1 Mode 1 Baud Rate

The mode 1 baud rate is a function of timer overflow. Serial Port 0 can use either Timer 1 or Timer
2 to generate baud rates. Serial Port 1 can only use Timer 1. The two serial ports can run at the
same baud rate if they both use Timer 1, or different baud rates if Serial Port 0 uses Timer 2 and
Serial Port 1 uses Timer 1.

Each time the timer increments from its maximum count (FFh for Timer 1 or FFFFh for Timer 2), a
clock is sent to the baud rate circuit. The clock is then divided by 16 to generate the baud rate.

When using Timer 1, the SMOD0 (or SMOD1) Bit selects whether or not to divide the Timer 1 roll-
over rate by 2. Therefore, when using Timer 1, the baud rate is determined by the equation:

SMOD0 is SFR Bit PCON.7; SMOD1 is SFR Bit EICON.7.

When using Timer 2, the baud rate is determined by the equation:

To use Timer 1 as the baud rate generator, it is best to use Timer 1 mode 2 (8-bit counter with auto-
reload), although any counter mode can be used. The Timer 1 reload is stored in the TH1 Register,
which makes the complete formula for Timer 1:

The 12 in the denominator in the above equation can be changed to 4 by setting the T1M Bit in the
CKCON SFR. To derive the required TH1 value from a known baud rate (when TM1 = 0), use the
equation:

x Timer 1 OverflowBaud Rate =
32

2
SMODx

Timer 2 Overflow
Baud Rate =

16

xBaud Rate =
32

2
SMODx

12 x (256 - TH1)

CLKOUT

x
TH1 =

2
SMODx

CLKOUT

384 x Baud Rate
256 -
Chapter 18. 8051 Hardware Description Page 18-19

EZ-USB FX Technical Reference Manual
You can also achieve very low serial port baud rates from Timer 1 by enabling the Timer 1 inter-
rupt, configuring Timer 1 to mode 1, and using the Timer 1 interrupt to initiate a 16-bit software
reload. Table 18-16 lists sample reload values for a variety of common serial port baud rates.

More accurate baud rates are achieved by using Timer 2 as the baud rate generator (next sec-
tion).

To use Timer 2 as the baud rate generator, configure Timer 2 in auto-reload mode and set the
TCLK and/or RCLK Bits in the T2CON SFR. TCLK selects Timer 2 as the baud rate generator for
the transmitter; RCLK selects Timer 2 as the baud rate generator for the receiver. The 16-bit
reload value for Timer 2 is stored in the RCAP2L and RCA2H SFRs, which makes the equation for
the Timer 2 baud rate:

where RCAP2H,RCAP2L is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned
number.

The 32 in the denominator is the result of CLKOUT being divided by 2 and the Timer 2 overflow
being divided by 16. Setting TCLK or RCLK to 1 automatically causes CLKOUT to be divided by 2,
as shown in Figure 18-8, instead of the 4 or 12 as determined by the T2M Bit in the CKCON SFR.

To derive the required RCAP2H and RCAP2L values from a known baud rate, use the equation:

Table 18-16. Timer 1 Reload Values for Common Serial Port Mode 1 Baud Rates

Nominal Rate
24 MHz
Divisor

Reload Value
Actual
Rate

Error

57600 6 FA 62500 8.5%

38400 10 F6 37500 -2.3%

28800 13 F3 28846 +0.16%

19200 20 EC 18750 -2.3%

9600 39 D9 9615 +0.16%

4800 78 B2 4807 +0.15%

2400 156 64 2403 +.13%

Settings: SMOD =1, C/T=0, Timer1 mode=2, TIM=1
Note: Using rates that are off by 2.3% or more will not work in all systems.

Baud Rate =
32 x (65536 - RCAP2H,RCAP2L)

CLKOUT
Page 18-20 EZ-USB FX Technical Reference Manual v1.2

When either RCLK or TCLK is set, the TF2 flag is not set on a Timer 2 roll over, and the T2EX
reload trigger is disabled.

18.3.3.2 Mode 1 Transmit

Figure 18-13 illustrates the mode 1 transmit timing. In mode 1, the UART begins transmitting after
the first roll over of the divide-by-16 counter after the software writes to the SBUF0 (or SBUF1)
Register. The UART transmits data on the TXD0 (or TXD1) pin in the following order: start bit, 8
data bits (LSB first), stop bit. The TI_0 (or TI_1) Bit is set 2 CLKOUT cycles after the stop bit is
transmitted.

18.3.4 Mode 1 Receive

Figure 18-14 illustrates the mode 1 receive timing. Reception begins at the falling edge of a start
bit received on the RXD0 (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXD0 (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge
of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter roll over to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-
sion of 3 consecutive samples in the middle of each bit time. This is especially true for the start bit.
If the falling edge on the RXD0 (or RXD1) pin is not verified by a majority decision of 3 consecutive
samples (low), then the serial port stops reception and waits for another falling edge on the RXD0
(or RXD1) pin.

Table 18-17. Timer 2 Reload Values for Common Serial Port Mode 1 Baud Rates

Nominal Rate C/T2 Divisor Reload Val Actual Rate Error

57600 0 13 F3 57692.31 0.16%

38400 0 20 EC 37500 -2.34%

28800 0 26 E6 28846.15 0.16%

19200 0 39 D9 19230.77 0.16%

9600 0 78 B2 9615.385 0.16%

4800 0 156 64 4807.692 0.16%

2400 0 312 FEC8 2403.846 0.16%

Note: using rates that are off by 2.3% or more will not work in all systems.

RCAP2H,RCAP2L = CLKOUT

32 x Baud Rate
65536 -
Chapter 18. 8051 Hardware Description Page 18-21

EZ-USB FX Technical Reference Manual
At the middle of the stop bit time, the serial port checks for the following conditions:

• RI_0 (or RI_1) = 0, and

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUF0 (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set.

After the middle of the stop bit time, the serial port waits for another high-to-low transition on the
(RXD0 or RXD1) pin.

Mode 1 operation is identical to that of the standard 8051 when Timers 1 and 2 use CLKOUT/12
(the default).

Figure 18-13. Serial Port 0 Mode 1 Transmit Timing

Write to
SBUF0

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART
Page 18-22 EZ-USB FX Technical Reference Manual v1.2

Figure 18-14. Serial Port 0 Mode 1 Receive Timing

18.3.5 Mode 2

Mode 2 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first. For transmission, the 9th bit is determined by the value in TB8_0 (or TB8_1). To use the 9th
bit as a parity bit, move the value of the P Bit (SFR PSW.0) to TB8_0 (or TB8_1).

The mode 2 baud rate is either CLKOUT/32 or CLKOUT/64, as determined by the SMOD0 (or
SMOD1) Bit. The formula for the mode 2 baud rate is:

Mode 2 operation is identical to the standard 8051.

18.3.5.1 Mode 2 Transmit

Figure 18-15 illustrates the mode 2 transmit timing. Transmission begins after the first roll over of
the divide-by-16 counter following a software write to SBUF0 (or SBUF1). The UART shifts data
out on the TXD0 (or TXD1) pin in the following order: start bit, data bits (LSB first), 9th bit, stop bit.
The TI_0 (or TI_1) Bit is set when the stop bit is placed on the TXD0 (or TXD1) pin.

RI_0

TXD0

RXD0

RXD0OUT
SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Bit detector
sampling

x
Baud Rate =

2
SMODx

CLKOUT

64
Chapter 18. 8051 Hardware Description Page 18-23

EZ-USB FX Technical Reference Manual
18.3.5.2 Mode 2 Receive

Figure 18-16 illustrates the mode 2 receive timing. Reception begins at the falling edge of a start
bit received on the RXD0 (or RXD1) pin, when enabled by the REN_0 (or REN_1) Bit. For this pur-
pose, the RXD0 (or RXD1) pin is sampled 16 times per bit for any baud rate. When a falling edge
of a start bit is detected, the divide-by-16 counter used to generate the receive clock is reset to
align the counter roll over to the bit boundaries.

For noise rejection, the serial port establishes the content of each received bit by a majority deci-
sion of 3 consecutive samples in the middle of each bit time. This is especially true for the start bit.
If the falling edge on the RXD0 (or RXD1) pin is not verified by a majority decision of 3 consecutive
samples (low), then the serial port stops reception and waits for another falling edge on the RXD0
(or RXD1) pin.

At the middle of the stop bit time, the serial port checks for the following conditions:

• RI_0 (or RI_1) = 0, and

• If SM2_0 (or SM2_1) = 1, the state of the stop bit is 1.
(If SM2_0 (or SM2_1) = 0, the state of the stop bit doesn’t matter.)

If the above conditions are met, the serial port then writes the received byte to the SBUF0 (or
SBUF1) Register, loads the stop bit into RB8_0 (or RB8_1), and sets the RI_0 (or RI_1) Bit. If the
above conditions are not met, the received data is lost, the SBUF Register and RB8 Bit are not
loaded, and the RI Bit is not set. After the middle of the stop bit time, the serial port waits for
another high-to-low transition on the RXD0 (or RXD1) pin.

Figure 18-15. Serial Port 0 Mode 2 Transmit Timing

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Write to
SBUF0

TB8
Page 18-24 EZ-USB FX Technical Reference Manual v1.2

Figure 18-16. Serial Port 0 Mode 2 Receive Timing

18.3.6 Mode 3

Mode 3 provides asynchronous, full-duplex communication, using a total of 11 bits: 1 start bit, 8
data bits, a programmable 9th bit, and 1 stop bit. The data bits are transmitted and received LSB
first.

The mode 3 transmit and operations are identical to mode 2. The mode 3 baud rate generation is
identical to mode 1. That is, mode 3 is a combination of mode 2 protocol and mode 1 baud rate.
Figure 18-17 illustrates the mode 3 transmit timing.

Mode 3 operation is identical to that of the standard 8051 when Timers 1 and 2 use CLKOUT/12
(the default).

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

RX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART RB8

Bit detector
sampling
Chapter 18. 8051 Hardware Description Page 18-25

EZ-USB FX Technical Reference Manual
Figure 18-17. Serial Port 0 Mode 3 Transmit Timing

Figure 18-18. Serial Port 0 Mode 3 Receive Timing

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

TX CLK

TI_0

D0 D1 D2 D3 D4 D5 D6 D7 STOPSTART

Write to
SBUF0

TB8

RI_0

TXD0

RXD0

RXD0OUT

SHIFT

RX CLK

TI_0

D0 D1 D2 D 3 D4 D5 D 6 D 7 STO PS TA RT RB 8

Bit detector
sampling
Page 18-26 EZ-USB FX Technical Reference Manual v1.2

18.3.7 Multiprocessor Communications

The multiprocessor communication feature is enabled in modes 2 and 3 when the SM2 Bit is set in
the SCON SFR for a serial port (SM2_0 for Serial Port 0, SM2_1 for Serial Port 1). In multiproces-
sor communication mode, the 9th bit received is stored in RB8_0 (or RB8_1) and, after the stop bit
is received, the serial port interrupt is activated only if RB8_0 (or RB8_1) = 1.

A typical use for the multiprocessor communication feature is when a master wants to send a block
of data to one of several slaves. The master first transmits an address byte that identifies the target
slave. When transmitting an address byte, the master sets the 9th bit to 1; for data bytes, the 9th
bit is 0.

With SM2_0 (or SM2_1) = 1, no slave will be interrupted by a data byte. However, an address byte
interrupts all slaves so that each slave can examine the received address byte to determine
whether that slave is being addressed. Address decoding must be done by software during the
interrupt service routine. The addressed slave clears its SM2_0 (or SM2_1) Bit and prepares to
receive the data bytes. The slaves that are not being addressed leave the SM2_0 (or SM2_1) Bit
set and ignore the incoming data bytes.

18.3.8 Interrupt SFRs

The following SFRs are associated with interrupt control:

• IE - SFR A8h (Table 18-18)

• IP - SFR B8h (Table 18-19)

• EXIF - SFR 91h (Table 18-20)

• EICON - SFR D8h (Table 18-21)

• EIE - SFR E8h (Table 18-22)

• EIP - SFR F8h (Table 18-23).

The IE and IP SFRs provide interrupt enable and priority control for the standard interrupt unit, as
with the standard 8051. Additionally, these SFRs provide control bits for the Serial Port 1 interrupt.
These bits (ES1 and PS1) are available only when the extended interrupt unit is implemented
(ext_intr=1). Otherwise, they are read as 0.

Bits ES0, ES1, ET2, PS0, PS1, and PT2 are present, but not used, when the corresponding mod-
ule is not implemented.

The EXIF, EICON, EIE and EIP Registers provide flags, enable control, and priority control for the
optional extended interrupt unit.
Chapter 18. 8051 Hardware Description Page 18-27

EZ-USB FX Technical Reference Manual
Table 18-18. IE Register — SFR A8h

Bit Function

IE.7 EA - Global interrupt enable. Controls masking of all interrupts except USB wakeup
(resume). EA = 0 disables all interrupts except USB wakeup. When EA = 1, interrupts are
enabled or masked by their individual enable bits.

IE.6 ES1 - Enable Serial Port 1 interrupt. ES1 = 0 disables Serial port 1 interrupts (TI_1 and
RI_1). ES1 = 1 enables interrupts generated by the TI_1 or TI_1 flag.

IE.5 ET2 - Enable Timer 2 interrupt. ET2 = 0 disables Timer 2 interrupt (TF2). ET2=1 enables
interrupts generated by the TF2 or EXF2 flag.

IE.4 ES0 - Enable Serial Port 0 interrupt. ES0 = 0 disables Serial Port 0 interrupts (TI_0 and
RI_0). ES0=1 enables interrupts generated by the TI_0 or RI_0 flag.

IE.3 ET1 - Enable Timer 1 interrupt. ET1 = 0 disables Timer 1 interrupt (TF1). ET1=1 enables
interrupts generated by the TF1 flag.

IE.2 EX1 - Enable external interrupt 1. EX1 = 0 disables external interrupt 1 (INT1). EX1=1
enables interrupts generated by the INT1# pin.

IE.1 ET0 - Enable Timer 0 interrupt. ET0 = 0 disables Timer 0 interrupt (TF0). ET0=1 enables
interrupts generated by the TF0 flag.

IE.0 EX0 - Enable external interrupt 0. EX0 = 0 disables external interrupt 0 (INT0). EX0=1
enables interrupts generated by the INT0# pin.

Table 18-19. IP Register — SFR B8h

Bit Function

IP.7 Reserved. Read as 1.

IP.6 PS1 - Serial Port 1 interrupt priority control. PS1=0 sets Serial Port 1 interrupt
(TI_1 or RI_1) to low priority. PS1=1 sets Serial port 1 interrupt to high priority.

IP.5 PT2 - Timer 2 interrupt priority control. PT2=0 sets Timer 2 interrupt (TF2) to low
priority. PT2=1 sets Timer 2 interrupt to high priority.

IP.4 PS0 - Serial Port 0 interrupt priority control. PS0=0 sets Serial Port 0 interrupt
(TI_0 or RI_0) to low priority. PS0=1 sets Serial Port 0 interrupt to high priority.

IP.3 PT2 - Timer 1 interrupt priority control. PT1 = 0 sets Timer 1 interrupt (TF1) to low
priority. PT1=1 sets Timer 1 interrupt to high priority.

IP.2 PX1 - External interrupt 1 priority control. PX 1= 0 sets external interrupt 1 (INT1)
to low priority. PT1 = 1 sets external interrupt 1 to high priority.

IP.1 PT0 - Timer 0 interrupt priority control. PT0 = 0 sets Timer 0 interrupt (TF0) to low
priority. PT0=1 sets Timer 0 interrupt to high priority.

IP.0 PX0 - External interrupt 0 priority control. PX0 = 0 sets external interrupt 0 (INT0)
to low priority. PX0=1 sets external interrupt 0 to high priority.
Page 18-28 EZ-USB FX Technical Reference Manual v1.2

Table 18-20. EXIF Register — SFR 91h

Bit Function

EXIF.7 IE5 - External interrupt 5 flag. IE 5= 1 indicates a falling edge was detected at
the INT5# pin. IE5 must be cleared by software. Setting IE5 in software gen-
erates an interrupt, if enabled.

EXIF.6 IE4 - External interrupt 4 flag. IE4 indicates a rising edge was detected at the
INT4 pin. IE4 must be cleared by software. Setting IE4 in software generates
an interrupt, if enabled.

EXIF.5 I2CINT - External interrupt 3 flag. The “INT3” interrupt is internally connected
to the EZ-USB FX I2C controller and renamed “I2CINT”. I2CINT = 1 indicates
an I 2C interrupt. I2CINT must be cleared by software. Setting I2CINT in soft-
ware generates an interrupt, if enabled.

EXIF.4 USBINT - External interrupt 2 flag. The “INT2” interrupt is internally con-
nected to the EZ-USB FX interrupt and renamed “USBINT”. USBINT = 1 indi-
cates an USB interrupt. USBINT must be cleared by software. Setting
USBINT in software generates an interrupt, if enabled.

EXIF.3 Reserved. Read as 1.

EXIF.2-0 Reserved. Read as 0.

Table 18-21. EICON Register — SFR D8h

Bit Function

EICON.7 SMOD1 - Serial Port 1 baud rate doubler enable. When SMOD1 = 1 the
baud rate for Serial Port is doubled.

EICON.6 Reserved. Read as 1.

EICON.5 ERESI - Enable resume interrupt. ERESI = 0 disables resume interrupt
(RESI). ERESI = 1 enables interrupts generated by the resume event.

EICON.4 RESI - Wakeup interrupt flag. EICON.4 = 1 indicates a negative transition
was detected at the WAKEUP# pin, or that USB has activity resumed from
the suspended state. EICON.4 = 1 must be cleared by software before exit-
ing the interrupt service routine, otherwise the interrupt occurs again. Set-
ting EICON.4=1 in software generates a wakeup interrupt, if enabled.

EICON.3 INT6 - External interrupt 6. When INT6 = 1, the INT6 pin has detected a low
to high transition. INT6 will remain active until cleared by writing a 0 to this
bit. Setting this bit in software generates an INT6 interrupt in enabled.

EICON.2-0 Reserved. Read as 0.
Chapter 18. 8051 Hardware Description Page 18-29

EZ-USB FX Technical Reference Manual
18.4 Interrupt Processing

When an enabled interrupt occurs, the 8051 core vectors to the address of the interrupt service
routine (ISR) associated with that interrupt, as listed in Table 18-24. The 8051 core executes the
ISR to completion unless another interrupt of higher priority occurs. Each ISR ends with a RETI
(return from interrupt) instruction. After executing the RETI, the CPU returns to the next instruction
that would have been executed if the interrupt had not occurred.

An ISR can only be interrupted by a higher priority interrupt. That is, an ISR for a low-level interrupt
can only be interrupted by high-level interrupt. An ISR for a high-level interrupt can only be inter-
rupted by the resume interrupt.

Table 18-22. EIE Register — SFR E8h

Bit Function

EIE.7-5 Reserved. Read as 1.

EIE.4 EX6 - Enable external interrupt 6. EX6 = 0 disables external interrupt 6
(INT6). EX6 = 1 enables interrupts generated by the INT6 pin.

EIE.3 EX5 - Enable external interrupt 5. EX5 = 0 disables external interrupt 5
(INT5). EX5 = 1 enables interrupts generated by the INT5# pin.

EIE.2 EX4 - Enable external interrupt 4. EX4 = 0 disables external interrupt 4
(INT4). EX4 = 1 enables interrupts generated by the INT4 pin.

EIE.1 EI2C - Enable external interrupt 3. EI2C = 0 disables external interrupt 3
(INT3). EI2C = 1 enables interrupts generated by the I2C interface.

EIE.0 EUSB - Enable USB interrupt. EUSB = 0 disables USB interrupts. EUSB = 1
enables interrupts generated by the USB Interface.

Table 18-23. EIP Register — SFR F8h

Bit Function

EIP.7-5 Reserved. Read as 1.

EIP.4 PX6 - External interrupt 6 priority control. PX6 = 0 sets external interrupt 6
(INT6) to low priority. PX6 = 1 sets external interrupt 6 to high priority.

EIP.3 PX5 - External interrupt 5 priority control. PX5 = 0 sets external interrupt 5
(INT5#) to low priority. PX5=1 sets external interrupt 5 to high priority.

EIP.2 PX4 - External interrupt 4 priority control. PX4 = 0 sets external interrupt 4
(INT4) to low priority. PX4=1 sets external interrupt 4 to high priority.

EIP.1 PI2C - External interrupt 3 priority control. PI2C = 0 sets I 2C interrupt to low
priority. PI2C=1 sets I2C interrupt to high priority.

EIP.0 PUSB - External interrupt 2 priority control. PUSB = 0 sets USB interrupt to
low priority. PUSB=1 sets USB interrupt to high priority.
Page 18-30 EZ-USB FX Technical Reference Manual v1.2

The 8051 core always completes the instruction in progress before servicing an interrupt. If the
instruction in progress is RETI, or a write access to any of the IP, IE, EIP, or EIE SFRs, the 8051
core completes one additional instruction before servicing the interrupt.

18.4.1 Interrupt Masking

The EA Bit in the IE SFR (IE.7) is a global enable for all interrupts except the USB wakeup
(resume) interrupt. When EA = 1, each interrupt is enabled or masked by its individual enable bit.
When EA = 0, all interrupts are masked, except the USB wakeup interrupt.

Table 18-25 provides a summary of interrupt sources, flags, enables, and priorities.

18.4.1.1 Interrupt Priorities

There are two stages of interrupt priority assignment, interrupt level and natural priority. The inter-
rupt level (highest, high, or low) takes precedence over natural priority. The USB wakeup interrupt,
if enabled, always has highest priority and is the only interrupt that can have highest priority. All
other interrupts can be assigned either high or low priority.

In addition to an assigned priority level (high or low), each interrupt also has a natural priority, as
listed in Table 18-24. Simultaneous interrupts with the same priority level (for example, both high)
are resolved according to their natural priority. For example, if INT0 and INT2 are both pro-
grammed as high priority, INT0 takes precedence due to its higher natural priority.

Table 18-24. Interrupt Natural Vectors and Priorities

Interrupt Description Natural Priority Interrupt Vector

RESUME USB Wakeup (resume) interrupt 0 33h

INT0 External interrupt 0 1 03h

TF0 Timer 0 interrupt 2 0Bh

INT1 External interrupt 1 3 13h

TF1 Timer 1 interrupt 4 1Bh

TI_0 or RI_0 Serial port 0 interrupt 5 23h

TF2 or EXF2 Timer 2 interrupt 6 2Bh

TI_1 or RI_1 Serial port 1 interrupt 7 3Bh

INT2 USB interrupt 8 43h

INT3 I2C interrupt 9 4Bh

INT4 External interrupt 4 4 53h

INT5 External interrupt 5 11 5Bh

INT6 External interrupt 6 12 63H
Chapter 18. 8051 Hardware Description Page 18-31

EZ-USB FX Technical Reference Manual
Once an interrupt is being serviced, only an interrupt of higher priority level can interrupt the ser-
vice routine of the interrupt currently being serviced.

18.4.2 Interrupt Sampling

The internal timers and serial ports generate interrupts by setting their respective SFR interrupt
flag bits. External interrupts are sampled once per instruction cycle.

INT0 and INT1 are both active low and can be programmed to be either edge-sensitive or level-
sensitive, through the IT0 and IT1 Bits in the TCON SFR. For example, when IT0 = 0, INT0 is
level-sensitive and the 8051 core sets the IE0 flag when the INT0# pin is sampled low. When IT0
= 1, INT0 is edge-sensitive and the 8051 sets the IE0 flag when the INT0# pin is sampled high
then low on consecutive samples.

The remaining five interrupts (INT 4-6, USB & I2C Interrupts) are edge-sensitive only. INT6 and
INT4 are active high and INT5 is active low.

To ensure that edge-sensitive interrupts are detected, the corresponding ports should be held high
for 4 CLKOUT cycles and then low for 4 CLKOUT cycles. Level-sensitive interrupts are not latched
and must remain active until serviced.

Table 18-25. Interrupt Flags, Enables, and Priority Control

Interrupt Description Flag Enable
Priority
Control

RESUME Resume interrupt EICON.4 EICON.5 N/A

INT0 External interrupt 0 TCON.1 IE.0 IP.0

TF0 Timer 0 interrupt TCON.5 IE.1 IP.1

INT1 External interrupt 1 TCON.3 IE.2 IP.2

TF1 Timer 1 interrupt TCON.7 IE.3 IP.3

TI_0 or RI_0 Serial port 0 transmit or receive SCON0.0 (RI.0), SCON0.1
(Ti_0)

IE.4 IP.4

TF2 or EXF2 Timer 2 interrupt T2CON.7 (TF2), T2CON.6
(EXF2)

IE.5 IP.5

TI_1 or RI_1 Serial port 1 transmit or receive SCON1.0 (RI_1),
SCON1.1 (TI_1)

IE.6 IP.6

USB (INT2) USB interrupt EXIF.4 EIE.0 EIP.0

I2C (INT3) I2C interrupt EXIT.5 EIE.1 EIP.1

INT4 External interrupt 4 EXIF.6 EIE.2 EIP.2

INT5 External interrupt 5 EXIF.7 EIE.3 EIP.3

INT6 External INT 6 EICON.3 EIE.4 EIP.4
Page 18-32 EZ-USB FX Technical Reference Manual v1.2

18.4.3 Interrupt Latency

Interrupt response time depends on the current state of the 8051. The fastest response time is 5
instruction cycles: 1 to detect the interrupt, and 4 to perform the LCALL to the ISR.

The maximum latency (13 instruction cycles) occurs when the 8051 is currently executing a RETI
instruction followed by a MUL or DIV instruction. The 13 instruction cycles in this case are: 1 to
detect the interrupt, 3 to complete the RETI, 5 to execute the DIV or MUL, and 4 to execute the
LCALL to the ISR. For the maximum latency case, the response time is 13 x 4 = 52 CLKOUT
cycles.

18.4.4 Single-Step Operation

The 8051 interrupt structure provides a way to perform single-step program execution. When exit-
ing an ISR with an RETI instruction, the 8051 will always execute at least one instruction of the
task program. Therefore, once an ISR is entered, it cannot be re-entered until at least one program
instruction is executed.

To perform single-step execution, program one of the external interrupts (for example,INT0) to be
level-sensitive and write an ISR for that interrupt the terminates as follows:

JNB TCON.1,$; wait for high on INT0# pin
JB TCON.1,$; wait for low on INT0# pin
RETI ; return for ISR

The CPU enters the ISR when the INT0# pin goes low, then waits for a pulse on INT0#. Each time
INT0# is pulsed, the CPU exits the ISR, executes one program instruction, then re-enters the ISR.

18.5 Reset

The 8051 RESET pin is internally connected to an EZ-USB FX register bit that is controllable
through the USB host. See Chapter 13. "EZ-USB FX Resets" for details.
Chapter 18. 8051 Hardware Description Page 18-33

EZ-USB FX Technical Reference Manual
18.6 Power Saving Modes

18.6.1 Idle Mode

An instruction that sets the IDLE Bit (PCON.0) causes the 8051 to enter idle mode when that
instruction completes. In idle mode, CPU processing is suspended, and internal registers maintain
their current data. When the 8051 core is in idle, the USB core enters suspend mode and shuts
down the 24 MHz oscillator. See Chapter 14. "EZ-USB FX Power Management" for a full descrip-
tion of the Suspend/Resume process.

If the EZ-USB FX WAKEUP# pin is tied low, setting PCON.0 high does not put the 8051 into IDLE
state.

Table 18-26. PCON Register — SFR 87h

Bit Function

PCON.7 SMOD0 - Serial Port 0 baud rate double enable. When SMOD0 = 1, the
baud rate for Serial Port 0 is doubled.

PCON.6-4 Reserved.

PCON.3 GF1 - General purpose flag 1. Bit-addressable, general purpose flag for
software control.

PCON.2 GF0 - General purpose flag 0. Bit-addressable, general purpose flag for
software control.

PCON.1 This bit should always be set to 0.

PCON.0 IDLE - Idle mode select. Setting the IDLE Bit places the 8051 in idle
mode.
Page 18-34 EZ-USB FX Technical Reference Manual v1.2

EZ-USB FX Register Summary

The following table is a summary of all the EZ-USB FX Registers.
Register Summary

EZ-USB FX Technical Reference Manual
EZ-USB FX Technical Reference Manual v1.2

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 1

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

FIFO A-IN

7800 AINDATA Read Data from FIFO A D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R R, r = read-only,

7801 AINBC Input FIFO A Byte Count 0 D6 D5 D4 D3 D2 D1 D0 00000000 R

7802 AINPF FIFO A-IN Programmable Flag (internal
bit)

LTGT D6 D5 D4 D3 D2 D1 D0 00100000 RW Default: half empty

7803 AINPFPIN FIFO A-IN Programmable Flag (external
pin)

LTGT D6 D5 D4 D3 D2 D1 D0 00000000 RW LTGT = 0: Flag is true (1) if Bytes in FIFO <= BCNT

7804 (reserved) LTGT = 1: Flag is true (1) if Bytes in FIFO >= BCNT

FIFO B-IN Default: empty

7805 BINDATA Read Data from FIFO B D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R W, w = write-only

7806 BINBC Input FIFO B Byte Count 0 D6 D5 D4 D3 D2 D1 D0 00000000 R

7807 BINPF FIFO B-IN Programmable Flag (internal
bit)

LTGT D6 D5 D4 D3 D2 D1 D0 00100000 RW Default: half empty

7808 BINPFPIN FIFO B-IN Programmable Flag (external
pin)

LTGT D6 D5 D4 D3 D2 D1 D0 00000000 RW LTGT = 0: Flag is true (1) if Bytes in FIFO <= BCNT

7809 (reserved) LTGT = 1: Flag is true (1) if Bytes in FIFO >= BCNT

FIFO A/B-IN Control Default: empty

780A ABINCS Input FIFOS Toggle control and flags INTOG INSEL AINPF AINEF AINFF BINPF BINEF BINFF 01110110 bbrrrrrr FF=Full Flag, EF=Empty Flag, PF=Programmable Flag

780B ABINIE Input FIFO Interrupt Enables 0 0 AINPF AINEF AINFF BINPF BINEF BINFF 00000000 RW INSEL: 1=A-FIFO, 0=B-FIFO

780C ABINIRQ Input FIFO Interrupt Requests 0 0 AINPF AINEF AINFF BINPF BINEF BINFF xxxxxxxx RW

780D (reserved)

FIFO A-OUT

780E AOUTDATA Load Output FIFO A D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx W

780F AOUTBC Output FIFO A Byte Count 0 D6 D5 D4 D3 D2 D1 D0 00000000 R

7810 AOUTPF FIFO A-OUT Programmable Flag
(internal bit)

LTGT D6 D5 D4 D3 D2 D1 D0 10100000 RW "INT" suffix means internal, 8051-accessible bits. Default: half-full

7811 AOUTPFPIN FIFO A-OUT Programmable Flag
(external pin)

LTGT D6 D5 D4 D3 D2 D1 D0 11000000 RW Default: full

7812 (reserved)

FIFO B-OUT

7813 BOUTDATA Load Output FIFO B D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx W RW = Read or Write,

7814 BOUTBC Output FIFO B Byte Count 0 D6 D5 D4 D3 D2 D1 D0 00000000 R

7815 BOUTPF FIFO B-OUT Programmable Flag
(internal bit)

LTGT D6 D5 D4 D3 D2 D1 D0 10100000 RW "PIN" suffix means external pin flags. Default: half-full

7816 BOUTPFPIN FIFO B-OUT Programmable Flag
(external pin)

LTGT D6 D5 D4 D3 D2 D1 D0 11000000 RW Default: full

7817 (reserved)

FIFO A/B OUT Control

7818 ABOUTCS Output FIFOS Toggle control and flags OUTTOG OUTSEL AOUTPF AOUTEF AOUTFF BOUTPF BOUTEF BOUTFF 01010010 RW PF=Programmable Flag,

7819 ABOUTIE Output FIFO Interrupt Enables 0 0 AOUTPF AOUTEF AOUTFF BOUTPF BOUTEF BOUTFF 00000000 RW

781A ABOUTIRQ Output FIFO Interrupt Requests 0 0 AOUTPF AOUTEF AOUTFF BOUTPF BOUTEF BOUTFF xxxxxxxx RW

781B (reserved)

FIFO A/B Global Control

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 2

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

781C ABSETUP FIFO Setup 0 0 ASYNC DBLIN 0 OUTDLY 0 DBLOUT 00000000 RW ASYNC=1: async FIFOS, DBL=1:double stuff,OUTDLY=1: clock delay

781D ABPOLAR FIFO Control Signals Polarity 0 0 BOE AOE SLRD SLWR ASEL BSEL 00000000 RW 0=active LO, 1-active HI

781E ABFLUSH Write (data=x) to reset all flags x x x x x x x x xxxxxxxx W Flag reset: Empty=1, Full=0, PF=?

781F (reserved)

7820 (reserved)

7821 (reserved)

7822 (reserved)

7823 (reserved)

GPIF

7824 WFSELECT Waveform Selector SINGLEWR 0-3 SINGLERD 0-3 FIFOWR 0-3 FIFORD 0-3 11100100 RW Select waveform 0[00], 1[01], 2[10] or 3[11]

7825 IDLE_CS GPIF Done, GPIF IDLE drive mode DONE 0 0 0 0 0 0 IDLEDRV 10000000 RW DONE=1: GPIF done (IRQ4). IDLEDRV=1:drive bus, 0:TS

7826 IDLE_CTLOUT Inactive Bus, CTL states 0 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 11111111 RW

7827 CTLOUTCFG CTL OUT pin drive TRICTL 0 CTL5 CTL4 CTL3 CTL2 CTL1 CTL0 00000000 RW 0=CMOS, 1=open drn.

7828 (reserved)

7829 (reserved)

782A GPIFADRL GPIF Address L x x A5 A4 A3 A2 A1 A0 00000000 RW

782B (reserved)

782C AINTC FIFO A IN T.C. FITC FIFO A IN Transaction Count [6:0] 00000001 RW FITC=1: Use FIFO flags

782D AOUTTC FIFO A OUT T.C. FITC FIFO A OUT Transaction Count [6:0] 00000001 RW FITC=0: Use Transac Count.

782E ATRIG Write: write FIFO A. Read: start RD
trans.

x x x x x x x x xxxxxxxx RW Note: read the data in ?

782F (reserved)

7830 BINTC FIFO B IN T.C. FITC FIFO B IN Transaction Count [6:0] 00000001 RW

7831 BOUTTC FIFO B OUT T.C. FITC FIFO B OUT Transaction Count [6:0] 00000001 RW

7832 BTRIG Write: write FIFO B . Read: start RD
trans.

x x x x x x x x xxxxxxxx RW ?

7833 (reserved)

7834 SGLDATH GPIF Data H (16-bit mode only) D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW

7835 SGLDATLTRIG Read or Write GPIF Data L & trigger rd
transac

D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW Triggers a GPIF Read Waveform

7836 SGLDATLNTRIG Read GPIF Data L, no rd transac trigger D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R No GPIF Waveform

7837 (reserved)

7838 READY Internal RDY,Sync/Async, RDY pin
states

INTRDY SAS RDY5 RDY4 RDY3 RDY2 RDY1 RDY0 00xxxxxx bbrrrrrr SAS=1: synchrnous, 0:asynchronous

7839 ABORT Abort GPIF cycles x x x x x x x x xxxxxxxx W Go To GPIF IDLE state. Data is D.C.

783A (reserved)

783B GENIE 0 0 0 0 0 DMADN GPWF GPDONE 00000000 RW

783C GENIRQ 0 0 0 0 0 DMADN GPWF GPDONE 00000xxx RW

783D (reserved)

783E (reserved)

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 3

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

783F (reserved)

7840 (reserved)

IO Ports D,E

7841 OUTD Output Port D OUTD7 OUTD6 OUTD5 OUTD4 OUTD3 OUTD2 OUTD1 OUTD0 xxxxxxxx W

7842 PINSD Input Port D pins PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 xxxxxxxx R

7843 OED Port D Output Enable 0ED7 0ED6 0ED5 0ED4 0ED3 0ED2 0ED1 0ED0 00000000 RW

7844 (reserved)

7845 OUTE Output Port E OUTE7 OUTE6 OUTE5 OUTE4 OUTE3 OUTE2 OUTE1 OUTE0 xxxxxxxx W

7846 PINSE Input Port E pins PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 xxxxxxxx R

7847 OEE Port E Output Enable OEE7 OEE6 OEE5 OEE4 OEE3 OEE2 OEE1 OEE0 00000000 RW

7848 (reserved)

7849 PORTSETUP Timer0 Clock source, Port-to-SFR
mapping

0 0 0 0 0 0 T0CLK SFRPORT 00000000 RW T0CLK (0) Normal Timer0 clock; (1) CPU clock/13

784A IFCONFIG Select 8/16 bit data bus, confugure
busses (IF)

52ONE 0 0 GSTATE BUS16 IF1 IF0 00000000 brrrbbbb SFRPORT (1) IO Ports SFR mapped, (0) not

784B PORTACF2 Port A GPIF signals 0 0 SLRD SLWR 0 0 0 0 00000000 RW 52ONE: Set to 1 for 52-pin part (drive internal RDY signals HI)

784C PORTCCF2 Port C GPIF signals CTL5 CTL4 CTL3 CTL1 RDY3 0 RDY1 RDY0 00000000 RW

784D (reserved)

784E (reserved)

DMA Control

784F DMASRCH DMA SourceH A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW

7850 DMASRCL DMA Source L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW

7851 DMADESTH DMA Destination H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW

7852 DMADESTL DMA Destination L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW

7853 (reserved)

7854 DMALEN DMA Transfer Length D7 D6 D5 D4 D3 D2 D1 D0 00000001 RW 0=256, 1=1…255=255

7855 DMAGO Start DMA Transfer DONE x x x x x x x xxxxxxxx rxxxxxxx Write this register to start a DMA transfer

7856 (reserved) DSTR[2..0] set stretch values for external DMA transfers

7857 DMABURST x x x DSTR2 DSTR1 DSTR0 RB WB 00000100 RW RB/WB enable synchronous burst transfers on 8051 data bus

7858 DMAEXTFIFO n/a n/a n/a n/a n/a n/a n/a n/a xxxxxxxx N/A Use this DMA address to select 8051 A/D busses as external FIFO

7859 (reserved)

785A (reserved) Note: DSTRn are stretch values for DMA FRD# and FWR# signals

785B (reserved)

785C (reserved)

Interrupt 4 Vector Control

785D INT4IVEC Interrupt 4 Vector 0 1 I4V3 I4V2 I4V1 I4V0 0 0 01000000 R See bottom of page 2 for vector coding

785E INT4SETUP Interrupt 4 Setup 0 0 0 0 0 INT4SFC INTERNAL AV4EN 00000000 RW INTERNAL: 0-INT4 from pin, 1-INT4 from FIFO unit

785F-
78FF

 (reserved)

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 4

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

7900 WFDESC(0) Waveform Descriptors (128 bytes) xxxxxxxx RW

797F WFDESC(127) (last wafeform descriptor byte)

7980-
7B3F

 (reserved)

Endpoint 0-7 Data Buffers R=RD, W=WR, RW or b=BOTH

7B40 OUT7BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7B80 IN7BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7BC0 OUT6BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [6] EP6OUT and EP7OUT pairable for double buffering

7C00 IN6BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [5] EP6IN and EP7IN pairable for double buffering

7C40 OUT5BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7C80 IN5BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7CC0 OUT4BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [4] EP4OUT and EP5OUT pairable for double buffering

7D00 IN4BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [3] EP4IN and EP5IN pairable for double buffering

7D40 OUT3BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7D80 IN3BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7DC0 OUT2BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [2] EP2-IN and EP3IN pairable for double buffering

7E00 IN2BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW [1] EP2-IN and EP3IN pairable for double buffering

7E40 OUT1BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7E80 IN1BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7EC0 OUT0BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7F00 IN0BUF (64 bytes) d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7F40-
7F5F

 (reserved)

Isochronous Data

7F60 OUT8DATA Endpoint 8 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F61 OUT9DATA Endpoint 9 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F62 OUT10DATA Endpoint 10 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F63 OUT11DATA Endpoint 11 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F64 OUT12DATA Endpoint 12 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F65 OUT13DATA Endpoint 13 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F66 OUT14DATA Endpoint 14 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F67 OUT15DATA Endpoint 15 OUT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F68 IN8DATA Endpoint 8 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F69 IN9DATA Endpoint 9 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F6A IN10DATA Endpoint 10 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F6B IN11DATA Endpoint 11 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F6C IN12DATA Endpoint 12 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 5

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

7F6D IN13DATA Endpoint 13 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F6E IN14DATA Endpoint 14 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

7F6F IN15DATA Endpoint 15 IN Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx W

Isochronous Byte Counts

7F70 OUT8BCH EP8 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F71 OUT8BCL EP8 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F72 OUT9BCH EP9 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F73 OUT9BCL EP9 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F74 OUT10BCH EP10 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F75 OUT10BCL EP10 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F76 OUT11BCH EP11 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F77 OUT11BCL EP11 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F78 OUT12BCH EP12 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F79 OUT12BCL EP12 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F7A OUT13BCH EP13 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F7B OUT13BCL EP13 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F7C OUT14BCH EP14 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F7D OUT14BCL EP14 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F7E OUT15BCH EP15 Out Byte Count H 0 0 0 0 0 0 d9 d8 xxxxxxxx R

7F7F OUT15BCL EP15 Out Byte Count L d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R

7F80-
7F91

 (reserved)

CPU Registers

7F92 CPUCS Control & Status rv3 rv2 rv1 rv0 24/48 CLKINV CLKOE 8051RES 00000010 rrrrrrbr Bits 7:2 are chip rev number

7F93 PORTACFG Port A Configuration RxD1out RxD0out FRD FWR CS OE T1out T0out 00000000 RW CFG: 0=port (default), 1=alternate function

7F94 PORTBCFG Port B Configuration T2OUT INT6 INT5 INT4 TxD1 RxD1 T2EX T2 00000000 RW

7F95 PORTCCFG Port C Configuration RD WR T1 T0 INT1 INT0 TxD0 RxD0 00000000 RW

Input-Output Port Registers

7F96 OUTA Output Register A OUTA7 OUTA6 OUTA5 OUTA4 OUTA3 OUTA2 OUTA1 OUTA0 00000000 RW WR: output FF; RD: register outputs

7F97 OUTB Output Register B OUTB7 OUTB6 OUTB5 OUTB4 OUTB3 OUTB2 OUTB1 OUTB0 00000000 RW

7F98 OUTC Output Register C OUTC7 OUTC6 OUTC5 OUTC4 OUTC3 OUTC2 OUTC1 OUTC0 00000000 RW

7F99 PINSA Port Pins A PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 xxxxxxxx R WR: no effect; RD: pin states (reg if OE=1, pin if OE=0)

7F9A PINSB Port Pins B PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 xxxxxxxx R

7F9B PINSC Port Pins C PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 xxxxxxxx R

7F9C OEA Output Enable A OEA7 OEA6 OEA5 OEA4 OEA3 OEA2 OEA1 OEA0 00000000 RW 1=output enabled

7F9D OEB Output Enable B OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEB0 00000000 RW

7F9E OEC Output Enable C OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OEC0 00000000 RW RW pins enabled

7F9F reserve

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 6

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

Isochronous Control/Status Registers

7FA0 ISOERR ISO OUT Endpoint Error ISO15ERR ISO14ERR ISO13ERR ISO12ERR ISO11ERR ISO10ERR ISO9ERR ISO8ERR xxxxxxxx R CRC Error

7FA1 ISOCTL Isochronous Control * * * * PPSTAT MBZ MBZ ISODISAB 0000x000 rrrrrbbb

7FA2 ZBCOUT Zero Byte Count bits EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8 xxxxxxxx R

7FA3 (reserved)

7FA4 (reserved)

I2C Registers

7FA5† I2CS Control & Status START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr

7FA6† I2DAT Data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FA7† I2CMODE I2C STOP interrupt enable 0 0 0 0 0 0 STOPIE 400kHz 00000000 RW

Interrupts

7FA8 IVEC Interrupt Vector 0 IV4 IV3 IV2 IV1 IV0 0 0 00000000 R

7FA9† IN07IRQ EPIN Interrupt Request IN7IR IN6IR IN5IR IN4IR IN3IR IN2IR IN1IR IN0IR 00000000 RW 1 = clear request, 0= no effect

7FAA† OUT07IRQ EPOUT Interrupt Request OUT7IR OUT6IR OUT5IR OUT4IR OUT3IR OUT2IR OUT1IR OUT0IR xxxxxxxx RW 1 = clear request, 0= no effect

7FAB† USBIRQ USB Interrupt Request 0 0 IBNIR URESIR SUSPIR SUTOKIR SOFIR SUDAVIR xxxxxxxx RW 1 = clear request, 0= no effect

7FAC† IN07IEN EP0-7IN Int Enables IN7IEN IN6IEN IN5IEN IN4IEN IN3IEN IN2IEN IN1IEN IN0IEN 00000000 RW 1=enabled, 0=disabled

7FAD† OUT07IEN EP0-7OUT Int Enables OUT7IEN OUT6IEN OUT5IEN OUT4IEN OUT3IEN OUT2IEN OUT1IEN OUT0IEN 00000000 RW 1=enabled, 0=disabled

7FAE† USBIEN USB Int Enables 0 0 IBNIE URESIE SUSPIE SUTOKIE SOFIE SUDAVIE 00000000 RW 1=enabled, 0=disabled

7FAF USBBAV Breakpoint & Autovector * * * INT2SFC BREAK BPPULSE BPEN AVEN xxx0xx00 RW Breakpoint and Autovector

7FB0† IBNIRQ IBN Interrupt request EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EP0IN xxxxxxxx RW

7FB1† IBNIE IBN Interrupt Enable EP6IN EP5IN EP4IN EP3IN EP2IN EP1IN EP0IN 00000000 RW

7FB2 BPADDRH Breakpoint Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW

7FB3 BPADDRL Breakpoint Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW

Bulk Endpoints 0-7

7FB4† EP0CS Control & Status * * * * OUTBSY INBSY HSNAK EP0STALL 00001000 rrrrrrbb

7FB5† IN0BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FB6† IN1CS Control & Status * * * * * * in1bsy in1stl 00000000 rrrrrrbb

7FB7† IN1BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FB8† IN2CS Control & Status * * * * * * in2bsy in2stl 00000000 rrrrrrbb

7FB9† IN2BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FBA† IN3CS Control & Status * * * * * * in3bsy in3stl 00000000 rrrrrrbb

7FBB† IN3BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FBC† IN4CS Control & Status * * * * * * in4bsy in4stl 00000000 rrrrrrbb

7FBD† IN4BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FBE† IN5CS Control & Status * * * * * * in5bsy in5stl 00000000 rrrrrrbb

7FBF† IN5BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of time between performing the following instructions back-to-back: (1) write-write (2) write-read.

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 7

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

7FC0† IN6CS Control & Status * * * * * * in6bsy in6stl 00000000 rrrrrrbb

7FC1† IN6BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FC2† IN7CS Control & Status * * * * * * in7bsy in7stl 00000000 rrrrrrbb

7FC3† IN7BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FC4 (reserved)

7FC5† OUT0BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FC6† OUT1CS Control & Status * * * * * * out1bsy out1stl 00000010 rrrrrrrb

7FC7† OUT1BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FC8† OUT2CS Control & Status * * * * * * out2bsy out2stl 00000010 rrrrrrrb

7FC9† OUT2BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FCA† OUT3CS Control & Status * * * * * * out3bsy out3stl 00000010 rrrrrrrb

7FCB† OUT3BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FCC† OUT4CS Control & Status * * * * * * out4bsy out4stl 00000010 rrrrrrrb

7FCD† OU4TBC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FCE† OUT5CS Control & Status * * * * * * out5bsy out5stl 00000010 rrrrrrrb

7FCF† OUT5BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FD0† OUT6CS Control & Status * * * * * * out6bsy out6stl 00000010 rrrrrrrb

7FD1† OUT6BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

7FD2† OUT7CS Control & Status * * * * * * out7bsy out7stl 00000010 rrrrrrrb

7FD3† OUT7BC Byte Count * d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW

Global USB Registers

7FD4† SUDPTRH Setup Data Ptr H A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW

7FD5† SUDPTRL Setup Data Ptr L A7 A6 A5 A4 A3 A2 A1 A0 xxxxxxxx RW

7FD6† USBCS USB Control & Status WakeSRC * * * DisCon DiscOE ReNum SIGRSUME 00000100 brrrbbbb

7FD7† TOGCTL Toggle Control Q S R IO 0 EP2 EP1 EP0 xxxxxxxx rbbbbbbb Endpoint Toggle bits

7FD8 USBFRAMEL Frame Number L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 xxxxxxxx R

7FD9 USBFRAMEH Frame Number H 0 0 0 0 0 FC10 FC9 FC8 xxxxxxxx R

7FDA (reserved)

7FDB FNADDR Function Address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 xxxxxxxx R

7FDC (reserved)

7FDD† USBPAIR Endpoint Control ISOsend0 * PR6OUT PR4OUT PR2OUT PR6IN PR4IN PR2IN 0x000000 RW 1 = Pair endpoint (double-buffer)

7FDE† IN07VAL Input Endpoint 0-7 valid IN7VAL IN6VAL IN5VAL IN4VAL IN3VAL IN2VAL IN1VAL 1 01010111 RW 1=valid, 0=not valid

7FDF† OUT07VAL Output Endpoint 0-7 valid OUT7VAL OUT6VAL OUT5VAL OUT4VAL OUT3VAL OUT2VAL OUT1VAL 1 01010101 RW (a not-valid EP returns 'no response' instead of NAK)

7FE0† INISOVAL Input EP 8-15 valid IN15VAL IN14VAL IN13VAL IN12VAL IN11VAL IN10VAL IN9VAL IN8VAL 00000111 RW NOTE: EP0 is always valid

7FE1† OUTISOVAL Output EP 8-15 valid OUT15VAL OUT14VAL OUT13VAL OUT12VAL OUT11VAL OUT10VAL OUT9VAL OUT8VAL 00000111 RW

7FE2 FASTXFR Fast Transfer Mode FISO FBLK RPOL RMOD1 RMOD0 WPOL WMOD1 WMOD0 xxxxxxxx RW

 † Read/write latency note: These registers need the equivalent of 2 instruction clock cycles of time between performing the following instructions back-to-back: (1) write-write (2) write-read.

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 8

Addr Name Description D7 D6 D5 D4 D3 D2 D1 D0 Default Access Notes

7FE3 AUTOPTRH Auto-Pointer H A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW

7FE4 AUTOPTRL Auto-Pointer L A7 A6 A5 A4 A3 A2 A1 A0 xxxxxxxx RW

7FE5 AUTODATA Auto Pointer Data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW

7FE6 (reserved)

7FE7 (reserved)

Setup Data

7FE8 SETUPDAT 8 bytes of SETUP data d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx R 3 LSB's of address are 000

Isochronous FIFO Sizes

7FF0 OUT8ADDR Endpt 8 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF1 OUT9ADDR Endpt 9 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF2 OUT10ADDR Endpt 10 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF3 OUT11ADDR Endpt 11 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF4 OUT12ADDR Endpt 12 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF5 OUT13ADDR Endpt 13 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF6 OUT14ADDR Endpt 14 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF7 OUT15ADDR Endpt 15 OUT Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF8 IN8ADDR Endpt 8 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FF9 IN9ADDR Endpt 9 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFA IN19ADDR Endpt 10 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFB IN11ADDR Endpt 11 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFC IN12ADDR Endpt 12 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFD IN13ADDR Endpt 13 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFE IN14ADDR Endpt 14 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

7FFF IN15ADDR Endpt 15 IN Start Addr A9 A8 A7 A6 A5 A4 0 0 xxxxxxxx RW

EZ-USB FX EZ-USB FX Register Summary

EZ-USB FX Technical Reference Manual v1.2 RegSum - 9

Interrupt 4 Sources and INT4IVEC values

20 AINPF 0 1 0 0 0 0 0 0

21 BINPF 0 1 0 0 0 1 0 0

22 AOUTPF 0 1 0 0 1 0 0 0

23 BOUTPF 0 1 0 0 1 1 0 0

24 AINEF 0 1 0 1 0 0 0 0

25 BINEF 0 1 0 1 0 1 0 0

26 AOUTEF 0 1 0 1 1 0 0 0

27 BOUTEF 0 1 0 1 1 1 0 0

28 AINFF 0 1 1 0 0 0 0 0

29 BINFF 0 1 1 0 0 1 0 0

2A AOUTFF 0 1 1 0 1 0 0 0

2B BOUTFF 0 1 1 0 1 1 0 0

2C GPIFDONE 0 1 1 1 0 0 0 0

2D GPIFWF 0 1 1 1 0 1 0 0

2E DMADONE 0 1 1 1 1 0 0 0

New Interrupt 2 source and vector

05 IBN 0 0 0 1 0 1 0 0 Bulk IN token arrived and was NAK'd

