

DS80C390 High-Speed Microcontroller User's Guide Supplement

www.dalsemi.com

ADDENDUM TO SECTION 1: INTRODUCTION

This document is provided as a supplement to the High-Speed Microcontroller User's Guide, covering new or modified features specific to the DS80C390. *This document must be used in conjunction with the High-Speed Microcontroller User's Guide, available from Dallas Semiconductor*. Addenda are arranged by section number, which correspond to sections in the High-Speed Microcontroller User's Guide.

The following additions and changes, with respect to the High-Speed Microcontroller User's Guide, are contained in this document. This document is a work in progress, and updates/additions will be added when available.

Section 1: Introduction

No Changes.

Section 2: Ordering Information

Information on new members of the High-Speed Microcontroller family has been added.

Section 3: Architecture

No Changes. Information containing new architectural features is contained in the DS80C390 Data Sheet.

Section 4: Programming Model

Descriptions of the DS80C390 memory map are included, as well as new/modified Special Function Registers.

Section 5: CPU Timing

Descriptions of the clock multiply modes have been added.

Section 6: Memory Access

Descriptions of the 22-bit expanded address capability have been added.

Section 7: Power Management

Clarified function of ring oscillator and removal of PMM1.

Section 8: Reset Conditions TBD

Section 9: Interrupts TBD

Section 10: Parallel I/O

Descriptions of changes to the I/O characteristics of ports 1, 4, and 5 has been added.

Section 11: Programmable Timers

Information on the new divide by 13 mode has been added, as well as updated figures showing the effect of the clock multiplier modes on the timers.

Section 12: Serial I/O

No Changes.

Section 13: Timed Access Protection Additional/changed Timed Access bits in the DS80C390 are listed.

Section 14: Real Time Clock No Changes.

Section 15: Battery Backup

No Changes.

Section 16: Instruction Set Details

Modified timing and cycle count of select instructions in paged and contiguous addressing modes is listed.

Section 17: Troubleshooting

No Changes.

Section 18: Controller Area (CAN) Module

Information on the features and use of the CAN module is provided.

Section 19: Arithmetic Accelerator

Information on the features and use of the DS80C390 arithmetic accelerator is provided.

ADDENDUM TO SECTION 2: ORDERING INFORMATION

The High-Speed Microcontroller family follows the part numbering convention shown below. Note that all combinations of devices are not currently available. Please refer to individual data sheets for the available versions.

DS	80C390-FCR		
	 SPEED:	D	18 MHz
		G	25 MHz
		L	33 MHz
		R	40 MHz
		G	
	$ \qquad \qquad \qquad TEMPERATURE:$	C	$0^{\circ}C$ to $70^{\circ}C$
		Ν	-40° C to $+85^{\circ}$ C
		м	PLASTIC
		0	PLCC
		У Б	THIN PLASTIC OLIAD FLAT PACK (TOFP)
		E	$\frac{1}{1} \frac{1}{1} \frac{1}$
			WINDOWED CEDDID
		VV V	
		K	WINDOWED CERQUAD
	OPERATING VOLTAGE:	0	+5V
		3	+3V OR WIDE VOLTAGE
	MEMORY TYPE:	0	ROMIess
		3	ROM
		7	EPROM

SECTION 4: PROGRAMMING MODEL

The DS80C390 microprocessor is based on the industry standard 80C52. The core is an accumulatorbased architecture using internal registers for data storage and peripheral control. It executes the standard 8051 instruction set. This section provides a brief description of each architecture feature. Details concerning the programming model, instruction set, and register description are provided in Section 4.

The High-Speed Microcontroller, uses several distinct memory areas. These are registers, program memory, and data memory. Registers serve to control on-chip peripherals and as RAM. Note that registers (on-chip RAM) are separate from data memory. Registers are divided into three categories including directly addressed on-chip RAM, indirectly addressed on-chip RAM, and Special Function Registers. The program and data memory areas are discussed under Memory Map. The Registers are discussed under Registers Map.

MEMORY MAP

The DS80C390 microprocessor uses a memory addressing scheme that separates program memory (ROM) from data memory (RAM). Each area is accessed via a 20-bit address bus and 4 chip enables, allowing a maximum address space of 4 MB of program memory and 4 MB of data memory. The program and data segments can overlap since they are accessed in different ways. Program memory is fetched by the microprocessor automatically. These addresses are never written by software. There is one instruction (MOVC) that is used to explicitly read the program area. This is commonly used to read look-up tables. The data memory area is accessed explicitly using the MOVX instruction. This instruction provides multiple ways of specifying the target address

REGISTER MAP

The register map is separate from the program and data memory areas mentioned above. A separate class of instructions is used to access the registers. There are 256 potential register location values. In practice, the High-Speed Microcontroller has 256 bytes of Scratchpad RAM and up to 128 Special Function Registers (SFRs). This is possible since the upper 128 Scratchpad RAM locations can only be accessed indirectly. That is, the contents of a Working Register (described below) will designate the RAM location. Thus a direct reference to one of the upper 128 locations must be an SFR access. Direct RAM is reached at locations 0 to 7Fh (0 to 127). SFRs are accessed directly between 80h and FFh (128 to 255). The RAM locations between 128 and 255 can be reached through an indirect reference to those locations.

Scratchpad RAM is available for general-purpose data storage. It is commonly used in place of off-chip RAM when the total data contents are small. When off-chip RAM is needed, the Scratchpad area will still provide the fastest general-purpose access. Within the 256 bytes of RAM, there are several special purpose areas. These are described as follows:

Bit Addressable Locations

In addition to direct register access, some individual bits in both the RAM and SFR area are also accessible. In the Scratchpad RAM area, registers 20h to 2Fh are bit addressable. This provides 126 (16 * 8) individual bits available to software. The type of instruction distinguishes a bit access from a full register access. In the SFR area, any register location ending in a 0 or 8 is bit addressable.

Working Registers

As part of the lower 128 bytes of RAM, there are four banks of general-purpose Working Registers, each bank containing registers R0 through R7. The bank is selected via bits in the Program Status Word register. Since there are four banks, the currently selected bank will be used by any instruction using R0-R7. This allows software to change context by simply switching banks. The Working Registers also

allow their contents to be used for indirect addressing of the upper 128 bytes of RAM. Thus an instruction can designate the value stored in R0 (for example) to address the upper RAM. This value might be the result of another calculation.

Stack

Another use of the Scratchpad area is for the programmer's stack. This area is selected using the Stack Pointer (SP,81h) SFR. Whenever a call or interrupt is invoked, the return address is placed on the stack. It also is available to the programmer for variables, etc. The Stack Pointer will default to 07h on reset, but can be relocated as needed. A convenient location would be the upper RAM area (>7Fh) since this is only available indirectly. The SP will point to the last used value. Therefore, the next value placed on the Stack is put at SP + 1. Each PUSH or CALL will increment the SP by the appropriate value. Each POP or RET will decrement as well.

The DS80C390 supports an optional 10-bit (1 KB) stack. This greatly increases programming efficiency and allows the device to support large programs. When enabled by setting the Stack Address (SA) bit in the ACON register, the lower 1 KB of the 4 KB internal SRAM becomes the memory location used by all instructions that affect the stack. The 10-bit address is formed by concatenating the lower 2 bits of the Extended Stack Pointer (ESP;9Bh) and the 8-bit Stack Pointer (SP;81h). The exact address of the 1 KB is dependent on the setting of the IDM1-0 bits. The 10-bit stack feature is not supported when the 4 KB SRAM is configured as combined program/data memory (IDM1=IDM0=1)

Figure 4-1 DS80C390 Memory Map (Default Settings)

SPECIAL FUNCTION REGISTERS

Most of the unique features of the High-Speed Microcontroller family are controlled by bits in special function registers (SFRs) located in unused locations in the 8051 SFR map. This allows for increased functionality while maintaining complete instruction set compatibility. The SFRs reside in register locations 80h-FFh and are accessed using direct addressing. SFRs that end in 0 or 8 are bit addressable.

The first table indicates the names and locations of the SFRs used by the DS80C390 and individual bits in those registers. Bits protected by the Timed Access function are shaded. The second table indicates the reset state of all SFR bits. Following these tables is a complete description of DS80C390 SFRs that are new to the 8051 architecture or have new or modified functionality.

DI LOIM							1	1	
Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
P4	A19/P4.7	A18/P4.6	A17/P4.5	A16/P4.4	$\overline{\text{CE3}}/\text{P4.3}$	$\overline{\text{CE2}}/\text{P4.2}$	CE1/P4.1	CE0/P4.0	80h
SP									81h
DPL									82h
DPH									83h
DPL1									84h
DPH1									85h
DPS	ID1	ID0	TSL	-	-	-	-	SEL	86h
PCON	SMOD_0	SMOD0	OFDF	OFDE	GF1	GF0	STOP	IDLE	87h
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	88h
TMOD	GATE	C/\overline{T}	M1	M0	GATE	C/\overline{T}	M1	M0	89h
TL0									8Ah
TL1									8Bh
TH0									8Ch
TH1									8Dh
CKCON	WD1	WD0	T2M	T1M	TOM	MD2	MD1	MD0	8Eh
P1	INT5/P1.7	INT4/P1.6	INT3/P1.5	INT2/P1.4	TXD1/P1.3	RXD1/P1.2	T2EX/P1.1	T2/P1.0	90h
EXIF	IE5	IE4	IE3	IE2	CKRY	RGMD	RGSL	BGS	91h
P4CNT	-	SBCAN	P4CNT.5	P4CNT.4	P4CNT.3	P4CNT.2	P4CNT.1	P4CNT.0	92h
DPX									93h
DPX1									95h
C0RMS0									96h
C0RMS1									97h
SCON0	SM0/FE_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0		RI0	98h
SBUF0									99h
ESP	-	-	-	-	-	-	ESP.1	ESP.0	9Bh
AP									9Ch
ACON	-	-	-	-	-	SA	AM1	AM0	9Dh
C0TMA0									9Eh
C0TMA1									9Fh
P2	A15/P2.7	A14/P2.6	A13/P2.5	A12/P2.4	A11/P2.3	A10/P2.2	A9/P2.1	A8/P2.0	A0h
P5	PCE3/P5.7	PCE2/P5.6	PCE1/P5.5	PCE0/P5.4	C1TX/P5.3	C1RX/P5.2	C0RX/P5.1	C0TX/P5.0	Alh
P5CNT	CAN1BA	CAN0BA	SP1EC	C1_I/O	C0I/O	P5CNT.2	P5CNT.1	P5CNT.0	A2h
COC	ERIE	STIE	PDE	SIESTA	CRST	AUTOB	ERCS	SWINT	A3h
COS	BUSOFF	CECE	WKS	RXS	TXS	ER2	ER1	ERO	A4h
COIR	INTIN7	INTIN6	INTIN5	INTIN4	INTIN3	INTIN2	INTIN1	INTINO	A5h
COTE									A6h
CORE		TC1	D.m.o	TIC 0	10004		1000		A7h
IE	EA	ES1	ET2	ES0	ELJ	EXI	ETO	EX0	A8h
SADDR0									A9h

SPECIAL FUNCTION REGISTER LOCATION Table 4-1

DS80C390 High-Speed Microcontroller User's Guide Supplement

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
SADDR1									AAh
C0M1C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	ABh
C0M2C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	ACh
C0M3C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	ADh
C0M4C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	AEh
C0M5C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	AFh
P3	RD /P3.7	$\overline{\mathrm{WR}}/\mathrm{P3.6}$	T1/P3.5	T0/P3.4	INT1/P3.3	INT0/P3.2	TXD0/P3.1	RXD0/P3.0	B0h
C0M6C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	B3h
C0M7C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	B4h
C0M8C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	B5h
C0M9C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	B6h
C0M10C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	B7h
IP	-	PS1	PT2	PS0	PT1	PX1	PT0	PX0	B8h
SADEN0									B9h
SADEN1									BAh
C0M11C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	BBh
C0M12C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	BCh
C0M13C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	BDh
C0M14C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	BEh
C0M15C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	BFh
SCON1	SM0/FE_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI1	RI1	C0h
SBUF1									C1h
PMR	CD1	CD0	SWB	CTM	$4X/\overline{2X}$	ALEOFF	-	-	C4h
STATUS	PIP	HIP	LIP	-	SPTA1	SPRA1	SPTA0	SPRA0	C5h
MCON	IDM1	IDM0	CMA	-	PDCE3	PDCE2	PDCE1	PDCE0	C6h
TA									C7h
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$C/\overline{T2}$	$CP/\overline{RL2}$	C8h
T2MOD	-	-	-	D13T1	D13T2	-	T2OE	DCEN	C9h
RCAP2L									CAh
RCAP2H									CBh
TL2									CCh
TH2									CDh
COR	IRDACK	C1BPR7	C1BPR6	C0BPR7	C0BPR6	COD1	COD0	CLKOE	CEh
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р	D0h
MCNT0	LSHIFT	CSE	SCB	MAS4	MAS3	MAS2	MAS1	MAS0	D1h
MCNT1	MST	MOF	_	CLM	-	-	-	-	D2h
MA									D3h
MB									D4h
MC									D5h
C1RMS0									D6h
C1RMS1									D7h
WDCON	SMOD_1	POR	EPF1	PF1	WDIF	WTRF	EWT	RWT	D8h
C1TMA0									DEh
C1TMA1									DFh
ACC									E0h
C1C	ERIE	STIE	PDE	SIESTA	CRST	AUTOB	ERCS	SWINT	E3h
C1S	BUSOFF	CECE	WKS	RXS	TXS	ER2	ER1	ER0	E4h
C1IR	INTIN7	INTIN6	INTIN5	INTIN4	INTIN3	INTIN2	INTIN1	INTIN0	E5h
C1TE									E6h
C1RE									E7h
EIE	CANBIE	COIE	C1IE	EWDI	EX5	EX4	EX3	EX2	E8h
MXAX									EAh
C1M1C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	EBh

DS80C390 High-Speed Microcontroller User's Guide Supplement

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
C1M2C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	ECh
C1M3C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	EDh
C1M4C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	EEh
C1M5C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	EFh
В									F0h
C1M6C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	F3h
C1M7C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	F4h
C1M8C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	F5h
C1M9C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	F6h
C1M10C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	F7h
EIP	CANBIP	COIP	C1IP	PWDI	PX5	PX4	PX3	PX2	F8h
C1M11C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	FBh
C1M12C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	FCh
C1M13C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	FDh
C1M14C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	FEh
C1M15C	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	FFh

SPECIAL FUNCTION REGISTER RESET VALUES Table 4-2

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
P4	1	1	1	1	1	1	1	1	80h
SP	0	0	0	0	0	1	1	1	81h
DPL	0	0	0	0	0	0	0	0	82h
DPH	0	0	0	0	0	0	0	0	83h
DPL1	0	0	0	0	0	0	0	0	84h
DPH1	0	0	0	0	0	0	0	0	85h
DPS	0	0	0	0	0	1	0	0	86h
PCON	0	0	SPECIAL	SPECIAL	0	0	0	0	87h
TCON	0	0	0	0	0	0	0	0	88h
TMOD	0	0	0	0	0	0	0	0	89h
TL0	0	0	0	0	0	0	0	0	8Ah
TL1	0	0	0	0	0	0	0	0	8Bh
TH0	0	0	0	0	0	0	0	0	8Ch
TH1	0	0	0	0	0	0	0	0	8Dh
CKCON	0	0	0	0	0	0	0	1	8Eh
P1	1	1	1	1	1	1	1	1	90h
EXIF	0	0	0	0	SPECIAL	SPECIAL	SPECIAL	0	91h
P4CNT	1	0	1	1	1	1	1	1	92h
DPX	0	0	0	0	0	0	0	0	93h
DPX1	0	0	0	0	0	0	0	0	95h
C0RMS0	0	0	0	0	0	0	0	0	96h
C0RMS1	0	0	0	0	0	0	0	0	97h
SCON0	0	0	0	0	0	0	0	0	98h
SBUF0	0	0	0	0	0	0	0	0	99h
ESP	1	1	1	1	1	1	0	0	9Bh
AP	0	0	0	0	0	0	0	0	9Ch
ACON	1	1	1	1	1	0	0	0	9Dh
C0TMA0	0	0	0	0	0	0	0	0	9Eh
C0TMA1	0	0	0	0	0	0	0	0	9Fh
P2	1	1	1	1	1	1	1	1	A0h
P5	1	1	1	1	1	1	1	1	A1h

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
P5CNT	0	0	0	0	0	0	0	0	A2h
COC	0	0	0	0	1	0	0	1	A3h
COS	0	0	0	0	0	0	0	0	A4h
COIR	0	0	0	0	0	0	0	0	A5h
COTE	0	0	0	0	0	0	0	0	A6h
CORE	0	0	0	0	0	0	0	0	A7h
IE	0	0	0	0	0	0	0	0	A8h
SADDR0	0	0	0	0	0	0	0	0	A9h
SADDR1	0	0	0	0	0	0	0	0	AAh
C0M1C	0	0	0	0	0	0	0	0	ABh
C0M2C	0	0	0	0	0	0	0	0	ACh
C0M3C	0	0	0	0	0	0	0	0	ADh
C0M4C	0	0	0	0	0	0	0	0	AEh
C0M5C	0	0	0	0	0	0	0	0	AFh
P3	1	1	1	1	1	1	1	1	B0h
C0M6C	0	0	0	0	0	0	0	0	B3h
C0M7C	0	0	0	0	0	0	0	0	B4h
C0M8C	0	0	0	0	0	0	0	0	B5h
C0M9C	0	0	0	0	0	0	0	0	B6h
C0M10C	0	0	0	0	0	0	0	0	B7h
IP	1	0	0	0	0	0	0	0	B8h
SADEN0	0	0	0	0	0	0	0	0	B9h
SADEN1	0	0	0	0	0	0	0	0	BAh
C0M11C	0	0	0	0	0	0	0	0	BBh
C0M12C	0	0	0	0	0	0	0	0	BCh
C0M13C	0	0	0	0	0	0	0	0	BDh
C0M14C	0	0	0	0	0	0	0	0	BEh
C0M15C	0	0	0	0	0	0	0	0	BFh
SCON1	0	0	0	0	0	0	0	0	C0h
SBUF1	0	0	0	0	0	0	0	0	C1h
PMR	1	0	0	0	0	0	1	1	C4h
STATUS	0	0	0	1	0	0	0	0	C5h
MCON	0	0	0	1	0	0	0	0	C6h
TA	1	1	1	1	1	1	1	1	C7h
T2CON	0	0	0	0	0	0	0	0	C8h
T2MOD	1	1	1	0	0	1	0	0	C9h
RCAP2L	0	0	0	0	0	0	0	0	CAh
RCAP2H	0	0	0	0	0	0	0	0	CBh
TL2	0	0	0	0	0	0	0	0	CCh
TH2	0	0	0	0	0	0	0	0	CDh
COR	0	0	0	0	0	0	0	0	CEh
PSW	0	0	0	0	0	0	0	0	D0h
MCNT0	0	0	0	0	0	0	0	0	D1h
MCNT1	0	0	1	0	1	1	1	1	D2h
MA	0	0	0	0	0	0	0	0	D3h
MB	0	0	0	0	0	0	0	0	D4h
MC	0	0	0	0	0	0	0	0	D5h
CIRMSO	0	0	0	0	0	0	0	0	D6h
CIRMS1	0		0		0			0	D7h
WDCON	0	SPECIAL	0	SPECIAL	0	SPECIAL	SPECIAL	0	D8h
CITMA0	0	0	0	0	0	0	0	0	DEh
CITMA1	0	0	0	0	0	0	0	0	DFh
ACC	0	0	0	0	0	0	0	0	E0h
CIC	0	0	0	0	1	0	0	1	E3h

DS80C390 High-Speed Microcontroller User's Guide Supplement

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Address
C1S	0	0	0	0	0	0	0	0	E4h
C1IR	0	0	0	0	0	0	0	0	E5h
C1TE	0	0	0	0	0	0	0	0	E6h
C1RE	0	0	0	0	0	0	0	0	E7h
EIE	0	0	0	0	0	0	0	0	E8h
MXAX	0	0	0	0	0	0	0	0	EAh
C1M1C	0	0	0	0	0	0	0	0	EBh
C1M2C	0	0	0	0	0	0	0	0	ECh
C1M3C	0	0	0	0	0	0	0	0	EDh
C1M4C	0	0	0	0	0	0	0	0	EEh
C1M5C	0	0	0	0	0	0	0	0	EFh
В	0	0	0	0	0	0	0	0	F0h
C1M6C	0	0	0	0	0	0	0	0	F3h
C1M7C	0	0	0	0	0	0	0	0	F4h
C1M8C	0	0	0	0	0	0	0	0	F5h
C1M9C	0	0	0	0	0	0	0	0	F6h
C1M10C	0	0	0	0	0	0	0	0	F7h
EIP	0	0	0	0	0	0	0	0	F8h
C1M11C	0	0	0	0	0	0	0	0	FBh
C1M12C	0	0	0	0	0	0	0	0	FCh
C1M13C	0	0	0	0	0	0	0	0	FDh
C1M14C	0	0	0	0	0	0	0	0	FEh
C1M15C	0	0	0	0	0	0	0	0	FFh

Port 4 (P4)

	7	6	5	4	3	2	1	0	
SFR 80h	A19/P4.7	A18/P4.6	A17/P4.5	A18/P4.4	$\overline{\text{CE3}}/\text{P4.3}$	$\overline{\text{CE2}}/\text{P4.2}$	$\overline{\text{CE1}}/\text{P4.1}$	$\overline{\text{CE0}}/\text{P4.0}$	
	RW-0	RW-0	RW-0	RW-0	RW-1	RW-1	RW-1	RW-1	
	R=U	Inrestricted I	Read, W=U1	nrestricted V	Vrite, -n=Va	alue after Re	eset		
P4.7-0		Port 4. This have an alter below. The s pins is contr reflect the st interface fun programmed capacity. Th device to so The first opc asserted.	s port function mative function selection of olled via the ate of the co- actions will a l to a logic of e reset state that A19-A code fetch for	ons as a gen tion associat general I/O P4CNT(92 prresponding appear as 1 one before th of this regis 16 function a ollowing a re	eral-purpose ed with the or memory i h) register. I g port pin. Po when read. T are pin can be ter and the I as address li eset will the	e I/O port. In memory into interface fun Port pins con ort pins assig The associate e used in its P4CNT regis ines and \overline{CE} refore be at 0	addition, a erface descr action for the figured as 1 gned to men ed SFR bit r alternate fur ster will con $\overline{0} - \overline{CE3}$ are 00000h with	Il the pins ibed Port 4 I/O will nory nust be nction figure the active. $\overline{CE0}$	
A19 Bit 7]] 1	Program/Da P4CNT regin represent the	ata Memor ster is config e A19 memo	y Address 1 gured correc ory signal.	9. When thi tly, the corr	s bit is set to esponding d	o a logic one evice pin w	and the	
A18 Bit 6]] 1	Program/Da P4CNT regin represent the	ata Memor ster is config e A18 memo	y Address 1 gured correc ory signal.	8. When thi tly, the corr	s bit is set to esponding d	a logic one evice pin w	and the ill	
A17 Bit 5]] 1	Program/Da P4CNT regin represent the	ata Memory ster is config e A17 memo	y Address 1 gured correc ory signal.	7. When thi tly, the corr	s bit is set to esponding d	o a logic one evice pin w	and the and the	
A16 Bit 4]] 1	Program/Da P4CNT register Papresent the	ata Memory ster is config e A16 memo	y Address 1 gured correc ory signal.	6. When thi tly, the corr	s bit is set to esponding d	o a logic one evice pin w	and the	
CE3 Bit 3	Program Memory Chip Enable 3. When this bit is set to a logic one and the P4CNT register is configured correctly, the corresponding device pin will represent the $\overline{CE3}$ memory signal.								
CE2 Bit 2]	Program M P4CNT regin represent the	temory Chipster is configure $\overline{CE2}$ mem	p Enable 2. gured correc ory signal.	When this t tly, the corr	bit is set to a esponding d	logic one a evice pin w	nd the ill	
CE1 Bit 1]] 1	Program M P4CNT regin represent the	emory Chi ster is config $\overline{CE1}$ mem	p Enable 1. gured correc ory signal.	When this t tly, the corr	bit is set to a esponding d	logic one a evice pin w	nd the ill	
CE0 Bit 0]	Program M P4CNT regin represent the	temory Chipster is configure $\overline{CE0}$ mem	p Enable 0. gured correc ory signal.	When this t tly, the corr	oit is set to a esponding d	logic one a evice pin w	nd the ill	

Stack Po	inter (Sl	P)						
	7	6	5	4	3	2	1	0
SFR 81h	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-1	RW-1	RW-1

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SP.7-0Stack Pointer. This stack pointer identifies current location of the stack. The
stack pointer is incremented before every PUSH operation. This register defaults
to 07h after reset. When the 10-bit stack is enabled (SA=1), this register will be
combined with the extended stack pointer (ESP;9Bh) to form the 10-bit address.

Data Pointer Low 0 (DPL)

	7	6	5	4	3	2	1	0
SFR 82h	PDL.7	PDL.6	PDL.5	PDL.4	PDL.3	PDL.2	PDL.1	PDL.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPL.7-0Data Pointer Low 0. This register is the low byte of the standard 80C32 16-bitBits 7-0data pointer. DPL and DPH are used to point to non-scratchpad data RAM.

Data Pointer High 0 (DPH)

	7	6	5	4	3	2	1	0
SFR 83h	DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPH.7-0Data Pointer High 0. This register is the high byte of the standard 80C32 16-bitBits 7-0data pointer. DPL and DPH are used to point to non-scratchpad data RAM.

Data Pointer Low 1 (DPL1)

	7	6	5	4	3	2	1	0
SFR 84h	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DL1H.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPL1.7-0Data Pointer Low 1. This register is the low byte of the auxiliary 16-bit dataBits 7-0pointer. When the SEL bit (DPS.0) is set, DPL1 and DPH1 are used in place of
DPL and DPH during DPTR operations.

				0				11				
Data Poi	nter Hig	h 1 (DPH	1)									
	7	6	5	4	3	2	1	0				
SFR 85h	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0				
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0				
	D	T T , ', 1		TT / · / 1	xx · · · · · ·							
	K=	Unrestricted	I Read, W=	Unrestricted	write, -n=v	alue after R	eset					
DPH1.7-0		Data Poin	ter High 1	. This registe	r is the hig	h byte of the	auxiliary 16	-bit data				
Bits 7-0		pointer. W	/hen the SE	EL bit (DPS.0) is set, DP	L1 and DPH	1 are used in	place of				
		DPL and L	OPH during	DPIR opera	tions.							
Data Poi	nter Sel	ect (DPS))									
	7	6	5	4	3	2	1	0				
SFR 86h	ID1	ID0	TSL	0	0	1	0	SEL				
	RW-0	RW-0	RW-0	R-0	R-0	R-1	R-0	RW-0				
	R=	Unrestricted	l Read, W=	Unrestricted	Write, -n=V	/alue after R	eset					
			,		,							
ID1, ID0		Increment	t/Decreme	nt Function S	Select. The	ese bits define	e whether the	e INC				
Bits 7-6		DTPR instruction will increment or decrement the active data pointer as selected by the SEL bit.										
		ID1	ID0	SEL=0	SF	EL=1						
		0	0	Increment DP	TR In	crement DPT	`R1					
		0	1	Decrement D	PTR In	crement DPT	'R1					
		1	0	Increment DP	TR De	ecrement DP	ΓR1					
		1	1	Decrement D	PTR De	ecrement DP	ΓR1					
TSL		Taggle Sel	lect Enabl	• When set	this hit allo	ws the follow	ving five DP	TR-				
Bit 5		related inst	tructions to	toggle the SI	EL bit follo	wing executi	on of the	Î				
		instruction	. When TS	L=0, DPTR-r	elated instr	uctions will 1	not affect the	e state				
		of the SEL	bit. DPTR	-related instru	actions are:							
		INC DP	TR									
		MOV DP'	TR, #dat	ca16								
		MOVC A, MOVX @D	PTR, A	Λ.								
		MOVX A,	@DPTR									
Bits 4-1		Reserved.										
SEL		Data Poin	ter Select.	This bit sele	cts the activ	ve data pointe	er.					
Bit 0		0 = Instruc	tions that u	ise the DPTR	will use D	PL, DPH, DF	PX.					
		1= Instruct	tions that u	se the DPTR	will use DF	L1 and DPH	1, DPX1.					

Power C	ontrol (P	CON)			•			
	7	6	5	4	3	2	1	0
SFR 87h	SMOD_0	SMOD0	OFDF	ODFE	FG1	FG0	STOP	IDLE
	RW-0	RW-0	RW-0*	RW-0*	RW-0	RW-0	RW-0	RW-0
	R=Unre	stricted Read	d, W=Unre	estricted Wri	te, -n=Value	e after Reset	, *=See desc	cription
SMOD_0 Bit 7		Serial Port serial baud r	0 Baud Ra ate doublin	ate Doubler	Enable. The Serial Potential Potenti	nis bit enable ort 0.	es/disables t	ne
		0 = Serial I equation	Port 0 bau	d rate will	be that def	fined by bat	id rate gen	eration
		1 = Serial Po equation	ort 0 baud i	rate will be c	louble that c	lefined by ba	aud rate gen	eration
SMOD0 Bit 6		Framing Er SCON0.7 ar 0 = SCON0 SCON0	tror Detected SCON1 0.7 and S and SCON	tion Enable .7 bits. CON1.7 co [1 registers.	• This bit sont for the second s	elects function	on of the n defined f	or the
		1 = SCON0. respectiv	7 and SCC ve Serial Po	N1.7 are co ort.	nverted to the	he Framing I	Error (FE) fl	ag for the
OFDF Bit 5		Oscillator F was caused l approximate software. Th conditions:	Fail Detect by the dete ely 30 kHz is bit not a	Flag. When ction of the while the Ol litered (and n	n set, this bi crystal oscil FDE bit was 10 reset will	t indicates th lator frequents set. This bit be generate	hat the prece ncy falling b t must be cle d) under the	ding reset elow eared by following
		 OFDE=0 An oscil An oscil) lator halt a lator halt a	ssociated wi ssociated wi	th entering th running f	STOP mode from the inte	rnal ring osc	cillator.
OFDE Bit 4		Oscillator F generated an kHz. When t crystal falls	Fail Detect by time the the OFDE below 30 k	Enable. Wilcrystal oscil bit is cleared Hz. The OF	nen the OFD llator freque l to a logic (DE is cleare	DE=1, a syste ency falls bel), no reset w ed to a logic	em reset will ow approxin ill be issued 0 by any res	be be be nately 30 when the bet source.
GF1 Bit 3		General Put for software	rpose Use control.	r Flag 1. Th	nis is a bit-ao	ddressable, g	general-purp	ose flag
GF0 Bit 2		General Put for software	rpose Use control.	r Flag 0. Th	nis is a bit-ao	ddressable, g	general-purp	ose flag
STOP Bit 1		Stop Mode oscillator, ar will always device in an	Select. Send internal be read as undefined	tting this bit timers, and a 0. Setting state.	will stop pr place the CI this bit whi	rogram exect PU in a low-j le the IDLE=	ution, halt th power mode =1 will place	e CPU . This bit the
IDLE Bit 0		Idle Mode S oscillator, tin as a 0.	Select. Set mers, seria	ting this bit l ports, and i	will stop pro interrupts ac	ogram execu tive. This b	tion but leav it will alway	ve the CPU vs be read

Timer/Co	unter C	ontrol (T	CON)						
	7	6	5	4	3	2	1	0	
SFR 88h	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	
	R=	Unrestricted	Read, W=U	Inrestricted	Write, -n=V	alue after Re	eset		
TF1 Bit 7		Timer 1 O maximum of software ar interrupt se	verflow Fla count as def nd is automa ervice routin	ng. This bit if ined by the outically clear e.	indicates wh current mode ed when the	en Timer 1 e. This bit c CPU vector	overflows it an be cleare rs to the Tim	s d by er 1	
	0 = No Timer 1 overflow has been detected. 1 = Timer 1 has overflowed its maximum count.								
TR1 Bit 6	Timer 1 Run Control. This bit enables/disables the operation of Timer 1. 0 = Timer 1 is halted. 1 = Timer 1 is enabled.								
TF0 Bit 5	Timer 0 Overflow Flag. This bit indicates when Timer 0 overflows its maximum count as defined by the current mode. This bit can be cleared by software and is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine or by software. 0 = No Timer 0 overflow has been detected. 1 = Timer 0 has overflowed its maximum count							s d by er 0	
TR0 Bit 4		Timer 0 R 0 = Timer (1 = Timer (un Control) is halted.) is enabled.	• This bit en	ables/disabl	es the opera	tion of Time	er 0.	
IE1 Bit 3		Interrupt by IT1 is d the start of inversely re	1 Edge Det etected. If I the Externa eflect the sta	ect. This bit $T1=1$, this bit I later the T1 this but the the TN attended to the \overline{IN}	t is set when it will rema service rout Tl pin.	an edge/lev in set until c ine. If IT1=	el of the typ leared in sof 0, this bit w	e defined tware or ill	
IT1 Bit 2		Interrupt or level trig	1 Type Sele	e ct. This bit rupts.	selects when	ther the \overline{INT}	1 pin will d	etect edge	
		$0 = \overline{INT1} i$ $1 = \overline{INT1} i$	s level trigg s edge trigg	ered. ered.					
IE0 Bit 1		Interrupt by ITO is d the start of inversely re	0 Edge Deta etected. If I the Externa eflect the sta	ect. This bit T0=1, this b 1 Interrupt 0 ate of the IN	is set when it will remains service rout T0 pin.	an edge/lev in set until c ine. If IT0=	el of the typ leared in sof 0, this bit w	e defined tware or ill	
IT0 Bit 0		Interrupt or level trig $0 = \overline{INT0}$ $1 = \overline{INT0}$	0 Type Sele ggered intern is level trigg is edge trigg	ect. This bit rupts. gered. gered.	selects when	ther the \overline{INT}	0 pin will d	etect edge	

Timer Mo	ode Con	trol (TMC)D)						
	7	6	5	4	3	2	1	0	
SFR 89h	GATE	C/\overline{T}	M1	M0	GATE	C/\overline{T}	M1	M0	
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	
	R=	Unrestricted	Read, W=U	Unrestricted V	Write, -n=V	alue after Re	eset		
GATE Bit 7		Timer 1 G increment.	ate Control	I. This bit er	nable/disable	es the ability	of Timer 1	to	
		$0 = \text{Timer 1}$ will clock when TR1=1, regardless of the state of $\overline{\text{INT1}}$. $1 = \text{Timer 1}$ will clock only when TR1=1 and $\overline{\text{INT1}}=1$. Timer 1 Counter/Timer Select							
C/\overline{T}	T Timer 1 Counter/Timer Select.								
Bit 6		0 = Timer 1 is incremented by internal clocks. 1 = Timer 1 is incremented by pulses on T1 when TR1 (TCON.6) is 1.							
M1, M0 Bits 5-4		Timer 1 Mode Select. These bits select the operating mode of Timer 1.M1M0Mode00Mode 0: 8 bits with 5-bit prescale01Mode 1: 16 bits10Mode 2: 8 bits with auto-reload11Mode 3: Timer 1 is halted, but holds its count							
GATE Bit 3		Timer 0 G increment.	ate Contro	I. This bit er	nables/disab	les that abili	ty of Timer	0 to	
C/T		0 = Timer 1 = Timer Timer 0 C	0 will clock 0 will clock ounter/Tim	when TR0= only when T her Select.	1, regardless TR0=1 and Ī	s of the state $\overline{\text{INT0}} = 1$.	of $\overline{\text{INT0}}$.		
Bit 2		0 = Timer 1 = Timer	incremented 1 is increme	by internal nted by puls	clocks. es on T0 wh	en TR0 (TC	ON.4) is 1.		
M1, M0 Bits 1-0		Timer 0 Mode Select. These bits select the operating mode of Timer 0. When Timer 0 is in mode 3, TL0 is started/stopped by TR0 and TH0 is started/stopped by TR1. Run control from Timer 1 is then provided via the Timer 1 mode selection.							
		M1 0	N C	MO Mod) N	e Iode 0: 8 bit	s with 5-bit	prescale		
		0	1	N N	Iode 1: 16 b	its	ralaad		
		1	1	N N	Aode 3: Tim	er 0 is two 8	bit counters	s.	

Timer 0 l	_SB (TL())						
	7	6	5	4	3	2	1	0
SFR 8Ah	TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0
	R=	Unrestricted	Read, W=U	Inrestricted	Write, -n=V	alue after Re	eset	
TL0.7-0		Timer 0 L	SB. This re	gister contai	ns the least	significant b	yte of Timer	r 0.
Bits 7-0								
Timer 1 I	_SB (TL1	I)						
	7	6	5	4	3	2	1	0
SFR 8Bh	TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0
	R=	Unrestricted	Read, W=U	Inrestricted	Write, -n=V	alue after Re	eset	
TL1.7-0		Timer 1 L	SB. This re	gister contai	ns the least	significant b	yte of Time	r 1.

Timer 0 MSB (TH0)

Bits 7-0

	7	6	5	4	3	2	1	0
SFR 8Ch	TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TH0.7-0Timer 0 MSB. This register contains the most significant byte of Timer 0.Bits 7-0

Timer 1 MSB (TH1)

	7	6	5	4	3	2	1	0
SFR 8Dh	TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TH1.7-0Timer 1 MSB. This register contains the most significant byte of Timer 1.Bits 7-0

				0				11
Clock Co	ontrol (C	KCON)						
	7	6	5	4	3	2	1	0
SFR 8Eh	WD1	WD0	T2M	T1M	T0M	MD2	MD1	MD0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-1
	р	I I was stui sto d	Deed W/I	Tu un atui ata d	Waite a M	alua aftar D		
	K=	Unrestricted	i kead, w=t	Inrestricted	write, $-n = v$	alue alter Re	eset	
WD1, WD	0	Watchdog	g Timer Mo	de Select 1-	0. These bit	s select the v	watchdog tir	ner time-
Bits 7-6		out period,	which deter	rmines the ti	ming of the	watchdog ti	mer interrup	t and the
		watchdog	timer reset.		C	C	1	
		WD1	WD0	Interr	upt time-ou	t	Reset time	e-out
		0	0	2^{17} sy	stem clocks	2^{17}	+ 512 syste	m clocks
		0	1	2^{20} sy	stem clocks	2^{20}	+ 512 syste	m clocks
		1	0	2^{23} sy	stem clocks	2^{23}	+ 512 syste	m clocks
		1	1	2^{26} sy	stem clocks	2^{26}	+ 512 syste	m clocks
		The system	n clock relat	es to the exte	ernal clock a	s follows:		
			Clock Mo	ode	External cl	ocks per sy	stem clock	
		Freq	uency Multi	plier (4x)		0.25		
		Freq	uency Multi	plier (2x)		0.5		
		D	Divide by	4 • M 1				
		Powe	er Managem	ent Mode		256		
T2M		Timer 2 C	lock Select.	This bit co	ntrols the div	vision of the	e system cloo	k that
Bit 5		drives Tim	er 2. This bi	t has no effe	ect when the	timer is in b	aud rate ger	ierator or
		clock outp	ut modes. C	learing this b	oit to 0 main	tains 80C32	compatibili	ty. This bit
		has no effe	ect on instruc	ction cycle ti	iming.			
		0 = Timer	2 uses a divi	de by 12 of	the crystal f	requency.		
		1 = Timer	2 uses a divi	de by 4 of th	he crystal fre	equency.		
T1M		Timer 1 C	lock Select.	This bit co	ntrols the div	vision of the	system cloc	k that
Bit 4		drives Tim	er 1. Cleari	ng this bit to	0 maintains	s 80C32 con	npatibility.	This bit
		has no effe	ect on instruc	ction cycle ti	iming.			
		0 = Timer	1 uses a divi	de by 12 of	the crystal f	requency.		
		1 = Timer	1 uses a divi	de by 4 of th	he crystal fre	equency.		
TOM		Timer 0 C	lock Select.	This bit cor	ntrols the div	vision of the	system cloc	k that
Bit 3		drives Tim	er 0. Cleari	ng this bit to	0 maintains	s 80C32 con	npatibility.	This bit
		has no effe	ect on instruc	ction cycle ti	iming.			
		0 = Timer	0 uses a divi	ide by 12 of	the crystal f	requency.		
		1 = Timer	0 uses a divi	de by 4 of th	he crystal fre	equency.		

MD2, MD1, MD0Stretch MOVX Select 2-0. These bits select the time by which external MOVX
cycles are to be stretched. This allows slower memory or peripherals to be
accessed without using ports or manual software intervention. The \overline{RD} or \overline{WR}
strobe will be stretched by the specified interval, which will be transparent to the
software except for the increased time to execute to MOVX instruction. All
internal MOVX instructions are performed at the 2 machine cycle rate.

MD2	MD1	MD0	Stretch Value	MOVX Duration
0	0	0	0	2 Machine Cycles
0	0	1	1	3 Machine Cycles (reset default)
0	1	0	2	4 Machine Cycles
0	1	1	3	5 Machine Cycles
1	0	0	4	9 Machine Cycles
1	0	1	5	10 Machine Cycles
1	1	0	6	11 Machine Cycles
1	1	1	7	12 Machine Cycles

Port 1 (P	1)									
,	7	6	5	4	3	2	1	0		
SFR 90h	P1.7	P1.6	P1.7	P1.4	P1.3	P1.2	P1.1	P1.0		
	INT5	INT4	INT3	INT2	TXD1	RXD1	T2EX	T2		
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-1		
	R=	Unrestricted	Read, W=U	Unrestricted `	Write, -n=V	alue after Re	eset			
P1.7-0 Bits 7-0		General P multiplexe (when the have an alt to the 80C32, other SFRs pin can be	urpose I/O d address bu MUX pin=0 ernative fun 32 architectu but not the s. The assocused in its a	Port 1. This is (when the 0). When ser ction listed b ure. The Tin 80C31. Eac iated Port 1 lternate func	s register fun \overline{MUX} pin= rving as a ge pelow. P1.2 her 2 function h of the fun- latch bit mu- tion capacit	nctions as th (1) or a gene (neral purpos) -7 contain fu ons on pins F (ctions is con st contain a y.	e A0-A7 of ral purpose se I/O port a unctions that P1.1-0 are av trolled by se logic one be	the non- I/O port Il the pins are new railable on everal fore the		
INT5 Bit 7		External I 5 if enable	External Interrupt 5. A falling edge on this pin will cause an external interrupt 5 if enabled.							
INT4 Bit 6		External I if enabled.	nterrupt 4.	A rising ed	ge on this pi	n will cause	an external	interrupt 4		
INT3 Bit 5		External I 3 if enable	nterrupt 3. d.	A falling ed	lge on this p	oin will caus	e an externa	l interrupt		
INT2 Bit 4		External I if enabled.	nterrupt 2.	A rising ed	ge on this pi	n will cause	an external	interrupt 2		
TXD1 Bit 3		Serial Por modes 1, 2	t 1 Transmin, 3 and emit	it. This pin s the synchro	transmits the	e serial port k in serial po	1 data in ser ort mode 0.	ial port		
RXD1 Bit 2		Serial Por modes 1, 2	t 1 Receive. , 3 and is a l	This pin re pi-directiona	ceives the se l data transf	erial port 1 d er pin in seri	lata in serial ial port mod	port e 0.		
T2EX Bit 1		Timer 2 C value in the EXEN2 (T will reload enabled by	apture/Rele e T2 register 2CON.3). W the timer 2 EXEN2 (T2	bad Trigger rs to be trans When in auto- registers wit 2CON.3).	• A 1 to 0 tr ferred into t –reload mod h the value	ansition on the capture related to the capture related to the capture related to the capture related to the capture of the related to the capture of the related to the rel	this pin will egisters if er ansition on and RCAP2	cause the abled by this pin H if		
T2 Bit 0		Timer 2 E increment	xternal Inp or decremen	ut. A 1 to 0 at depending	transition o on the time	n this pin wi r configurati	ill cause tim on.	er 2		

External	Interrup	ot Flag (E	XIF)					
	7	6	5	4	3	2	1	0
SFR 91h	IE5	IE4	IE3	IE2	CKRY	RGMD	RGSL	BGS
	RW-0	RW-0	RW-0	RW-0	R-*	R-*	RW-*	RT-0
	R=Unre	estricted Rea -n	ad, W=Unre =Value afte	stricted Writ r Reset, *=S	e, T=Timed ee descripti	Access Wri on	te Only	
IE5 Bit 7		External l INT5. This will cause	nterrupt 5 bit must be an interrupt	Flag. This b cleared mar if enabled.	it will be set ually by sof	when a falli tware. Settir	ing edge is d ng this bit in	letected on software
IE4 Bit 6		External I INT4. This will cause	Interrupt 4 s bit must be an interrupt	Flag. This b cleared mar if enabled.	it will be set nually by sol	when a risin ftware. Settin	ng edge is de ng this bit in	etected on software
IE3 Bit 5	External Interrupt 3 Flag. This bit will be set when a falling edge is detected on $\overline{INT3}$ This bit must be cleared manually by software. Setting this bit in software will cause an interrupt if enabled.							
IE2 Bit 4		External I INT2. This will cause	Interrupt 2 s bit must be an interrupt	Flag. This b cleared man if enabled.	it will be set nually by sol	when a risin ftware. Settin	ng edge is de ng this bit in	software
CKRY Bit 3		Clock Rea used by the CKRY=0 i counter ha register is o CKRY is s multiplied each time t	dy. The Ck e crystal osc indicates the s completed changed from et, the lock crystal clock the crystal o	KRY bit indi- illator and th start-up del- . This bit is c m low to hig out is remove k as a system scillator is re	cates the sta e crystal clo ay is still co cleared each h to start the ed on the CE a clock source started whe	tus of the sta ock multiplie unting. Whe time the CT crystal mul D1, CD0 bits ce. This statu n exiting Sto	rt-up period or warm-up p n the CKRY M bit in the tiplier. Once to select the s bit is also op mode.	delay beriod. =1 the PMR e the cleared
RGMD Bit 2		Ring Mod device. Th other form	e Status. T nis bit is clea s of reset.	his bit indica red to 0 afte	tes the curre r a power-or	ent clock sound reset, and u	rce for the inchanged b	y all
		0 = Device 1 = Device	e is operating is operating	g from the ex g from the rin	ternal crystang oscillator	al or oscillat	or.	

RGSL Bit 1	 Ring Oscillator Select. This bit selects the clock source following a resume from Stop mode. Using the ring oscillator to resume from Stop mode allows almost instantaneous start-up. This bit is cleared to 0 after a power-on reset, and unchanged by all other forms of reset. The state of this bit will be undefined on devices which do not incorporate a ring oscillator. 0 = The device will hold operation until the crystal oscillator has warmed-up. 1 = The device will begin operating from the ring oscillator, and when the crystal warm-up is complete, will switch to the clock source indicated by the XT/RG bit.
BGS Bit 0	 Band-gap Select. This bit enables/disables the band-gap reference during Stop mode. Disabling the band-gap reference provides significant power savings in Stop mode, but sacrifices the ability to perform a power fail interrupt or powerfail reset while stopped. This bit can only be modified with a Timed Access procedure. 0 =The band-gap reference is disabled in Stop mode but will function during normal operation. 1 = The band-gap reference will operate in Stop mode.

Port 4 Co	ntrol R	egister (P	4CNT)								
	7	6	5	4	3	2	1	0			
SFR 92h	1	SBCAN	P4CNT.5	P4CNT.4	P4CNT.3	P4CNT.2	P4CNT.1	P4CNT.0			
	R-1	RT-0	RT-1	RT-1	RT-1	RT-1	RT-1	RT-1			
	R=Un	restricted Rea	ad, T=Timeo	d Access W1	ite Only, -n=	=Value after	Reset				
P4.7-0] 1 2	Port 4 Contr function of Po alternate func a logic one be	ol Register. ort 4. Progra tions of Port	This register mming this t t 4. The asso can be used	er controls the register as sh ciated Port 4 in its alterna	ne alternate a nown below 4 SFR bit mu ate function	addressing r will assign ust be progra capacity.	nodes the ammed to			
Bit 7	J	Reserved									
SBCAN Bit 6	((1 5	Single Bus C C1RX) to P5. (C0TX and C receive/transmissingle "super"	AN. Setting 1 and drives 1TX). SBCA nit through t ' CAN modu	this bit com P5.0 with the AN=0 disable heir respection the with 30 r	nects both C he logical Al es the featur ive bus pins. nessage cent	AN receive ND of both (e and allows This can be ers.	inputs (COR CAN transm s the CAN n s used to crea	X and hit outputs hodules to ate a			
P4CNT.5-	Γ.5- Port Pin P4.7-P4.4 Configuration Control Bits										
P4CNT.3		Various settings of bits 5-0 will configure the Chip Enable and A19-A16 address signals of Port 4. $\overline{CE0} - \overline{CE3}$ can be individually configured as program or data memory, via the MCON SFR. When $\overline{CE0} - \overline{CE3}$ are converted from program to data memory, the respective $\overline{PCE0} - \overline{PCE3}$ will be disabled. The number of external address lines (A19-A16) enabled by the P4CNT.5 - P4CNT.3 control bits establishes the internally decoded range for each program chip enable ($\overline{PCE0} - \overline{PCE3}$). When the external address bus is limited to A15-A0, the chip									
			•	Port 4 I	Pin Function	1	Max. N	Memory			
		P4CNT.5-3	P4.7	P4.6	P4.5	P4.4	Size p	er CEx			
		000 I/O I/O I/O J/O 32 kbytes 100 I/O I/O I/O A16 128 kbytes 101 I/O I/O A17 A16 256 kbytes 110 I/O A18 A17 A16 512 kbytes 111 A19 A18 A17 A16 1 Mbytes									
P4CNT.2- P4CNT.0	Port Pin P4.3-P4.0 Configuration Control Bits										
					Port 4 P	in Function	l				
		P4CNT.2-() P4	4.3	P4.2	P4.1	L	P4.0			
		000	I/	/U /O	I/O I/O			$\frac{I/O}{CEO}$			
		100	I/ I/	/0	I/O	$\frac{1}{CE1}$		$\frac{CE0}{CE0}$			
		110	I/	0	$\frac{1}{CE2}$	$\frac{CE1}{CE1}$		$\frac{CEO}{CEO}$			
		111	\overline{C}	E3	$\overline{CE2}$	$\frac{CE1}{CE1}$		$\overline{CE0}$			

Data Pointer Extended Register 0 (DPX)												
	7	6	5	4	3	2	1	0				
SFR 93h												
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0				
	R=I	Unrestricted	Read. W=U	Inrestricted	Writen=V	alue after Re	eset					

DPL.7-0Data Pointer Extended Register 0. This register contains the high-order byte ofBits 7-0the 22-bit address (or 23-bit address when CMA=1) when performing operations
with Data Pointer 0. This register is ignored when addressing data memory in the
16-bit addressing mode.

Data Pointer Extended Register 1 (DPX1)

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

DPL.7-0Data Pointer Extended Register 1. This register contains the high-order byte ofBits 7-0the 22-bit address (or 23-bit address when CMA=1) when performing operations
with Data Pointer 1. This register is ignored when addressing data memory in the
16-bit addressing mode.

			DSOUC	.590 mgn-5			sei s Oulue S	supplem		
CAN 0 Red	ceive l	Message S 6	tored R	egister 0		D) 2	1	0		
SFR 96h	,		5		5	_				
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R- 0		
		R=U	nrestricted	l Read, -n=V	alue after Re	eset				
		CAN 0 Reco CAN 0 mess since the lass has been rec automaticall conjunction centers.	eive Messa sage center t read of th eived and y cleared t with the C	age Stored I rs 1-8 have s his register. A stored for th to 00h when CORMS1 regi	Register 0. The second	This register received and n a location center. This egister shou tain the stat	r indicates w d stored a me indicates a r register is ld always be us of all mes	hich of essage message read in esage		
C 0RMS0.7 Bit 7		Message Center 8, Message Received and Stored								
C0RMS0.6 Bit 6		Message Ce	Message Center 7, Message Received and Stored							
C0RMS0.5 Bit 5		Message Ce	nter 6, M	essage Rece	ived and Sto	ored				
C0RMS0.4 Bit 4		Message Ce	nter 5, M	essage Rece	ived and St	ored				
C0RMS0.3 Bit 3		Message Ce	nter 4, M	essage Rece	ived and Sto	ored				
C0RMS0.2 Bit 2		Message Ce	nter 3, M	essage Rece	ived and Sto	ored				
C0RMS0.1 Bit 1		Message Ce	nter 2, M	essage Rece	ived and Sto	ored				
C0RMS0.0 Bit 0		Message Ce	nter 1, M	essage Rece	ived and St	ored				

CAN 0 Red	eive l	Message S	tored R	egister 1	(CORMS ²	1)						
	7	6	5	4	3	2	1	0				
SFR 97h												
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R- 0				
		R=U	nrestricted	l Read, -n=V	alue after Re	eset						
		CAN 0 Rece CAN 0 mess since the last has been rec automaticall conjunction centers.	eive Messa age center t read of the eived and y cleared the with the C	age Stored I rs 9-15 have his register. A stored for th to 00h when CORMS0 regi	Register 1. T successfully A logic one i at message c read. This re ister to ascer	This register received an n a location center. This egister shou tain the stat	indicates wh nd stored a m indicates a r register is ld always be us of all mes	nich of nessage message read in ssage				
Bit 7		Reserved	Reserved									
C0RMS1.6 Bit 6		Message Ce	Message Center 15, Message Received and Stored									
C0RMS1.5 Bit 5		Message Ce	nter 14, N	Aessage Rec	eived and S	tored						
C0RMS1.4 Bit 4		Message Ce	nter 13, N	Aessage Rec	eived and S	tored						
C0RMS1.3 Bit 3		Message Ce	nter 12, N	Aessage Rec	eived and S	tored						
C0RMS1.2 Bit 2		Message Ce	nter 11, N	Aessage Rec	eived and S	tored						
C0RMS1.1 Bit 1		Message Ce	nter 10, N	Aessage Rec	eived and S	tored						
CORMS1.0		Message Ce	nter 9, M	essage Rece	ived and St	ored						

Bit 0

Serial Po	ort 0 Co	ntrol	(SC	ONO)						
	7		6	5	4	3	2	1	0	
SFR 98h	SM0/FE	E_0 S	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	T1_0	R1_0	
	RW-()	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	
	R	=Unres	stricted	Read, W=	Unrestricted `	Write, -n=Val	ue after Re	set		
SM0-2 Bits 7-5		Seri SM(i al Port 0 and Sl	Mode Th M2_0 bits	nese bits contr have seconda	rol the mode only functions a	of serial por as shown be	t 0. In addi clow.	tion the	
	SM0	SM1	SM2	MODE	FUNC	CTION	LENGTH	[PE]	RIOD	
	0	0	0	0	Synch	ironous	8 bits	12	t _{CLK}	
	0	0	1	0	Synch	ronous	8 bits	4	t _{CLK}	
	0	1	X	1	Asyncl	hronous	10 bits	Time baud rat	r 1 or 2 e equation	
	1	0	0	2	Asyncl	hronous	11 bits	64 t _{CLK} (32 t _{CLK} (64 t _{CLK} (SMOD=0) 32 t _{CLK} (SMOD=1)	
	1	0	1	1	Asynchronous w/ 11 bits 64 t _{Cl} Multiprocessor communication 12 bits 32 t _{Cl}			64 t _{CLK} (32 t _{CLK} (64 t _{CLK} (SMOD=0) 32 t _{CLK} (SMOD=1)	
	1	1	0	3	Asynchronous 11 bits Tir baud r				r 1 or 2 e equation	
	1	1	1	3	Asynchr Multiprocessor	conous w/	11 bits	Time baud rat	r 1 or 2 e equation	
SM0/FE_0 Bit 7)	Fra sele be s clea affe inter	ming E ct the rr et upon red in s ct the so rnally th	rror Flag node for se detection oftware. C erial port r ne data for	• When SMC rial port 0. W of an invalid once the SMO node settings. bits SM0 and	DD0 (PCON.6 Then SMOD0 stop bit. Whe D0 bit is set, Although acc I FE are store)=0, this bit (PCON.6)= n used as F modificatio cessed from d in differen	t (SM0) is u 1, this bit (E, this bit n ons to this bit the same r ont locations	sed to FE) will nust be it will not egister,	
SM1_0 Bit 6		Noa	alterna	te functio	n.					
SM2_0 Bit 5	 Multiple CPU Communications. The function of this bit is dependent on the serial port 0 mode. Mode 0: Selects 12 t_{CLK} or 4 t_{CLK} period for synchronous serial port 0 data transfers. 									
		IVIO	red red	nen set, re ceived.	ception is ign	iorea (KI_U IS	not set) if i	nvana stop	oit	

Mode 2/3: When this bit is set, multiprocessor communications are enabled in modes 2 and 3. This will prevent the RI_0 bit from being set, and an interrupt being asserted, if the 9th bit received is not 1.

REN_0	Receiver Enable. This bit enable/disables the serial port 0 receiver shift register.
Bit 4	0 = Serial port 0 reception disabled.
	1= Serial port 0 receiver enabled (modes 1, 2, 3). Initiate synchronous reception

(mode 0).

TB8_0 Bit 3	9th Transmission Bit State. This bit defines the state of the 9 th transmission bit in serial port 0 modes 2 and 3.
RB8_0 Bit 2	9th Received Bit State. This bit identifies that state of the 9 th reception bit of received data in serial port 0 modes 2 and 3. In serial port mode 1, when SM2_0=0, RB8_0 is the state of the stop bit. RB8_0 is not used in mode 0.
TI_0 Bit 1	Transmitter Interrupt Flag. This bit indicates that data in the serial port 0 buffer has been completely shifted out. In serial port mode 0, TI_0 is set at the end of the 8 th data bit. In all other modes, this bit is set at the end of the last data bit. This bit must be manually cleared by software.
RI_0 Bit 0	Receiver Interrupt Flag. This bit indicates that a byte of data has been received in the serial port 0 buffer. In serial port mode 0, RI_0 is set at the end of the 8 th bit. In serial port mode 1, RI_0 is set after the last sample of the incoming stop bit subject to the state of SM2_0. In modes 2 and 3, RI_0 is set after the last sample of RB8_0. This bit must be manually cleared by software.

Serial Data Buffer 0 (SBUF0)

	7	6	5	4	3	2	1	0
SFR 99h	SBUF0.7	SBUF0.6	SBUF0.5	SBUF0.4	SBUF0.3	SBUF0.2	SBUF0.1	SBUF0.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SBUF0.7-0Serial Data Buffer 0. Data for serial port 0 is read from or written to thisBits 7-0location. The serial transmit and receive buffers are separate registers, but both
are addressed at this location.

Extended Stack Pointer Register (ESP)

	7	6	5	4	3	2	1	0
SFR 9Bh	1	1	1	1	1	1	ESP1	ESP0
	R-1	R-1	R-1	R-1	R-1	R-1	RW-0	RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7-2 Reserved

ESP.1-0Extended Stack Pointer. This register contains the upper 2 bits of the 10-bitBits 1-0stack pointer. When the SA bit is set, any overflow of the SP from FFh to 00hwill increment the ESP by 1, and any underflow of the SP from 00h to FFh willdecrement the ESP by 1. The ESP register is ignored when SA = 0, but is stillread/write accessible. Configuring the 4K block of SRAM as program and/or datamemory (IDM1,IDM0=11b) will disable the extended stack mode. Internal logicwill take into consideration the programming conditions imposed by the SA,IDM1 and IDM0 bits within the MCON register, to allow access to the 1K StackMemory. See ACON register for more detail.

Address Page Register (AP) 6 5 4 3 2 1 0 7 SFR 9Ch RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset **AP.7-0** Address Page Register. The AP Register (AP) supports extended program and data addressing (>64KB) capabilities in the 22-bit paged addressing mode (AM1, Bits 7-0 AM0 = 01b), and is fully compatible with the original 8052 16-bit addressing mode. When executing LJMP, ACALL, or LCALL instructions in paged

addressing mode, the microcontroller automatically loads bits 23:16 of the program counter with the contents of the AP register to calculate the new CALL or JMP address. The AP register affects only the previous instruction, and is not incremented during a program counter rollover from FFFFh to 0000h. This register is a general purpose SFR when not operating in 22-bit paged mode.

Executing interrupts while in 22-bit paged addressing mode pushes the three bytes of the program counter onto the stack, but not the AP register itself. The AP register should be saved at the beginning of the ISR if it will be modified inside the ISR. Following the execution of a RETI instruction, the processor will automatically reload the entire 24 value of the PC with the original address from the stack, again leaving the contents of the AP register unchanged.

Address Control Register (ACON)

	7	6	5	4	3	2	1	0			
SFR 9Dh	1	1	1	1	1	SA	AM1	AM0			
	R-1	R-1	R-1	R-1	R-1	RT-0	RT-0	RT-0			
	R=Uni	restricted Re	ad, T=Time	d Access W	rite Only, -n	=Value after	r Reset				
Bits 7-3		Reserved									
SA Bit 2		 Extended Stack Address Mode Enable. This bit can only be modified via the Timed Access procedure. 0 = All instructions will utilize the traditional 8-bit 8051 stack pointer (SP;81h). 1 = All instructions will utilize the 10-bit stack pointer formed by concatenating the 2 least significant bits of the ESP register with the SP register. Lower 1 KB of internal MOVX memory is used as the stack when this bit is set. This bit cannot be set while IDM1:IDM0=11b. 									
AM1, AM0		Address M	Iode Contro	ol bits. Thes	e bits establ	ish the addre	essing mode	for the			
Bits 1-0		device. The	ese bits can	only be mod	ified via the	Timed Acc	ess procedui	e.			
		AM1	AM0	Addressin	ng Mode						
		0	0	16-bit Add	lressing Mo	de					
		0	1								
		1	Х	22-bit Cor	tiguous Ado	lressing Mo	de				

CAN 0 Transmit Message Acknowledgement Register 0 (C0TMA0)										
	7	6	5	4	3	2	1	0		
SFR 9Eh										
	R-0									

R=Unrestricted Read, -n=Value after Reset

CAN 0 Transmit Message Acknowledgement Register 0. This register indicates which of CAN 0 message centers 1-8 have successfully transmitted a message since the last read of this register. A logic one in a location indicates a message has been transmitted from that message center. This register is automatically cleared to 00h when read. This register should always be read in conjunction with the C0TMA1 register to ascertain the status of all message centers.

C0TMA0.7 Bit 7	Message Center 8, Message Transmitted
C0TMA0.6 Bit 6	Message Center 7, Message Transmitted
C0TMA0.5 Bit 5	Message Center 6, Message Transmitted
C0TMA0.4 Bit 4	Message Center 5, Message Transmitted
C0TMA0.3 Bit 3	Message Center 4, Message Transmitted
C0TMA0.2 Bit 2	Message Center 3, Message Transmitted
C0TMA0.1 Bit 1	Message Center 2, Message Transmitted
C0TMA0.0 Bit 0	Message Center 1, Message Transmitted

CAN 0 Transmit Message Acknowledgement Register 1 (C0TMA1)								
	7	6	5	4	3	2	1	0
SFR 9Fh								
	R-0							

R=Unrestricted Read, -n=Value after Reset

CAN 0 Transmit Message Acknowledgement Register 1. This register indicates which of CAN 0 message centers 9-15 have successfully transmitted a message since the last read of this register. A logic one in a location indicates a message has been transmitted for that message center. This register is automatically cleared to 00h when read. This register should always be read in conjunction with the C0TMA0 register to ascertain the status of all message centers.

Bit 7	Reserved
C0TMA1.6 Bit 6	Message Center 15, Message Transmitted
C0TMA1.5 Bit 5	Message Center 14, Message Transmitted
C0TMA1.4 Bit 4	Message Center 13, Message Transmitted
C0TMA1.3 Bit 3	Message Center 12, Message Transmitted
C0TMA1.2 Bit 2	Message Center 11, Message Transmitted
C0TMA1.1 Bit 1	Message Center 10, Message Transmitted
C0TMA1.0 Bit 0	Message Center 9, Message Transmitted

	Z)							
	7	6	5	4	3	2	1	0
SFR A0h	A15/P2.7	A14/P2.6	A13/P2.5	A12/P2.4	A11/P2.3	A10/P2.2	A9/P2.1	A8/P2.0
	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1
R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset								

P2.7-0 Port 2. The Port 2 pins function as an address bus during external memory Bits 7-0 accesses, and a general purpose I/O port when executing code memory from the internal 4KB SRAM (IDM1,IDM0 = 00b). When executing programs from the internal 4KB SRAM, the contents of this SFR will be driven onto the Port 2 pins. When executing programs from external memory, writes to P2 will have no effect on the state of the Port 2 pins (except during register-indirect MOVX operations).

When executing register-indirect instructions such as MOVX A, @R1, this register supplies the address MSB during data memory operations.

Port 5 (P	5)								
-	7	6	5	4	3	2	1	0	
SFR A1h	P5.7	P5.6	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0	
	PCE3	$\overline{\text{PCE2}}$	PCE1	PCE0	C1TX	C1RX	CORX	COTX	
	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	
	R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset								
	General Purpose I/O Port 5 . This register functions as a general purpose I/O port. In addition, all the pins have an alternate function listed below. Each of the alternate functions is controlled by and/or influences other SFRs. The associated Port 5 latch bit must contain a logic one before the pin can be used in its alternate function capability.								
PCE3 Bit 7		Peripheral will assert the	Chip Enal the fourth ch	ble 3. When hip enable si	enabled via gnal.	a the P5CN	Γ register, th	nis pin	
PCE2 Bit 6		Peripheral Chip Enable 2. When enabled via the P5CNT register, this pin will assert the third chip enable signal.							
PCE1 Bit 5		Peripheral will assert the	Chip Enal	ble 1. When thip enable s	enabled via	a the P5CN	Γ register, tl	nis pin	
PCE0 Bit 4		Peripheral Chip Enable 0. When enabled via the P5CNT register, this pin will assert the first chip enable signal.							
C1TX/TXI Bit 3	D1	CAN 1 Transmit / Serial Port 1 Transmit. This pin is connected to the transmit data input pin of the CAN 1 transceiver device. Setting the Serial Port 1 External Connection bit (SP1EC, P5CNT.5) configures this pin as the Serial Port 1 transmit signal, disabling the corresponding CAN 1 function.							
C1RX/RX Bit 2	D1	CAN 1 Receive / Serial Port 1 Receive. This pin is connected to the receive data output pin of the CAN 1 transceiver device. Setting the Serial Port 1 External Connection bit (SP1EC, P5CNT.5) configures this pin as the Serial Port 1 receive signal, disabling the corresponding CAN 1 function.							
CORX Bit 1		CAN 0 Rec CAN 0 trans	eive. This ceiver dev	pin is conn ice.	ected to the	receive data	a output pin	of the	
C0TX Bit 0		CAN 0 Tran CAN 0 trans	nsmit. Thi ceiver dev	s pin is conr ice.	nected to the	e transmit da	ata input pin	of the	

Port 5 Co	ontrol Re	egister (Pt	5CNT)	<u> </u>					
	7	6	5	4	3	2	1	0	
SFR A2h	CAN1BA	CAN0BA	SP1EC	C1_I/O	C0_I/O	P5CNT.2	P5CNT.1	P5CNT.0	
	RW-0	RW-0	RW-0	RW-0	RW-0	RT-1	RT-1	RT-1	
R=Unrestricted Read, W=Unrestricted Write, T=Timed Access Write Only, -n=Value after Reset									
CAN1BA Bit 7		CAN 1 Bus set if the resp detected on t remain set un	Active. The pective CAl he CAN 1 he can be be be been specified with the can be be be been specified with the case of the case	e CAN1BA N1 I/O Enat ous. Once ac via applicati	signal is a bled (P5CN' ctivity is det on software	latched statu T.4) bit is se tected and the or a reset.	us bit that v et and bus a e bit is set,	vill be ctivity it will	
CAN0BA Bit 6		CAN 0 Bus set if the resp detected on t remain set un	Active. The pective CAl he CAN 0 he can be can be be be been specified with the can be be be been specified with the case of t	e CAN0BA N0 I/O Enal ous. Once ac via applicati	signal is a bled (P5CN ctivity is det on software	latched statu T.3) bit is se tected and the or a reset.	us bit that v et and bus a e bit is set,	vill be ctivity it will	
SP1EC Bit 5	SPIEC Serial Port 1 External Connections. This bit controls whether the Series Port 1 signals are asserted on P1.2/P1.3 or P5.2/P5.3. Rerouting the series port signals to Port 5 allows the use of both serial ports (but with the loss the CAN 1 interface) when Port 1 becomes a dedicated address bus during demultiplexed addressing mode. Note that the corresponding port pins much be set to 1 before they can be used in their serial port or CAN functions.						Serial serial oss of during must		
		0 = Serial Po Condition	ort 1 signals ns: MUX=	are routed to 0, SFR bit P	o P1.2/P1.3. 1.2 =1, SFR	k bit P1.3 =1			
		1 = Serial Po Condition	ort 1 signals ns: MUX=	are routed to 0, SFR bit P	o P5.2/P5.3 5.2 =1, SFR	k bit P5.3 =1			
C1_I/O		CAN 1 I/O I	E nable. Th	is bit contro	ls the functi	on of port pi	ins P5.2 and	P5.3.	
Bit 4		0 = Port pins P5.2 and P5.3 function as general-purpose I/O pins. The alternate Serial Port 1 transmit and receive functions on Port 5 are only possible when this bit is cleared to 0.							
		1 = Port pins P5.2 and P5.3 are dedicated to the CAN 1 receive and transmit functions.							
C0_I/O		CAN 0 I/O I	E nable. Th	is bit contro	ls the functi	on of port pi	ns P5.0 and	P5.1.	
Bit 3		0 = Port pins	P5.0 and P	5.1 function	as general-	purpose I/O	pins.		
		1 = Port pins functions	P5.0 and P	5.1 are dedie	cated to the	CAN 0 rece	ive and tran	smit	

P5CNT.2-

P4CNT.0

Port Pin P5.7-P5.4 Configuration Control Bits

These bits, in conjunction with the P4CNT register, control which Port 5 pins (if any) are used for PCEx decoding as shown in the table below. The memory range addressable by each PCEx signal is a function of the total number of address lines (A19-A16) established by the P4CNT register. Note that the chip enable range when using A0-A15 is 32 KB instead of the expected 64 KB. This is to allow the use of more common 32 KB memory devices rather than 64 KB devices.

P5CNT.2-0	P5.7	P5.6	P5.5	P4.4
000	I/O	I/O	I/O	I/O
100	I/O	I/O	I/O	PCE0
101	I/O	I/O	PCE1	PCE0
110	I/O	PCE2	PCE1	PCE0
111	PCE3	PCE2	PCE1	PCE0

The memory range addressable by each PCEx signal is a function of the total number of address lines (A19-A16) established by the P4CNT register. Note that the chip enable range when using A0-A15 is 32 KB instead of the expected 64 KB. This is to allow the use of more common 32 KB memory devices rather than 64 KB devices.

		Port 4 Pir	Port 4 Pin Function				
P4CNT.5-3	PCE0	PCE1	$\overline{\text{PCE2}}$	PCE3			
000	0 - 32KB	32 - 64KB	64 - 96KB	96 - 128KB			
100	0 - 128KB	128 - 256KB	256 - 384KB	384 - 512KB			
101	0 - 256KB	256 - 512KB	512 - 768KB	768KB - 1MB			
110	0 - 512KB	512 - 1MB	1 - 1.5MB	1.5 - 2MB			
111	0 - 1MB	1 - 2M	2 - 3MB	3 - 4MB			

CAN 0 Co	ntrol R	legister (C	0C)							
_	7	6	5	4	3	2	1	0		
SFR A3h	ERIE	STIE	PDE	SIESTA	CRST	AUTOB	ERCS	SWINT		
	RW-0	RW-0	RW-0	RW-0	RT-1	RW-0	RW-0	RW-1		
R=Unres	tricted R	ead, W=Unres	stricted Writ	te, T=Timed	Access Wr	ite Only, -n=	Value after	Reset		
ERIE		CAN 0 Erro	or Interrup	t Enable.						
Bit 7		0 = CAN 0 E	Error Interru	pt is disable	d.					
		1 = Setting bits (IE. (BUSOF	this bit whi 7) are set F) or CAN	le the COIE will generat 0 Error Cour	bit (EIE.6) te an inter nt Exceeded) and Global rupt if the l bit (CECE)	Interrupt I CAN 0 Bu bits are set.	Enable is Off		
STIE		CAN 0 State	ıs Interrup	t Enable.						
Bit 6		0 = CAN 0 S	tatus Interr	upt is disable	ed.					
		1 = If the CO Transmit Status bi Error bits	DIE bit (EIE Status bit t (WKS) is s (ER2-0) cl	.6) is set, an (TXS), Rec set. An intenanges to a r	interrupt w ceive Status rrupt will a non-000b or	vill be genera s bit (RXS) llso be gener non-111b st	ated if the C or the Wa rated if the ate.	CAN 0 ke-Up Status		
PDE Bit 5		CAN 0 Power Down Enable. Setting this bit places the CAN 0 module into its lowest power mode. The module will enter Power Down mode immediately upon setting this bit, or following the completion of the current reception, transmission, arbitration failure, or error condition on CAN 0. Software can poll the PDE bit to ascertain whether the microcontroller has entered Power Down mode (PDE=1) or is waiting for a current CAN operation to complete (PDE=0) before entering Power Down Mode.								
		Power Down mode is exited by clearing the PDE bit or by any reset of the microcontroller. The CAN 0 module will resume operation after the receipt of 11 consecutive recessive bits.								
		The Wake-U	p Status bit	, WKS, is a	logical OR	of this bit an	d the SIEST	TA bit.		
SIESTA Bit 4		CAN 0 Siesta Mode Enable. Setting this bit places the CAN 0 module into a low power mode. The module will enter Siesta mode immediately upon setting this bit, or following the completion of the current reception, transmission, arbitration failure, or error condition on CAN 0. Software can poll the SIESTA bit to ascertain whether the microcontroller has entered Siesta mode (SIESTA =1) or is waiting for a current CAN operation to complete (SIESTA =0) before entering Siesta Mode.								
		Siesta mode setting either operation aft	is exited by the CRST er the receij	clearing the or SWINT b ot of 11 cons	Siesta bit, its to 1. The secutive rec	detecting CA e CAN 0 mo essive bits.	AN 0 bus act dule will be	iivity, or gin		
		The Wake-U	p Status bit	, WKS, is a	logical OR	of this bit an	d the PDE b	oit.		
CRST Bit 3	CAN 0 Reset. Setting this bit via a Timed Access write will reset all CAN 0 registers in the SFR map to their reset default states. The module will reset the registers immediately upon setting this bit, or following the completion of the current reception, transmission, arbitration failure, or error condition on CAN 0. Software can poll the CRST bit to ascertain whether the microcontroller has successfully reset the registers (CRST =1) or is waiting for a current CAN operation to complete (CRST =0) before resetting the registers. Setting the CRST bit also clears the transmit and receive error counters and sets the SWINT bit.									
----------------------	---									
	CRST must be cleared by software to remove the CAN reset. The state of the SWINT and BUSOFF bits determines the action of the device when the CRST bit is cleared.									
AUTOB Bit 2	CAN 0 Autobaud. Setting this bit allows the CAN 0 module to establish proper CAN bus timing without disrupting the normal data flow between other nodes on the CAN Bus. When in the autobaud mode, incoming data on the CORX pin is internally ANDed with transmit data generated by the CAN 0 module. An internal loop back feeds this combined data stream back into the input of the CAN 0 module. At the same time, COTX pin is placed into a recessive state to prevent driving non-synchronized data (creating CAN Bus errors to other nodes) while attempting to synchronize the processor with the CAN Bus.									
	With AUTOB = 1, the microcontroller auto-baud algorithm will make use of the CAN 0 Status Register RXS and error status bits to determine when a message is successfully received (when AUTOB =1, a successful receive does not require a store). Each successive baud rate attempt is proceeded by the microcontroller clearing the transmit and receive error counters via a write of 00h to the Transmit Error SFR Register and a read of the CAN 0 Status Register to clear the previous Status Change Interrupt. Note that a write to the Transmit Error SFR Register automatically resets the CAN fault confinement state machine to an initial (error active) state if the error counters are cleared to 00h. If, however, the error counters are programmed to a value greater than 128, the CAN module will be in a error passive state. Appropriate flags are set when the error counter is written with any value. A write of the Status Register is also used to remove the previous error value in the ER2-0 bits. Clearing the error counters will also clear the CECE bit, if set.									
	When $BUSOFF = 1$, software is prohibited from writing to the error counters by virtue of the fact that the SWINT bit is also forced to a 0 state during the period that the CAN module performs a bus recovery and power up sequence. Once the CAN module has removed itself from the Bus Off condition it will also clear $BUSOFF = 0$, set SWINT = 1, and will clear both the transmit and receive error counters to 00h.									
ERCS Bit 1	CAN 0 Error Count Select. This bit selects the number of transmit or receive errors that will cause the CAN 0 Error Count Exceeded bit, CECE (C0S.6), to be set.									
	0 = CECE bit set when the transmit or receive error counters exceed 95 errors. 1 = CECE bit set when the transmit or receive error counters exceed 127 errors.									

SWINT Bit 0	CAN 0 Software Initialization Enable. This bit enables (SWINT=1) and disables (SWINT=0) software write access to the first 16 bytes of the CAN 0 MOVX SRAM. These bytes contain the CAN 0 Control/Status/Mask Registers. Read access to all bytes in the CAN 0 MOVX SRAM is permitted at all times, regardless of the state of the SWINT bit.						
	Setting SWINT=1 disables CAN 0 Bus activity, allowing software access to the CAN 0 Control/Status/Mask Registers without corrupting CAN Bus transmission or reception. A special lockout procedure delays the internal assertion of the SWINT bit until all CAN 0 activity has ceased. The following procedure must be followed when setting the SWINT bit to prevent the accidental corruption of CAN Bus activity:						
	1. Write a 1 to the SWINT bit, starting the internal process to enter the software initialization process.						
	2. Poll the SWINT bit until it is set. The lockout circuit will hold SWINT=0 if it detects a reception, transmission, or arbitration in progress. When one of these conditions ceases, or if an error occurs, the CAN module will set SWINT=1, indicating that the CAN module is disabled and software can now write to the first 16 bytes of the CAN 0 MOVX SRAM. Attempts to modify the first 16 bytes of the CAN 0 MOVX SRAM while SWINT=0 will fail, leaving the bytes unchanged.						
	The SWINT bit controls access to several other bits and registers. The CAN 0 Transmit Error Register (C0TE;A6h) and CAN 0 Receive Error Register (C0RE;A7h) are only modifiable while SWINT=1. Setting SWINT=1 automatically clears the SIESTA bit, and attempts to set SWINT=1 and SIESTA=1 in the same write to the COC register will result in SWINT=1 and SIESTA=0.						
	The BUSOFF bit has a direct interaction with the SWINT bit. When a Bus Off condition is detected (BUSOFF=1), the CAN module will automatically clear SWINT=0 and initiate a bus recovery and power-up sequence. Write access to the SWINT bit is prohibited until the Bus Off condition has been cleared and BUSOFF has been reset to 0.						
	The SWINT bit is also set automatically following a system reset, the setting of the CRST bit in the CAN 0 Control Register, or programming the CAN Bus Timing Registers (C0BT0, C0BT1 in the MOVX SRAM) to 00h (an invalid state). As a precaution against utilizing the CAN with invalid bus timing, the SWINT bit cannot be cleared while C0BT0=C0BT1=00h. When this bit is cleared, the CAN 0 module will initiate a CAN Bus synchronization after the CAN module executes a power-up sequence (reception of 11 consecutive recessive bits.)						

CAN 0 Status Register (C0S)											
	7	6	5	4	3	2	1	0			
SFR A4h	BUSOFF	CECE	WKS	RXS	TXS	ER2	ER1	ER0			
	R-0	R-0	R-0	RW-0	RW-0	R-0	R-0	R-0			
	R=U	Jnrestricted I	Read, W=U	nrestricted V	Vrite, -n=Va	llue after Re	set				
BUSOFF Bit 7	BUSOFF CAN 0 Bus Off. When $BUSOFF = 1$, the CAN 0 Bus is disabled and is no capable of receiving or transmitting messages. This condition is the result transmit error counter reaching a count of 256. When the CAN 0 module of an error count of 256 the CAN module will automatically set $BUSOFF = 1$ clear SWINT = 0.										
		BUSOFF is a completes be power-up see completed the initialization will be enable Bus is enable from a previous register bits a when BUSO 00h when the	cleared to a oth the buso quence (11) is relations state. Once led to transr ed to receive ous 0 to a 1 are set. All FF = 1. Bot e Bus Off co	0 to enable ff recovery consecutive hip it will se software ha nit and receive or transmit will generate microcontro h the transmit ondition is c	CAN 0 Bus (128 X 11 cc recessive bit at SWINT = as cleared SW two messages. A two messages. A the an interrup ller writes to hit and receive leared by the	activity whe onsecutive re- ts). Once the 1 and will e WINT to a 0 s. When BU A change in ot if the ERI of the SWINT we error coun- e CAN mod	en the CAN ecessive bits e CAN mode nter into the , the CAN n SOFF = 0, ti the state of E, COIE and T bit are disa nters are clear ule (BUSOF	module) and the ale has software nodule he CAN 0 BUSOFF EA abled ared to FF=0).			
CECE Bit 6		CAN 0 Err depending or	or Count n the state o	Exceeded. f the ERCS	This bit ope bit in the CA	erates in or AN 0 Contro	e of two n ol Register.	10des,			
		ERCS = 0 (Error count limit=96) In this mode when CECE=1, the interrupt flag indicates that either the CAN 0 Transmit Error Counter or the CAN 0 Receive Error Counter has reached an error count of 96, which represents an exceptionally high number of errors. CECE=0 indicates that both error counters have an error count of less than 96. A 0 to 1 transition of CECE will generate an interrupt if the ERIE, COIE and IE SFR bits are set.									
	ERCS = 1 (Error count limit=128) In this mode when CECE=1, the interrupt flag indicates that either the CAN 0 Transmit Error Counter or the CAN 0 Receive Error Counter has reached an error count of 128, which represents an exceptionally high number of errors. CECE = 0 indicates that the current Transmit Error Counter and Receive Error Counter both have an error count of less than 128. A change in the state of CECE from either a previous 0 to a 1 <i>or from a previous 1 to 0</i> will generate an interrupt if the ERIE, COIE and IE SFR bits are set.										
WKS Bit 5		CAN 0 Wak or Power Do WKS=0. A c interrupt if tl	te-up Statu wn mode. C change in th ne STIE, CO	s. When W Clearing both e state of W DIE and IE S	KS=1, the C h the SIEST KS from a p FR bits are s	AN 0 modu A and PDE revious 1 to set.	le is in eithe bits will forc 0 will gene	r SIESTA e the rate an			

RXSCAN 0 Receive Status. This bit indicates whether or not messages have beenBit 4received since the last read of the CAN 0 Status Register. RXS is only set by the
CAN 0 logic and must be cleared by the Microcontroller software, the CRST bit,
or a system Reset.

- 1 = The meaning of RXS=1 is dependent on the Autobaud bit, AUTOB.
 - AUTOB=0, RXS = 1 indicates that a message has been both successfully received and stored in one of the message centers by CAN 0 since the last read of the CAN 0 Status Register.
 - AUTOB=1, RXS = 1 indicates that a message has been successfully received by CAN 0 since the last read of the CAN 0 Status Register. Note that messages that are successfully received without errors but do not pass the arbitration filtering will still set the RXS bit.
- 0 = No messages have been successfully received since the last read of the CAN 0 Status Register.

When STIE= 1 and the RXS bit transitions from 0 to 1, the CAN Interrupt Register (COIR;A5h) will change to 01h to indicate a pending interrupt due to a change in the CAN Status Register(COS;A4h). Reading any bit in the COS register will clear the pending interrupt, causing the COIR register to change to 00h if no interrupts are pending or the appropriate value if a lower priority message center interrupt is pending. If a second successful reception is detected prior to or after the clearing of the RXS bit in the Status Register, a second status change interrupt flag will be set, issuing a second interrupt. Each new successful reception will generate an interrupt request independent of the previous state of the RXS bit, as long as the CAN Status Register has been read to clear the previous status change interrupt flag. Note that if software changes RXS from 0 to 1, an artificial Status Change Interrupt (STIE=1) will be generated. Thus, if RXS was previously set to 0 and a reception was successful, RXS will be set to 1 and an enabled interrupt may be asserted. An interrupt may be asserted (if enabled) if software changes RXS from 0 to 1. If RXS was previously set to 1 and a reception was successful, RXS remains set and an interrupt may be asserted if enabled. No interrupt will be asserted if software attempts to set RXS=1 while the bit is already set.

TXS Bit 3 **CAN 0 Transmit Status.** This bit indicates whether or not one or more messages have been successfully transmitted since the last read of the CAN 0 Status Register. TXS is only set by the CAN 0 logic and is not cleared by the CAN controller but is only cleared via software, the CRST bit, or a system Reset.

- 1 = A message has been successfully transmitted by CAN 0 (error free and acknowledged) since the last read of the CAN 0 Status Register.
- 0 = No messages have been successfully transmitted since the last read of the CAN 0 Status Register.

When STIE= 1 and the TXS bit transitions from 0 to 1, the CAN Interrupt Register (COIR;A5h) will change to 01h to indicate a pending interrupt due to a change in the CAN Status Register. Reading any bit in the COS register will clear the pending interrupt, causing COIR to change to 00h if no interrupts are pending or the appropriate value if a lower priority message center interrupt is pending. If a second successful reception is detected prior to or after the clearing of the RXS bit in the Status Register, a second status change interrupt flag will be set, issuing a second interrupt. Each new successful reception will generate an interrupt request independent of the previous state of the RXS bit, as long as the CAN Status Register has been read to clear the previous status change interrupt flag. Note that if software changes TXS from 0 to 1, an artificial Status Change Interrupt (STIE=1) will be generated. Thus, if TXS was previously set to 0 and a reception was successful, TXS will be set to 1 and an enabled interrupt may be asserted. An interrupt may be asserted (if enabled) if software changes TXS from 0 to 1. If TXS was previously set to 1 and a reception was successful, TXS remains set and an interrupt may be asserted if enabled. No interrupt will be asserted if software attempts to set TXS while it is already set.

ER2-0CAN 0 Bus Error Status. These bits indicate the type of error, if any, detectedBit 2-0in the last CAN 0 Bus Frame. These bits will be reset to the 111b state following
any read of the COS register (when SWINT=0), allowing software to determine if
a new error has been received since the last read of this register. The ER2-0 bits
are read only.

If enabled, an interrupt will be generated any time the ER2-0 bits change from 000b or 111b to another value. Errors received while the ER2-0 bits are in a non-000b or 111b state will be ignored, leaving ER2-0 unchanged and no additional interrupts will be generated. This ensures that error conditions will not be lost/overwritten before software has a chance to read the COS register. Once the COS register is read and the ER2-0 bits return to 111b, new errors will be processed normally. In the case of simultaneous errors in multiple CAN 0 message centers, only the highest priority error is indicated.

ER2	ER1	ER0	Priority	Error Conditions
0	0	0	N/A	No Error in Last Frame
0	0	1	2	Bit Stuff Error
0	1	0	5	Format Error
0	1	1	4	Transmit Not Acknowledged Error
1	0	0	6(lowest)	Bit 1 Error
1	0	1	1(highest)	Bit 0 Error
1	1	0	3	CRC Error
1	1	1	N/A	No change since last COS read

The following is a description of the different error types:

Bit Stuff Error: Occurs when the CAN controller detects more than 5 consecutive bits of an identical state are received in an incoming message.

Format Error: Generated when a received message has the wrong format.

- *Transmit Not Acknowledged Error*: Indicates that a data frame was sent and the requested node did not acknowledged the message.
- *Bit 1 Error*: Indicates that the CAN attempted to transmit a message and that when a recessive bit was transmitted, the CAN bus was found to have a dominant bit level. This error is not generated when the bit is a part of the arbitration field (identifier and remote retransmission request).
- *Bit 0 Error*: Indicates that the CAN attempted to transmit a message and that when a dominant bit was transmitted, the CAN bus was found to have a recessive bit level. This error is not generated when the bit is a part of the arbitration field. The Bit 0 Error is set each time a recessive bit is received during the Busoff recovery period.
- *CRC Error*: Generated whenever the calculated CRC of a received message does not match the CRC embedded in the message.

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

C0IR.7-0CAN 0 Interrupt Indicator 7-0 This register indicates the status of the
interrupt source associated with the CAN 0 module. Reading this register
after the generation of a CAN 0 Interrupt will identify the interrupt source as
shown in the table below. This register is cleared to 00h following a reset.

C0IR.7-0	Priority	Interrupt Source
00h	N/A	No Pending Interrupt
01h	1 (highest)	Change in the CAN 0 Status Register
02h	2	Message 15
03h	3	Message 1
04h	4	Message 2
05h	5	Message 3
06h	6	Message 4
07h	7	Message 5
08h	8	Message 6
09h	9	Message 7
0Ah	10	Message 8
0Bh	11	Message 9
0Ch	12	Message 10
0Dh	13	Message 11
0Eh	14	Message 12
0Fh	15	Message 13
10h	16 (lowest)	Message 14

The COIR value will not change unless the previous interrupt source has been acknowledged and removed (i.e., software read of the COS register or clearing of the appropriate INTRQ bit), even if the new interrupt has a higher priority. If two enabled interrupt sources become active simultaneously, the interrupt of higher priority will be reflected in the COIR value.

The CAN 0 interrupt source into the interrupt logic is active whenever C0IR is not equal to 00h. Changes in the C0IR value from 00h to a non-zero state, indicate the first interrupt source detected by the CAN module following the non-active interrupt state. The C0IR interrupt values will remain in place until the interrupt source is removed, independent of other higher (or lower) priority interrupts that become active prior to clearing the currently displayed interrupt source.

When the current CAN interrupt source is cleared, COIR will change to reflect the next active interrupt with the highest priority. The Status Change interrupt will be asserted if there has been a change in the Can 0 Status Register (if enabled by the appropriate ERIE and/or STIE bit) and the CAN Status Interrupt state is set. A message center interrupt will be indicated if the INTRQ bit in the respective CAN Message Control Register is set.

CAN 0 Tr	ansmit	Error Reg	ister (0	COTE)							
	7	6	5	4	3	2	1	0			
SFR A6h											
	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0			
R=Un	restricted	Read, *= Wri	te only w	hen SWINT=	1 and BUSC)FF=0, -n=V	alue after R	eset			
C0TE.7-0 Bits 7-0		CAN 0 Tran accumulated ways to vary	nsmit Er CAN 0 t ring num	ror Register. transmit errors per of errors as	This register . The CAN (s shown belo	r indicates th 0 module res ow.	e number of sponds in dif	ferent			
		This register can only be modified via software when SWINT=1 and BUSOFF=0. All software writes to this register simultaneously load the same value into the CAN 0 Transmit Error Register and the CAN 0 Receive Error Register. Writing 00h to this register will also clear the CAN 0 Error Count Exceeded bit, CECE (C0S.6). This register is cleared following all hardware Resets and software resets enabled via the CRST bit in the CAN 0 Control Register.									
		COTE Va	alue	CAN 0 State							
		Value <	96	Error active mode, CAN 0 Bus on (BUSOFF=0)							
		$128 > Value \ge 96$		Error active mode, CAN 0 Bus on (BUSOFF=0), warning level							
		$255 \ge Value$	≥128	Error passive mode, CAN 0 Bus on (BUSOFF=0)							
		Value > 2	255	CAN 0 Bus off (BUSOFF=1)							
CAN 0 Re	eceive I	Error Regi	ster (C	ORE)							
••••••	7		5	4	3	2	1	0			
SFR A7h											
	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0	R*-0			
	R=Unre	estricted Read	, *= Writ	e only via C07	TE register, -	n=Value aft	er Reset				
CORE.7-0 Bits 7-0		CAN 0 Re accumulated simultaneous hardware Re	ceive Er CAN (sly loade esets and	Fror Register receive erro d into this reg software reset	• This registres. All writister. This register. This rest is the set of the s	ster indicate tes to the C egister is cle ta the CRST	es the numb COTE register ared following bit in the C	ber of er are ing all CAN 0			

44 of 155

Control Register.

Interrupt	Enable	e (IE)									
•	7	6	5	4	3	2	1	0			
SFR A8h	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0			
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0			
	R	=Unrestricted	Read, W=U	Jnrestricted	Write, -n=V	alue after Re	eset				
EA Bit 7		Global Inte except Powe	rrupt Enab	pt Enable. This bit controls the global masking of all interrupts ail Interrupt, which is enabled by the EPFI bit (WDCON.5).							
		U = D is able all interrupt sources. This bit overrides individual interrupt mask settings.									
	1 = Enable all individual interrupt masks. Individual interrupts will occur if enabled.										
ES1 Bit 6	Enable Serial Port 1 Interrupt. This bit controls the masking of the serial port 1 interrupt										
		0 = Disable	all serial por	rt 1 interrupt	s.						
		1 = Enable i (SCON1	nterrupt req .1) flags.	uests genera	ted by the R	I_1 (SCON)	.0) or TI_1				
ET2	Enable Timer 2 Interrupt. This bit controls the masking of the Timer 2 interrupt.										
Bit 5		0 = Disable	all Timer 2	interrupts.	(11) (1) T						
ECO		I = Enable I	al Dart 0 Ir	tormunt T	ted by the 1	F2 Hag (120	UN./).	mial mant 0			
ESU Bit 4		interrupt.	ai Fort V II	iterrupi. 11		JIS THE HIASK	ing of the se	nai port o			
		0 = Disable	all serial por	rt 0 interrupt	s.						
		1 = Enable i (SCON0	nterrupt req (1) flags.	uests genera	ted by the R	I_0 (SCON(0.0) or TI_0				
ET1		Enable Tim	er 1 Interr	upt. This bi	t controls th	e masking o	f the Timer	l interrupt.			
Bit 3		0 = Disable all Timer 1 interrupts.									
		1 = Enable a	ll interrupt	requests gen	erated by the	e TF1 flag (ГCON.7).				
EX1 Bit 2		Enable Extended 1.	ernal Intern	upt 1. This	bit controls	the masking	g of external	interrupt			
		0 = Disable	external inte	errupt 1.							
		1 = Enable a	ll interrupt	requests gen	erated by the	e $\overline{INT1}$ pin.					
ET0		Enable Tim	er 0 Interr	upt. This bi	t controls th	e masking o	f the Timer) interrupt.			
Bit 1		0 = Disable	all Timer 0	interrupts.							
		1 = Enable a	ll interrupt	requests gen	erated by the	e TF0 flag (ГCON.5).				
EX0 Bit 0		Enable Exte 0.	ernal Intern	rupt 0. This	bit controls	the masking	g of external	interrupt			
		0 = Disable	external inte	errupt 0.							
		1 = Enable a	ll interrupt	requests gen	erated by the	e $\overline{\text{INT0}}$ pin.					

Slave A	uuless n	egister u	(SADDr	\ U)				
	7	6	5	4	3	2	1	0
SFR A9h	SADDR0	SADDR0	SADDR0	SADDR0	SADDR0	SADDR0	SADDR0	SADDR0
	.7	.6	.5	.4	.3	.2	.1	.0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADDR0.7-0Slave Address Register 0. This register is programmed with the given or
broadcast address assigned to serial port 0.

Slave Address Register 1 (SADDR1)

Slave Address Pagister 0 (SADDD0)

	7	6	5	4	3	2	1	0
SFR AAh	SADDR1							
	.7	.6	.5	.4	.3	.2	.1	.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADDR1.7-0Slave Address Register 1. This register is programmed with the given orBits 7-0broadcast address assigned to serial port 1.

CAN 0 Message Center 1 Control Register (C0M1C)

	7	6	5	4	3	2	1	0
SFR ABh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

MSRDY Bit 7 CAN 0 Message Center 1 Ready. This bit is used by the Microcontroller to prevent the CAN module from accessing message center 1 while the microcontroller is updating message attributes. These include as identifiers (arbitration registers 0-3), data byte registers 0-7, data byte count (DTBYC3-DTBYC0), direction control (T/R), the extended or standard mode bit (EX/ST), and the mask enables (MEME and MDME) associated with this message center. When this bit is 0, the CAN 0 processor will ignore this message center for transmit, receive, or remote frame request operations.

> MSRDY is cleared following a microcontroller hardware reset or a reset generated by the CRST bit in the CAN 0 Control Register, and must also remain in a cleared mode until all the CAN 0 initialization has been completed. Individual message MSRDY controls can be changed after initialization to reconfigure specific messages, without interrupting the communication of other messages on the CAN 0 Bus.

- **ETI CAN 0 Message Center 1 Enable Transmit Interrupt.** Setting ETI to a 1 Bit 6 will enable a successful CAN 0 transmission in message center 1 to set the INTRQ bit for this message center which in turn will issue an interrupt to the microcontroller. When ETI is cleared to 0 a successful transmission will not set INTRQ bit and will not generate an interrupt. Note that the ETI bit located in Message Center 15 is ignored by the CAN module, since the message center 15 is a receive only message center.
- ERICAN 0 Message Center 1 Enable Receive Interrupt. Setting ERI to a 1Bit 5will enable a successful CAN 0 reception and storage in message center 1 to
set the INTRQ bit for this message center which in turn will issue an interrupt
to the microcontroller. When ERI is cleared to 0 a successful reception will
not set the INTRQ bit and as such will not generate an interrupt.
- INTRQ CAN 0 Message Center 1 Interrupt Request. This bit serves as a CAN Bit 4 interrupt flag, indicating the successful transmission or reception of a message in this message center. INTRQ is automatically set when ERI=1 and message center 1 successfully receives and stores a message. The INTRQ bit is also set to a 1 when ETI is set and the CAN 1 logic completes a successful transmission. The INTRQ interrupt request must be also enabled via the EA global mask in the IE SFR register if the interrupt is to be acknowledged by the microcontroller interrupt logic. This flag must be cleared via software.
- **EXTRQ CAN 0 Message Center 1 External Transmit Request.** When EXTRQ is cleared to a 0, there are no pending requests by external CAN nodes for this message. When EXTRQ is set to a 1, a request has been made for this message by an external CAN node, but the CAN 0 controller has not yet completed the service request. Following the completion of a requested transmission by a message center programmed for transmission $(T/\overline{R} = 1)$, the EXTRQ bit will be cleared by the CAN 0 controller. A remote request is only answered by a message center programmed for transmission $(T/\overline{R} = 1)$ when DTUP = 1 and TIH = 0, i.e. when new data was loaded and is not being currently modified by the micro. Note that a message center programmed for a request and will set the EXTRQ bit in a similar manner, but will not automatically transmit a data frame and as such will not automatically clear the EXTRQ bit.
- MTRQ Bit 2 CAN 0 Message Center 1 Microcontroller Transmit Request. When set, this bit indicates that the message center is requesting that a message be transmitted. The bit is cleared when the transmission is complete, allowing this bit to be used to both initiate and monitor the progress of the transmission. The bit can be set via software or the CAN module, depending on the state of the Transmit/Receive bit in the CAN 0 Message 1 Format Register (located in MOVX space). This bit is cleared when the CRST bit is set, the CAN module experiences a system reset, or the conditions described below. Note that the MTRQ bit located in Message Center 15 is ignored by the CAN module, since the Message Center 15 is a receive only message center.

 $T/\overline{R} = 0$ (receive)

When software sets this bit, a remote frame request previously loaded into the message center will be transmitted. The CAN 0 Module will clear this bit following the successful transmission of the frame request message.

$T/\overline{R} = 1$ (transmit)

When software sets this bit, a data frame previously loaded into the message center will be transmitted. When $T/\overline{R} = 1$, the MTRQ bit will also be set by the CAN 0 controller at the same time that the EXTRQ bit is set by a message request from an external node.

ROW/TIH Bit 1 CAN 0 Message Center 1 Receive Overwrite/Transmit Inhibit. The Receive Overwrite (ROW) and Transmit Inhibit (TIH) bits share the same bit location. When $T/\overline{R} = 0$ the bit has the ROW function, serving as a flag that an overwrite of incoming data may have occurred. When $T/\overline{R} = 1$ the bit has the Transmit Inhibit function, allowing software to disable the transmission of a message while the data contents are being updated.

Receive Overwrite: (T/R = 0, ROW is Read Only)

The CAN 0 controller automatically sets this bit 0 if a new message is received and stored while the DTUP bit was still set. When set, ROW indicates that the previous message was potentially lost and may not have been read, since the microcontroller had not cleared the DTUP bit prior to the new load. When ROW = 0, no new message has been received and stored while DTUP was set to '1' since this bit was last cleared. Note that the ROW bit will not be set when the WTOE bit is cleared to a 0, since all overwrites are disabled. This is due to the fact that even if the incoming message matches the respective message center that as long as DTUP = 1 in the respective message center, the combination of WTOE = 0 and DTUP = 1 will force the CAN module to ignore the respective message center when the CAN is processing the incoming data.

ROW is cleared by the CAN module when software clears the DTUP bit associated with that message center. INTRQ is automatically set when the ERI=1 and message center 1 successfully receives and stores a message.

ROW will reflect the actual message center relationships for message centers 1 to 14. Message center 15 utilizes a special shadow message buffer, and the ROW bit for that message center indicates an overwrite of the buffer as opposed to the actual message center 15. The ROW bit for message center 15 is cleared once the shadow buffer is loaded into the message center 15, and the shadow buffer is cleared to allow a new message to be loaded. The shadow buffer is automatically loaded into message center 15 when the microcontroller clears the DTUP and EXTRQ bits in message center 15.

Transmit Inhibit: (T/R = 1, TIH is unrestricted Read/Write)

The TIH allows the microcontroller to disable the transmission of the message when the data contents of the message are being updated. TIH = 1 directs the CAN 0 controller not to transmit the associated message. TIH = 0 enables the CAN 0 controller to transmit the message. If TIH = 1 when a remote frame request is received by the message center, EXTRQ will be set to a 1. Following the Remote Frame Request and after the microcontroller has established the proper data to be sent, the microcontroller will clear the

TIH bit to a 0, which will allow the CAN module to send the data requested by the previous Remote Frame Request. Note that the TIH bit associated with Message Center 15 is ignored because it is a receive only message center.

DTUP Bit 0 CAN 0 Message Center 1 Data Updated. This bit indicates that new data has been loaded into the data portion of the message center. The exact function of the DTUP bit is dependent on whether the message center is configured in a receive $(T/\overline{R} = 0)$ or transmit $(T/\overline{R} = 1)$ mode. Some functions are also dependent on the state of the WTOE bit. The DTUP bit is only cleared by a software write to the bit, a system reset, or the setting of the CRST bit.

T/R = 0 (receive)

In this mode (T/R = 0) the DTUP bit is set when new data has been successfully received and is ready to be read by the microcontroller. The exact meaning of the DTUP bit during a message center read is determined by the WTOE bit in the CAN 0 Control Register.

If WTOE = 1 (message center overwrite enabled), DTUP should be polled before and after reading the message center to ascertain if an overwrite of the data occurred during the read. For example, software should clear DTUP before reading the message center and then again after the message center read. If DTUP has been set, then a new message was received and software should read the message center again to read the new data. If DTUP remained cleared, no additional data was received and the data is complete.

If WTOE=0 the processor is not permitted to overwrite this message center, so it is only necessary to clear the DTUP bit after reading the message center.

The state of the DTUP bit in the receive mode does not inhibit remote frame request transmission in the receive mode. The only gating item for remote frame transmission in the receive mode is that the MSRDY and MTRQ bits must both be set.

T/R =1 (transmit)

In this mode, software must set TIH =1 and clear DTUP = 0 prior to doing an update of the associated message center. This prevents the CAN module from transmitting the data while the microcontroller is updating it. Once the microcontroller has finished configuring the message center, software must clear TIH = 0 and set MSRDY=MTRQ =DTUP =1, to enable the CAN module to transmit the data.

The CAN module will **not** clear the DTUP after the transmission, but the microcontroller can verify that the transmission has been completed, by checking the MTRQ bit, which will be cleared (MTRQ = 0) after the transmission has been successfully completed.

JAN U Message Center 2 Control Register (CUM2C)									
	7	6	5	4	3	2	1	0	
SFR ACh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0	

Conton O Control Deviator (COMOC)

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 0 Message Center 3 Control Register (C0M3C)

	7	6	5	4	3	2	1	0
SFR ADh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M3C Operation of the bits in this register are identical to those found in the CAN 0 Bits 7-0 Message One Control Register (COM1C;ABh). Please consult the description of that register for more information.

CAN 0 Message Center 4 Control Register (C0M4C)

	7	6	5	4	3	2	1	0
SFR AEh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

COM4C Operation of the bits in this register are identical to those found in the CAN 0 Message One Control Register (COM1C;ABh). Please consult the description Bits 7-0 of that register for more information.

CAN 0 Message Center 5 Control Register (C0M5C)

	7	6	5	4	3	2	1	0
SFR AFh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M5C Operation of the bits in this register are identical to those found in the CAN 0 Bits 7-0 Message One Control Register (COM1C;ABh). Please consult the description of that register for more information.

C0M2C Operation of the bits in this register are identical to those found in the CAN 0 Message One Control Register (COM1C;ABh). Please consult the description Bits 7-0 of that register for more information.

Port 3 (P	3)								
-	7	6	5	4	3	2	1	0	
SFR B0h	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	
	RD	WR	T1	T0	INT1	INTO	TXD0	RXD0	
	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	RW-1	
	R=U	Jnrestricted 1	Read, W=U	nrestricted V	Vrite, -n=Va	alue after Re	eset		
P3.7-0 Bits 7-0		Purpose I/(addition, all functions is contain a lo	D Port 3. T the pins hat controlled b gic one befor	his register f ve an alterna by several ot ore the pin ca	functions as ative functio her SFRs. T an be used in	a general pu n listed belo he associate n its alternat	Provide the second seco	ort. In the ch bit must apacity.	
RD Bit 7		External Data Memory Read Strobe. This pin provides an active low read strobe to an external memory device.							
WR Bit 6		External D strobe to an	ata Memor external me	y Write Stremory device	obe. This p e.	in provides	an active lov	w write	
T1 Bit 5		Timer/Cou Timer 1.	nter Extern	al Input. A	A 1 to 0 trans	sition on thi	s pin will in	crement	
T0 Bit 4		Counter Ex	xternal Inpu	it. A 1 to 0	transition o	n this pin wi	ill incremen	t Timer 0.	
INT1 Bit 3		External In interrupt 1 i	terrupt 1. f enabled.	A falling ed	ge/low leve	l on this pin	will cause a	n external	
INT0 Bit 2		External Interrupt 0. A falling edge/low level on this pin will cause an external interrupt 0 if enabled.							
TXD0 Bit 1		Serial Port modes 1, 2,	0 Transmit 3 and emits	t. This pin t the synchro	ransmits the nizing clock	serial port (t in serial po) data in ser ort mode 0.	ial port	
RXD0 Bit 0		Serial Port modes 1, 2,	0 Receive. 3 and is a b	This pin rec i-directional	ceives the se data transfe	rial port 0 d er pin in seri	ata in serial al port mode	port e 0.	

CAN 0 Message Center 6 Control Register (C0M6C)

	7	6	5	4	3	2	1	0
SFR B3h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M6COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

	essaye u			egister (v				
	7	6	5	4	3	2	1	0
SFR B4h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

CAN 0 Message Center 7 Control Register (C0M7C)

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 0 Message Center 8 Control Register (C0M8C)

	7	6	5	4	3	2	1	0
SFR B5h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M8COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

CAN 0 Message Center 9 Control Register (C0M9C)

	7	6	5	4	3	2	1	0
SFR B6h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M9COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

CAN 0 Message Center 10 Control Register (C0M10C)

	7	6	5	4	3	2	1	0
SFR B7h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M10COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

C0M7COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

nterrupt l	Priority	y (IP)										
г	7	6	5	4	3	2	1	0				
SFR B8h	-	PS1	PT2	PS0	PT1	PX1	PT0	PX0				
	-	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0				
	R=	=Unrestricted	Read, W=U	Inrestricted	Write, -n=V	alue after R	eset					
Bit 7		Reserved.	Read data is	s indetermin	ate.							
PS1 Bit 6		Serial Por interrupt.	t 1 Interrug	ot. This bit	controls the	priority of th	ne serial por	: 1				
		0 = Serial 1 = Serial	port 1 priori	ty is determi gh priority i	ined by the r nterrupt.	atural priori	ty order.					
PT2		Timer 2 Ir	nterrupt. T	his bit contr	ols the prior	ity of Timer	2 interrupt.					
Bit 5		0 = Timer 2 is determined by the natural priority order.										
		1 = Timer	2 is a high p	riority inter	rupt.							
PS0 Bit 4		Serial Port 0 Interrupt. This bit controls the priority of the serial port 0 interrupt.										
		0 = Serial J	oort 0 priori	ty is determi	ined by the r	atural priori	ty order.					
		1 = Serial p	port 0 is a hi	gh priority i	nterrupt.							
PT1		Timer 1 Ir	nterrupt. T	his bit contr	ols the prior	ity of Timer	1 interrupt.					
Bit 3		0 = Timer	1 is determine	ned by the n	atural priori	ty order.						
		1 = Timer	1 is a high p	riority inter	rupt.							
PX1		External I	nterrupt 1.	This bit co	ntrols the pr	iority of exte	ernal interru	pt 1.				
Bit 2		0 = Externa	al interrupt	l is determin	ned by the na	atural priorit	y order.					
		1 = Externation	al interrupt	l is a high p	riority interr	upt.						
PTO		Timer 0 Ir	nterrupt. T	his bit contr	ols the prior	ity of Timer	0 interrupt.					
Bit I		0 = Timer	0 is determin	ned by the n	atural priori	ty order.						
		I = Timer	0 is a high p	riority interi	rupt.							
PX0 Bit 0	External Interrupt 0. This bit controls the priority of external interrupt 0.											
σιι υ		0 = External interrupt 0 is determined by the natural priority order.										
		1 = Externation	al interrupt (J is a high p	riority interr	upt.						

Slave Address Mask Enable Register 0 (SADEN0)										
	7	6	5	4	3	2	1	0		
SFR B9h	SADEN0.7	SADEN0.6	SADEN0.5	SADEN0.4	SADEN0.3	SADEN0.2	SADEN0.1	SADEN0.0		
	RW-0									

.

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADEN0.7-0
 Bits 7-0
 Slave Address Mask Enable Register 0. This register functions as a mask when comparing serial port 0 addresses for automatic address recognition. When a bit in this register is set, the corresponding bit location in the SADDR0 register will be exactly compared with the incoming serial port 0 data to determine if a receiver interrupt should be generated. When a bit in this register is cleared, the corresponding bit in the SADDR0 register becomes a don't care and is not compared against the incoming data. All incoming data will generate a receiver interrupt when this register is cleared.

Slave Address Mask Enable Register 1 (SADEN1)

	7	6	5	4	3	2	1	0
SFR BAh	SADEN1.7	SADEN1.6	SADEN1.5	SADEN1.4	SADEN1.3	SADEN1.2	SADEN1.1	SADEN1.0
_	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SADEN1.7-0 Bits 7-0 Slave Address Mask Enable Register 1. This register functions as a mask when comparing serial port 1 addresses for automatic address recognition. When a bit in this register is set, the corresponding bit location in the SADDR1 register will be exactly compared with the incoming serial port 1 data to determine if a receiver interrupt should be generated. When a bit in this register is cleared, the corresponding bit in the SADDR1 register becomes a don't care and is not compared against the incoming data. All incoming data will generate a receiver interrupt when this register is cleared.

CAN 0 Message Center 11 Control Register (C0M11C)

	7	6	5	4	3	2	1	0
SFR BBh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M11COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

CAN U Message Center 12 Control Register (CUM12C)											
	7	6	5	4	3	2	1	0			
SFR BCh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP			
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0			

•

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 0 Message Center 13 Control Register (C0M13C)

. .

.....

	7	6	5	4	3	2	1	0
SFR BDh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M13COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

CAN 0 Message Center 14 Control Register (C0M14C)

	7	6	5	4	3	2	1	0
SFR BEh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M14COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

CAN 0 Message Center 15 Control Register (C0M15C)

	7	6	5	4	3	2	1	0
SFR BFh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C0M15COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

C0M12COperation of the bits in this register are identical to those found in the CAN 0Bits 7-0Message One Control Register (C0M1C;ABh). Please consult the description
of that register for more information.

Serial Port Control (SCON1)										
	7	6	5	4	3	2	1	0		
SFR C0h	SM0/FE_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1		
-	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0		

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SM0-2Serial Port 1 Mode. These bits control the mode of serial port 1 as shownBits 7-5below. In addition, the SM0 and SM2 bits have secondary functions as shown
below.

SM0	SM1	SM2	MODE	FUNCTION	LENGTH	PERIOD
0	0	0	0	Synchronous	8 bits	12 t _{CLK}
0	0	1	0	Synchronous	8 bits	4 t _{CLK}
0	1	Х	1	Asynchronous	10 bits	Timer 1 or 2 baud rate equation
1	0	0	2	Asynchronous	11 bits	64 t _{CLK} (SMOD=0) 32 t _{CLK} (SMOD=1)
1	0	1	1	Asynchronous w/ Multiprocessor communication	11 bits	64 t _{CLK} (SMOD=0) 32 t _{CLK} (SMOD=1)
1	1	0	3	Asynchronous	11 bits	Timer 1 or 2 baud rate equation
1	1	1	3	Asynchronous w/ Multiprocessor communication	11 bits	Timer 1 or 2 baud rate equation

SM0/FE_1 Bit 7	Framing Error Flag. When SMOD0 (PCON.6)=0, this bit (SM0) is used to select the mode for serial port 1. When SMOD0 (PCON.6)=1, this bit (FE) will be set upon detection of an invalid stop bit. When used as FE, this bit must be cleared in software. Once the SMOD0 bit is set, modifications to this bit will not affect the serial port mode settings. Although accessed from the same register, internally the data for bits SM0 and FE are stored in different locations.
SM1_1 Bit 6	No alternate function.
SM2-2 Bit 5	 Multiple CPU Communications. The function of this bit is dependent on the serial port 0 mode. Mode 0: Selects 12 t_{CLK} or 4 t_{CLK} period for synchronous serial port 0 data transfers.
	 Mode 1: When set, reception is ignored (RI_1 is not set) if invalid stop bit received. Mode 2/3: When this bit is set, multiprocessor communications are enabled in modes 2 and 3. This will prevent the RI_1 bit from being set, and an interrupt being asserted, if the 9th bit received is not 1.
REN_1 Bit 4	 Receive Enable. This bit enables/disables the serial port 1 receiver shift register. 0 = Serial port 1 reception disabled. 1 = Serial port 1 receiver enabled (modes 1, 2, 3). Initiate synchronous reception
	56 of 155

(mode 0).

- **TB8_19th Transmission Bit State.** This bit defines the state of the 9th transmission bitBit 3in serial port 1 modes 2 and 3.
- **RB8_1**9th Received Bit State. This bit identifies the state for the 9th reception bitBit 2received data in serial pot 1 modes 2 and 3. In serial port mode 1, whenSM2 1=0, RB8 1 is the state of the stop bit. RB8 1 is not used in mode 0.
- TI_1Transmitter Interrupt Flag. This bit indicates that data in the serial port 1Bit 1buffer has been completely shifted out. In serial port mode 0, TI_1 is set at the
end of the 8th data bit. In all other modes, this bit is set at the end of the last data
bit. This bit must be manually cleared by software.
- **RI_1Transmitter Interrupt Flag.** This bit indicates that a byte of data has beenBit 0received in the serial port 1 buffer. In serial port mode 1, RI_1 is set at the end of
the 8th bit. In serial port mode 1, RI_1 is set after the last sample of the incoming
stop bit subject to the state of SM2_1. In modes 2 and 3, RI_1 is set after the last
sample of RB8_1. This bit must be manually cleared by software.

Serial Data Buffer 1 (SBUF1)

_	7	6	5	4	3	2	1	0
SFR C1h	SBUF1.7	SBUF1.6	SBUF1.5	SBUF1.4	SBUF1.3	SBUF1.2	SBUF1.1	SBUF1.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

SBUF1.7-0Serial Data Buffer 1. Data for serial port 1 is read from or written to thisBits 7-0location. The serial transmit and receive buffers are separate registers, but both
are addressed at this location.

	7	6	5	4	3	2	1	0
SFR C4h	CD1	CD0	SWB	СТМ	$4X/\overline{2X}$	ALEOFF	1	1
	R*-1	R*-0	RW-0	R*-0	R*-0	RW-0	R-1	R-1

Power Management Register (PMR)

R=Unrestricted Read, W= Unrestricted Write, *= See description below, -n=Value after Reset

CD1, CD0Clock Divide Control 1-0. These bits select the number of crystal oscillatorBits 7-6clocks required to generate one machine cycle. Switching between modes
requires a transition through the divide by 4 mode (CD1, CD0=01). For example,
to go from 1 to 1024 clocks per machine cycle the device must first go from 1 to
4 clocks per cycle, and then from 4 to 1024 clocks per cycle. Attempts to perform
an invalid transition will be ignored. The setting of these bits will effect the
timers and serial ports as shown below.

Attempts to change these bits to the frequency multiplier (1 or 2 clocks per cycle) setting will fail when running from the internal ring oscillator. In addition, it is not possible to change these bits to the 1024 clocks per machine cycle setting while the switchback enable bit (SWB) is set and any of the switchback sources (external interrupts or serial port transmit or receive activity) are active.

		OSCILLATOR CYCLES PER MACHINE. CYCLE	OSC CYCLES PER TIMER 0/1/2 CLOCK.		OSC CYCLES PER TIMER 2 CLK, BAUD BATE CEN	OSC CYCLES PER SERIAL PORT CLK, MODE 0		OSC CYCLES PER SERIAL PORT CLK, MODE 2	
CD1:0	$4X/\overline{2X}$	CICLE	TxM=0	TxM=1	RATE GEN.	SM2=0	SM2=1	SMOD=0	SMOD=1
00	1	1	12	1	2	3	1	64	32
00	0	2	12	2	2	6	2	64	32
01	Х		Reserved						
10	Х	4	12	4	2	12	4	64	32
11	Х	1024	3072	1024	512	3072	1024	64	32

SWB Bit 5 **Switchback Enable.** This bit allows an enabled external interrupt or serial port activity to force the Clock Divide Control bits to the divide by 4 state (10) when the microcontroller is in the divide by 1024 state. Upon internal acknowledgement of an external interrupt, the device will switch modes at the start of the jump to the interrupt service routine. Note that this means that an external interrupt must actually be recognized (i.e., be enabled and not masked by higher priority interrupts) for the switchback to occur. For serial port reception, the switch occurs at the start of the instructions following the falling edge of the start bit.

CTM Bit 4	Crystal Multiplier Enable. The CTM bit enables/disables the Crystal Clock Multiplier. The CTM bit can be changed only when the CD1 and CD0 bits are set to divide by 4 mode and the RGMD is cleared to 0. When cleared this bit disable the Crystal Clock Multiplier to save energy. Setting this bit enables the Crystal Clock Multiplier, permitting the use of the 1 or 2 clock per machine cycle speeds The following procedure must be performed when setting the CTM bit.							
	1. Select the desired clock rate via the $4X/\overline{2X}$ bit. $(4X/\overline{2X}=1, 1 \text{ clock per cycle}, 4X/\overline{2X}=0, 2 \text{ clocks per cycle}).$							
	2. Set the CTM bit. At this point the CKRY bit (EXIF.3) will be cleared, indicating the internal clock stabilization period has commenced. Software is prohibited from modifying the CD1, CD0 bits while the CKRY bit is cleared.							
	3. Poll the CKRY bit until it is set.							
	4. Change CD0, CD1 bits to 00b.							
	CTM cannot be changed from a 1 to a 0 while the Crystal Clock Multiplier option is selected via the CD1 and CD0 clock control bits. The CTM is also automatically cleared to a logic 0 when the processor enters into a Stop mode.							
4X / 2X Bit 3	System Clock Multiplier. This bit selects the internal crystal oscillator multiplier setting, which in turn establishes a speed of one or two clocks per machine cycle. This bit can only be altered when the CTM bit is cleared to prevent the corruption of the system clock.							
	0 = The device operates at a rate of two clocks per machine cycle.							
	1 = The device operates at a rate of one clock per machine cycle.							
ALEOFF Bit 2	ALE Disable. This bit disables the expression of the ALE signal on the device pin during all on-board program and data memory accesses. External memory accesses will automatically enable ALE independent of the ALEOFF bit. 0 = ALE expression is enabled. 1 = ALE expression is disabled.							
Bits 1-0	Reserved. These bits will read 1							

Status R	egister	(STATUS	5)					
	7	6	5	4	3	2	1	0
SFR C5	PIP	HIP	LIP	-	SPTA1	SPRA1	SPTA0	SPRA0
	R-0	R-0	R-0	R-*	R-0	R-0	R-0	R-0
R	=Unrestric	ted Read, W	=Unrestricte	ed Write, -n=	Value after	Reset, *=Se	e description	n
PIP Bit 7	Power Fail Priority Interrupt Status. When set, this bit indicates that software is currently servicing a power-fail interrupt. It is cleared when the program executes the corresponding RETI instruction.							
HP Bit 6		High Prior currently so executes th	r ity Interru ervicing a hi e correspon	pt Status. Vigh priority i ding RETI in	When set, the nterrupt. It nstruction.	is bit indicat is cleared w	es that softw hen the prog	vare is ram
LIP Bit 5		Low Prior currently so executes th	ity Interrup ervicing a lo e correspon	p t Status. V w priority ir ding RETI in	Vhen set, thi nterrupt. It i nstruction.	s bit indicate s cleared wh	es that softw en the progr	are is am
Bit 4 SPTA1 Bit 3		Reserved. I Serial Por is currently hardware s while this b	Read value v t 1 Transmin being trans ets the TI_1 pit is set or s	will be indet it Activity M mitted by se bit. Do not serial port da	erminate. Ionitor. Wi rial port 1. I alter the Clo ta may be lo	hen set, this t is cleared v ck Divide C ost.	bit indicates when the inte ontrol bits (s that data ernal PMR.7-6)
SPRA1 Bit 2		Serial Por currently b sets the RI bit is set or	t 1 Receive eing receive _1 bit. Do no serial port o	Activity Mo ed by serial p ot alter the C data may be	onitor. When bort 1. It is cl Clock Divide lost.	en set, this bi leared when Control bits	it indicates t the internal s (PMR.7–6)	hat data is hardware) while this
SPTA0 Bit 1		Serial Por is currently hardware s while this b	t 0 Transmit being trans ets the TI_1 bit is set or s	it Activity M mitted by se bit. Do not serial port da	Monitor. We wrial port 0. I alter the Clo ta may be lo	hen set, this t is cleared v ck Divide C ost.	bit indicates when the interview of the second seco	that data ernal PMR.7-6)
SPRA0 Bit 0		Serial Por currently b sets the RI bit is set or	t 0 Receive eing receive _1 bit. Do no serial port o	Activity Mo ed by serial p ot alter the C data may be	onitor. When bort 0. It is cl Clock Divide lost.	en set, this bi leared when Control bits	it indicates t the internal s (PMR.7-6)	hat data is hardware while this

Memory (Control	Regist	er (MO	CON)					
-	7	6	-	5	4	3	2	1	0
SFR C6h	IDM1	IDM	0	CMA	1	PDCE3	PDCE2	PDCE1	PDCE0
	RT-0	RT-	C	RT-0	R-1	RT-0	RT-0	RT-0	RT-0
	D –Un	restricted	Dood T	-Timod	Access Wr	ita Only	n-Valua aftar	Dosot	
	K-OII	restricted	ICCau, I	-111100		ite Olity, -i		Reset	
IDM1, IDN Bits 7-6	10	Interna address shown in	l Data I and typ n the tal	Memory e (data a ble belov	y Configura and/or progra w.	tion Bits 1 am) of the	I-0. These bit internal 4 KB	s establish b internal SR	ooth the AM as
		Note tha Memory at the sa (ACON) equal to and the b	t a spec config me time 2) is cle 11b. A pit(s) w	ial lock uration e. The II eared, an ttempts ill remai	out feature p (IDM1, IDM DM1, IDM0 nd the SA bi to modify th in unchangeo	revents the $10 = 11b$) a bits can be t cannot be t IDMx or d.	e use of the Pr and the 10-bit e set to 11b or e set while the SA bits in the	ogram and/o stack pointe lly when the IDM1, IDN ese situation	or Data r (SA=1) SA bit 10 bits are s will fail
				4 KF	B Internal S	RAM			
		IDM1		Me	emory Loca	tion M	lemory Assig	nment	
		0	0	00	F000h-00FF	FFh D	ata Memory		
		0	1	00	0000h-000F	FFN D	ata Memory		
		1	0	40	0000h-400F	FFN D	ata Memory		
		1	1	40	0000n-400F	FFN Pi	rogram and/or	Data Memo	ory
CMA Bit 5		CAN Da	ata Mei f CAN	nory As Data Ma	ssignment.	This bit se	lects the addr both CAN cor	ess of the 25	6 byte
Dit 5		C	MA		CAN 0 Men	norv Addr	ress CAN	1 Memory	Address
		0 (d	efault)		00EE00h	-00EEFFh	0	0EF00h-00E	EFFFh
		× ×	1		401000h	-4010FFh	4	01100h-401	1FFh
Bit 4		Reserve	1						
PDCE3 Bit 3		Program function a merged the micr reading determin has not b	n/Data s as the d chip e oproces from ex nes the p peen pro	Chip E chip en nable fo sor will ternal M nemory eviously	nable 3. Th able for extern or program as use the PSE IOVX memory range assoc	is bit select rnal progra nd data me EN signal pry. The Pe iated with the Port 4	ets whether the am memory o emory (PDCE instead of the ort 4 Control n $\overline{CE3}$. This bin Control regis	e $\overline{CE3}$ signa nly (PDCE= =1). When I \overline{RD} signal register (P40 t is ignored i ter.	1 =0), or as PDCE=1, when CNT) of $\overline{CE3}$
PDCE2 Bit 2		Program function a merged the micr reading determin has not b	n/Data s as the d chip e oproces from ex- nes the p peen pro-	Chip E chip en nable fo sor will ternal M nemory eviously	nable 2. The able for extension or program as use the PSE IOVX memory range assoc	is bit selectornal progra and data me EN signal to pry. The Periated with the Port 4	ets whether the am memory o emory (PDCE instead of the ort 4 Control of $\overline{CE2}$. This bi Control regis	e $\overline{CE2}$ signa nly (PDCE= =1). When F \overline{RD} signal register (P40 t is ignored ter.	d =0), or as PDCE=1, when CNT) if CE2

PDCE1Program/Data Chip Enable 1. This bit selects whether the CE1 signalBit 1functions as the chip enable for external program memory only (PDCE=0), or as
a merged chip enable for program and data memory (PDCE=1). When PDCE=1,
the microprocessor will use the PSEN signal instead of the RD signal when
reading from external MOVX memory. The Port 4 Control register (P4CNT)
determines the memory range associated with CE1. This bit is ignored if CE1
has not been previously enabled via the Port 4 Control register.

PDCE0Program/Data Chip Enable 0. This bit selects whether the CE0 signalBit 0functions as the chip enable for external program memory only (PDCE=0), or as
a merged chip enable for program and data memory (PDCE=1). When PDCE=1,
the microprocessor will use the PSEN signal instead of the RD signal when
reading from external MOVX memory. The Port 4 Control register (P4CNT)
determines the memory range associated with CE0. This bit is ignored if CE0
has not been previously enabled via the Port 4 Control register.

Timed Access Register (TA)

	7	6	5	4	3	2	1	0
SFR C7h	TA.7	TA.6	TA.5	TA.4	TA.3	TA.2	TA.1	TA.0
	W-1							

W=Unrestricted Write, -n=Value after Reset

TA.7-0Timed Access. Correctly accessing this register permits modification of timedBits 7-0access protected bits. Write AAh to this register first, followed within 3 cycles by
writing 55h. Timed access protected bits can then be modified for a period of 3
cycles measured from the writing of the 55h.

l imer 2	Control	(12CON)							
	7	6	5	4	3	2	1	0	
SFR C8h	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	$C/\overline{T2}$	$CP/\overline{RL2}$	
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	
	R=	Unrestricted	Read, W=U	Inrestricted	Write, -n=V	alue after Re	eset		
TF2		Timer 2 Ov	verflow Fla	g. This flag	will be set w	when Timer	2 overflows	from	
Bit 7		FFFFh or the cleared by solution of the second seco	ne count equ software. Th	ual to the cap F2 will only	pture registe be set if RC	r in down co LK and TCI	ount mode. I LK are both	t must be cleared to	
EXF2 Bit 6	Timer 2 External Flag. A negative transition on the T2EX pin (P1.1) or timer 2 underflow/overflow will cause this flag to set based on the CP/RL2 (T2CON.0), EXEN2 (T2CON.3), and DCEN (T2MOD.0) bits. If set by a negative transition, this flag must be cleared to 0 by software. Setting this bit in software or detection of a negative transition on the T2EX pin will force a timer interrupt if enabled.								
	$CP/\overline{RL2}$	EXEN2	DCEN	RESULT					
	1	0	Х	Negative t	ransitions of	n P1.1 will r	not affect thi	s bit.	
	1	1	Х	Negative t	transitions of	n P1.1 will s	et this bit.		
	0	0	0	Negative t	transitions of	n P1.1 will r	not affect thi	s bit.	
	0	1	0	Negative t	transitions of	n P1.1 will s	et this bit.		
	0	X	1	Bit toggle and can b mode, EX	s whenever be used as a F2 will not o	timer 2 und 17 th bit of cause an inte	lerflows/ove resolution. errupt.	rflows In this	
RCLK Bit 5		Receive Cl receiving da	ock Flag. T ata in serial	his bit deter modes 1 or	mines the se	erial port 0 ti	mebase whe	n	

_

.

0 = Timer 1 overflow is used to determine receiver baud rate for serial port 0.

1 = Timer 2 overflow is used to determine receiver baud rate for serial port 0. Setting this bit will force timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the external clock.

TCLKTransmit Clock Flag. This bit determines the serial port 0 timebase whenBit 4transmitting data in serial modes 1 or 3.

- 0 = Timer 1 overflow is used to determine transmitter baud rate for serial port 0.
- 1 = Timer 2 overflow is used to determine transmitter baud rate for serial port 0. Setting this bit will force timer 2 into baud rate generation mode. The timer will operate from a divide by 2 of the external clock.

EXEN2 Bit 3	 Timer 2 External Enable. This bit enables the capture/ reload function on the T2EX pin if Timer 2 is not generating baud rates for the serial port. 0 = Timer 2 will ignore all external events at T2EX. 1 = Timer 2 will capture or reload a value if a negative transition is detected on the T2EX pin.
TR2 Bit 2	Timer 2 Run Control. This bit enables/disables the operation of timer 2. Halting this timer will preserve the current count in TH2, TL2. 0 = Timer 2 is halted. 1 = Timer 2 is enabled.
C / T2 Bit 1	 Counter/Timer Select. This bit determines whether timer 2 will function as a timer or counter. Independent of this bit, timer 2 runs at 2 clocks per tick when used in either baud rate generator or clock output mode. 0 = Timer 2 function as a timer. The speed of timer 2 is determined by the T2M bit (CKCON.5). 1 = Timer 2 will count negative transitions on the T2 pin (P1.0).
CP/RL2 Bit 0	 Capture/Reload Select. This bit determines whether the capture or reload function will be used for timer 2. If either RCLK or TCLK is set, this bit will not function and the timer will function in an auto-reload mode following each overflow. 0 = Auto-reloads will occur when timer 2 overflows or a falling edge is detected on T2EX if EXEN2=1. 1 = Timer 2 captures will occur when a falling edge is detected on T2EX if EXEN2 = 1.

Timer 2 N	lode (1	[2MOD)						
	7	6	5	4	3	2	1	0
SFR C9h	1	1	1	D13T1	D13T2	1	T2OE	DCEN
	R-1	R-1	R -1	RW-0	RW-0	R-1	RW-0	RW-0
	R=	Unrestricted	Read, W=	Unrestricted	Write, -n=V	alue after R	eset	
Bits 7-5		Reserved.						
D13T1 Bit 4		Divide by alternate cl When D13 1 is supplie oscillator (' by T1M an supplied th T1M. The counter.	Thirteen C ock source T1 is cleare d through t $\Gamma 1M = 0$) o d C/T. Wh rough a sep C/T bit mu	lock Option to the Timer d to 0 (the de he standard 7 r the divide b en D13T1 is arate divide st also be pro	For Timer 1 in place o efault Reset T1 external i by 4 of the o set to a 1 th by 13 of the ogrammed to	1. The D13 f the normal state), the cl nput pin, the scillator (T1 e clock sour crystal osci o a 1 to selec	BT1 bit prov external T1 lock source to divide by $M = 1$, as control for Time llator independent to the divide	ides an input pin. for Timer 2 of the controlled r 1 is endent of by 13
D13T2 Bit 3		Divide by ' alternate cl When D13' 2 is supplie oscillator (' by T2M an supplied th T2M. The counter.	Thirteen C ock source T2 is cleare of through t $\Gamma 2M = 0$) o d C/T2. W rough a sep C/T2 bit m	lock Option to the Timer d to 0 (the do he standard 7 r the divide 1 hen D13T2 i arate divide ust also be p	For Timer 2 in place o efault Reset F2 external i by 4 of the o is set to a 1 t by 13 of the rogrammed	2 . The D13 f the normal state), the cl nput pin, the scillator (T2 he clock sou crystal osci to a 1 to sele	BT2 bit provident external T2 lock source for the divide by $22M = 1$), as curce for Tim lator independent the divident external content of the divident external content exter	ides an 2 input pin. for Timer 12 of the controlled er 2 is endent of e by 13
Bit 2		Reserved.						
T2OE Bit 1		Timer 2 O the T2 pin counter inp C/T2=0. A	utput Enal (P1.0). $0 =$ ut for timer lso, timer 2	ble. This bit of The T2 pin the T2 pin the T2 pin the T2. $1 = \text{Time}$ rollovers with the table product of table p	enables/disa functions as er 2 will driv ll not cause	bles the cloc either a stan ye the T2 pir interrupts.	ek output fun Idard port pi I with a cloc	nction of n or as a k output if
DCEN Bit 0		Down Cou direction th DC	nt Enable. at timer 2 c E N	This bit, in c counts in 16- T2E 2	conjunction bit auto-relo X	with the T2l ad mode. DIRECTIO	EX pin, cont DN	rols the
		1		1		Up		
		1		0 X		Uown Un		
		0		11		\mathbf{v}_{P}		

Timer 2	Capture	LSB (RC	CAP2L)					
	7	6	5	4	3	2	1	0
SFR CAh	RCAP2L	RCAP2L	RCAP2L	RCAP2L	RCAP2L	RCAP2L	RCAP2L	RCAP2L
	.7	.6	.5	.4	.3	.2	.1	.0
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

RCAP2L.7-0Timer 2 Capture LSB. This register is used to capture the TL2 value when timerBits 7-02 is configured in capture mode. RCAP2L is also used as the LSB of a 16-bit
reload value when timer 2 is configured in auto-reload mode.

Timer 2 Capture MSB (RCAP2H)

	7	6	5	4	3	2	1	0
SFR CBh	RCAP2H							
	.7	.6	.5	.4	.3	.2	.1	.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

RCAP2H.7-0Timer 2 Capture MSB. This register is used to capture the TH2 value when
timer 2 is configured in capture mode. RCAP2H is also used as the MSB of a 16-
bit reload value when timer 2 is configured in auto-reload mode.

Timer 2 LSB (TL2)

	7	6	5	4	3	2	1	0
SFR CCh	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL2.7-0 Timer 2 LSB. This register contains the least significant byte of Timer 2. Bits 7-0

Timer 2 MSB (TH2)

_	7	6	5	4	3	2	1	0
SFR CDh	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

TL2.7-0 Timer 2 MSB. This register contains the least significant byte of Timer 2. Bits 7-0

Clock Ou	Itput Re	gister (Co	OR)					
	- 7	6	5	4	3	2	1	0
SFR CEh	IRDACK	C1BPR7	C1BPR6	C0BPR7	C0BPR6	COD1	COD0	CLKOE
	RT-0	RT-0	RT-0	RT-0	RT-0	RT-0	RT-0	RT-0
	R=Unr	restricted Rea	ad, T=Timec	l Access W1	ite Only, -n=	Value after	Reset	
IRDACK Bit 7		IRDA Cloc will issue a Serial Port controlled b Clock Outp Note that th programme	ck Output E clock that is 0. When IRI by the CLKC out Divide B a appropriat d for the bat	Chable. When a 16 times the DACK is clear DE bit in CC its (COR.1 at the baud rate and rate gene	en IRDACK the programme eared to a 0, the PR.0 and the and COR.2) we must be estal rator Mode 2	is set to 1, the ed baud rate the Clock Or associated c when enable blished via t	ne Clock Ou associated utput Pad wi lock supplie d by the CL he use of Ti	tput Pad with Ill be ed by the KOE bit. mer 1,
C1BPR7, C Bit 6-5	C1BPR6	CAN 1 Bar bit CAN 1 I SWINT bit are located MOVX me	ad Rate Pre Baud Rate P in the CAN in the CAN mory.	scaler Bits. re-scaler. Tl 1 Control R 1 Bus Timin	These bits e nese bits can egister is clea ng Register Z	stablish bits not be modi ared to 0. Th Zero (C1BT(7 and 6 of t ified while t a remaining)) located in	he eight- he g six bits the CAN
C0BPR7, C Bit 4-3	COBPR6	CAN 0 Bar bit CAN 0 I SWINT bit are located MOVX me	ad Rate Pre Baud Rate P in the CAN in the CAN mory.	scaler Bits. re-scaler. Tl 0 Control R 0 Bus Timin	These bits e nese bits can legister is cle ng Register Z	stablish bits not be modi cared to 0. T Zero (C0BT(7 and 6 of t ified while t he remainin)) located in	he eight- he g six bits the CAN
COD1, CO Bit 2-1	DD0	Clock Out CLKO fund	put Divide S ection on port	Select bits. 7 pin P3.5.	These bits se	lect the outp	out frequency	y of the
		COD1	CO	D0 P3	.5 Output Fi	requency		
		0	0	Sys	stem clock di	ivided by 2		
		0	1	Sys	stem clock di	ivided by 4		
		1	0	Sys	stem clock di	ivided by 6		
		1	1	Sys	stem clock di	ivided by 8		
XCLKOE Bit 0		External C clock signa pin P3.5 fur	Clock Outpu l of the frequenctions as a	t Enable. V Jency define general purp	When XCLK(ed by COD1, pose I/O or as	DE=1, port p COD2. Wh s the T1 alte	oin P3.5 asse en XCLKO rnate functio	erts a E=0, port on.

Program	Status	Word (PS	SW)							
	7	6	5	4	3	2	1	0		
SFR D0h	CY	AC	F0	RS1	RS0	0V	F1	PARITY		
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0		
	R=	Unrestricted	Read, W=U	Jnrestricted	Write, -n=V	alue after Re	eset			
CY		Carry Flag	g. This bit is	s set when if	the last arith	metic opera	tion resulted	d in a carry		
Bit 7		(during add all arithme	dition) or a b tic operatior	oorrow (duri ns.	ng subtractio	on). Otherwi	se it is clear	ed to 0 by		
AC		Auxiliary	Carry Flag	• This bit is s	set to 1 if the	e last arithm	etic operatio	n resulted		
Bit 6		in a carry i order nibbl	nto (during a le. Otherwise	addition), or e it is cleared	a borrow (d d to 0 by all	uring subtra arithmetic o	ction) from perations.	the high		
FO		User Flag 0. This is a bit-addressable, general-purpose flag for software control.								
Bit 5										
RS1, RS0 Bits 4-3		Register B during regi	ank Select	1–0. These t s.	oits select wl	nich register	bank is add	ressed		
		RS1	RS0	REGI	STER BAN	K	ADDRI	ESS		
		0	0		0		00h - 0)7h		
		0	1		1		08h - 0	Fh		
		1	0		2		10h – 1	.7h		
		1	1		3		18h – 1	Fh		
OV Bit 2		Overflow carry (addi Otherwise	Flag. This b tion), borrow it is cleared	it is set to 1 w (subtraction to 0 by all a	if the last ar on), or overfl rithmetic op	ithmetic ope low (multipl erations.	eration result y or divide)	ed in a		
F1 Bit 1		User Flag	1. This is a [bit-addressal	ble, general-	purpose flag	g for softwar	e control.		
PARITY Bit 0		Parity Fla accumulate	g. This bit is or is 1 (odd j	s set to 1 if the set of the	he modulo-2 cleared to 0	sum of the on even pari	eight bits of ty.	the		

Multiplier	Contro	l Registe	r Zero (N	ICNT0)							
	7	6	5	4	3	2	1	0			
SFR D1h	LSHIFT	CSE	SCE	MAS4	MAS3	MAS2	MAS1	MAS0			
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0			
	R=U	Unrestricted	Read, W=U	Inrestricted	Read, -n=Va	llue after Res	set				
LSHIFT Bit 7		Left Shift. determine t shown belo MSb, and v calculation a either a sy	This bit we the direction w. When \overline{L} vice versa wh other than the stem reset of	rks in conju and path of SHIFT =0, s nen LSHIFT he shift func or the initiali	nction with arithmetic a hift operatio $\overline{\Gamma} = 1$. \overline{LSHIF} tion. The \overline{LS}	the SCE and ccelerator shons will shift T does not a SHIFT bit is e accelerator.	CSE bits to ift operatio from the LS lter any othe cleared to 0	ns as Sb to the er type of following			
CSE Bit 6		Circular Shift Enable. This bit works in conjunction with the SCE and $\overline{\text{LSHIFT}}$ bits to determine the direction and path of arithmetic accelerator shift operations as shown below. When CSE=1, shifts of the arithmetic accelerator will wrap bit 31 to bit 0 or vice versa depending on the settings of the $\overline{\text{LSHIFT}}$ bits.									
	When CSE is cleared to a 0, all left or right shifts will shift cleared bit values the most significant bit for a right shift and the least significant bit for a left sh When CSE is set to a 1 and SCB is set to a 1, the most significant bit will be shifted into the 32 Bit Carry Bit when doing a left shift and least most signific bit will be shifted into the 32 Bit Carry Bit when doing a right shift										
		The CSE b	it is cleared	to 0 followii	ng a system	reset.					
SCE Bit 5		Shift Carr bits to dete as shown b	y Enable. T rmine the di elow.	his bit work rection and J	s in conjunc path of arith	tion with the metic acceler	CSE and $\overline{\mathbf{L}}$ ator shift operator	SHIFT			
		When SCE left shift an incorporate CSE=0 the process. If least most s bit on a right	=1 the arithmed into the Mathematical and the arithmetic a arithmetic a CSE=1 the I significant b ht shift. The	netic accele (Sb for a rig) tic accelerat ccelerator ca (ASb will be it of the arith SCE bit is c (A	rator carry b ht shift. Whe or carry bit a arry bit will shifted into nmetic accel cleared to 0 f rithmetic A	it will be shi en SCE=0, sh as a part of th remain unch the carry bit erator will be following a s ccelerator V	fted into the nifts will no ne shifting p anged durin on a left shi e shifted int ystem reset. V alues Afte	e LSb for a t process. If g the shift ift and the o the carry r Shift			
		SCE	$CSE \overline{LS}$	HIFT MS	b (bit 31)	LSb (bit	0) Ca	rry bit			
		0	0	0 Prev	ious bit 30	Previous bi	it 0 uno	changed			
		0	0	1	0	Previous bi	it 1 uno	changed			
		0	1	0 Prev	ious bit 30	Previous bi	t 31 uno	changed			
		0	1	1 Prev	vious bit 0	Previous bi	it 1 uno	changed			
		1	0	0 Prev	10us bit 30	Previous ca	urry und	changed			
		1	0	I Prev	100 carry	Previous bi	it l uno	changed			
		1	1	U Prev	10us b1t 30	Previous ca	arry Previ	ous bit 31			
		1	1	I Prev	100 carry	Previous b	it I Prev	10us bit ()			

69 of 155

MAS4-0Multiplier Register Shift Bits. These bits determine the number of shiftsBits 4-0performed when a shift operation is performed with the arithmetic accelerator,
and are also used to indicate how many shifts were performed during a previous
normalization operation. These bits are cleared to 00000b following a system
reset or the initialization of the arithmetic accelerator.

When these bits are cleared to 00000b after loading the arithmetic accelerator, the device will normalize the 32-bit value loaded into the arithmetic accelerator Accumulator, rather than shifting it. Following the normalization operation, the MAS4-0 bits will be modified to indicate how many shifts were performed.

MAS4	MAS3	MAS2	MAS1	MAS0	Number of shifts of Arithmetic Accelerator Accumulator		
0	0	0	0	0	Normalization		
0	0	0	0	1	Shift by 1		
0	0	0	1	0	Shift by 2		
0	0	0	1	1	Shift by 3		
•							
•	•	•	•	•			
1	1	1	1	0	Shift by 30		
1	1	1	1	1	Shift by 31		

wultiplier Control Register One (WCN11)													
	7	6	5	4	3	2	1	0					
SFR D2h	MST	MOF	SCB	CLM	1	1	1	1					
	RW-0	R-0	RW-0	RW-0	R-1	R-1	R-1	R-1					
R=Unrestricted Read, W=Unrestricted Read, -n=Value after Reset													
MST Bit 7	Multiply/Accumulate Status Flag. The MST bit serves as a busy flag for the multiplier/accumulate hardware. The bit is set automatically when the processor begins loading data into the MA or MB register, and will remain set until the assigned task is completed. MST is automatically cleared by the multiplier/accumulate hardware once an assigned task is completed and the results are ready for the processor to read. MST=0 also indicates that the accelerator has been initialized and can be loaded with new values. Clearing this bit via software from a previous high state will terminate the current operation and initialize the multiplier, allowing the immediate loading of new data into MA and/or MB to perform a new calculation.												
MOF Bit 6	Multiply Overflow Flag. The MOF flag bit is cleared following a either a system reset or the initialization of the accelerator. The MOF bit is automatically set when the accelerator detects a divide by zero, or when the result of the calculation is larger than FFFFh.												
SCB Bit 5	Shift Carry Bit. The SCB bit is used as a carry bit for shift operation when SCE bit is set to 1. Note that the SCB will not be cleared at the beginning of a new operation and must be cleared by a write to this bit or a system reset.												
CLM Bit 4	Clear Accelerator Registers. Writing a one to this bit will clear the MA, MB, and MC registers. Reading this bit will always return a logic 0.												
Bit 3-0		Reserved											

Multiplier A Register (MA)

...

The MA register can receive or hold up to a 32-bit result, accessed via a series of sequential writes to or reads from the register. Details of the sequencing are explained in the arithmetic accelerator section of the User's Guide.

R=Unrestricted Read, W=Unrestricted Read, -n=Value after Reset

Bits 7-0

Multiplier C Register. The MC Register allows access to the 40-bit accumulator register for the arithmetic accelerator. Each time a multiply or divide (but not shift or normalization) function is performed with the arithmetic accelerator the result is added to the previous value in the MC register.

Data is read from the 40-bit accumulator MSB first, and five read operations must be performed to read the entire value. Writes to the accumulator are performed LSB first, but software may write as few registers as needed (i.e., 2 in the case of a 16-bit value) provided the unloaded registers have been previously initialized to 00h. Details of the sequencing are explained in the arithmetic accelerator section of the User's Guide.

All 40 bits of the accumulator are cleared by a system reset, the setting of the CLM bit or the setting of the MST bit in the MCNT1 SFR. The register can also be cleared by performing five writes of 00h to the MC register.
CAN 1 Receive Message Stored Register 0 (C1RMS0)								
	7	6	5	4	3	2	1	0
SFR D6h								
	R-0							

R=Unrestricted Read, -n=Value after Reset

CAN 1 Receive Message Stored Register 0. This register indicates which of CAN 1 message centers 1-8 have successfully received and stored a message since the last read of this register. A logic one in a location indicates a message has been received and stored for that message center. This register is automatically cleared to 00h when read. This register should always be read in conjunction with the C1RMS1 register to ascertain the status of all message centers.

C1RMS0.7 Bit 7	Message Center 8, Message Received and Stored
C1RMS0.6 Bit 6	Message Center 7, Message Received and Stored
C1RMS0.5 Bit 5	Message Center 6, Message Received and Stored
C1RMS0.4 Bit 4	Message Center 5, Message Received and Stored
C1RMS0.3 Bit 3	Message Center 4, Message Received and Stored
C1RMS0.2 Bit 2	Message Center 3, Message Received and Stored
C1RMS0.1 Bit 1	Message Center 2, Message Received and Stored
C1RMS0.0 Bit 0	Message Center 1, Message Received and Stored

	7	6	5	4	3	2	1	0				
SFR D7h												
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
	R=Unrestricted Read, -n=Value after Reset											
D:+ 7		CAN 1 Rec CAN 1 me message sind a message h is automatic read in conj message cen	eive Mess essage cer ce the last as been re- cally clear unction w tters.	age Stored I nters 9-15 h read of this ceived and s ed to 00h w ith the C1R	Register 1. T have success register. A lo tored for that then read. T MS0 register	This register sfully receit ogic one in a t message c his register r to ascerta	indicates wh ved and sto a location ind enter. This ro should alwa in the status	nich of ored a dicates egister ays be of all				
C1RMS1.6		Message Ce	enter 15. N	Aessage Rec	eived and S	tored						
Bit 6				8								
C 1RMS1.5 Bit 5		Message Ce	enter 14, N	Aessage Rec	eived and S	tored						
C 1RMS1.4 Bit 4		Message Ce	enter 13, N	Aessage Rec	eived and S	tored						
C 1RMS1.3 Bit 3		Message Ce	enter 12, N	Aessage Rec	eived and S	tored						
C 1RMS1.2 Bit 2		Message Center 11, Message Received and Stored										
C 1RMS1.1 Bit 1		Message Center 10, Message Received and Stored										
CIRMS1 0		Message Ce	enter 9. M	essage Rece	ived and Sta	ored						

	7	6	5	4	3	2	1	0	
SFR D8h	SMOD	POR	EPF1	PFI	WDIF	WTRF	EWT	RWT	
	RW-0	RW-*	RW-0	RW-*	RW-0	RW-*	RW-*	RW-0	
	R=Unre	stricted Read-n	d, W=Unres =Value after	tricted Write r Reset, *=So	e, T=Timed ee Descripti	Access Writ on	e Only,		
SMOD Bit 7		Serial Modification. This bit controls the doubling of the serial port 1 baud rate in modes 1, 2, and 3.							
		$0 = \text{Serial } \mu$ $1 = \text{Serial } \mu$	oort 1 baud 1 oort 1 baud 1	ate operates ate is double	at normal s	peed			
POR		Power-on	Reset Flag.	This bit ind	icates wheth	er the last re	eset was a po	ower-on	
Bit 6		reset. This bit is typically interrogated following a reset to determine if the reset was caused by a power-on reset. It must be cleared by a Timed Access write before the next reset of any kind or the software may erroneously determine that another power-on reset has occurred. This bit is set following a power-on reset and unaffected by all other resets. Note: This bit is not Timed Access protected on the DS80C310.							
EPFI Bit 5		 0 = Last reset was from a source other than a power-on reset 1 = Last reset was a power-on reset. Enable Power fail Interrupt. This bit enables/disables the ability of the internal band-gap reference to generate a power-fail interrupt when V_{CC} falls below approximately 4.5 volts. While in Stop mode, both this bit and the Band-gap Select bit, BGS (EXIF.0), must be set to enable the power-fail interrupt. 0 = Power-fail interrupt disabled. 1 = Power-fail interrupt enabled during normal operation. Power-fail interrupt 							
PFI		Power fail	Interrupt]	Flag. When	set, this bit i	ndicates tha	t a power-fa	il interrupt	
Bit 4		has occurre service rou will genera	ed. This bit 1 tine, or anot te a power-l	nust be clean ther interrupt fail interrupt	red in softwa t will be gen , if enabled.	are before ex erated. Setti	titing the int ng this bit ir	errupt 1 software	

Watchdog Control (WDCON)

WDIF Watchdog Interrupt Flag. This bit, in conjunction with the Watchdog Timer Bit 3 Interrupt Enable bit, EWDI (EIE.4), and Enable Watchdog Timer Reset bit (WDCON.1), indicates if a watchdog timer event has occurred and what action will be taken. This bit must be cleared in software before exiting the interrupt service routine, or another interrupt will be generated. Setting this bit in software will generate a watchdog interrupt if enabled. This bit can only be modified using a Timed Access Procedure. EWT **EWDI WDIF** RESULT Х Х No watchdog event has occurred. 0 0 0 1 Watchdog time-out has expired. No interrupt has been generated. 0 1 1 Watchdog interrupt has occurred. 0 1 Watchdog time-out has expired. No interrupt 1 has been generated. Watchdog timer reset will occur in 512 cycles if RWT is not strobed. 1 1 1 Watchdog interrupt has occurred. Watchdog timer reset will occur in 512 cycles if RWT is not set using a Timed Access procedure. WTRF Watchdog Timer Reset Flag. When set, this bit indicates that a watchdog timer Bit 2 reset has occurred. It is typically interrogated to determine if a reset was caused by watchdog timer reset. It is cleared by a power- on reset, but otherwise must be cleared by software before the next reset of any kind or software may erroneously determine that a watchdog timer reset has occurred. Setting this bit in software will not generate a watchdog timer reset. If the EWT bit is cleared, the watchdog timer will have no effect on this bit. EWT Enable Watchdog Timer Reset. This bit enables/disables the ability of the Bit 1 watchdog timer to reset the device. This bit has no effect on the ability of the watchdog timer to generate a watchdog interrupt. The time-out period of the watchdog timer is controlled by the Watchdog Timer Mode Select bits (CKCON.7-6). Clearing this bit will disable the ability of the watchdog timer to generate a reset, but have no affect on the timer itself, or its ability to generate a watchdog timer interrupt. This bit can only be modified using a Timed Access Procedure. This bit is unaffected by all other resets. 0 = A timeout of the watchdog timer will not cause the device to reset. 1 = A timeout of the watchdog timer will cause the device to reset. RWT **Reset Watchdog Timer.** Setting this bit will reset the watchdog timer count. Bit 0 This bit must be set using a Timed Access procedure before the watchdog timer expires, or a watchdog timer reset and/or interrupt will be generated if enabled. The time-out period is defined by the Watchdog Timer Mode Select bits (CKCON.7-6). This bit will always be 0 when read.

CAN 1 TI	ransmit N	lessage /	Acknow	ledgeme	nt Regist	er 0 (C11	[MA0)	
	7	6	5	4	3	2	1	0
SFR DEh								
	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0

R=Unrestricted Read, -n=Value after Reset

CAN 1 Transmit Message Acknowledgement Register 0. This register indicates which of CAN 1 message centers 1-8 have successfully transmitted a message since the last read of this register. A logic one in a location indicates a message has been transmitted from that message center. This register is automatically cleared to 00h when read. This register should always be read in conjunction with the C1TMA1 register to ascertain the status of all message centers.

C1TMA0.7 Bit 7	Message Center 8, Message Transmitted
C1TMA0.6 Bit 6	Message Center 7, Message Transmitted
C1TMA0.5 Bit 5	Message Center 6, Message Transmitted
C1TMA0.4 Bit 4	Message Center 5, Message Transmitted
C1TMA0.3 Bit 3	Message Center 4, Message Transmitted
C1TMA0.2 Bit 2	Message Center 3, Message Transmitted
C1TMA0.1 Bit 1	Message Center 2, Message Transmitted
C1TMA0.0 Bit 0	Message Center 1, Message Transmitted

CAN 1 Transmit Message Acknowledgement Register 1 (C1TMA1)								
	7	6	5	4	3	2	1	0
SFR DFh								
	R-0							

R=Unrestricted Read, -n=Value after Reset

	CAN 1 Transmit Message Acknowledgement Register 1 . This register indicates which of CAN 1 message centers 9-15 have successfully transmitted a message since the last read of this register. A logic one in a location indicates a message has been transmitted for that message center. This register is automatically cleared to 00h when read. This register should always be read in conjunction with the C1TMA0 register to ascertain the status of all message centers.
Bit 7	Reserved
C1TMA1.6 Bit 6	Message Center 15, Message Transmitted
C1TMA1.5 Bit 5	Message Center 14, Message Transmitted
C1TMA1.4 Bit 4	Message Center 13, Message Transmitted
C1TMA1.3 Bit 3	Message Center 12, Message Transmitted
C1TMA1.2 Bit 2	Message Center 11, Message Transmitted
C1TMA1.1 Bit 1	Message Center 10, Message Transmitted
C1TMA1.0 Bit 0	Message Center 9, Message Transmitted

Accumulator (A or ACC)

	7	6	5	4	3	2	1	0
SFR E0h	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

ACC.7-0	Accumulator. This register serves as the accumulator for arithmetic operations.
Bits 7-0	It is functionally identical to the accumulator found in the 80C32.

CAN 1 Co	ntrol R	egister (C	1C)								
_	7	6	5	4	3	2	1	0			
SFR E3h	ERIE	STIE	PDE	SIESTA	CRST	AUTOB	ERCS	SWINT			
	RW-0	RW-0	RW-0	RW-0	RT-1	RW-0	RW-0	RW-1			
R=Unres	stricted Re	ead, W=Unres	stricted Writ	te, T=Timed	Access Wr	ite Only, -n=	Value after	Reset			
ERIE		CAN 1 Erro	or Interrup	t Enable.							
Bit 7		0 = CAN 1 E	Error Interru	pt is disable	d.						
		1 = Setting this bit while the C1IE bit (EIE.5) and Global Interrupt Enable bits (IE.7) are set will generate an interrupt if the CAN 1 Bus Off (BUSOFF) or CAN 1 Error Count Exceeded bit (CECE) bits are set.									
STIE		CAN 1 State	ıs Interrup	t Enable.							
Bit 6		$0 = CAN \ 1 \ S$	tatus Interre	upt is disable	ed.						
		1 = If the C1 Transmit Status bi Error bits	IE bit (EIE Status bit t (WKS) is s (ER2-0) cl	.5) is set, an (TXS), Rec set. An inte nange a non-	interrupt w weive Status rrupt will a 000b or not	vill be genera s bit (RXS) llso be gener n-111b state.	ated if the C or the Wa rated if the	CAN 1 ke-Up Status			
PDE Bit 5	CAN 1 Power Down Enable. Setting this bit places the CAN 1 modul lowest power mode. The module will enter Power Down mode immedi setting this bit, or following the completion of the current reception, tra arbitration failure, or error condition on CAN 1. Software can poll the I ascertain whether the microcontroller has entered Power Down mode (I is waiting for a current CAN operation to complete (PDE=0) before ent Power Down Mode.						N 1 module de immedia ception, trar n poll the P wn mode (P) before ente	e into its tely upon asmission, DE bit to DE=1) or ering			
		Power Down mode is exited by clearing the PDE bit or by any reset of the microcontroller. The CAN 1 module will begin operation after the receipt of 11 consecutive recessive bits.									
		The Wake-U	p Status bit	, WKS, is a l	logical OR	of this bit an	d the SIES7	A bit.			
SIESTA Bit 4		CAN 1 Siesta Mode Enable. Setting this bit places the CAN 1 module into a low power mode. The module will enter Siesta mode immediately upon setting this bit, or following the completion of the current reception, transmission, arbitration failure, or error condition on CAN 1. Software can poll the SIESTA bit to ascertain whether the microcontroller has entered Siesta mode (SIESTA =1) or is waiting for a current CAN operation to complete (SIESTA =0) before entering Siesta Mode.									
		Siesta mode setting either operation aft	is exited by the CRST er the receip	clearing the or SWINT b ot of 11 cons	Siesta bit, its to 1. The ecutive rec	detecting CA e CAN 1 mo essive bits.	AN 1 bus act dule will be	ivity, or gin			
		The Wake-U	p Status bit	, WKS, is a l	logical OR	of this bit an	d the PDE b	oit.			

CRST Bit 3	CAN 1 Reset. Setting this bit via a Timed Access write will reset all CAN 1 registers in the SFR map to their reset default states. The module will reset the registers immediately upon setting this bit, or following the completion of the current reception, transmission, arbitration failure, or error condition on CAN 1. Software can poll the CRST bit to ascertain whether the microcontroller has successfully reset the registers (CRST =1) or is waiting for a current CAN operation to complete (CRST =0) before resetting the registers. Setting the CRST bit also clears the transmit and receive error counters and sets the SWINT bit.
	CRST must be cleared by software to remove the CAN reset. The state of the SWINT and BUSOFF bits determines the action of the device when the CRST bit is cleared.
AUTOB Bit 2	CAN 1 Autobaud. Setting this bit allows the CAN 1 module to establish proper CAN bus timing without disrupting the normal data flow between other nodes on the CAN Bus. When in the autobaud mode, incoming data on the C1RX pin is internally ANDed with transmit data generated by the CAN 1 module. An internal loop back feeds this combined data stream back into the input of the CAN 1 module. At the same time, C1TX pin is placed into a recessive state to prevent driving non-synchronized data (creating CAN Bus errors to other nodes) while attempting to synchronize the processor with the CAN Bus.
	With AUTOB = 1, the microcontroller auto-baud algorithm will make use of the CAN 1 Status Register RXS and error status bits to determine when a message is successfully received (when AUTOB =1, a successful receive does not require a store). Each successive baud rate attempt is proceeded by the microcontroller clearing the transmit and receive error counters via a write of 00h to the Transmit Error SFR Register and a read of the CAN 1 Status Register to clear the previous Status Change Interrupt. Note that a write to the Transmit Error SFR Register automatically resets the CAN fault confinement state machine to an initial (error active) state if the error counters are cleared to 00h. If, however, the error counters are programmed to a value greater than 128, the CAN module will be in a error passive state. Appropriate flags are set when the error counter is written with any value. A write of the Status Register is also used to remove the previous error value in the ER2-0 bits. Clearing the error counters will also clear the EC96 bit, if set.
	When $BUSOFF = 1$, software is prohibited from writing to the error counters by virtue of the fact that the SWINT bit is also forced to a 0 state during the period that the CAN module performs a bus recovery and power up sequence. Once the CAN module has removed itself from the Bus Off condition it will also clear $BUSOFF = 0$, set SWINT = 1, and will clear both the transmit and receive error counters to 00h.
ERCS Bit 1	CAN 1 Error Count Select. This bit selects the number of transmit or receive errors that will cause the CAN 1 Error Count Exceeded bit, CECE (C1S.6), to be set.
	0 = CECE bit set when the transmit or receive error counters exceed 95 errors. 1 = CECE bit set when the transmit or receive error counters exceed 127 errors.

SWINT Bit 0	CAN 1 Software Initialization Enable. This bit enables (SWINT=1) and disables (SWINT=0) software write access to the first 16 bytes of the CAN 1 MOVX SRAM. These bytes contain the CAN 1 Control/Status/Mask Registers. Read access to all bytes in the CAN 1 MOVX SRAM is permitted at all times, regardless of the state of the SWINT bit.
	Setting SWINT=1 disables CAN 1 Bus activity, allowing software access to the CAN 1 Control/Status/Mask Registers without corrupting CAN Bus transmission or reception. A special lockout procedure delays the internal assertion of the SWINT bit until all CAN 1 activity has ceased. The following procedure must be followed when setting the SWINT bit to prevent the accidental corruption of CAN Bus activity:
	3. Write a 1 to the SWINT bit, starting the internal process to enter the software initialization process.
	4. Poll the SWINT bit until it is set. The lockout circuit will hold SWINT=0 if it detects a reception, transmission, or arbitration in progress. When one of these conditions ceases, or if an error occurs, the CAN module will set SWINT=1, indicating that the CAN module is disabled and software can now write to the first 16 bytes of the CAN 1 MOVX SRAM. Attempts to modify the first 16 bytes of the CAN 1 MOVX SRAM while SWINT=0 will fail, leaving the bytes unchanged.
	The SWINT bit controls access to several other bits and registers. The CAN 1 Transmit Error Register (C1TE;A6h) and CAN 1 Receive Error Register (C1RE;A7h) are only modifiable while SWINT=1. Setting SWINT=1 automatically clears the SIESTA bit, and attempts to set SWINT=1 and SIESTA=1 in the same write to the C1C register will result in SWINT=1 and SIESTA=0.
	The BUSOFF bit has a direct interaction with the SWINT bit. When a Bus Off condition is detected (BUSOFF=1), the CAN module will automatically clear SWINT=0 and initiate a bus recovery and power-up sequence. Write access to the SWINT bit is prohibited until the Bus Off condition has been cleared and BUSOFF has been reset to 0.
	The SWINT bit is also set automatically following a system reset, the setting of the CRST bit in the CAN 1 Control Register, or programming the CAN Bus Timing Registers (C1BT0, C1BT1 in the MOVX SRAM) to 00h (an invalid state). As a precaution against utilizing the CAN with invalid bus timing, the SWINT bit cannot be cleared while C1BT0=C1BT1=00h. When this bit is cleared, the CAN 1 module will initiate a CAN Bus synchronization after the CAN module executes a power-up sequence (reception of 11 consecutive recessive bits.)

CAN 1 St	tatus Reg	ister (C1	S)								
	7	6	5	4	3	2	1	0			
SFR E4h	BUSOFF	CECE	WKS	RXS	TXS	ER2	ER1	ER0			
	R-0	R-0	R-0	RW-0	RW-0	R-0	R-0	R-0			
	R=U	nrestricted I	Read, W=U	nrestricted V	Vrite, -n=Va	lue after Re	set				
BUSOFF Bit 7	CAN 1 Bus Off. When $BUSOFF = 1$, the CAN 1 Bus is disabled and is not capable of receiving or transmitting messages. This condition is the result of the transmit error counter reaching a count of 256. When the CAN 1 module detects an error count of 256 the CAN module will automatically set $BUSOFF = 1$ and clear SWINT = 0.										
	E C P C in v V E f f r v v h c C	BUSOFF is a completes be completed the nitialization vill be enable Bus is enable rom a previous egister bits a when BUSO lex when the leared to 0.	cleared to a oth the buso quence (11 d is relationsl state. Once ed to transmed to receive ous 0 to a 1 are set. All n FF = 1. Bot e Bus Off co	0 to enable ff recovery of consecutive hip it will se software ha nit and receive e or transmit will generate microcontro h the transmit ondition is c	CAN 1 Bus (128 X 11 co recessive bit t SWINT = us cleared SW ve messages t messages. A te an interrup ller writes to that and receiv leared by the	activity when onsecutive re- ts). Once the 1 and will en- VINT to a 0 s. When BU A change in of the ERI of the SWINT we error cour- e CAN mode	en the CAN eccessive bits cAN mode the CAN mode the rinto the the CAN n SOFF = 0, t the state of E, C1IE and T bit are disa netrs are cle ule and BUS	processor s) and the ule has software nodule he CAN 1 BUSOFF 1 IE SFR abled ared to 00 SOFF is			
CECE Bit 6	(d	CAN 1 Err lepending of	or Count in the state of	Exceeded. f the ERCS	This bit ope bit in the CA	erates in on AN 1 Contro	e of two n l Register.	nodes,			
	F F c g	ERCS = 0 (Error count limit=96) In this mode when CECE=1, the interrupt flag indicates that either the CAN 1 Transmit Error Counter or the CAN 1 Receive Error Counter has reached an error count of 96, which represents an exceptionally high number of errors. CECE=0 indicates that both error counters have an error count of less than 96. A 0 to 1 transition of CECE will generate an interrupt if the ERIE, C1IE and IE SFR bits are set.									
	អ f F C C 1 I	ERCS = 1 (I lag indicate Receive Error exceptionally fransmit Error of less than or from a E SFR bits a	Error count s that eithe or Counter h y high num or Counter 128. A chan previous 1 m are set.	limit=128) r the CAN as reached a ber of erro and Receiv age in the sta to 0 will gen	In this mode 1 Transmit an error countries. CECE = e Error Countries ate of CECE herate an int	e when CEC Error Count at of 128, with 0 indicates nter both had from either terrupt if the	E=1, the int ter or the C hich represe s that the c ve an error a previous e ERIE, C11	errupt AN 1 ents an urrent count 0 to a E and			
WKS Bit 5	C C V in	CAN 1 Wak or Power Do VKS=0. A c nterrupt if th	e-up Statu wn mode. C hange in the e STIE, C1	s. When W Clearing both e state of W IE and IE S	KS=1, the C n the SIEST KS from a p FR bits are s	AN 1 modu A and PDE revious 1 to set.	le is in eithe bits will fore 0 will gene	er SIESTA ce the rate an			

RXSCAN 1 Receive Status. This bit indicates whether or not messages have beenBit 4received since the last read of the CAN 1 Status Register. RXS is only set by the
CAN 1 logic and must be cleared by the Microcontroller software, the CRST bit,
or a system Reset.

- 1 = The meaning of RXS=1 is dependent on the Autobaud bit, AUTOB.
 - AUTOB=0, RXS = 1 indicates that a message has been both successfully received and stored in one of the message centers by CAN 1 since the last read of the CAN 1 Status Register.
 - AUTOB=1, RXS = 1 indicates that a message has been successfully received by CAN 1 since the last read of the CAN 1 Status Register. Note that messages that are successfully received without errors but do not pass the arbitration filtering will still set the RXS bit.
- 0 = No messages have been successfully received since the last read of the CAN 1 Status Register.

When STIE= 1 and the RXS bit transitions from 0 to 1, the CAN Interrupt Register (C1IE;A5h) will change to 01h to indicate a pending interrupt due to a change in the CAN Status Register. Reading any bit in the C1S register will clear the pending interrupt, causing the C1IE register to change to 00h if no interrupts are pending or the appropriate value if a lower priority message center interrupt is pending. If a second successful reception is detected prior to or after the clearing of the RXS bit in the Status Register, a second status change interrupt flag will be set, issuing a second interrupt. Each new successful reception will generate an interrupt request independent of the previous state of the RXS bit, as long as the CAN Status Register has been read to clear the previous status change interrupt flag. Note that if software changes RXS from 0 to 1, an artificial Status Change Interrupt (STIE=1) will be generated. Thus, if RXS was previously set to 0 and a reception was successful, RXS will be set to 1 and an enabled interrupt may be asserted. An interrupt may be asserted (if enabled) if software changes RXS from 0 to 1. If RXS was previously set to 1 and a reception was successful, RXS remains set and an interrupt may be asserted if enabled. No interrupt will be asserted if software attempts to set RXS=1 while the bit is already set.

TXS Bit 3 **CAN 1 Transmit Status.** This bit indicates whether or not one or more messages have been successfully transmitted since the last read of the CAN 1 Status Register. TXS is only set by the CAN 1 logic and is not cleared by the CAN controller but is only cleared via software, the CRST bit, or a system Reset.

- 1 = A message has been successfully transmitted by CAN 1 (error free and acknowledged) since the last read of the CAN 1 Status Register.
- 0 = No messages have been successfully transmitted since the last read of the CAN 1 Status Register.

When STIE= 1 and the TXS bit transitions from 0 to 1, the CAN 1 Interrupt Register (C1IE;A5h) will change to 01h to indicate a pending interrupt due to a change in the CAN Status Register. Reading any bit in the C1S register will clear the pending interrupt, causing the C1IE register to change to 00h if no interrupts are pending or the appropriate value if a lower priority message center interrupt is pending. If a second successful reception is detected prior to or after the clearing of the RXS bit in the Status Register, a second status change interrupt flag will be set, issuing a second interrupt. Each new successful reception will generate an interrupt request independent of the previous state of the RXS bit, as long as the CAN Status Register has been read to clear the previous status change interrupt flag. Note that if software changes TXS from 0 to 1, an artificial Status Change Interrupt (STIE=1) will be generated. Thus, if TXS was previously set to 0 and a reception was successful, TXS will be set to 1 and an enabled interrupt may be asserted. An interrupt may be asserted (if enabled) if software changes TXS from 0 to 1. If TXS was previously set to 1 and a reception was successful, TXS remains set and an interrupt may be asserted if enabled. No interrupt will be asserted if software attempts to set TXS while it is already set.

ER2-0CAN 1 Bus Error Status. These bits indicate the type of error, if any, detectedBit 2-0in the last CAN 1 Bus Frame. These bits will be reset to the 111b state following
any read of the C1S register (when SWINT=0), allowing software to determine if
a new error has been received since the last read of this register. The ER2-0 bits
are read only.

The ER2-0 bits are updated any time they change from 000b or 111b to another value. If enabled, an interrupt will be generated at this time. Errors received while the ER2-0 bits are in a non-000b or 111b state will be ignored, leaving ER2-0 unchanged and not generating enabled interrupts. This ensures that error conditions will not be lost/overwritten before software has a chance to read the C1S register. Once the C1S register is read and the ER2-0 bits return to 111b, new errors will be processed normally. In the case of simultaneous errors in multiple CAN 1 message centers, only the highest priority error is indicated.

ER2	ER1	ER0	Priority	Error Conditions
0	0	0	N/A	No Error in Last Frame
0	0	1	2	Bit Stuff Error
0	1	0	5	Format Error
0	1	1	4	Transmit Not Acknowledged Error
1	0	0	6(lowest)	Bit 1 Error
1	0	1	1(highest)	Bit 0 Error
1	1	0	3	CRC Error
1	1	1	N/A	No change since last C1S read

The following is a description of the different error types:

Bit Stuff Error: Occurs when the CAN controller detects more than 5 consecutive bits of an identical state are received in an incoming message.

Format Error: Generated when a received message has the wrong format.

- *Transmit Not Acknowledged Error*: Indicates that a data request message was sent and the requested node did not acknowledged the message.
- *Bit 1 Error*: Indicates that the CAN attempted to transmit a message and that when a recessive bit was transmitted, the CAN bus was found to have a dominant bit level. This error is not generated when the bit is a part of the arbitration field (identifier and remote retransmission request).
- *Bit 0 Error*: Indicates that the CAN attempted to transmit a message and that when a dominant bit was transmitted, the CAN bus was found to have a recessive bit level. This error is not generated when the bit is a part of the arbitration field. The Bit 0 Error is set each time a recessive bit is received during the Busoff recovery period.
- *CRC Error*: Generated whenever the calculated CRC of a received message does not match the CRC embedded in the message.

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

C1IR.7-0 CAN 1 Interrupt Indicator 7-0 This register indicates the status of the interrupt source associated with the CAN 1 module. Reading this register after the generation of a CAN 1 Interrupt will identify the interrupt source as shown in the table below. This register is cleared to 00h following a reset.

C1IR.7-0	Priority	Interrupt Source
00h	N/A	No Pending Interrupt
01h	1 (highest)	Change in the CAN 1 Status Register
02h	2	Message 15
03h	3	Message 1
04h	4	Message 2
05h	5	Message 3
06h	6	Message 4
07h	7	Message 5
08h	8	Message 6
09h	9	Message 7
0Ah	10	Message 8
0Bh	11	Message 9
0Ch	12	Message 10
0Dh	13	Message 11
0Eh	14	Message 12
0Fh	15	Message 13
10h	16 (lowest)	Message 14

The C1IR value will not change unless the previous interrupt source has been acknowledged and removed (i.e., software read of the C1S register or clearing of the appropriate INTRQ bit), even if the new interrupt has a higher priority. If two enabled interrupt sources become active simultaneously, the interrupt of higher priority will be reflected in the C1IR value.

The CAN 1 interrupt source into the interrupt logic is active whenever C1IR is not equal to 00h. Changes in the C1IR value from 00h to a non-zero state, indicate the first interrupt source detected by the CAN module following the non-active interrupt state. The C1IR interrupt values displayed in C1IR will remain in place until the respective interrupt source is removed, independent of other higher (or lower) priority interrupts that become active prior to clearing the currently displayed interrupt source.

When the current CAN interrupt source is cleared, C1IR will change to reflect the next active interrupt with the highest priority. The Status Change interrupt will be asserted if there has been a change in the CAN 1 Status Register (if enabled by the appropriate ERIE and/or STIE bit) and the CAN Status Interrupt state is set. A message center interrupt will be indicated if the

INTRQ bit in the respective CAN Message Control Register is set.

SFR E7h								
	R*-0							

R=Unrestricted Read, *= Write only via C1TE register, -n=Value after Reset

C1RE.7-0 CAN 1 Receive Error Register. This register indicates the number of accumulated CAN 1 receive errors. All writes to the C1TE register are simultaneously loaded into this register. This register is cleared following all hardware Resets and software resets enabled via the CRST bit in the CAN 1 Control Register.

	a interru 7	ρτ ΕΠάβιε 6	5 (LIL)	4	3	2	1	0		
SFR E8h	CANBIE	COIE	C1IE	EWDI	EX5	EX4	EX3	EX2		
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0		
	R=U	nrestricted I	Read, W=Ur	nrestricted W	Vrite, $-n = V$	alue after Re	eset			
CANBIE Bit 7		CAN 0/1 A Activity Int	ctivity Inter errupt	rrupt Prior	ity. This bit	enables/disa	bles the CA	N 0/1		
	0 = Disable the CAN $0/1$ Activity Interrupt.									
		1 = Enable	the CAN 0/1	l Activity In	terrupt.					
COIE		CAN 0 Inte	errupt Enal	ole. This bit	enables/disa	bles the CA	N 0 Interrup	rt		
Bit 6		0 = Disable	the CAN 0	Interrupt.						
		1 = Enable	the CAN 0 I	nterrupt.						
C1IE		CAN 1 Inte	errupt Enal	ole. This bit	enables/disa	bles the CA	N 1 Interrup	t		
Bit 5		0 = Disable the CAN 1 Interrupt.								
	1 = Enable the CAN 1 Interrupt.									
EWDI		Watchdog	Interrupt E	nable. This	bit enables/	disables the	watchdog in	iterrupt.		
Bit 4		0 = Disable	the watchdo	og interrupt.						
		1 = Enable	interrupt req	uests genera	ated by the w	vatchdog tim	ner.			
EX5		External In	nterrupt 5 H	E nable. This	bit enables/	disables exte	ernal interru	pt 5.		
Bit 3		0 = Disable	external int	errupt 5.						
		1 = Enable	interrupt req	uests genera	ated by the \overline{I}	NT5 pin.				
EX4		External In	nterrupt 4 F	E nable. This	bit enables/	disables exte	ernal interru	pt 4.		
Bit 2		0 = Disable	external int	errupt 4.						
		1 = Enable	interrupt req	uests genera	ated by the I	NT4 pin.				
EX3		External In	nterrupt 3 H	Enable. This	bit enables/	disables exte	ernal interru	pt 3.		
Bit 1		0 = Disable	external int	errupt 3.						
		1 = Enable	interrupt req	uests genera	ated by the \overline{I}	NT3 pin.				
EX2		External In	nterrupt 2 H	Enable. This	bit enables/	disables exte	ernal interru	pt 2.		
Bit 0		0 = Disable	external int	errupt 2.						
		1 = Enable	interrupt req	uests genera	ated by the I	NT2 pin.				

MOVX Extended Address Register (MXAX)										
	7	6	5	4	3	2	1	0		
SFR EAh										
	RW-0									

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

Bits 7-0 MOVX Extended Address Register. This register is concatenated with P2 and R1 or R0 to form the 22-bit address when executing a MOVX @Ri, A or MOVX A, @Ri instruction in either the 24-bit paged or 24-bit contiguous modes. The DPTR related MOVX instructions do not utilize the P2 and MXAX register. Note that the MXAX register is only used when the processor is operating in either the paged or contiguous addressing modes.

	7	6	5	4	3	2	1	0		
SFR EBh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP		
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0		
R	=Unrestric	ted Read, C=0	Clear Only,	*= See desc	ription below	v, -n=Value	e after Reset			
MSRDY Bit 7		CAN 1 Message Center 1 Ready. This bit is used by the Microcontroller to prevent the CAN module from accessing message center 1 while the microcontroller is updating message attributes. These include as identifiers (arbitration registers 0-3), data byte registers 0-7, data byte count (DTBYC3-DTBYC1), direction control (T/\overline{R}) , the extended or standard mode bit (EX/ST), and the mask enables (MEME and MDME) associated with this message center. When this bit is 0, the CAN 1 processor will ignore this message center for transmit, receive, or remote frame request operations. MSRDY is cleared following a microcontroller hardware reset or a reset generated by the CRST bit in the CAN 1 Control Register, and must also remain in a cleared mode until all the CAN 1 initialization has been completed. Individual message MSRDY controls can be changed after initialization to reconfigure specific messages, without interrupting the communication of other messages on the CAN 1 Bus.								
ETI Bit 6		communication of other messages on the CAN 1 Bus. CAN 1 Message Center 1 Enable Transmit Interrupt. Setting ETI to a 1 will enable a successful CAN 1 transmission in message center 1 to set the INTRQ bit for this message center which in turn will issue an interrupt to the microcontroller. When ETI is cleared to 0 a successful transmission will not set INTRQ bit and will not generate an interrupt. Note that the ETI bit located in Message Center 15 is ignored by the CAN module, since the message center 15 is a receive only message center.								
ERI Bit 5		CAN 1 Message Center 1 Enable Receive Interrupt. Setting ERI to a 1 will enable a successful CAN 1 reception and storage in message center 1 to set the INTRQ bit for this message center which in turn will issue an interrupt to the microcontroller. When ERI is cleared to 0 a successful reception will not set the INTRO bit and as such will not generate an interrupt.								
INTRQ Bit 4		CAN 1 Mes interrupt fla message in the message cent is also set to transmission. global mask the microcon	ssage Center g, indicatin his message ter 1 success a 1 when E' . The INTR in the IE SI troller inter	er 1 Interru g the succ center. INT sfully receiv TI is set and Q interrupt FR register rupt logic. T	apt Request cessful trans RQ is autom ves and store the CAN 1 request mus- if the interru his flag mus	t. This bit mission on natically set s a messag logic comp t be also en pt is to be t be cleared	serves as a r reception t when ERI= e. The INTR pletes a succe habled via the acknowledge l via software	CAN of a l and Q bit essful e EA ed by e.		
EXTRQ Bit 3		CAN 1 Mes cleared to a 0 message. Wh message by	sage Cente 0, there are hen EXTR(an external	r 1 Externa no pending) is set to CAN node	al Transmit requests by a 1, a reque b, but the C.	Request. external C. est has be AN 1 cont	When EXTR AN nodes for en made for roller has no	RQ is r this r this ot yet		

completed the service request. Following the completion of a requested transmission by a message center programmed for transmission $(T/\overline{R} = 1)$, the EXTRQ bit will be cleared by the CAN 1 controller. A remote request is only answered by a message center programmed for transmission $(T/\overline{R} = 1)$ when DTUP = 1 and TIH = 0, i.e. when new data was loaded and is not being currently modified by the micro. Note that a message center programmed for a receive mode $(T/\overline{R} = 0)$ will also detect a remote frame request and will set the EXTRQ bit in a similar manner, but will not automatically transmit a data frame and as such will not automatically clear the EXTRQ bit.

CAN 1 Message Center 1 Microcontroller Transmit Request. When set, this bit indicates that the message center is requesting that a message be transmitted. The bit is cleared when the transmission is complete, allowing this bit to be used to both initiate and monitor the progress of the transmission. The bit can be set via software or the CAN module, depending on the state of the Transmit/Receive bit in the CAN 1 Message 1 Format Register (located in MOVX space). This bit is cleared when the CRST bit is set, the CAN module experiences a system reset, or the conditions described below. Note that the MTRQ bit located in Message Center 15 is ignored by the CAN module, since the Message Center 15 is a receive only message center.

$T/\overline{R} = 0$ (receive)

When software sets this bit, a remote frame request previously loaded into the message center will be transmitted. The CAN 1 Module will clear this bit following the successful transmission of the frame request message.

$T/\overline{R} = 1$ (transmit)

When software sets this bit, a data frame previously loaded into the message center will be transmitted. When $T/\overline{R} = 1$, the MTRQ bit will also be set by the CAN 1 controller at the same time that the EXTRQ bit is set by a message request from an external node.

ROW/TIH Bit 1 CAN 1 Message Center 1 Receive Overwrite/Transmit Inhibit. The Receive Overwrite (ROW) and Transmit Inhibit (TIH) bits share the same bit location. When $T/\overline{R} = 0$ the bit has the ROW function, serving as a flag that an overwrite of incoming data may have occurred. When $T/\overline{R} = 1$ the bit has the Transmit Inhibit function, allowing software to disable the transmission of a message while the data contents are being updated.

Receive Overwrite: $(T/\overline{R} = 0, ROW \text{ is Read Only})$

The CAN 1 controller automatically sets this bit 0 if a new message is received and stored while the DTUP bit was still set. When set, ROW indicates that the previous message was potentially lost and may not have been read, since the microcontroller had not cleared the DTUP bit prior to the new load. When ROW = 0, no new message has been received and stored while DTUP was set to '1' since this bit was last cleared. Note that the ROW bit will not be set when the WTOE bit is cleared to a 0, since all overwrites are disabled. This is due to the fact that even if the incoming message matches the respective message center that as long as DTUP = 1 in the respective message center, the combination of WTOE

MTRQ Bit 2 = 0 and DTUP = 1 will force the CAN module to ignore the respective message center when the CAN is processing the incoming data.

ROW is cleared by the CAN module when the microcontroller clears the DTUP bit associated with the same message center. INTRQ is automatically set when the ERI=1 and message center 1 successfully receives and stores a message.

ROW will reflect the actual message center relationships for message centers 1 to 14. Message center 15 utilizes a special shadow message buffer, and the ROW bit for that message center indicates an overwrite of the buffer as opposed to the actual message center 15. The ROW bit for message center 15 is cleared once the shadow buffer is loaded into the message center 15, and the shadow buffer is cleared to allow a new message to be loaded. The shadow buffer is automatically loaded into message center 15 when the microcontroller clears the DTUP and EXTRQ bits in message center 15.

Transmit Inhibit: $(T/\overline{R} = 1, TIH \text{ is unrestricted Read/Write})$

The TIH allows the microcontroller to disable the transmission of the message when the data contents of the message are being updated. TIH = 1 directs the CAN 1 controller not to transmit the associated message. TIH = 0 enables the CAN 1 controller to transmit the message. If TIH = 1 when a remote frame request is received by the message center, EXTRQ will be set to a 1. Following the Remote Frame Request and after the microcontroller has established the proper data to be sent, the microcontroller will clear the TIH bit to a 0, which will allow the CAN module to send the data requested by the previous Remote Frame Request. Note that the TIH bit associated with Message Center 15 is ignored because it is a receive only message center.

CAN 1 Message Center 1 Data Updated. This bit indicates that new data has been loaded into the data portion of the message center. The exact function of the DTUP bit is dependent on whether the message center is configured in a receive $(T/\overline{R} = 0)$ or transmit $(T/\overline{R} = 1)$ mode. Some functions are also dependent on the state of the WTOE bit. The DTUP bit is only cleared by a software write to the bit, a system reset, or the setting of the CRST bit.

$T/\overline{R} = 0$ (receive)

In this mode $(T/\overline{R} = 0)$ the DTUP bit is set when new data has been successfully received and is ready to be read by the microcontroller. The exact meaning of the DTUP bit during a message center read is determined by the WTOE bit in the CAN 1 Control Register.

If WTOE = 1 (message center overwrite enabled), DTUP should be polled before and after reading the message center to ascertain if an overwrite of the data occurred during the read. For example, software should clear DTUP before reading the message center and then again after the message center read. If DTUP has been set, then a new message was received and software should read the message center again to read the new data. If DTUP remained cleared, no additional data was received and the data is complete.

DTUP Bit 0 If WTOE=0 the processor is not permitted to overwrite this message center, so it is only necessary to clear the DTUP bit after reading the message center.

The state of the DTUP bit in the receive mode does not inhibit remote frame request transmission in the receive mode. The only gating item for remote frame transmission in the receive mode is that the MSRDY and MTRQ bits must both be set.

$T/\overline{R} = 1$ (transmit)

In this mode, software must set TIH =1 and clear DTUP = 0 prior to doing an update of the associated message center. This prevents the CAN module from transmitting the data while the microcontroller is updating it. Once the microcontroller has finished configuring the message center, software must clear TIH = 0 and set MSRDY=MTRQ =DTUP =1, to enable the CAN module to transmit the data.

The CAN module will **not** clear the DTUP after the transmission, but the microcontroller can verify that the transmission has been completed, by checking the MTRQ bit, which will be cleared (MTRQ = 0) after the transmission has been successfully completed.

CAN 1 Message Center 2 Control Register (C1M2C)

	7	6	5	4	3	2	1	0
SFR ECh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M2COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 3 Control Register (C1M3C)

	7	6	5	4	3	2	1	0
SFR EDh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M3COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN I Message Center 4 Control Register (CTM4C)										
	7	6	5	4	3	2	1	0		
SFR EEh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP		
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0		

CAN 1 Message Center 4 Control Register (C1M4C)

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 1 Message Center 5 Control Register (C1M5C)

	7	6	5	4	3	2	1	0
SFR EFh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M5COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

B Register (B)

	7	6	5	4	3	2	1	0
SFR F0h	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
	RW-0							

R=Unrestricted Read, W=Unrestricted Write, -n=Value after Reset

B.7-0B Register. This register serves as a second accumulator for certain arithmeticBits 7-0operations. It is functionally identical to the B register found in the 80C32.

CAN 1 Message Center 6 Control Register (C1M6C)

	1	6	5	4	3	2	1	0	
SFR F3h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP	
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0	_

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M6COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

C1M4COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

	AN T Message Center / Control Register (CTM/C)										
	7	6	5	4	3	2	1	0			
SFR F4h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP			
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0			

CAN 1 Message Center 7 Control Register (C1M7C)

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 1 Message Center 8 Control Register (C1M8C)

	7	6	5	4	3	2	1	0
SFR F5h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M8COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 9 Control Register (C1M9C)

	7	6	5	4	3	2	1	0
SFR F6h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M9COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 10 Control Register (C1M10C)

	7	6	5	4	3	2	1	0
SFR F7h	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M10COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

C1M7COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

Extended Interrupt Priority (EIP)												
	7	6	5	4	3	2	1	0				
SFR F8h	CANBIP	COIP	C1IP	PWDI	PX5	PX4	PX3	PX2				
	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0	RW-0				
	R=U	Inrestricted I	Read, W=Ur	prestricted W	Vrite, $-n = V$	alue after Re	eset					
CANBIP Bit 7	CAN 0/1 Activity Interrupt Priority. This bit controls the priority of the CAN 0/1 Activity Interrupt											
	0 = The CAN 0/1 Activity Interrupt is a low priority interrupt.											
	1 = The CAN 0/1 Activity Interrupt is a high priority interrupt.											
COIP		CAN 0 Inte	errupt Prio	rity. This bi	t controls th	e priority of	the CAN 0	Interrupt				
Bit 6		0 = The CA	N 0 Interrup	pt is a low p	riority interr	upt.						
		1 = The CA	N 0 Interrup	ot is a high p	priority inter	rupt.						
C1IP		CAN 1 Inte	errupt Prio	rity. This bi	t controls th	e priority of	the CAN 1	Interrupt				
Bit 5		0 = The CA	N 1 Interrup	pt is a low p	riority interr	upt.						
		1 = The CA	N 1 Interrup	pt is a high p	priority inter	rupt.						
PWDI		Interrupt I	Priority. Thi	is bit control	ls the priorit	y of the wate	chdog interr	upt.				
Bit 4		0 = The wat	tchdog inter	rupt is a low	priority into	errupt.						
		1 = The wat	tchdog inter	rupt is a higl	h priority in	terrupt.						
PX5 Bit 3		External Ir 5.	nterrupt 5 I	Priority. Thi	s bit control	s the priority	of external	interrupt				
		0 = Externa	l interrupt 5	is a low prie	ority interru	pt.						
		1 = Externa	l interrupt 5	is a high pri	iority interru	ıpt.						
PX4 Bit 2		External Ir 4.	nterrupt 4 H	Priority. Thi	s bit control	s the priority	of external	interrupt				
		0 = Externa	l interrupt 4	is a low prie	ority interru	pt.						
		1 = Externa	l interrupt 4	is a high pri	iority interru	ıpt.						
PX3 Bit 1		External In 3.	nterrupt 3 H	Priority. Thi	s bit control	s the priority	of external	interrupt				
		0 = Externa	l interrupt 3	is a low pri-	ority interru	pt.						
		1 = Externa	l interrupt 3	is a high pri	iority interru	ıpt.						
PX2 Bit 0		External In 2.	nterrupt 2 H	Priority. Thi	s bit control	s the priority	of external	interrupt				
		0 = Externa	l interrupt 2	is a low prie	ority interru	pt.						
		1 = Externa	iority interru	ıpt.								

CAN 1 Message Center 11 Control Register (C1M11C)											
	7	6	5	4	3	2	1	0			
SFR FBh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP			
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0			

CAN 1 Message Center 11 Control Register (C1M11C)

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

CAN 1 Message Center 12 Control Register (C1M12C)

	7	6	5	4	3	2	1	0
SFR FCh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M12COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 13 Control Register (C1M13C)

	7	6	5	4	3	2	1	0
SFR FDh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M13COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 14 Control Register (C1M14C)

	7	6	5	4	3	2	1	0
SFR FEh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M14COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

C1M11COperation of the bits in this register are identical to those found in the CAN 1Bits 7-0Message One Control Register (C1M1C;ABh). Please consult the description
of that register for more information.

CAN 1 Message Center 15 Control Register (C1M14C)										
	7	6	5	4	3	2	1	0		
SFR FFh	MSRDY	ETI	ERI	INTRQ	EXTRQ	MTRQ	ROW/TIH	DTUP		
	RW-0	RW-0	RW-0	RW-0	RC-0	R*-0	R*-0	R*-0		

R=Unrestricted Read, C=Clear Only, *= See description below, -n=Value after Reset

C1M15C Operation of the bits in this register are identical to those found in the CAN 1 Message One Control Register (C1M1C;ABh). Please consult the description Bits 7-0 of that register for more information.

ADDENDUM TO SECTION 5: CPU TIMING

SYSTEM CLOCK SELECTION

The internal clocking options of the DS80C390 differs slightly from that described in the High-Speed Microcontroller User's Guide. Most members of the family offer the option of 4, 256, or 1024 clocks per machine cycle. The DS80C390 can operate at 1, 2, 4 or 1024 clocks per machine cycle. The logical operation of the system clock divide control function is shown below. A 3:1 multiplexer, controlled by CD1, CD0 (PMR.7-6), selects one of three sources for the internal system clock:

- Crystal oscillator or external clock source
- (Crystal oscillator or external clock source) divided by 256
- (Crystal oscillator or external clock source) frequency multiplied by 2 or 4 times.

Figure 5-1 SYSTEM CLOCK CONTROL DIAGRAM

The system clock control circuitry generates two clock signals that are used by the microcontroller. The *internal system clock* provides the timebase for timers and internal peripherals. The system clock is run through a divide by 4 circuit to generate the *machine cycle clock* that provides the timebase for CPU operations. All instructions execute in one to five machine cycles. It is important to note the distinction between these two clock signals, as they are sometimes confused, creating errors in timing calculations.

Setting CD1, CD0 to 0 enables the frequency multiplier, either doubling or quadrupling the frequency of the crystal oscillator or external clock source. The $4X/2\overline{X}$ bit controls the multiplying factor, selecting twice or four times the frequency when set to 0 or 1, respectively. Enabling the frequency multiplier results in apparent instruction execution speeds of 2 or 1 clocks. Regardless of the configuration of the frequency multiplier, the system clock of the microcontroller can never be operated faster than 40 MHz. This means that the maximum crystal oscillator or external clock source is 10 MHz when using the 4X setting, and 20 MHz when using the 2X setting.

The primary advantage of the clock multiplier is that it allows the microcontroller to use slower crystals to achieve the same performance level. This reduces EMI and cost, as slower crystals are generally more available and thus less expensive.

21211	ISTENI CLOCK CONTIGURATION TADIC 5- 1									
CD1	CD0	$4X/\overline{2X}$	Name	Clocks/MC	Max. External Frequency					
0	0	0	Frequency Multiplier (2X)	2	20 MHz					
0	0	1	Frequency Multiplier (4X)	1	10 MHz					
0	1	N/A	Reserved							
1	0	N/A	Divide-by-four (Default)	4	40 MHz					
1	1	N/A	Power Management Mode	1024	40 MHz					

SYSTEM CLOCK CONFIGURATION Table 5-1

The system clock and machine cycle rate changes one machine cycle after the instruction changing the control bits. Note that the change will affect all aspects of system operation, including timers and baud rates. The use of the switchback feature, described later, can eliminate many of the issues associated with the Power Management Mode's affect on peripherals such as the serial port. Table 5-2 illustrates the effect of the clock modes on the operation of the timers.

EFFECT OF CLOCK MODES ON TIMER OPERATION Table 5-2

CD1	CD0	4X/2X	OSC. CYCLES PER MACHINE CYCLE	OSC. C PER T 0/1/2 C	YCLES IMER LOCK	OSC. C PER TI CLOCK RATE	YCLES IMER 2 K, BAUD GEN.	OSC. C PER S PORT (MO	YCLES ERIAL CLOCK DE 0	OSC. C PER SI PORT (MO)	YCLES ERIAL CLOCK DE 2
				TxM=1	TxM=0	T2M=1	T2M=0	SM2=0	SM2=1	SMOD=0	SMOD=1
0	0	0	2	12	2	2	2	6	2	64	32
0	0	1	1	12	1	2	2	3	1	64	32
0	1	N/A	Reserved								
1	0	N/A	4	12	4	2	2	12	4	64	32
1	1	N/A	1024	3072	1024	512	512	3072	1024	16,384	8192

Changing the system clock/machine cycle clock frequency

The microcontroller incorporates a special locking sequence to ensure "glitch-free" switching of the internal clock signals. All changes to the CD1, CD0 bits must pass through the 10 (divide-by-four) state. For example, to change from 00 (frequency multiplier) to 11 (PMM), the software must change the bits in the following sequence: $00 \Rightarrow 10 \Rightarrow 11$. Attempts to switch between invalid states will fail, leaving the CD1, CD0 bits unchanged.

The following sequence must be followed when switching to the frequency multiplier as the internal time source. This sequence can only be performed when the device is in divide-by-four operation. The steps must be followed in this order, although it is possible to have other instructions between them. Any deviation from this order will cause the CD1, CD0 bits to remain unchanged. Switching from frequency multiplier to non-multiplier mode requires no steps other than the changing of the CD1, CD0 bits.

- 1. Ensure that the CD1, CD0 bits are set to 10, and the RGMD (EXIF.2) bit = 0.
- 2. Clear the CTM (Crystal Multiplier Enable) bit.
- 3. Set the $4X/\overline{2X}$ bit to the appropriate state.
- 4. Set the CTM (Crystal Multiplier Enable) bit.
- 5. Poll the CKRDY bit (EXIF.4), waiting until it is set to 1. This will take approximately 65536 cycles of the external crystal or clock source.
- 6. Set CD1, CD0 to 00. The frequency multiplier will be engaged on the machine cycle following the write to these bits.

ADDENDUM TO SECTION 6: MEMORY ACCESS

EXTERNAL MEMORY INTERFACING

The DS80C390 follows the memory interface convention established by the industry standard 80C32/80C52, but with many added improvements. Most notably, the device incorporates a 22-bit addressing capability that supports up to four megabytes of program memory and four megabytes of data memory. Externally the memory is accessed via a multiplexed or demultiplexed 20-bit address bus/8-bit data bus and four chip enable (active during program memory access) or four peripheral enable (active during data memory access) signals. Multiplexed addressing mode mimics the traditional 8051 memory interface, with the address MSB presented on Port 2 and the address LSB and data multiplexed on Port 0. The multiplexed mode requires an external latch to demultiplexed, with the address MSB presented on Port 2, address LSB and data are demultiplexed, with the address MSB presented on Port 2, address LSB on Port 1, and the data on Port 0. The elimination of the demultiplexing latch removes a delay element in the memory timing, and can in some cases allow the use of slower, less expensive memory devices. The following table illustrates the locations of the external memory control signals.

Address/Data Bus	CE3 - CE0	PCE3 - PCE0	Addr 19-16	Addr 15-8	Addr 7-0	Data Bus
Multiplexed	P4.3-P4.0	P5.7-P5.4	P4.7-P4.4	P2	P0	P0
Demultiplexed	P4.3-P4.0	P5.7-P5.4	P4.7-P4.4	P2	P1	P0

EATERNAL MEMORY ADDRESSING PIN ASSIGNMENTS TADIE 0-	EXTERNAL MEMOR	Y ADDRESSING PIN	ASSIGNMENTS	Table 6-1
---	----------------	------------------	-------------	-----------

Each upper order address line (A16-A19) and chip or peripheral enable is individually enabled via the P4CNT and P5CNT registers. Enabling upper order address lines controls the maximum size of the external memories that can be addressed, and enabling chip or peripheral enables controls the number of external memories that can be addressed. For example, if P4CNT.5-3 are set to 101b, A17 and A16 will be enabled (along with A15-0), permitting a maximum memory device size of 2¹⁸ or 256 KB.

The configurable program/code chip enable ($\overline{\text{CEx}}$) and MOVX chip enable ($\overline{\text{PCEx}}$) signals issued by the microprocessor are used when accessing multiple external memory devices. External chip enable lines are only required if more than one physical block of memory will be used. In the standard 8051 configuration, $\overline{\text{PSEN}}$ is used as the output enable for the program memory device, and $\overline{\text{RD}}$ and $\overline{\text{WR}}$ control the input or output functions of the data (SRAM) device. The chip enables of these devices can be tied to their active state if only one of each will be used. To support a larger amount of memory, however, the microprocessor must generate chip or data enables to select one of several memory devices. The following tables demonstrate how to enable various combinations of high-order address lines and chip enables.

	Port 4 Pin Function				Port 4 Pin Function			on	
	(A19-A16 Address Pins)				(Code]	Memory	⁷ Chip E	nables)	
P4CNT.5-3	P4.7	P4.6	P4.5	P4.4	P4CNT.2-0	P4.3	P4.2	P4.1	P4.0
000	I/O	I/O	I/O	I/O	000	I/O	I/O	I/O	I/O
100	I/O	I/O	I/O	A16	100	I/O	I/O	I/O	CE0
101	I/O	I/O	A17	A16	101	I/O	I/O	CE1	CEO
110	I/O	A18	A17	A16	110	I/O	CE2	CE1	CE0
111(default)	A19	A18	A17	A16	111(default)	CE3	CE2	CE1	CEO

EXTENDED ADDRESS AND CHIP ENABLE GENERATION Table 6-2

	Port 5 Pin Function (MOVX Memory Chip Enables)						
P5CNT.2-0	P5.7	P5.6	P5.5	P5.4			
000(default)	I/O	I/O	I/O	I/O			
100	I/O	I/O	I/O	PCE0			
101	I/O	I/O	PCE1	PCE0			
110	I/O	PCE2	PCE1	PCE0			
111	PCE3	PCE2	PCE1	PCE0			

The following table illustrates how memory is segmented based on the setting of the Port 4 P4.7-4 Configuration Control bits (P4CNT.5-3)

PROGRAM MEMORY	CHIP ENABLE	BOUNDARIES Table 6-3

P4CNT.5-3	CE0	CE1	CE2	CE3	Maximum Memory size per Chip Enable
000	0h-7FFFh	8000h-FFFFh	10000h-17FFFh	18000h-1FFFFh	32 kilobytes
100	0h-1FFFFh	20000h-3FFFFh	40000h-5FFFFh	60000h-7FFFFh	128 kilobytes
101	0h-3FFFFh	40000h-7FFFFh	80000h-BFFFFh	C0000h-FFFFFh	256 kilobytes
110	0h-7FFFFh	80000h-FFFFFh	100000h-17FFFFh	180000h-1FFFFFh	512 kilobytes
111(default)	0-FFFFFh	100000h-1FFFFFh	200000h-2FFFFFh	300000h-3FFFFFh	1 megabyte

Following any reset, the device defaults to 16-bit mode addressing. In 16-bit addressing mode the device will be configured with P4.7-P4.4 as address lines and P4.3-P4.0 configured as $\overline{CE3-0}$, with the first program fetch being performed from 00000h with $\overline{CE0}$ active (low).

Using the combined chip enable signals

The DS80C390 incorporates a feature allowing \overrightarrow{PCEx} and \overrightarrow{CEx} signals to be combined. This is useful when incorporating modifiable code memory as part of a bootstrap loader or for in-system reprogrammability. Setting the one or more $\overrightarrow{PDCE3-0}$ bits (MCON.3-0) causes the corresponding chip enable signal to be asserted for both MOVC and MOVX operations. Write access to combined program and data memory blocks is controlled by the \overrightarrow{WR} signal, and read access is controlled by the \overrightarrow{PSEN} signal. This feature is especially useful if the design achieves in-system reprogrammability via external Flash memory, in which a single device is accessed via both MOVC instructions (program fetch) and MOVX write operations (updates to code memory). In this case, the internal SRAM is placed in the program/data configuration and loaded with a small bootstrap loader program transferred from the external Flash memory. The device then executes the internal bootstrap loader routine to modify/update the program memory located in the external Flash memory.

ADDENDUM TO SECTION 7: POWER MANAGEMENT

The DS80C390 supports the general power management features of the DS87C520 described in the High-Speed Microcontroller. Exceptions are noted below.

Power Management Modes

Power management mode 1 (PMM1) is not supported on the DS80C390..

Switching between clock sources

The ring oscillator on the DS80C390 is similar to that on the DS80C320. As such it does not support the "run from ring" feature which allows the microprocessor to use the ring oscillator as a clock source after the external crystal has stabilized (CKRY=1).

ADDENDUM TO SECTION 10: PARALLEL I/O

Changes to this section primarily involve the additional functionality associated with Port 4 and 5, and the use of Port 1 as the address LSB in non-multiplexed memory mode. Because the DS80C390 is a ROMless device, Port 0 and 2 do not support general purpose I/O.

Port 1 General Purpose I/O

When the device is operating in multiplexed memory mode (\overline{MUX} pin is tied to a logic low) port 1 serves as a general purpose I/O port. Data written to the port latch serves to set both level and direction of the data on the pin. More detail on the functions of port 1 pins configured for general purpose I/O is provided under the description of port 1 and port 3 in the High-Speed Microcontroller User's Guide.

Non-multiplexed Address Bus A0-A7

When the device is operating in non-multiplexed memory mode (\overline{MUX} pin is tied to a logic high) port 1 serves LSB of the external address bus. When operating as the LSB of the address bus the port 1 pins have extremely strong drivers that allow the bus to move 100 pF loads with the timing shown in the electrical specifications.

When used as an address bus, the A0-7 pins will provide true drive capability for both logic levels. No pull-ups are needed. In fact, pull-ups will degrade the memory interface timing. Members of the High-Speed Microcontroller family employ a two-state drive system on A0-7. That is, the pin is driven hard for a period to allow the greatest possible setup or access time. Then the pin states are held in a weak latch until forced to the next state or overwritten by an external device. This assures a smooth transition between logic states and also allows a longer hold time. In general, the data is held (hold time) on A0-7 until another device overwrites the bus. This latch effect is generally transparent to the user.

Current-limited transitions

The DS80C390 does not employ the current-limited transition feature described in the High-Speed Microcontroller User's Guide.

Ports 4 and 5

Ports 4 and 5 are general purpose I/O ports with optional special functions associated with each pin. Enabling the special function automatically converts the I/O pin to that function. To insure proper operation, each alternate function pin should be programmed to a logic 1.

The drive characteristics of these pins may change depending on whether the pin is configured for general I/O or as the special function associated with that pin. When in I/O mode, the logic 0 is created by a strong pull-down. The logic 1 is created by a strong transition pull-up that changes to a weak pull-up. When a pin is configured in its alternate function, and that function concerns memory interfacing (A16-A17, $\overline{PCE0-3}$, or $\overline{CE0-3}$) the pins will be driven using the stronger memory interface values shown in the DC electrical characteristics of the data sheet.

OUTPUT FUNCTIONS

Although 8051 I/O ports appear to be true I/O, their output characteristics are dependent on the individual port and pin conditions. When software writes a logic 0 to the port for output, the port is pulled to ground. When software writes a logic 1 to the port for output, ports 1, 3, 4, or 5 will drive weak pull-ups (after the strong transition from 0 to 1). Port 0 will go tri-state. Thus as long as the port is not heavily loaded, true

logic values will be output. DC drive capability is provided in the electrical specifications. Note that the DC current available from an I/O port pin is a function of the permissible voltage drop. Transition current is available to help move the port pin from a 0 to a 1. Since the logic 0 driver is strong, no additional drive current is needed in the 1 to 0 direction. The transition current is applied when the port latch is changed from a logic 0 to a logic 1. Simply writing a logic 1 where a 1 was already in place does not change the strength of the pull-up. This transition current is applied for a one half of a machine cycle. The absolute current is not guaranteed, but is approximately 2 mA at 5V.

When serving as an I/O port, the drive will vary as follows. For a logic 0, the port will invoke a strong pull-down. For a logic 1, the port will invoke a strong pull-up for two oscillator cycles to assist with the logic transition. Then, the port will revert to a weak pull-up. This weak pull-up will be maintained until the port transitions from a 1 to a 0. The weak pull-up can be overdriven by external circuits. This allows the output 1 state to serve as the input state as well.

ADDENDUM TO SECTION 11: PROGRAMMABLE TIMERS

The timers of the DS80C390 are very similar to the those of described in the High-Speed Microcontroller User's Guide. The primary changes concern the removal of the PMM2 option and the inclusion of the frequency multiplier settings. The following figures replace the corresponding figures in Section 11 of the High-Speed Microcontroller User's Guide. The effect on the timers is summarized in tabular form in Section 5, EFFECT OF CLOCK MODES ON TIMER OPERATION Table 5- 2.

TIMER/COUNTER 0 AND 1 MODES 0 AND 1

TIMER/COUNTER 0 MODE 3

TIMER/COUNTER 2 BAUD RATE GENERATOR MODE

/RL2(T2CON.0) = 0; RCLK(T2CON.5) = 1 or TCLK(T2CON.4) = 1

Divide by 13 option

The other change to the timers associated with the DS80C390 is the inclusion of a divide by 13 option for Timer 1 and Timer 2. The option in independently enabled for each timer by setting the D13T1 (for timer 1) or D13T2 (for timer 2) bits. When enabled by setting the appropriate bits, the timer input from the T1 or T2 external pins will be replaced by a timebase that is OSC/13. The following figure illustrates the operation of these bits.

As shown in High-Speed Microcontroller User's Guide

As implemented in DS80C390 with divide by 13 optior

The setting of the divide by 13 bits will affect all operations of timer 1 and all operations of timer except baud rate generator mode. The baud rate generator mode of Timer 2 will not be affected by any setting of the D13T2 bit.

ADDENDUM TO SECTION 13: TIMED ACCESS PROTECTION

A number of Timed Access protected bits are associated with the new features of the DS80C390. Please consult the High-Speed Microcontroller User's Guide for complete information on the use of the Timed Access feature.

POR (WDCON.6):	Power-on Reset
WDIF (WDCON.3):	Watchdog Interrupt Flag
EWT (WDCON.1):	Watchdog Timer Enable
RWT (WDCON.0):	Watchdog Reset
BGS (EXIF.0):	Bandgap Stop
SA (ACON.2):	Stack Address Mode
AM1-AM0 (ACON.1-ACON.0):	Address Mode Bit 1 and Bit 0
IDM1-IDM0 (MCON.7-MCON.6):	Internal Memory Configuration and Location Bit 1 and Bit 0
CMA (MCON.5):	CAN Data Memory Assignment
PDCE3-PDCE.0 (MCON.3-	Program/Data Chip Enables
MCON.0)	
CRST (C0C.3):	CAN 0 Reset
CRST (C1C.3):	CAN 1 Reset
SBCAN (P4CNT.6):	Single Bus CAN
P4CNT.5-P4CNT.0:	Port 4 Pin Configuration Control Bits
P5CNT.2-P5CNT.0:	Port 5 Pin (P5.7-P5.5) Configuration Control Bits
IRDACK (COR.7):	IRDA Clock Output Enable
C1BPR7-C1BPR6 (COR.6-COR.5):	CAN 1 Baud Rate Pre-scale Bits
C0BPR7-C0BPR6 (COR.4-COR.3):	CAN 0 Baud Rate Pre-scale Bits
COD1-COD0 (COR.2-COR.1):	CAN Clock Output Divide Bit 1 and Bit 0
CLKOE (COR.0):	CAN Clock Output Enable

ADDENDUM TO SECTION 16: INSTRUCTION SET DETAILS

The DS80C390 supports one of three different address modes, selected via the AM1 and AM0 bits in the ACON register. The processor operates in either the traditional 16-bit address mode, 22-bit paged address mode or in a 22-bit contiguous address mode. When operating in the 16-bit addressing mode (AM1, AM0 = 00b), all instruction cycle timing and byte counts will be identical to the 8051 family. Use of the 24-bit paged address mode is binary code-compliant with the traditional (16-bit) 8051 compilers, but allows for up to 4M bytes of program and 4M bytes of data memory to be supported via a new Address Page SFR which supports an internal bank switch mechanism. The 22-bit contiguous mode requires a compiler that supports contiguous program flow over the entire 22-bit address range via the addition of an operand and/or cycles to eight basic instructions.

16-BIT (8051 STANDARD) ADDRESSING MODE

This addressing mode is identical to that used by the 8051 family and most members of the High-Speed Microcontroller. The microcontroller defaults to this mode following a reset. This mode can also be used to run code compiled or assembled for the 22-bit contiguous mode, as long as the following four instructions are not executed :

MOV DPTR, #data24, ACALL addr19 LCALL addr24 LJMP addr24

These four branch instructions are the only instructions that will cause the compiler to generate additional operands relative to the 16-bit addressing mode. Note that the number of cycles per instruction may appear different from other instructions, but this is ignored by most assemblers or compilers and as such does not pose a problem with the binary output.

By selecting the 24-bit contiguous mode prior using any one of these four branch instructions, it is possible to run 24-bit contiguous compiled code in the default 16-bit address configuration. Once the AM0 and AM1 bits are set to the 24-bit contiguous address mode, the instructions seen above will execute properly. When the 24-bit paged address mode is selected, all instructions complied under the traditional 16-bit address mode will execute normally at any point in code.

22-BIT PAGED ADDRESSING MODE

The DS80C390 incorporates an internal 8-bit Address Page Register (AP), an 8-bit extended DPTR Register (DPX), and an 8-bit extended DPTR1 Register (DPX1) as hardware support for 22-bit addressing in the paged address mode (AM1, AM0 = 01b). The only difference found in executing code in the traditional 16-bit mode and the 22-bit paged mode is the additional of one machine cycle when executing the ACALL, LCALL, RET and RETI instructions as well as when the hardware processes an interrupt.

The DS80C390 supports interrupts from any location in the 22-bit address field. When an interrupt request is acknowledged, the current contents of the 22-bit Program Counter (PC) is pushed onto the stack, and the page value (00h) and the lower 16-bit address of the interrupt vector is then written to the PC before the execution of the LCALL. This means that all interrupt vectors are fetched from address 0000xxh, rather than the current page as defined by the AP register. The RETI instruction will pop the three address bytes from the stack, and will restore these bytes back to the PC at the conclusion of the interrupt service routine. Interrupt service routines that branch over page boundaries must save the current contents of AP before altering the AP register, as it is not automatically saved on the stack. This mechanism will support up to three levels of nesting for interrupts.

One additional machine cycle is required to handle the 8 bits associated with the extension to 22-bit addressing. The storage of the 22-bit address during an interrupt, LCALL, or ACALL instruction also requires three bytes of stack memory as opposed to the traditional two bytes in the 16-bit address mode. In this mode, the third byte of the PC (PC[22:16]) is not incremented when the lower 16 bits in the lower two bytes of the PC (PC[15:0]) rolls over from FFFFh to 0000h. In the 22-bit paged address mode PC[22:16] functions only as a storage register which is loaded by the Address Page (AP) register whenever the processor executes either a LJMP, ACALL or LCALL instruction. PC[22:16] is stored and retrieved from the stack with the lower 16-bit of address in PC[15:0] when stack operation is required.

Execution of DPTR-related instructions in the paged address mode is limited to the 64K byte page that is pointed by the current content of the selected extended DPTR register. The values in the DPX and DPX1 registers are not affected when the lower 16 bits of the selected DPTR overflows or underflowed. The execution of either the JMP @A+DPTR or the MOVC A, @A+DPTR instruction is limited to the current 64 KB page as specified by the PCX register. The contents of the DPX and DPX1 registers will not affect the operation of either instruction.

The modification of the instructions in the 22-bit page address mode is summarized in the following table.

		INSTRUCTION CODE										
MNEMONIC	D ₇	D ₆	D ₅	D_4	D ₃	\mathbf{D}_2	D ₁	D ₀	HEX	BYTE	CYCLE	EXPLANATION
ACALL addr	a ₁₀	a9	a_8	1	0	0	0	1	Byte 1	2	4	$(PC_{15:0}) = (PC_{15:0}) + 2$
11	a ₇	a_6	a_5	a_8	a_3	a_2	a_1	a_0	Byte 2			$(\mathbf{SP}) = (\mathbf{SP}) + 1$
												$((SP)) = (PC_{7:0})$
												$(\mathbf{SP}) = (\mathbf{SP}) + 1$
												$((SP)) = (PC_{15-8})$
												$(\mathbf{SP}) = (\mathbf{SP}) + 1$
												((SP))=(PC _{23:16})
												$(PC_{10:0}) = addr11$
												$(PC_{23:16}) = (AP_{7:0})$
LCALL addr	0	0	0	1	0	0	1	0	12	3	5	$(PC_{15:0}) = (PC_{15:0}) + 3$
16	a ₁₅	a ₁₄	a ₁₃	a ₁₂	a_{11}	a_{10}	a9	a_8	Byte 2			$(\mathbf{SP}) = (\mathbf{SP}) + 1$
	a ₇	a_6	a_5	a_5	a_3	a_2	a_1	a_0	Byte 3			$((SP)) = (PC_{7:0})$
												$(\mathbf{SP}) = (\mathbf{SP}) + 1$
												$((SP)) = (PC_{15-8})$
												$(\mathbf{SP}) = (\mathbf{SP}) + 1$
												((SP))=(PC _{23:16})
												(PC)=addr16
												$(PC_{23:16}) = (AP_{7:0})$
RET	0	0	1	0	0	0	1	0	22	1	5	(PC _{23:16})=((SP))
												(SP)=(SP)-1
												(PC ₁₅₋₈)=((SP))
												(SP)=(SP)-1
												(PC _{7:0})=((SP))
												(SP)=(SP)-1

RETI	0	0	1	1	0	0	1	0	32	1	5	(PC _{23:16})=((SP))
												(SP)=(SP)-1
												(PC ₁₅₋₈)=((SP))
												(SP)=(SP)-1
												(PC _{7:0})=((SP))
												(SP)=(SP)-1

22-BIT CONTIGUOUS ADDRESSING MODE

When the AM1 bit is set, the DS80C390 will operate in its 22-bit contiguous addressing mode. This addressing mode is supported by a full 22-bit Program Counter with eight modified instructions that operate over the full 22-bit address range. All modified branching instructions will automatically store and restore the entire contents of the 22-bit Program Counter. The 22-bit DPTR and DPTR1 registers will function identically to the Program Counter to allow access to the full 22- bit data memory range.

All the DS80C390 instruction opcodes retain binary compatibility to the 8051. Modified instructions are only different with respect to their cycle/byte/operand count and operate within a contiguous 24-bit address field. Note that all instructions which utilize the DPTR register now make use of a full 24-bit register (DPTR=DPX+DPH+DPL and DPTR1=DPX1+DPH1+DPL1). This mode of operation requires software tools (assembler or compiler) specifically designed to accept the modified length of the new instructions.

The instructions modified to operate in the 24-bit address mode are summarized in the following table.

DS80C390 High-Speed Microcontroller User's Guide Supplement

		INSTRUCTION CODE										
MNEMONIC	D ₇	D ₆	D ₅	D_4	D ₃	\mathbf{D}_2	D ₁	D ₀	HEX	BYTE	CYCLE	EXPLANATION
ACALL addr	a ₁₈	a ₁₇	a ₁₆	1	0	0	0	1	Byte 1	3	5	(PC)=(PC)+3
19	a ₁₅	a ₁₄	a ₁₃	a ₁₂	a ₁₁	a_{10}	a9	a_8	Byte 2			(SP)=(SP)+1
	a_7	a_6	a_5	a_8	a_3	a_2	a_1	a_0	Byte 3			((SP))=(PC _{7:0})
												(SP)=(SP)+1
												((SP))=(PC _{15:8})
												(SP)=(SP)+1
												((SP))=(PC _{23:16})
									5 1			$(PC_{18:0}) = addr19$
AJMP addr 19	a ₁₈	a ₁₇	a_{16}	0	0	0	0	1	Byte 1	3	5	(PC)=(PC)+3
	a ₁₅	a_{14}	a_{13}	a_{12}	a_{11}	a_{10}	a9	a_8	Byte 2			$(PC_{18:0}) = addr19$
	a ₇	a ₆	a ₅	a ₈	a ₃	<u>a</u> 2	<u>a</u> 1	<u>a</u> 0	Byte 3	1	4	
INC DPTR	1	0	I	0	0	0	1	I	A3	I	4	(DPTR)=(DPTR)+1
	0	0	0	1	0	0	1	0	10	4	6	$(PC_{18:0}) = addr19$
LCALL addr24	0	0	0	I	0	0	1	0	12 Derte 2	4	6	(PC)=(PC)+4 (SP)=(SP)+1
	a ₂₃	a ₂₂	a_{21}	a ₂₀	a ₁₉	a ₁₈	a ₁₇	a_{16}	Byte 2 Dute 3			$((SP))=(PC_{7:0})$
	a ₁₅	a ₁₄	a ₁₃	a ₁₂	a ₁₁	a ₁₀	a9	a8	Dyte 3 Dyte 4			(SP)=(SP)+1
	a7	a ₆	a5	a5	a 3	a2	a 1	a ()	Dyte 4			$((SP))=(PC_{15:8})$
												(SP) = (SP) + 1 ((SP)) = (PC _{23:16})
												$(PC_{23:0}) = addr24$
LJMP addr24	0	0	0	0	0	0	1	0	02	4	5	$(PC_{23:0}) = addr24$
	a ₂₃	a ₂₂	a ₂₁	a ₂₀	a ₁₉	a ₁₈	a ₁₇	a_{16}	Byte 2			
	a ₁₅	a ₁₄	a ₁₃	a ₁₂	a ₁₁	a ₁₀	a9	a_8	Byte 3			
	a ₇	a_6	a_5	a_5	a ₃	a_2	a_1	a_0	Byte 4			
MOV DPTR,	1	0	0	1	0	0	0	0	90	4	3	(DPX)=#data23:9
#data24	d ₂₃	d ₂₂	d_{21}	d_{20}	d_{19}	$d_{18} \\$	d_{17}	d_{16}	Byte 2			(DPH)=#data15:8
	d ₁₅	d_{14}	d ₁₃	d_{12}	d_{11}	d_{10}	d9	d_8	Byte 3			(DPL)=#data7:0
	d ₇	d_6	d_5	d_5	d_3	d_2	d_1	d_0	Byte 4			
RET	0	0	1	0	0	0	1	0	22	1	5	(PC _{23:16})=((SP))
												(SP)=(SP)-1
												(PC ₁₅₋₈)=((SP))
												(SP)=(SP)-1
												$(PC_{7:0}) = ((SP))$
DETI	0	0	1	1	0	0	1	0		1		(SP)=(SP)-1
RETI	0	0	I	1	0	0	1	0	32	1	5	(PC _{23:16})=((SP))
												(SP)=(SP)-1
												$(PC_{15-8}) = ((SP))$
												(SP)=(SP)-1
												$(PC_{7:0}) = ((SP))$
												(SP)=(SP)-1

SECTION 18: CONTROLLER AREA NETWORK (CAN) MODULE

The DS80C390 incorporates two identical CAN controllers (CAN 0 and CAN 1). Each of these CAN units provide operating modes which are fully compliant with the CAN 2.0B specification. The microcontroller interface to the CAN controllers is broken into two groups of registers. To simplify the software associated with the operation of the CAN controllers, all of the global CAN status and controls as well as the individual message center control/status registers are located in the Special Function Register map. The remaining registers associated with the data identification, identification masks, format and data are located in the MOVX space. Each of the SFR and MOVX registers are configured as dual port memories to allow both the CAN controller and the microcontroller access to the required functions.

The basic functions covered by the CAN controllers include the use of 11-bit standard or 29-bit extended acceptance identifiers, as programmed by the microcontroller for each message center. Each CAN unit provides storage for up to 15 messages, with the standard 8 byte data field, in each message. Each of the first 14 message centers is programmable in either a transmit or receive mode. Message center 15 is designed as a receive only message center with a FIFO buffer to prevent the inadvertent loss of data when the microcontroller is busy and is not allowed time to retrieve the incoming message prior to the acceptance of a second message into message center 15. Message 15 also utilizes an independent set of mask registers and Identification registers, which are only applied once an incoming message has not been accepted by any of the first fourteen message centers. A second filter test is also supported for all message centers (1 - 15) to allow the CAN controller to use two separate 8 bit media masks and media arbitration fields to verify the contents of the first two byte of data of each incoming message, before accepting an incoming message. This feature allows the CAN unit to directly support the use of higher CAN protocols which make use of the first and/or second byte of data as a part of the acceptance layer for storing incoming messages. Each message center can also be programmed independently to perform testing of the incoming data with or without the use of the global masks.

Global controls and status registers in each CAN module allow the microcontroller to evaluate error messages, validate new data and the location of such data, establish the bus timing for the CAN Bus, establish the Identification mask bits, and verify the source of individual messages. In addition each message center is individually equipped with the necessary status and controls to establish directions, interrupt generation, identification mode (standard or extended), data field size, data status, automatic remote frame request and acknowledgment, and masked or non-masked identification acceptance testing. Utilizing the Single Bus CAN mode (SBCAN=1) ties the inputs and outputs of both CAN modules together, effectively creating a single CAN module with 30 message centers.

The priority order associated with the CAN module transmitting or receiving a message is determined by the inverse of the number of the message center, and is independent of the arbitration bits assigned to the message center. Thus message center 2 has a higher priority than message center 14. To avoid a priority inversion the CAN modules are configured to reload the transmit buffer with the message of the highest priority (lowest message center number) whenever an arbitration is lost or an error condition occurs.

The following tables illustrate the locations of the MOVX SRAM registers and bits used by the CAN controllers. Following the tables are descriptions of the function of the bits and registers.

MOVX MESSAGE CENTERS FOR CAN 0

									MOVX Data			
Register	7	6	5	4	3	2	1	0	Address ¹			
C0MID0	MID07	MID06	MID05	MID04	MID03	MID02	MID01	MID00	xxxx00h			
C0MA0	M0AA7	M0AA6	M0AA5	M0AA4	M0AA3	M0AA2	M0AA1	M0AA0	xxxx01h			
C0MID1	MID17	MID16	MID15	MID14	MID13	MID12	MID11	MID10	xxxx02h			
C0MA1	M1AA7	M1AA6	M1AA5	M1AA4	M1AA3	M1AA2	M1AA1	M1AA0	xxxx03h			
C0BT0	SJW1	SJW0	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0	xxxx04h			
C0BT1	SMP	TSEG26	TSEG25	TSEG24	TSEG13	TSEG12	TSEG11	TSEG10	xxxx05h			
C0SGM0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx06h			
C0SGM1	ID20	ID19	ID18	0	0	0	0	0	xxxx07h			
C0EGM0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx08h			
C0EGM1	ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13	xxxx09h			
C0EGM2	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	xxxx0Ah			
C0EGM3	ID4	ID3	ID2	ID1	ID0	0	0	0	xxxx0Bh			
C0M15M0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx0Ch			
C0M15M1	ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13	xxxx0Dh			
C0M15M2	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	xxxx0Eh			
C0M15M3	ID4	ID3	ID2	ID1	ID0	0	0	0	xxxx0Fh			

CAN 0 CONTROL/STATUS/MASK REGISTERS

CAN 0 MESSAGE CENTER 1

				Rese	rved				xxxx10h - 11h		
C0M1AR0		CAN	0 MESSA	GE 1 ARB	ITRATIC	N REGIS	TER 0		xxxx12h		
C0M1AR1		CAN 0 MESSAGE 1 ARBITRATION REGISTER 1									
C0M1AR2		CAN 0 MESSAGE 1 ARBITRATION REGISTER 2									
C0M1AR3	0	CAN 0 ME	SSAGE 1	ARBITRA	ATION RI	EGISTER	3	WTOE	xxxx15h		
C0M1F	DTBYC3	DTBYC2	DTBYC1	DTBYC0	T/\overline{R}	EX/ST	MEME	MDME	xxxx16h		
C0M1D0-7		CAN 0 MESSAGE 1 DATA BYTES 0 - 7									
				Rese	rved				xxxx1Fh		

CAN UMESSAGE CENTERS 2-14	
MESSAGE CENTER 2 REGISTERS (similar to Message Center 1)	xxxx20h - 2Fh
MESSAGE CENTER 3 REGISTERS (similar to Message Center 1)	xxxx30h - 3Fh
MESSAGE CENTER 4 REGISTERS (similar to Message Center 1)	xxxx40h - 4Fh
MESSAGE CENTER 5 REGISTERS (similar to Message Center 1)	xxxx50h - 5Fh
MESSAGE CENTER 6 REGISTERS (similar to Message Center 1)	xxxx60h - 6Fh
MESSAGE CENTER 7 REGISTERS (similar to Message Center 1)	xxxx70h - 7Fh
MESSAGE CENTER 8 REGISTERS (similar to Message Center 1)	xxxx80h - 8Fh
MESSAGE CENTER 9 REGISTERS (similar to Message Center 1)	xxxx90h - 9Fh
MESSAGE CENTER 10 REGISTERS (similar to Message Center 1)	xxxxA0h - AFh
MESSAGE CENTER 11 REGISTERS (similar to Message Center 1)	xxxxB0h - BFh
MESSAGE CENTER 12 REGISTERS (similar to Message Center 1)	xxxxC0h - CFh
MESSAGE CENTER 13 REGISTERS (similar to Message Center 1)	xxxxD0h - DFh
MESSAGE CENTER 14 REGISTERS (similar to Message Center 1)	xxxxE0h - EFh

CANOMESSACE CENTERS 2-14

CAN 0 MESSAGE CENTER 15

-			F	Reserved				xxxxF0h - F1h			
C0M15AR0		CAN 0 MES	SAGE 15	ARBITRA	ATION RE	GISTER ()	xxxxF2h			
C0M15AR1	(CAN 0 MESSAGE 15 ARBITRATION REGISTER 1									
C0M15AR2		CAN 0 MESSAGE 15 ARBITRATION REGISTER 2									
C0M15AR3	CAN 0 M	ESSAGE 15	5 ARBITR	ATION R	EGISTER	3	WTOE	xxxxF5h			
C0M15F	DTBYC3DTBY	C2DTBYC1	DTBYC0	0	EX/\overline{ST}	MEME	MDME	xxxxF6h			
C0M15D0-7		CAN 0 MESSAGE 15 DATA BYTE 0 - 7									
			I	Reserved				xxxxFFh			

Notes: ¹The first two bytes of the CAN 0 MOVX memory address are dependent on the setting of the CMA bit CONTECCMA = 1 www=4010

MOVX MESSAGE CENTERS FOR CAN 1

Register	7	6	5	4	3	2	1	0	MOVX Data Address ¹		
C1MID0	MID07	MID06	MID05	MID04	MID03	MID02	MID01	MID00	xxxx00h		
C1MA0	M0AA7	M0AA6	M0AA5	M0AA4	M0AA3	M0AA2	M0AA1	M0AA0	xxxx01h		
C1MID1	MID17	MID16	MID15	MID14	MID13	MID12	MID11	MID10	xxxx02h		
C1MA1	M1AA7	M1AA6	M1AA5	M1AA4	M1AA3	M1AA2	M1AA1	M1AA0	xxxx03h		
C1BT0	SJW1	SJW0	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0	xxxx04h		
C1BT1	SMP	TSEG26	TSEG25	TSEG24	TSEG13	TSEG12	TSEG11	TSEG10	xxxx05h		
C1SGM0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx06h		
C1SGM1	ID20	ID19	ID18	0	0	0	0	0	xxxx07h		
C1EGM0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx08h		
C1EGM1	ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13	xxxx09h		
C1EGM2	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	xxxx0Ah		
C1EGM3	ID4	ID3	ID2	ID1	ID0	0	0	0	xxxx0Bh		
C1M15M0	ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21	xxxx0Ch		
C1M15M1	ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13	xxxx0Dh		
C1M15M2	ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5	xxxx0Eh		
C1M15M3	ID4	ID3	ID2	ID1	ID0	0	0	0	xxxx0Fh		

CAN 1 CONTROL/STATUS/MASK REGISTERS

CAN 1 MESSAGE CENTER 1

				Reser	rved				xxxx10h - 11h		
C1M1AR0		CAN 1	MESSAG	GE 1 ARB	ITRATIO	N REGIST	TER 0		xxxx12h		
C1M1AR1		CAN 1 MESSAGE 1 ARBITRATION REGISTER 1									
C1M1AR2		CAN 1 MESSAGE 1 ARBITRATION REGISTER 2									
C1M1AR3	C	AN 1 ME	SSAGE 1	ARBITRA	TION RE	GISTER	3	WTOE	xxxx15h		
C1M1F	DTBYC3	DTBYC2	DTBYC1	DTBYC0	T/\overline{R}	EX/ST	MEME	MDME	xxxx16h		
C1M1D0-7		CAN 1 MESSAGE 1 DATA BYTES 0 - 7									
				Reser	rved				xxxx1Fh		

CAN I WESSAGE CENTERS 2-14	
MESSAGE CENTER 2 REGISTERS (similar to Message Center 1)	xxxx20h - 2Fh
MESSAGE CENTER 3 REGISTERS (similar to Message Center 1)	xxxx30h - 3Fh
MESSAGE CENTER 4 REGISTERS (similar to Message Center 1)	xxxx40h - 4Fh
MESSAGE CENTER 5 REGISTERS (similar to Message Center 1)	xxxx50h - 5Fh
MESSAGE CENTER 6 REGISTERS (similar to Message Center 1)	xxxx60h - 6Fh
MESSAGE CENTER 7 REGISTERS (similar to Message Center 1)	xxxx70h - 7Fh
MESSAGE CENTER 8 REGISTERS (similar to Message Center 1)	xxxx80h - 8Fh
MESSAGE CENTER 9 REGISTERS (similar to Message Center 1)	xxxx90h - 9Fh
MESSAGE CENTER 10 REGISTERS (similar to Message Center 1)	xxxxA0h - AFh
MESSAGE CENTER 11 REGISTERS (similar to Message Center 1)	xxxxB0h - BFh
MESSAGE CENTER 12 REGISTERS (similar to Message Center 1)	xxxxC0h - CFh
MESSAGE CENTER 13 REGISTERS (similar to Message Center 1)	xxxxD0h - DFh
MESSAGE CENTER 14 REGISTERS (similar to Message Center 1)	xxxxE0h - EFh

CAN 1 MESSAGE CENTERS 2-14

CAN 1 MESSAGE CENTER 15

-					Reserved				xxxxF0h - F1h	
C1M15AR0		C.	AN 1 MES	SSAGE 15	ARBITR	ATION R	EGISTER	. 0	xxxxF2h	
C1M15AR1		CAN 1 MESSAGE 15 ARBITRATION REGISTER 1								
C1M15AR2		CAN 1 MESSAGE 15 ARBITRATION REGISTER 2								
C1M15AR3	C	CAN 1 MESSAGE 15 ARBITRATION REGISTER 3 WTOE								
C1M15F	DTBYC3	DTBYC2	DTBYC1	DTBYC0	0	EX/\overline{ST}	MEME	MDME	xxxxF6h	
C1M15D0- C1M15D7		CAN 1 MESSAGE 15 DATA BYTE 0 - 7								
					Reserved				xxxxFFh	

Notes:

¹The first two bytes of the CAN 1 MOVX memory address are dependent on the setting of the CMA bit (MCON.5) CMA=0, xxxx=00EF; CMA=1, xxxx=4011.

CAN MOVX Register Description

Most of the SRAM control registers, including the message centers proper, are mapped into a special location in the MOVX SRAM space. The specific location of the registers is a function of the module number (CAN 0 or CAN 1) and the CMA bit which controls whether the CAN SRAM begins at location 401xxxh or 00Exxxh.

The MOVX CAN Registers consist of a set of one Control/Status/Mask register and 15 message centers. Write access to the Control/Status/Mask registers is only possible when the SWINT bit is set to 1. All message centers for a given CAN module are identical with the exception of 15, which has some minor differences noted in the register descriptions. All of the CAN 1 registers are duplicates of the CAN 0 register set, differing only by address. To simplify the documentation, only one set of registers will be shown, with the following generic notation used for register names and addresses:

n CAN number (0 or 1)

xxxx First four hexadecimal digits of register address

CMA	CAN 0	CAN 1
0	00EE	00EF
1	4010	4011

y Address based on message center number

y 1	Message center number
2	2
A F	10 15

CAN Medi	ia ID Ma	isk Regis	ster 0 (Cn	MID0)				
MOVX Address ¹	7	6	5	4	3	2	1	0
xxxx00h								
CAN Medi	ia ID Ma	sk Regis	ster 1 (Cn	MID1)				
MOVX Address ¹	7	6	5	4	3	2	1	0
xxxx02h								

CAN Media ID Mask Registers 1-0. These registers function as the mask when performing the Media Identification test. This register can only be modified during a software initialization (SWINT=1). If MDME=0, the Media Identification test will not be performed and the contents of these registers is ignored. If MDME=1, the CAN module will perform an additional qualifying test on Data Bytes 0 and 1 of the incoming message, regardless of the state of the EX/ST bit. Data byte 1 will be compared against CAN Media Byte Arbitration Register 1 utilizing CnMID1 as a mask, and Data byte 0 will be compared against CAN Media Byte Arbitration Register 0 utilizing CnMID0 as a mask. Any bit in the CnMID1, CnMID0 masks programmed to 0 will ignore the state of the corresponding Data Byte bit when performing the test. Any bit in the CnMID1, CnMID0 masks programmed to 1 will force the state of the corresponding Data Byte bit and CAN Media Byte Arbitration Registers 1 and 0 to match before considering the incoming message a match. Programming either Media ID Mask Register to 00h effectively disables the Media ID test for that byte. As such the CnMID1, CnMID0 masks act as a don't care following a system Reset.

CAN Media Arbitration Register 0 (CnMA0)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
xxxx01h								

CAN Media Arbitration Register 1 (CnMA1)

MOVX	7	C	E	4	2	2	1	0
Address	/	0	5	4	3	Z	1	0
xxxx03h								

CAN Media Arbitration Register 1-0. These registers function as the arbitration field when performing the Media Identification test. If MDME=0, the Media Identification test will not be performed and the contents of these registers is ignored. If MDME=1, the CAN module will perform an additional qualifying test on Data Bytes 0 and 1 of the incoming message, as mentioned in the description of the CAN Media ID Mask Registers. This register can only be modified during a software initialization (SWINT=1).

CAN Bus Timing Register 0 (CnBT0)

MOVX Address ¹	7	6	5	4	3	2	1	0
xxxx04h	SJW1	SJW0	BPR5	BPR4	BPR3	BPR2	BPR1	BPR0

SJW1, SJW0CAN Synchronization Jump Width Select. These bits specify the maximumBits 7-6number of time quanta (t_{qu}) cycles that a bit may be lengthened or shortened in
one resynchronization to compensate for Phase Errors detected by the CAN
controller when receiving data. These bits can only be modified during a software
initialization (SWINT=1).

SJW1	SJW0	Synchronization Jump Width (Number in parenthesis is SIW value used in hit timing calculations)
		(Number in parentitesis is 55 w value used in oit timing calculations)
0	0	$1 t_{qu}(1)$
0	1	$2 t_{qu} (2)$
1	0	$3 t_{qu} (3)$
1	1	$4 t_{au} (4)$

BPR5 - BPR0CAN Baud Rate Prescaler. The sixty four states defined by the binary
combinations of the BPR5 - BPR0 bits determine the value of the prescaler,
which in turn defines the cycle time associated with one time quanta. These bits
can only be modified during a software initialization (SWINT=1).

BPR5	BPR4	BPR3	BPR2	BPR1	BPR0	Baud Rate Prescale Value (BRPV)
0	0	0	0	0	0	1
0	0	0	0	0	1	2
•	•	•	•	•	•	
	•	•	•	•	•	
1	1	1	1	1	0	63
1	1	1	1	1	1	64

CAN Bus Timing Register 1 (CnBT1)

MOVX Address ¹	7	6	5	4	3	2	1	0
xxxx05h	SMP	TSEG26	TSEG25	TSEG24	TSEG13	TSEG12	TSEG11	TSEG10

SMPCAN Sampling Rate. The Sampling Rate (SMP) bit determines the number ofBit 7samples to be taken during each receive bit time. Programming SMP = 0 will take
only one sample during each bit time. Programming SMP = 1 will direct the CAN
logic to take three samples during each bit time, and to use a majority voting
circuit to determine the final bit value. When SMP is set to a 1, two additional tqu
clock cycles are be added to Time Segment One. SMP should not be set to one
when the Baud Rate Prescale Value (BRPV) is less than 4. This bit can only be
modified during a software initialization (SWINT=1).

TSEG26-24CAN Time Segment 2 Select. The eight states defined by the TSEG26 -Bits 6-4TSEG24 bits determine the number of clock cycles in the Phase Segment 2portion of the nominal bit time, which occurs after the sample time. These bits
can only be modified during a software initialization (SWINT=1).

TSEG26	TSEG25	TSEG24	Time Segment Two Length (Number in parenthesis is TS2_LEN value used in bit timing calculations)
0	0	0	Invalid
0	0	1	$2 t_{qu} (2)$
0	1	0	3 t _{qu} (3)
1	1	0	7 t _{qu} (7)
1	1	1	8 t _{qu} (8)

TSEG13-10CAN Time Segment 1 Select. The sixteen states defined by the TSEG13 -
TSEG10 bits determine the number of clock cycles in the Phase Segment 1
portion of the nominal bit time, which occurs before the sample time. These bits
can only be modified during a software initialization (SWINT=1).

TSEG13	TSEG12	TSEG11	TSEG10	Time Segment One Length (Number in parenthesis is TS1_LEN value used in bit timing calculations)
0	0	0	0	Invalid
0	0	0	1	2 t _{qu} (2)
0	0	1	0	3 t _{qu} (3)
•		•	•	
1	1	1	0	15 t _{qu} (15)
1	1	1	1	16 t _{qu} (16)

CAN Standard Global Mask Register 0 (CnSGM0)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
xxxx06h	MASK28	MASK27	MASK26	MASK25	MASK24	MASK23	MASK22	MASK21

CAN Standard Global Mask Register 1 (CnSGM1)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
xxxx07h	MASK20	MASK19	MASK18	0	0	0	0	0

CAN Standard Global Mask Registers 1-0. These registers function as the mask when performing the 11-bit global identification test on incoming messages for Message Centers 1-14. If MEME=0, the incoming message ID field must match the corresponding message center arbitration value exactly, effectively ignoring the contents of these registers. These registers are only used when performing the standard identification test, and their contents are ignored when $EX/\overline{ST} = 1$. These registers can only be modified during a software initialization (SWINT=1).

Any mask bit in the CnSGM1, CnSGM0 mask programmed to a 0 will create a don't care condition when the respective bit in the incoming message ID field is compared with the corresponding arbitration bits in Message Centers 1-14. Any bit in these masks programmed to a 1 will force the respective bit in the incoming message ID field to match identically with the corresponding arbitration bits in Message Centers 1-14, before said message will be loaded into Message Centers 1-14.

The five least significant bits in the CnSGM1 register are not used, and will not perform any comparison of these bit locations. A read of these bits will produce the last bit values written to these bit locations by the microcontroller or an indeterminate value following a power-up.

			250000	s s an s p				appromone
CAN Exte	ended G	lobal Mas	sk Regist	er 0 (CnE	EGM0)			
MOVX Address ¹	7	6	5	4	3	2	1	0
xxxx08h	MASK28	MASK27	MASK26	MASK25	MASK24	MASK23	MASK22	MASK21
CAN Exte MOVX Address ¹	ended G	lobal Mas	sk Regist 5	er 1 (CnE 4	EGM1) 3	2	1	0
xxxx09h	MASK20	MASK19	MASK18	MASK17	MASK16	MASK15	MASK14	MASK13
CAN Exte MOVX Address ¹	CAN Extended Global Mask Register 2 (CnEGM2) MOVX Address ¹ 7 6 5 4 3 2 1 0							
xxxx0Ah	, MASK12	MASK11	MASK10	- MASK9	MASK8	MASK7	MASK6	MASK5
			I	1	1		1	I

CAN Extended Global Mask Register 3 (CnEGM3)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
xxxx0Bh	MASK4	MASK3	MASK2	MASK1	MASK0	0	0	0

CAN Extended Global Mask Registers 0-3. These registers function as the mask when performing the Extended Global Identification test $(EX/\overline{ST} = 1)$ for Message Centers 1-14. When $EX/\overline{ST} = 0$ the contents of this register will be ignored. These registers can only be modified during a software initialization (SWINT=1).

When $EX/\overline{ST} = 1$, the 29-bits of the message ID will be compared against the 29bits of the CAN Message Center y Arbitration Registers, using the 29 bits of the CAN Extended Global Mask Registers as a mask. Any bit in the Extended Global Mask Registers set to 0 will ignore the state of the corresponding bit in the incoming message ID field when performing the test. Any bit in the Extended Global Mask Registers set to 1 will force the state of the corresponding bit in the incoming message ID field and CAN message center arbitration Registers 0-3 to match before considering the incoming message a match.

The three least significant bits in the CnEGM3 are not used, and will not perform any comparison of these bit locations. A read of these bits will always return 0, and writes to these bits will be ignored.

Programming all Mask registers to 00h effectively disables the Global ID test for that message, accepting all messages. As such the Global mask registers act as a don't care following a system Reset.

CAN Message Center 15 Mask Register 0 (CnM15M0)

MOVX	louge ee		naon nog			,		
Address ¹	7	6	5	4	3	2	1	0
xxxx0Ch	MASK28	MASK27	MASK26	MASK25	MASK24	MASK23	MASK22	MASK21
CAN Mes	sage Ce	nter 15 N	lask Reg	jister 1 (C	CnM15M1)		
Address ¹	7	6	5	4	3	2	1	0
xxxx0Dh	MASK20	MASK19	MASK18	MASK17	MASK16	MASK15	MASK14	MASK13
CAN 0 M MOVX	essage (7	Center 15 6	5 Mask Ro	egister 2 4	(CnM15N 3	12)	1	0
Address			1	1				

CAN 0 Message Center 15 Mask Register 3 (CnM15M3)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
xxxx0Fh	MASK4	MASK3	MASK2	MASK1	MASK0	0	0	0

MASK28-MASK0CAN Message Center 15 Mask Registers 0-3. These registers function as the
mask when performing the Extended Global Identification test ($EX/\overline{ST} = 1$) for
Message Center 15 only. These registers can only be modified during a software
initialization (SWINT=1).

When $EX/\overline{ST} = 1$, the 29 bits of the message ID will be compared against the 29 bits of the CAN Message Center 15 Arbitration Registers, using the 29 bits of the CAN Message Center 15 Mask Registers as a mask. When $EX/\overline{ST} = 0$, the 11 bits of the message ID will be compared against the most significant 11 bits of the CAN Message Center 15 Arbitration Registers, using the most significant 11 bits of the CAN Message Center 15 Mask Registers as a mask. Any bit in the CAN Message Center 15 Mask Registers as a mask. Any bit in the CAN Message Center 15 Mask Registers as a mask. Any bit in the CAN Message Center 15 Mask Registers set to 0 will ignore the state of the corresponding bit in the incoming message ID field when performing the test. Any bit in the CAN Message Center 15 Mask Registers set to 1 will force the state of the corresponding bit in the incoming message ID field and CAN message center arbitration Registers 0-3 to match before considering the incoming message a match.

The three least significant bits in the CnM15M3 register are not used, and will not perform any comparison of these bit locations. A read of these bits will always return 0, and writes to these bits will be ignored.

Programming all Mask registers to 00h effectively disables the Message Center 15 ID test, accepting all messages. As such the Message Center 15 mask registers act as a don't care following a system Reset.

CAN MESSAGE CENTER MOVX REGISTER DESCRIPTIONS

sage Ce	enter y Ar	bitration	Registe	r 0 (CnMy	AR0)				
7	6	5	4	3	2	1	0		
ID28	ID27	ID26	ID25	ID24	ID23	ID22	ID21		
sage Ce	enter y Ar	bitration	Registe	r 1 (CnMy	AR1)				
7	6	5	4	3	2	1	0		
ID20	ID19	ID18	ID17	ID16	ID15	ID14	ID13		
sage Ce	enter y Ar	bitration	Registe	r 2 (CnMy	vAR2)				
7	6	5	4	3	2	1	0		
ID12	ID11	ID10	ID9	ID8	ID7	ID6	ID5		
sage Ce	enter y Ar	bitration	Registe	3 (CnMy	7 AR3)	1	0		
, ID4	ID3	<u>л</u>	TD1		0	0	WTOE		
CAN Message Center y Arbitration Registers 0-3. These bits form the arbitration value/identification number for the message center y. When the message center is configured in a transmit mode, these registers will be the source of the 29-bit ID message field (when $EX/\overline{ST} = 1$) or the 11-bit ID message field (when $EX/\overline{ST} = 0$). When $EX/\overline{ST} = 1$, the 29 message ID bits will correspond to ID28-ID0 as shown above. When $EX/\overline{ST} = 0$, the message ID bits 10-0 correspond to ID28-18 in CnMyAR0 and CnMyAR1.									
	7 ID28 sage Ce 7 ID20 sage Ce 7 ID12 sage Ce 7 ID12	7 6 ID28 ID27 sage Center y Ar 7 6 ID20 ID19 sage Center y Ar 7 6 ID20 ID19 sage Center y Ar 7 6 ID12 ID11 sage Center y Ar 7 6 ID12 ID11 sage Center y Ar 7 6 ID12 ID11 sage Center y Ar 7 6 ID4 ID3	765ID28ID27ID26sage Center y Arbitration765ID20ID19ID18sage Center y Arbitration765ID12ID11ID10sage Center y Arbitration765ID12ID11ID10sage Center y Arbitration765ID4ID3ID2	7654ID28ID27ID26ID25sage Center y Arbitration Register7654ID20ID19ID18ID17sage Center y Arbitration Register7654ID12ID11ID10ID9sage Center y Arbitration Register7654ID12ID11ID10ID9sage Center y Arbitration Register7654ID12ID11ID10ID9Total Arbitration Register7654ID4ID3ID2ID1	7 6 5 4 3 ID28 ID27 ID26 ID25 ID24 sage Center y Arbitration Register 1 (CnMy 7 6 5 4 3 ID20 ID19 ID18 ID17 ID16 sage Center y Arbitration Register 2 (CnMy 7 6 5 4 3 ID20 ID19 ID18 ID17 ID16 sage Center y Arbitration Register 2 (CnMy 7 6 5 4 3 ID12 ID11 ID10 ID9 ID8 sage Center y Arbitration Register 3 (CnMy 7 6 5 4 3 ID12 ID11 ID10 ID9 ID8 Sage Center y Arbitration Register 3 (CnMy 7 6 5 4 3 ID4 ID3 ID2 ID1 ID0	7 6 5 4 3 2 ID28 ID27 ID26 ID25 ID24 ID23 sage Center y Arbitration Register 1 (CnMyAR1) 7 6 5 4 3 2 ID20 ID19 ID18 ID17 ID16 ID15 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 ID20 ID19 ID18 ID17 ID16 ID15 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 ID12 ID11 ID10 ID9 ID8 ID7 sage Center y Arbitration Register 3 (CnMyAR3) 7 6 5 4 3 2 ID12 ID11 ID10 ID9 ID8 ID7 sage Center y Arbitration Register 3 (CnMyAR3) 7 6 5 4 3 2 ID4 ID3 ID2 ID1 ID0 0 <td>7 6 5 4 3 2 1 ID28 ID27 ID26 ID25 ID24 ID23 ID22 sage Center y Arbitration Register 1 (CnMyAR1) 7 6 5 4 3 2 1 1D20 ID19 ID18 ID17 ID16 ID15 ID14 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 1 ID12 ID11 ID10 ID9 ID8 ID7 ID6 sage Center y Arbitration Register 3 (CnMyAR3) 7 6 5 4 3 2 1 ID4 ID3 ID2 ID1 ID0 0 0</td>	7 6 5 4 3 2 1 ID28 ID27 ID26 ID25 ID24 ID23 ID22 sage Center y Arbitration Register 1 (CnMyAR1) 7 6 5 4 3 2 1 1D20 ID19 ID18 ID17 ID16 ID15 ID14 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 sage Center y Arbitration Register 2 (CnMyAR2) 7 6 5 4 3 2 1 ID12 ID11 ID10 ID9 ID8 ID7 ID6 sage Center y Arbitration Register 3 (CnMyAR3) 7 6 5 4 3 2 1 ID4 ID3 ID2 ID1 ID0 0 0		

When configured in a receive mode, these registers serve as the arbitration value for message center y, against which incoming messages are compared to ascertain if they are valid for that message center. When $EX/\overline{ST} = 1$, all 29 bits of the arbitration are used, but when $EX/\overline{ST} = 0$, only the most significant 11 bits are used.

Bits 2-1Reserved – Bits 2 and 1 of the CnMyAR3 register are not used in arbitration. A
read of these bits will always return 0, and writes to these bits will be ignored.WTOEWrite-over Enable. This bit controls the ability of a new message to overwrite
an existing message in the corresponding message center in receive mode. The
DTUP and EXTRQ bits for the message center in question must also be
considered to determine the effect of this bit as shown below. The WTOE bit can

only be programmed when the SWINT bit is set.

WTOE DTUP EXTRQ Result when new message detected

0	0	0	There is currently no unread message or pending external frame request in the message center, so the matching message will be written to appropriate message center (1-15)
0	1	х	The message center (1-15) has an unread message or pending external frame request. The incoming matching message will be ignored and the message center remains unchanged. The CAN module will proceed to the next lower priority message center to evaluate the incoming message ID and arbitration bits and related masking operations. (No overwrite)
0	х	1	The message center (1-15) has an unread message or pending external frame request. The incoming matching message will be ignored and the message center remains unchanged. The CAN module will proceed to the next lower priority message center to evaluate the incoming message ID and arbitration bits and related masking operations. (No overwrite)
1	0	х	There is currently no unread message or pending external frame request in the message center, so the matching message will be written to appropriate message center (1-15)
1	1	Х	The new matching message will be stored, overwriting the previously stored message. The ROW bit will be set to indicate the overwrite operation.

Special notes for message center 15

The ROW bit in message center 15 is associated with an overwrite of the shadow buffer for message center 15. The EXTRQ and DTUP bits are also shadow buffered to allow the buffered message and the message center 15 value to take on different relationships. The EXTRQ and DTUP values read by software are the current message center 15 values, rather than those of the shadow buffer as is the case with the ROW bit. The shadow buffer is automatically loaded into message center 15 when **both** the DTUP bit and EXTRQ bit are cleared. If either DTUP=1 or EXTRQ=1 when clearing the other, any message in the shadow buffer will not be transferred to the message 15 registers, and any incoming messages for message 15 will be stored in the shadow buffer if WTOE = 1, or will be lost if WTOE = 0.

Special notes concerning remote frames

For remote frames, which can be received by transmit message centers (1-14) in case of a matching identifier, WTOE and EXTRQ are evaluated. If ((WTOE = 1) OR (WTOE = 0 and EXTRQ = 1)), the respective transmit message center (1-14) arbitration bits can be overwritten.

CAN Message Center y Format Register (CnMyF)

MOVX								
Address ¹	7	6	5	4	3	2	1	0
ххххубһ	DTBYC3	DTBYC2	DTBYC1	DTBYC0	T/\overline{R}	EX/\overline{ST}	MEME	MDME

DTBYC3-0 Bits 7-4	Data Byte Count. These bits indicate the number of bytes within the data field of the message. When performing a transmit, software sets the DTBYC bits to establish the number of bytes that are to be transmitted. When receiving a message, the DTBYC bits indicate the (binary) number of bytes of data in the incoming message; i.e., $0000b = 0$ data bytes and $1000b = 8$ data bytes.
T/\overline{R} Bit 3	Transmit/Receive Select. This bit is programmed by the application software to indicate if the message is to be transmitted $(T/\overline{R} = 1)$ or received $(T/\overline{R} = 0)$. This bit can only be modified when MSRDY = 0.
	This bit does not exist for Message Center 15 and will always return 0 when read from Message Center 15.
EX/ST Bit 2	Extended or Standard Identifier. This bit determines whether the respective message is to utilize the extended 29-bit Identification format $(EX/\overline{ST} = 1)$ or the standard 11-bit Identification format $(EX/\overline{ST} = 0)$. Message centers programmed for one format will <u>only</u> receive/send extended messages in that format and will ignore the alternate format. This bit can only be modified when MSRDY = 0.
MEME Bit 1	Message Identification Mask Enable. The MEME bit enables (MEME = 1) or disables (MEME = 0) the use of the Message Identification Masking process, associated with the testing of the Identification field in the incoming message. This bit can only be modified when MSRDY = 0.
	0 = The mask registers are ignored when evaluating the identification bits of the incoming message, and the identification bits of the incoming message and the message center arbitration bits must match exactly to allow receipt of the incoming message. This is equivalent to programming the mask with all zeros. An exact match is also required before a remote data request is allowed.
	1 = The mask registers are enabled, comparing only those bits message identification and arbitration bits which correspond to a 1 in the mask register.
MDME Bit 0	Media Identification Mask Enable. The MDME bit enables (MEME = 1) or disables (MEME = 0) the use of the first two bytes of the data field as a message qualifier. This bit can only be modified when MSRDY = 0.
	0 = The first two bytes of the data field are ignored and not compared.
	1 = The first two data bytes are masked by the respective Media Mask ID Register and then compared with the Media Arbitration Register Zero and One bytes. Only those bits in the first two data bytes and the arbitration registers corresponding to a 1 in the mask register are compared. When MDME=1 the test is also performed before a remote request of data from a remote node is accepted.

CAN Mess	age Ce	enter y Da	ata Byte (0 (CnMyI	D0)			
Address ¹	7	6	5	4	3	2	1	0
xxxxy7h								
CAN Mess MOVX	age Ce	enter y Da	ata Byte ′	1 (CnMyI	D1)			
Address ¹	7	6	5	4	3	2	1	0
CAN Mess MOVX	age Ce	enter y Da	ata Byte 2	2 (CnMyI	02)			
Address ¹	7	6	5	4	3	2	1	0
xxxxy9h								
CAN Mess MOVX	age Ce	enter y Da	ata Byte 3	3 (CnMyl	D3)			
Address ¹	7	6	5	4	3	2	1	0
xxxxyAh								
CAN Mess	age Ce	enter y Da	ata Byte 4	4 (CnMyI	04)			
Address	7	6	5	4	3	2	1	0
xxxxyBh								
CAN Mess	age Ce	enter y Da	ata Byte (5 (CnMyI	D5)			
Address ¹	7	6	5	4	3	2	1	0
xxxxyCh								
CAN Mess	age Ce	enter y Da	ata Byte (6 (C0MyI	D6)			
Address ¹	7	6	5	4	3	2	1	0
xxxxyDh								
CAN Mess MOVX	age Ce	enter y Da	ata Byte 7	7 (С0Му[07)			
Address ¹	7	6	5	4	3	2	1	0
xxxxyEh								
CnMyD0- CnMyD7		CAN Mess or received	age Center data.	y Data Byt	es 0-7. These	e bytes hold	data to be tr	ansmitted

Frame Types

The CAN 2.0B protocol specifies two different message formats, the standard 11-bit (CAN 2.0A) and the extended 29-bit (CAN 2.0 B), and four different Frame Types for CAN Bus communications.

The Standard Format seen below makes use of an 11-bit identifier.

Figure 16-1 CAN 2.0A Format

The Extended Format seen below makes use of a 29 bit identifier.

Figure 16-2 CAN 2.0B Format

	\bowtie		A	rbit	ration Field			Control Field	Data Field	CRC Field	ACK Field	End of Frame ★↓──↓>	INTER K→→	Bus Idle
S C F	11.	-bit Identifier	S R R	I D E	18-bit Identifier	R T R	r r 1 0	DLC	0 to 8 Bytes	15-bit CRC				

The four different Frame Types for CAN Bus communications are the Data Frame, the Remote Frame, the Error Frame and the Overload Frame.

Data Frame:

The Data Frame is formulated to carry data from a transmitter to a receiver. The preceding two figures are examples of data frames in the standard and extended formats. The Data Frame is composed of seven fields. These include the Start of Frame, Arbitration Field, Control Field, Data Field, CRC Field, Acknowledge Field and an End of Frame. A description of these fields follows.

Start of Frame - SOF: (Standard and Extended Format)

The Start of Frame is a dominant bit which signals the start of a Data or Remote Frame. The dominant forces a hard synchronization, initiating the CAN controller receive mode.

Arbitration Field: (Standard and Extended Format)

The Arbitration Field contains the identifier of the message and a dominant Remote Request (RTR) bit. The identifier is composed of one field in the standard 11-bit format or two fields in the extended 29-bit format. Two additional bits, the Substitution Remote Request (SRR) bit and the Identifier Extension (IDE) bit, separate the two fields in the Extended Format.

Remote Request (RTR) bit: (Standard and Extended Format)

The Remote Request bit is a dominant bit in Data Frames and a recessive bit in Remote Frames.

Substitution Remote Request (SRR) bit: (Extended Format)

The Substitution Remote Request bit is a recessive bit and is substituted for the RTR bit when using the Extended Format.

Identifier Extension (IDE) bit: (Extended Format)

The Identifier Extension (IDE) bit is a dominant bit in the Standard Format and a recessive bit in the Extended Format. The IDE bit is located in the Arbitration Field in the Standard Format and is located in the Control Field in the Extended Format.

Control Field: (Standard and Extended Format)

The Control Field is made up of six bits in two fields. The first field is made up of two reserved bits which are transmitted as dominant bits. The second field contains four bits which make up the Data Length Code (DLC). The DLC determines the number of data bytes in the Data Field of the Data Frame and is programmed through the use of the CAN Message Format Registers, located in each of the 15 message centers.

Figure 16-3 Control Field

Data Field: (Standard and Extended Format)

The Data Field is made up of 0 to 8 bytes in a Data Frame and 0 bytes in a Remote Frame. The number of data bytes associated with a message center is programmed through the use of the CAN Message Format Registers, located in each of the 15 message centers. The data field contents are saved to the respective message center if the identifier test is successful, no errors are detected through the last bit of the end of frame, and an Error Frame does not immediately following the Data or Remote Frame. The data field is transmitted Least Significant Byte first, with the Msb of each byte transmitted first.

CRC Field: (Standard and Extended Format)

The CRC Field is made up of a 15 bit code which is the computed Cyclic Redundancy Check using the destuffed bits in the Start of Frame, the Arbitration Field, the Control Filed, and the Data Field (when present), and a CRC delimiter. The CRC calculation is limited to 127 bit maximum code word (a shortened BCH Code) with a CRC sequence length of 15 bits.

Figure 16-4 CRC Field

Acknowledge Field (ACK): (Standard and Extended Format)

The ACK Field is made up of two bits. The transmitting node will send two recessive bits in the ACK field. The receiving nodes which have received the message and found the CRC Sequence to be correct will reply by driving the ACK Slot with a dominant bit. The ACK Delimiter is always a recessive bit.

Figure 16-5 Acknowledge Field

End of Frame: (Standard and Extended Format)

The End of Frame for both the Data and Remote Frame is established by the transmitter by sending seven recessive bits.

Interframe Spacing (Intermission): (Standard and Extended Format)

Data Frames and Remote Frames are separated from preceding frames by three recessive bits termed the Intermission. During the Intermission the only allowed signaling to the bus is by an Overload condition. No node is allowed to start a message transmission of a Data or Remote Frame during this period. If no node becomes active following the Interframe Space an indeterminate number of recessive bit times will transpire in the Bus Idle condition until the next transmission of a new Data or Remote Frame by a node.

Figure 16-6 Intermission

Remote Frame: (Standard and Extended Format)

The Remote Frame is transmitted by a CAN controller to request the transmission of the Data Frame with the same identifier. The Remote Frame is composed of seven fields. These include the Start of Frame, Arbitration Field, Control Field, Data Field, CRC Field, Acknowledge Field and an End of Frame.

Figure 16-7 Remote Frame

The Remote Frame is used when a CAN processor wishes to request data from another node. Sending a Remote Frame initiates a transmission of data from a source node with the same identifier (masked groups included). The primary bit pattern difference between a Data Frame and a Remote Frame is the RTR bit, which in the Remote Frame is sent as a recessive bit, and in the Data Frame is sent as a dominant bit. The Remote Frame also does not contain a data field, independent of the programmed values in the DTBYC3 - DTBYC0 bits in the respective CAN Message Format Register.

Error Frame:

The Error Frame is transmitted by a CAN controller when the CAN processor detects a bus error. The Error Frame is composed of two different fields. These are 1) the superposition of the Error Flags from different nodes and 2) the Error Delimiter.

Figure 16-8 Error Frame

The Error Frame is composed of six dominant bits, which violate the CAN specification bit stuffing rule. If either of the CAN processors detect an error condition, that CAN processor will transmit an Error Frame. When this happens all nodes on the bus will detect the bit stuff error condition and will transmit their own Error Frame. The superpositioning of all of these Error Frames will lead to a total Error Frame length between 6 and 12 bits, depending on the response time and number of nodes in the system. Any messages (Data or Remote Frame) received by the CAN processors (successful or not) which are followed by an Error Frame will be discarded. After the transmission of an Error Flag each CAN processor will send an error delimiter (eight recessive bits) and will monitor the bus until it detects the change from the dominant to recessive bit level. The CAN modules will issue an Error Frame each time an Error Frame is detected. Following a series of Error Frames the CAN modules will enter into an Error Passive Mode. In the Error Passive Mode the CAN processors will transmit six recessive bits, and wait

until six equal bits of the same polarity have been detected. At this point the CAN processor will begin the next internal receive or transmission operation.

Overload Frame:

The Overload Frame provides an extra delay between Data or Remote Frames. The Overload Frame is composed of two different fields: the Overload Flag and the Overload Delimiter.

Figure 16-9 Overload Frame

There are three conditions which lead to the transmission of an Overload Flag:

- 1) The internal conditions of a CAN receiver require a delay before the next Data or Remote Frame is sent. The DS80C390 CAN controllers are designed to prevent this condition for data rates at or below the 1 Mbit per second data rate.
- 2) The CAN processor detects a dominant bit at the first and second bit position of the Intermission.
- 3) If the CAN processor detects a dominant bit at the eighth bit of an Error Delimiter or Overload Delimiter, it will start transmitting an Overload Frame.

The error counters will not be incremented as a result of number 3. The CAN processor will only start an Overload Frame at the first bit of an expected Intermission if initiated by condition 1. Conditions 2 and 3 will result in the CAN processor transmitting an Overload Frame starting one bit after detecting the dominant bit. The Overload Flag consists of six dominant bits that correspond to an Error Flag. Because the Overload Frame is only transmitted at the first bit time of the Interframe Space, it is possible for the CAN processor to discriminate between an Error Frame and an Overload Frame. The Overload Flag destroys the Intermission field. When such a condition is detected, the CAN processor will detect the Overload condition and will begin transmitting an Overload Frame. After the transmission of an Overload Frame the CAN processors will monitor the bus for a dominant to recessive level change. The CAN processor will then begin the transmission of six additional recessive bits, for a total of seven recessive bits on the bus. The Overload Delimiter consists of eight recessive bits.

Initializing the CAN controllers

Software initialization of each CAN controller begins with the setting of the Software Initialization bit (SWINT) in the appropriate CAN Control SFR Register. When SWINT=1, the respective CAN module is disabled and the corresponding CAN transmit output will be placed in a recessive state. This in turn allows the microcontroller to write information into the CAN MOVX SRAM Control/Status/Mask registers without the possibility of corrupting data transmissions or receptions in progress. Setting SWINT will not clear the receive and transmit error counters, but will allow the microcontroller to write a common value to both error counters via the CAN Transmit Error SFR Register. Consult the description of the SWINT bit for specifics of the software initialization process.

All CAN registers located in the SFR memory map, with the exception of the CAN 0 and CAN 1 Control Registers, are cleared to a 00 Hex following a system Reset. The CAN 0 and CAN 1 Control Registers, are set to 0B Hex following a system Reset. CAN registers located in the MOVX memory map are indeterminate following a system Reset. A system Reset also clears both the receive and transmit error counters in the CAN controllers, takes the CAN processors off line, and sets the SWINT bit in the CAN 0/1 Control Register.

Following a reset, the following general registers must be initialized for proper operation of the CAN modules. These registers are in addition to specific registers associated with mask, format, or specific message centers.

Register	Significance
P5CNT (SFR A2h)	C0_I/O (P5CNT.3) must be set to enable CAN 0 pins P5.1 and P5.0. C1_I/O (P5CNT.4) must be set to enable CAN 1 pins P5.2 and P5.3
C0BT0, C0BT1 C1BT0, C1BT1 (MOVX SRAM xxxx04-5)	These MOVX SRAM control registers must be set to configure CAN 0 (C0BT0, C0BT1) or CAN 1 (C1BT0, C1BT1) bus timing. The exact values are dependent on the network configuration and environment.
COR (SFR CEh)	C0BPR7-6 (COR.4-3) must be configured as part of the CAN 0 bus timing C1BPR7-6 (COR.6-5) must be configured as part of the CAN 1 bus timing

CAN Interrupts

Each CAN processor is assigned one individual interrupt and one common CAN Bus Activity Interrupt which are globally enabled or disabled by the EA bit in the IE SFR register. The CAN 0/1 interrupt is generated by either a receive/transmit acknowledgment from one of the fifteen message centers or an error condition which results in a change in the CAN 0/1 Status Register. These interrupts are enabled via the C0IE or C1IE bit (CAN 0 or CAN 1) in the EIE register. The third CAN related interrupt is common to both CAN systems and is supplied to detect CAN bus activity on either CAN input pin. This interrupt is termed the CAN Bus Activity Interrupt, operates independent of the CAN processor, and is only available if one or both of the CAN processors have been connected to the respective Port 5 pins (via C0_I/O and/or C1_I/O in the Port 5 Control SFR).

CAN 0/1 receive/transmit interrupt sources are derived from a successful transmit or receive of data within one of the fifteen message centers as determined by the INTRQ bit in the associated CAN 0/1 Message (1-15) Control Register. Each message center (1-15) also provides separate receive and transmit interrupt enables via the ETI and ERI bits in the respective CAN 0/1 Message (1-15) Control Register. This allows each message center to be programmed to issue an interrupt request as per the application requirements of the message center. Each source is determined through the use of the CAN 0/1 Interrupt

SFR Register. Software must clear the respective INTRQ bit in the associated CAN 0/1 Message (1-15) Control Register to clear the interrupt source before leaving the interrupt routine.

The CAN 0/1 Interrupt source is connected to a change in the CAN 0/1 Status Register. Each of the status bits in the CAN 0/1 Status Register represents a potential source for the interrupt. To simplify the application and testing of a device, these sources are broken into two groups which are further enabled via the ERIE and STIE bits of the CAN 0/1 Control register. This allows the non-standard errors typically associated with development to be grouped under the STIE enable. These include the successful receive RXS, successful transmit TXS, wake status WKS, and general set of error conditions reported by ER2 - ER0. Also note that since the RXS and TXS bit are cleared by software, if a second message is received or transmitted before the RXS or TXS bits are cleared and after a read of the CAN 0/1 Status Register, a second interrupt will be generated. The remaining error sources comprise the BSS and CECE bits in the CAN 0/1 Status Register. A read of the CAN 0/1 Status Register is required to clear either of the two groups of Error interrupts. It is possible that multiple changes to the Status Register may occur before the register is read; in that case the Status Register will generate only one interrupt. The following figure provides a graphical illustration of the interrupt sources and their respective interrupt enables.

Figure 16- 10 CAN Interrupt Logic

¹³⁸ of 155

Arbitration/Masking Considerations

Each CAN processor evaluates CAN bus activity to determine if an incoming message is loaded into one of the 15 message centers. Acceptance of a message is determined by comparing the message's ID or data field against the corresponding arbitration value loaded into each message center and checking if the bits match. Messages that contain bit errors or which fail arbitration are discarded. The incoming message is tested in order against each enabled message center (enabled by the MSRDY bit in the CAN Message Control Register) from 1 to 15. The first message center to successfully pass the test will receive the incoming message and end the testing, and the message is loaded into the respective message center.

The CAN modules support an optional masking feature that restricts arbitration to those bits that are masked with a 1 in the respective masking register. By selectively programming the message center arbitration registers and the related masks, it is possible to allow groups of incoming messages to be loaded into any single message center. Each pair of mask and arbitration registers has the same number of bits as the message ID in the incoming message. When masking is enabled, only those arbitration and identifier bits that correspond to a 1 in the masking register will be compared. Programming a bit in the mask to a 0 will make the comparison of those arbitration and identifier bits a don't care, automatically registering a match between those bits. If all of the bits in the mask are programmed to a 0, any incoming message arbitration field will match with any message center arbitration value. On the other hand, if a mask is programmed with all 1's all of the arbitration and identifier bits must match identically before the incoming message will be loaded into the message center.

The DS80C390 supports two types of arbitration: basic and media. Basic arbitration compares either 29bits (EX/ \overline{ST} =1) or 11-bits (EX/ \overline{ST} =0) of the message ID against the corresponding bits in the 4 CAN Arbitration registers (CnMxAR0-3). Each message center can be individually be configured for 29- or 11bit operation. If the Message Identification Mask Enable bit (MEME) is set, the CAN module will utilize the Standard Global Mask registers (CnSGM0-1) when EX/ \overline{ST} =0 or the Extended Global Mask registers (CnEGM0-3) when EX/ \overline{ST} =1. In either case, only those bits in the message ID and arbitration registers which correspond with a 1 in the mask register will be compared. Bits corresponding with 0 in the mask register will be ignored, creating a don't care condition. Filling the mask register with all 0s while MEME=1 will cause the arbitration circuitry to automatically match all message IDs. When MEME=0, all ID bits in the incoming message are compared directly (bit for bit) with the respective arbitration bits of the message center.

Media arbitration is an optional second arbitration performed when the Media Identification Mask Enable bit (MDME) is set. Media arbitration compares the first and second byte of the data field in each message against two 8-bit Media Arbitration bytes (stored at locations CnMA0, CnMA1). If the incoming arbitration field matches a specific message arbitration value and the first two data bytes match the two 8-bit Media Arbitration bytes (and no bit errors are detected) the message is loaded into the respective message center. Unlike the Identification Mask Enable (MEME), however, when MDME=0 no testing will be performed of the first two bytes of the incoming data field.

MESSAGE CENTER 15

Message center 15 supports an additional set of set of masks to supplement basic arbitration. While this message center performs basic and media arbitration as per message centers 1-14, it also uses the Cn15M3-0 mask registers perform an additional level of filtering during basic (i.e., not media) arbitration. When determining arbitration for message center 15, the contents of Cn15M3-0 are logically ANDed with either CnEGM3-0 (if EX/ \overline{ST} =1 for message center 15) or CnSGM1-0 (if EX/ \overline{ST} =0 for message center 15). This ANDed value is then used in place of CnEGM3-0 or CnSGM1-0 when performing basic

arbitration as described previous. If the MDME bit is set then the incoming message must pass the media arbitration test as well.

Message center 15 has a buffered FIFO arrangement to allow up to two received messages to be received without being lost prior to the microcontroller reading of the first message. The first message received by message center 15 is stored in the normal MOVX memory location for Message Center 15, if the previous message has been already read by the microcontroller. If the first message has not been read, then the incoming message is buffered internally until the first message is read, at which time the second message is automatically loaded into the first (MOVX) message 15 slot, allowing software to then read the second message. The CAN module determines if the first message has been read is by software clearing the DTUP bit and the EXTRQ bit. If a third message comes in before the second message has been copied into the MOVX message 15 slot, then the third message will write over the second buffered message. Software should clear the INTRQ bit as well as the DTUP and EXTRQ bit after reading each message in the MOVX message 15 center. The WTOE bit associated with message center 15 has unique operating considerations, described later in the section regarding the function of the WTOE bit.

Transmitting and Receiving Messages

All CAN data is sent and received through message centers. All CAN message centers for both CAN modules are identical with the exception of message center 15. Message center 15 has been designed as a receive only center and is also shadow-buffered to help prevent the loss of incoming messages, when the software is not able to read the first message before the next message is loaded. All message centers, with the exception of message center 15, are capable of four different operations. These are:

Transmitting a data message Receiving a data message Transmitting a remote frame request Receiving a remote frame request

Transmitting Data Messages:

Starting with the lowest numbered message center (highest priority) each CAN module sequentially scans each message center until it finds a message center that is proper enabled for transmission ($T/\overline{R} = 1$, TIH = 0, DTUP = 1, MSRDY = 1, and MTRQ = 1). The contents of the respective message center is then transferred to the transmit buffer and the CAN module attempts to transmit the message. If successful the appropriate MTRQ bit will be cleared to 0, indicating that the message was successfully sent. Following a successful transmission, loss of arbitration, or an error condition, the CAN module will again search for a properly configured message center, starting with the lowest numbered message center. This search relationship will always allow the highest priority message center to be transmitted, independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission.

Receiving Data Messages:

Each incoming data message is compared sequentially with each receive enabled $(T/\overline{R} = 0)$ message center starting with the lowest numbered message center (highest priority) and proceeding to the highest numbered message center. This testing continues until a match is found (incorporating masking functions as required), at which time the incoming message is stored in the respective message center. Higher numbered message centers that are not reviewed prior to the match will not be evaluated during the current message test. When the WTOE=1, the CAN module can overwrite receive message centers that have DTUP = 1, which will in turn set ROW = 1. When WTOE = 0, incoming messages will not overwrite receive message centers that have DTUP = 1.

Message center 15 is a special receive-only, FIFO-buffered message center, designed to receive messages not accepted by the other message centers. The ROW bit in message center 15 is associated with the overwrite of the shadow buffer for message center 15. The EXTRQ and DTUP bits are shadow buffered to allow the buffered message and the message center 15 value to take on different relationships. The EXTRQ and DTUP values read by the microcontroller are not those of the shadow buffer as is the case with the ROW bit, but are the current values associated with message center 15. The shadow buffer is automatically loaded into message center 15 when **both** the DTUP bit and the EXTRQ bit are cleared. If either DTUP or EXTRQ are left set when clearing the other, any message in the shadow buffer will not be transferred to the message 15 registers, and any incoming messages for message 15 will be stored in the shadow buffer (if WTOE = 1), or will be lost if (WTOE = 0).

Transmitting Remote Frame Requests

Starting with the lowest numbered message center (highest priority) each CAN module sequentially scans each message center. When it finds a message center properly enabled to transmit a remote frame $(T/\overline{R} = 0, MSRDY = 1, and MTRQ = 1)$, the contents of the respective message center is then transferred to the transmit buffer and the CAN module attempts to transmit the message. If successful the appropriate MTRQ bit will be cleared to 0, indicating that the message was successfully sent. Following a successful transmission, loss of arbitration, or an error condition, the CAN module will again search for a properly configured message center, starting with the lowest numbered message center. This search relationship will always allow the highest priority message center to be transmitted, independent of the last successful (MTRQ = 0) or unsuccessful (MTRQ = 1) message transmission. The state of the TIH bit does not effect the transmission of a remote frame request.

Receiving/Responding to Remote Frame Requests

The remote frame request is handled like a data frame with data length zero and the EXTRQ and RXS bits are set. Each incoming Remote Frame Request (RFR) message is compared sequentially with each enabled (MSRDY = 1) message center starting with the lowest numbered message center (highest priority) and proceeding to the highest numbered message center. Testing continues until a match is found (incorporating masking functions as required), at which time the incoming RFR message is stored in the respective message center, the DTBYC bits are updated to indicate the requested number of return bytes (DTBYC=0 for a remote frame request), and EXTRQ and MTRQ are both set to 1. When the message is successfully received and stored, an interrupt of the corresponding message center will be asserted if enabled by the ERI bit. The EXTRQ bit can be left set if the message center is reconfigured to perform a transmit ($T/\overline{R} = 1$) and used in the standard reply of a remote frame operating with transmit message centers. EXTRQ can also be cleared by software if the current message center is not being used to reply to the remote frame request. Higher numbered message centers (lower priority) that are not reviewed prior to the match will not be evaluated during the current message test. Depending on the state of the transmit/receive bit for that message center, the CAN module will perform one of two responses.

If the microcontroller wishes to request data from another node, it first clears the respective MSRDY bit to 0 and then writes the identifier and control bits in this message center, configures the message center as a receive message center $(T/\overline{R} = 0)$ and then sets the MTRQ bit. After a successful transmission, the CAN module will clear MTRQ = 0 and set TXS = 1. In addition to the TXS bit, if the ETI bit is set, the successful transmission will also set the corresponding INTRQ bit. Requesting data from another node is possible in message centers 1 to 14. As seen above the CAN module sends a remote frame request and receives the data frame in the same message center that sent the request. Therefore, only one mailbox is necessary to do a remote request.

Message centers enabled for transmission $(T/\overline{R} = 1)$ will set the EXTRQ and MTRQ bits in the corresponding message center when a remote frame request is successfully received, to mark the message as a 'to be sent' message. The CAN module will attempt to automatically transmit the requested if the message center is fully enabled to do so (MSRDY = 1, TIH = 0, DTUP = 1). After the transmission, the TXS bit in the status register is set, the EXTRQ and MTRQ bits are reset to a 0 and a message center interrupt of the corresponding message center is asserted if enabled by the respective ETI bit. If the transmit inhibit bit is set (TIH = 1), the message center will receive the RFR, modifying the DTBYC and/or arbitration bits if necessary, but the return data will not be transmitted until TIH = 0.

If software wants to modify the data in a message center configured for transmission of an answer to a remote request (EXTRQ set to a 1), the microcontroller must set the TIH = 1 and DTUP = 0. The microcontroller may then access the data byte registers 0 -7, data byte count (DTBYC3–0), the extended or standard mode bit (EX/ \overline{ST}), and the mask enables (MEME and MDME) of the message center to load the required settings. Following the set up, the software should reset TIH to a 0 and sets DTUP to a 1 bit to signal the CAN that the access is finished. Until the DTUP = 1 and TIH = 0, the transmission of this mailbox is not permitted. Thus, the CAN will transmit the newest data and reset EXTRQ = 0 after the transmission is complete. The message center must first be disabled to change the identifier or the direction control (T/ \overline{R}).

Message centers enabled for reception $(T/\overline{R} = 0)$ will **not** automatically transmit the requested data. The Remote Frame Request will, however, continue to store the requested number of return bytes in DTBYC and set EXTRQ = 1. No data bytes are received or stored from a remote frame request. The message center can then be configured via software to either function as transmitter $(T/\overline{R} = 1)$ and transmit the requested data, or the microcontroller can configure another message center in a transmit mode $(T/\overline{R} = 1)$ to send the requested data. Note that the MTRQ bit is not set by the loading of a matching remote frame request, when $T/\overline{R} = 0$. RXS must be previously cleared by software or a system reset.

When a remote frame is received the CAN module can be configure to either automatically transmit data back to the remote node or to allow the microcontroller to intervene and establish the conditions of the transmitting of the return message. The following examples outline various options to respond to remote frame requests.

Case 1) Automatic Reply

CAN Controller receives a remote frame Request (RFR) and automatically transmits data without additional software intervention.

- 1. Software sets $T/\overline{R} = 1$, MSRDY = 0, DTUP = 0, and TIH = 1.
- 2. Software loads data into respective message center.
- 3. Software sets MSRDY = 1, DTUP = 1 and TIH = 0 in same instruction. Note: Software does not change MTRQ = 0 from previous completed transmission
- 4. CAN does not transmit data (MTRQ = 0), but waits for RFR.
- 5. CAN successfully receives RFR.
- 6. CAN forces MTRQ = 1 and EXTRQ = 1
- 7. CAN loads DTBYC from RFR and ID into arbitration registers.
- 8. CAN automatically transmits data in respective message center.
- 9. CAN clears EXTRQ = 0 and MTRQ = 0.

Case 2) Software-Initiated Reply (Using TIH as Gating Control) CAN module wishes to receive an RFR and wait for software to determine when and what will be transmitted in reference to RFR.

- 1. Software sets $T/\overline{R} = 1$, MSRDY = 0, DTUP = 0, and TIH = 1.
- 2. Software then loads data into respective message center.
- 3. Software sets MSRDY = 1, DTUP = 1 and TIH = 1 in same instruction. Note: Software does not change MTRQ = 0 from previous completed transmission
- 4. CAN does not transmit data (MTRQ = 0), but waits for RFR.
- 5. CAN successfully receives RFR.
- 6. CAN forces MTRQ = 1 and EXTRQ = 1.
- 7. CAN loads DTBYC from RFR and ID into arbitration registers.
- 8. CAN waits for software to read message center and determine the fact that EXTRQ = 1.
- 9. Software may load data into message center (or it may already have the data established).
- 10. Software writes MSRDY = 1, DTUP = 1 and TIH = 0 in same instruction.
- 11. CAN will automatically transmit data (as per RFR DTBYC) in respective message center.
- 12. CAN clears EXTRQ = 0 and MTRQ = 0.
- Case 3) Software-Initiated Reply (Reply via same message center, using TIH as Gating Control) CAN module wishes to receive an RFR in a receive-configured $(T/\overline{R} = 0)$ message center. When the data is received, the message center will be reconfigured send data back to the remote request node. This relationship is not possible for message center 15.
- 1. Software sets $T/\overline{R} = 0$, MSRDY = 1, and DTUP = 0 and awaits either data frame or RFR. Note: Software does not change MTRQ = 0 from previous completed transmission
- 2. CAN successfully receives RFR.
- 3. CAN forces EXTRQ = 1 and DTUP = 1.
- 4. MTRQ can not be written to a 1 by the CAN when $T/\overline{R} = 0$ and is left as MTRQ = 0
- 5. CAN loads DTBYC from RFR and ID into arbitration registers.
- 6. CAN waits for Software to read message center and determine the fact that EXTRQ = 1.
- 7. Software disables message center and converts message center into transmit message center.
- 8. Software clears MSRDY = 0 to disable message center. Software leaves EXTRQ = 1.
- 9. Software then forces message center to transmit mode, T/R = 1.
- 10. Software writes MSRDY = 0, DTUP = 0 and TIH = 1 in preparation to load data.
- 11. Software loads data into message center.
- 12. Software writes MSRDY = 1, MTRQ = 1, DTUP = 1 and TIH = 0 in same instruction.
- 13. Note that Software leaves EXTRQ = 1.
- 14. CAN will automatically transmit data (as per RFR DTBYC) in respective message center.
- 15. CAN clears EXTRQ = 0 and MTRQ =0.

- **Case 4)** Software-Initiated Reply (Reply via same different center, using TIH as Gating Control) CAN Controller wishes to receive an RFR in a message center (denoted MC1) configured also be able to receive data $(T/\overline{R} = 0)$ and to wait for software to select another message center (denoted MC2) to send data back to remote request node.
- 1. Software sets $T/\overline{R} = 0$, MSRDY = 1, and DTUP = 0 in MC1 and awaits either data frame or RFR. Note: Software does not change MTRQ = 0 in MC1 from previous completed transmission.
- 2. CAN successfully receives RFR in MC1.
- 3. CAN forces EXTRQ = 1 and DTUP = 1 in MC1. MTRQ can not be written to a 1 by the CAN when $T/\overline{R} = 0$ and is left as MTRQ = 0
- 4. CAN loads DTBYC from RFR and ID into arbitration registers in MC1.
- 5. CAN waits for Software to read message center and determine the fact that EXTRQ = 1.
- 6. Software disables in MC1 to transfer information to MC2.
- 7. Software clears MSRDY = 0 to disable MC1. Software leaves EXTRQ = 1.
- 8. Software clears MSRDY = 0 in a MC2.
- 9. Software forces MC2 to transmit mode $T/\overline{R} = 1$.
- 10. Software loads ID and DTBYC value from MC1 into ID and DTBYC value for MC2.
- 11. Software writes MSRDY = 0, DTUP = 0 and TIH = 1 in MC2 in preparation to load data to MC2.
- 12. Software loads data into MC2.
- 13. Software writes MSRDY = 1, MTRQ = 1 EXTRQ = 0, DTUP = 1 and TIH = 0 in MC2 in same instruction.Note that CAN has not set EXTRQ in MC2, and is not required to be set for transmission of data

from MC2.

- 14. CAN will automatically transmit data (as per RFR DTBYC) in MC2.
- 15. CAN clears MTRQ =0 (leaving previous EXTRQ = 0 cleared).
- 16. Software sets $T/\overline{R} = 0$, MSRDY = 1, EXTRQ = 0, and DTUP = 0 in MC1 and awaits either next RFR or data frame.

Note that MTRQ is still cleared in MC1 since MC1 has not been set to a transmit mode.

Remote Frame Handling in Relation to the DTBYC Bits

The DTBYC bits in the CAN Message Format Register perform a slightly modified function when Remote Frames are used. When remote frames are used, the data length code will be overwritten by the data length code field of the incoming remote request frame. These requested data bytes will be sent in the data frame which answers the remote request. The following example demonstrates how the DTBYC bits are modified by a received remote frame request.

- Assume the microcontroller has programmed the following into a message center: DTBYC = 5, data field = 75 AF 43 2E 12 78 90 00 (Note that only the first through the fifth data bytes will be recognized because DTBYC=5)
- 2. When the CAN module successfully receives a remote frame with the following data: Identifier = ID, DTBYC = 2, RTR = 1.
The incoming message will overwrite the identifier and the data length code. The new data in the message center will be: DTBYC = 2, data field = 75 AF 43 2E 12 78 90 00

(Note that now only the first and second data bytes are recognized because DTBYC is now 2)

4. The outgoing response will be a data frame containing the following information: DTBYC = 2, data field = 75 AF

Important Information Concerning ID Changes when Awaiting Data from a Previous Remote Frame Request:

The use of acceptance filtering (MEME=1) in conjunction with remote frame requests can result in a modification of the message center arbitration registers. When a message center is configured to transmit a remote frame request (MTRQ = 1, EXTRQ = 0, T/ \overline{R} = 0 and MSRDY = 1) it is possible for a second Frame Request from an external node to modify the initial Arbitration Register value of the current message center prior to the current message center receiving the requested data if arbitration masks are used. When a remote frame request is received, the message ID is loaded into that message center's arbitration registers. When message identification masking is not used (MEME=0), the message ID will always match the arbitration value, so the process will be transparent. If masking is used, however, the message ID ANDed with the appropriate mask will be loaded into that message center's arbitration registers, resulting in a change of the arbitration values for that message center. To prevent this situation, acceptance filtering should be disabled (MEME = 0) for any message center configured for remote frame handling. An alternate solution would be to disable the overwrite feature for that message center, which also prevents incoming messages from altering the message center ID.

Overwrite Enable/Disable Feature

The Write Over Enable bit (WTOE) located in each message center (CnMxAR3.0) enables or disables the overwriting of unread messages in message centers 1 through 15. Programming WTOE = 1 following a system reset or CRST bit-enabled reset allows newly received messages which pass arbitration to overwrite unread (i.e., message centers with DTUP=1) messages. When an overwrite occurs the Receive Overwrite (ROW) bit in the respective CAN Message Control Register will be set. When WTOE = 0, message centers which have data waiting to be read (indicated by DTUP = 1) or transmitted (EXTRQ=1) will not be overwritten by incoming data.

Special care must be taken when reading data from a message center with the overwrite feature enabled (WTOE = 1). The caution is needed because the WTOE bit, when set, allows an incoming message to overwrite the message center. If this overwrite occurs at the same time that software is attempting to read several bytes from the message center (such as a multi-byte data field), it is possible that the read could return a mix of information from the old and overwriting messages. To avoid this situation, software should clear the DTUP bit to 0 prior to reading the message center, and then verify afterwards that the DTUP bit remained at 0. If DTUP remains cleared after the read, no overwrite occurred and the returned data was correct. If DTUP = 1 after the read then software again should clear DTUP = 0 and re-read the message center, since a possible overwrite has occurred. The original message will be lost (as planned since WTOE=1), but new message should be available on the next read.

One important use of the WTOE bit is to allow the microprocessor to program multiple message centers with the same ID when operating in the receive mode, with WTOE=0. This allows the CAN module to store multiple incoming messages in a series of message centers, creating a large storage area for high-speed recovery of large amounts of data. The CPU is required to manage the use of these message centers to keep track of the incoming data, but the use of multiple message centers and disabling of their

overwrite (WTOE=0) function prevents the module from potentially losing data during a high-speed data transfer. In transmit mode, the WTOE bit prevents a message center ID from being overwritten by an incoming remote frame.

The following examples demonstrate the use of the WTOE and other bits when using multiple message centers with the same arbitration value. Case 2 illustrates the approach described above for configuring multiple message centers to capture a large amount of data at a relatively high rate.

Case 1: WTOE=1 (Overwrites allowed)

- 1. Software configures message center 1 & 2 with the same arbitration value (abbreviated AV).
- 2. Software configures message center 1 & 2 to receive $(T/\overline{R} = 0)$ and to allow message overwrite WTOE=1.
- 3. The first message received that matches AV will be stored into message center 1, DTUP = 1.
- 4. The second message that matches AV will be stored into message center 1, DTUP = ROW = 1.
- 5. The third message that matches AV will be stored into message center 1.
- 6. etc.

Note that in this example message center 2 will never receive a message, and that if software does not read message center 1 before the second message is received, the first message will be lost.

Case 2: WTOE=0 (Overwrites disabled)

- 1. Software configures message center 1 & 2 with the same arbitration value (abbreviated AV).
- 2. Software configures message center 1 & 2 to receive $(T/\overline{R} = 0)$ and to disable message overwrite WTOE=0.
- 3. The first message received that matches AV will be stored in message center 1, DTUP = 1.
- 4. The second message received that matches AV will be stored in message center 2, DTUP = 1
- 5. Software reads message center 1 and then programs message center 1 DTUP = 0.
- 6. The third message received that matches AV will be stored into message center 1, DTUP = 1.
- 7. Software reads message center 2 and then programs message center 2 DTUP = 0.
- 8. The fourth message received that matches AV will be stored into message center 2, DTUP = 1
- 9. etc.

Note that in this example message center 1 or 2 will never be overwritten. The user must insure that the proper number of message centers be allocated to the same arbitration value when using this arrangement. If software fails to read the allocated message group, an incoming message may be lost without software realizing it (ROW is never set when WTOE = 0). To put a message center back into operation software must force DTUP = 0 and EXTRQ = 0. This indicates that software has read the message center.

Special Considerations for Message Center 15

Message center 15 incorporates a shadow message center used to buffer incoming messages, in addition to the standard message center registers. When the message center is empty (DTUP=EXTRQ=0), incoming messages are loaded directly into the message center registers. When the message center has unread data (DTUP =1) or a pending remote frame request (EXTRQ = 1), incoming messages are loaded into the shadow message center. Unread contents of the shadow message center are automatically loaded into the message center when it becomes empty (DTUP=0). An overwrite condition is possible when both the message center 15 and shadow message centers are full.

The response of message center 15 to the overwrite condition is dependent on the Writeover Enable (WTOE) bit. When overwrite is enabled (WTOE = 1) and there is unread data (DTUP = 1) or a pending

remote frame request (EXTRQ = 1), successfully received messages are stored in the shadow message center, overwriting existing data. If the shadow message center contained previously unread data at the time of the overwrite, the message center 15 ROW bit will be set. If the shadow message center was empty at the time of the overwrite, then the incoming message will overwrite the previous message in the shadow buffer and ROW will be set to a 1. Note that the message center 15 ROW bit reflects only an overwrite of the shadow message center, not the message center registers as with message centers 1-14.

When WTOE = 0 and there is unread data (DTUP =1) or a pending remote frame request (EXTRQ = 1) in message center 15 and there is already a message stored in the shadow buffer, incoming messages will not be stored in either the message center or shadow buffers.

Bus Off / Bus Off Recovery and Error Counter Operation

Each CAN module contains two SFR registers that allow the software to monitor and modify (under controlled conditions) the error counts associated with the transmit and receive error counters in each CAN module. These registers can be read at any time. Writing the CAN Transmit Error Counter registers updates both the Transmit Error Counter registers and the Receive Error Counter registers with the same value. Details are given in the SFR description of these registers. These counters are incremented or decremented according to CAN specification version 2.0B, summarized in the rules below. The error counters are initialized by a CRST = 1 or a system reset to 00h. The error counters remain unchanged when the CAN module enters and exits from a low power mode via the SIESTA or PDE bit. Changes to the error counters are performed according to the following rules. This level of detail is not necessary for the average CAN user, and full information is provided in the CAN 2.0B specification. More than one rule may apply to a given message.

Condition	Effect on error counters
Error detected by receiver, unless the detected error was a bit error during the sending of an active error flag or an overload flag.	Receive Error Counter incremented by 1.
Receiver detects a dominant bit as the first bit after sending an error flag.	Receive Error Counter incremented by 8.
Transmitter sends an error flag.	Transmit Error Counter incremented by 8.
Note, however, that the transmit error count will not change if:	
 The transmitter is error passive and detects an acknowledgement error because of not detecting a dominant acknowledge and does not detect a dominant bit while sending its passive error flag. 	
2) Or, if the transmitter sends an error flag because a stuff error occurred during arbitration, and has been sent as recessive but monitored as dominant.	
Transmitter detects a bit error while sending an active error flag or an overload flag.	Transmit Error Counter incremented by 8.
Receiver detects a bit error while sending an active error flag or an overload flag.	Receive Error Counter incremented by 8.

Node detects the 14th consecutive dominant bit (in case of an active error flag or an overload flag), or detects the 8th consecutive dominant bit following a passive error flag, or after a sequence of additional eight consecutive dominant bits.	Transmit Error Counter incremented by 8. Receive Error Counter incremented by 8.
Message is successfully transmitted (acknowledge received and no error until end of frame is complete)	Transmit Error Count is decremented by 1 (unless it was already 0).
A message has been successfully received (reception without error up to the acknowledge slot and the successful sending of the acknowledge bit), and the receive error count was between 1 and 127.	Receive Error Counter decremented by 1.
A message has been successfully received (reception without error up to the acknowledge slot and the successful sending of the acknowledge bit), and the receive error count was greater than 127.	Receive Error Counter is set to a value between 119 and 127.

A node is error passive when the transmit error count equals or exceeds 128, or when the receive error count equals or exceeds 128. An error condition letting a node become error passive causes the node to send an active error flag. An error passive node becomes error active again when both the transmit error count and the receive error count are less than or equal to 127.

A node is bus off when the transmit error count is greater than or equal to 256. A bus off node will become error active (no longer bus off) with its error counters both set to 0 after 128 occurrence of 11 consecutive recessive bits have been monitored on the bus.

After exceeding the error passive limit (128), the receive error counter will not be increased any further. When a message was received correctly, the counter is set again to a value between 119 and 127 (compare with CAN 2.0B specification). After reaching the "bus off" status, the transmit error counter is undefined while the receive error counter is cleared and changes its function. The receive error counter will be incremented after every 11 consecutive recessive bits on the bus. These 11 bits correspond to the gap between two messages on the bus. If the receive error counter reaches the count 128, following the bus off recovery sequence, the CAN module changes automatically back to the status of "bus on" and then sets SWINT = 1. After setting SWINT, all internal flags of the CAN module are reset and the error counters are cleared. A recovery from a bus off condition does not alter any of the previously programmed MOVX memory values and will also not alter SFR registers, apart from the transmit and receive error SFR registers and the error conditions displayed in CAN Status Register. The bus timing will remain as previously programmed.

Bit Timing

Bit timing in the CAN 2.0B specification is based on a unit called the nominal bit time. The nominal bit time is further subdivided into four specific time periods.

- 1. The SYNC_SEG time segment is where an edge is expected when synchronizing to the CAN Bus.
- 2. The PROP_SEG time segment is provided to compensate for the physical times associated with the CAN Bus network

3 & 4. The PHASE_SEG1 and PHASE_SEG2 time segments compensate for edge phase errors. The PHASE_SEG1 and PHASE_SEG2 time segments can be lengthened or shorted through the use of the SJW1 and SJW0 bits in the CAN 0/1 Bus Timing Register Zero.

The CAN bus is data is evaluated at the sample point. A time quantum (t_{QU}) is a unit of time derived from the division of the microprocessor crystal oscillator by both the Baud Rate Prescaler (programmed by the BPR5 - BPR0 bits in the CAN 0/1 Bus Timing register) and the System Clock Divider (programmed by the SCD2 - SCD0 bits in the Clock Output Register). Combining the PROP_SEG and PHASE_SEG1 time segments into one time period termed t_{TSEG1} and equating the SYNC_SEG time segment to t_{SYNC_SEG} and PHASE_SEG2 to t_{TSEG2} , provides the basis for the time segments outlined below and in the CAN Bus Timing SFR Register descriptions. These are shown in the following figure.

Figure 16-11 Bit Timing

The CAN 0/1 Bus Timing Register Zero (C0BT0/C1BT0) contains the control bits for the PHASE_SEG1 and PHASE_SEG2 time segments as well as the Baud Rate Prescaler (BPR5-0) bits. CAN 0/1 Bus Timing Register One (C0BT1/C1BT1) controls the sampling rate, the Time Segment Two bits that control the number of clock cycles assigned to the Phase Segment 2 portion, and the Time segment One bits that determine the number of clock cycles assigned to the Phase Segment 1 portion. The value of both of the Bus Timing registers are automatically loaded into the CAN module following each software change of the SWINT bit from a 1 to a 0 by the microcontroller. The bit timing parameters must be configured before starting operation of the CAN module. These registers can only be modified during a software initialization (SWINT = 1), when the CAN module is NOT in a bus off mode, and after the removal of a system reset or a CAN reset. To avoid unpredictable behavior of the CAN module the Bus

Timing Registers should never be written with all zeros. To prevent this the SWINT is forced to 0 when TSEG1 = TSEG2 = 00h.

The timing of the various time segments is determined via the following formulae. Most users will never need to perform these calculations, as other devices already attached to the network will dictate the bus timing parameters.

 $t_{QU} = \frac{BRPV \cdot CCD}{Fosc}$ $t_{SYNC_SEG} = 1 \cdot t_{QU}$ $t_{TSEG1} = (TS1_LEN) \cdot t_{QU}$ $t_{TSEG2} = (TS2_LEN) \cdot t_{QU}$ $t_{SJW} = (SJW) \cdot t_{QU}$ $t_{QU} \text{ per bit} = \frac{1}{baud \text{ rate} \cdot t_{QU}}$

(only integer values are permitted.)

where BPRV is the CAN baud rate prescaler value found in the description of the C0BT0/C1BT0 registers, F_{OSC} is the crystal or external oscillator frequency of the microprocessor, and TS1_LEN and TS2_LEN are listed in the description of the TSEG26-24 and TSEG13-10 bits in the CAN Bus Timing Register 1. SJW is listed in the description of the SJW1-0 bits in the CAN Bus Timing Register 0. The CCD is the CAN clock divide value, calculated from the following table.

CD1	CD0	$4X/\overline{2X}$	CCD
0	0	1	0.5
0	0	0	1
1	0	Х	2
1	1	х	512

The following restrictions apply to the above equations:

$$\begin{split} t_{TSEG1} &\geq t_{TSEG2} \\ t_{TSEG2} &\geq t_{SJW} \\ t_{SJW} &< t_{TSEG1} \\ 2 &\leq TS1_LEN \leq 16 \\ 2 &\leq TS2_LEN \leq 8 \\ (TS1_LEN + TS2_LEN +1) \leq 25 \end{split}$$

The nominal bit time applies when a synchronization edge falls within the t_{SYNC_SEG} period. The maximum bit time occurs when the synchronization edge falls outside of the t_{SYNC_SEG} period, and the synchronization jump width time is added to perform the resynchronization.

nominal bit time $= t_{SYNC_SEG} + t_{TSEG1} + t_{TSEG2}$

$$= \frac{(BRPV)(CCD)[1 + (TS1_LEN) + (TS2_LEN)]}{F_{OSC}}$$

maximum bit time = $t_{SYNC_SEG} + t_{TSEG1} + t_{TSEG2} + t_{SJW}$

$$= \frac{(BRPV)(CCD)[1 + (TS1_LEN) + (TS2_LEN) + (SJW)]}{F_{OSC}}$$
CAN baud rate
$$= \frac{F_{OSC}}{(BRPV)(CCD)[1 + (TS1_LEN) + (TS2_LEN)]}$$

Threefold Bit Sampling:

The DS80C390 supports the ability perform one or three samplings of each bit, based on the SMP bit (CxBT1.7). The single sample mode (SMP=0) is available in all settings and takes one sample during each bit time. The triple sampling mode (SMP=1) samples each bit three times for increased noise immunity. This mode can only be used when the baud rate prescale value (BPRV) is greater than 3.

Bus Rate Timing Example:

The following table shows a few example bit timing settings for common oscillator frequency and baud rate selections. Because of the large number of variables, there are many combinations not shown that can achieve a desired baud rate. There are a number of approaches to determining all the bit timing factors, but this utilizes the most common, i.e., the oscillator frequency and baud rate have already been determined by system constraints.

Fosc	Baud rate	BRPV	CCD	t _{QU}	t _{QU}	TS1_LEN	TS2_LEN	SJW	SMP=1
				_	per bit				Permitted?
40 MHz	1 Mbps	2	2	100 ns	10	5	4	3	NO
	500 kbps	4	2	200 ns	10	5	4	3	YES
	250 kbps	5	2	250 ns	16	10	5	4	YES
	125 kbps	10	2	500 ns	16	10	5	4	YES
16 MHz	1 Mbps	1	2	125 ns	8	4	3	4	NO
	500 kbps	1	2	125 ns	16	10	5	4	NO
	250 kbps	2	2	250 ns	16	10	5	4	NO
	125 kbps	4	2	500 ns	16	10	5	4	YES
8 MHz	1 Mbps	1	1	125 ns	8	4	3	2	NO
	500 kbps	1	1	125 ns	16	10	5	4	NO
	250 kbps	1	1	250 ns	16	10	5	4	NO
	125 kbps	2	2	500 ns	16	10	5	4	NO

Additional Bit Timing Examples (assumes CCD=1)

As an aid to understanding, the following is an explanation of how the table row illustrating an oscillator frequency of 16 MHz and a CAN baud rate of 125 kbps is derived.

Various combinations of BRPV are selected until one is located that meets the " t_{QU} per bit" criteria, i.e., an integer value less than 24. Selecting BRPV=4, the previously described equations state that there

should be 16 t_{QU} per bit. That leaves 16-1 or 15 t_{QU} remaining for TS1_LEN and TS2_LEN, which are arbitrarily assigned as shown. Because BRPV > 3, the triple sampling feature (SMP=1) may be used if desired.

SECTION 19: ARITHMETIC ACCELERATOR

The DS80C390 incorporates an arithmetic accelerator which performs 32- and 16-bit calculations while maintaining 8051 software compatibility. Math operations are performed by sequentially loading three special registers. The mathematical operation is determined by the sequence in which three dedicated SFRs (MA, MB and MC) are accessed, eliminating the need for a special step to choose the operation. The arithmetic accelerator has four functions: multiply, divide, shift right/left, and normalize. The normalize function facilitates the conversion of 4-byte unsigned binary integers into floating point format. An integral 40-bit accumulator, described later, supports multiply-and-add and divide-and-add operations. The following table shows the operations supported by the math accelerator and their time of execution.

Operation	Result	Execution Time
32-bit/16-bit divide	32-bit quotient, 16-bit remainder	36 t _{CLCL}
16-bit/16-bit divide	16-bit quotient, 16-bit remainder	24 t _{CLCL}
16-bit/16-bit multiply	32-bit product	24 t _{CLCL}
32-bit shift left/right	32-bit result	36 t _{CLCL}
32-bit normalize	32-bit mantissa, 5 bit exponent	36 t _{CLCL}

ARITHMETIC ACCELERATOR EXECUTION TIMES Table 19-1

The following is a brief summary of the bits and registers used in conjunction with arithmetic acceleration operations. Please consult the SFR listing in Section 4for a complete description of all these registers.

LSHIFT MCNT0.7	Left Shift. This bit determines whether shift operations proceed from LSb to MSb or vice versa.
CSE MCNT0.6	Circular Shift Enable. This bit determines whether shift operations will wrap between the LSb and MSb.
SCE MCNT0.5	Shift Carry Enable. This bit determines whether the arithmetic accelerator carry bit is included in the shift process.
MAS4-0 MCNT0.4- 0.	Multiplier Register Shift Bits. When performing a shift operation, these bits determine how many shifts to perform. Following a normalize operation, these bits will contain indicate the number shifts performed.
MST MCNT1.7	Multiply/Accumulate Status Flag. This bit serves as a busy flag for the arithmetic accumulator operations.
MOF MCNT1.6	Multiply Overflow Flag. This bit is set when a divide by zero or when the result of a calculation exceeds FFFFh.
SCB MCNT1.5	Shift Carry Bit. This bit serves as the carry bit during arithmetic accelerator shift operations when SCE=1. This bit must be cleared (or set) via software as desired before each new shift operation.
CLM MCNT1.4	Clear Accelerator Registers. Setting this bit clears the MA, MB, and MC registers.
MA MA.7-0	Multiplier A Register. This register is used as both a source and result register for various arithmetic accelerator functions.

MBMultiplier B Register. This register is used as both a source and result register for
various arithmetic accelerator functions.

MCMultiplier C Register. This register serves as the 40-bit accumulator of the
arithmetic accelerator.

The following procedures illustrate how to use the arithmetic accelerator. The MA and MB registers must be loaded and read in the order shown for proper operation, although accesses to any other registers can be performed between access to the MA or MB registers. An access to the MA, MB, or MC registers out of sequence will corrupt the operation, requiring the software to clear the MST bit to restart the math accelerator state machine.

Divide (32/16 or 16/16)

The divide operation utilizes a 32 or 16 bit dividend and a 16-bit divisor. The dividend is loaded into MA (four bytes in the case of a 32-bit dividend, 2 bytes for a 16-bit dividend) and the 16-bit divisor is loaded into MB. The quotient is stored in MA and the remainder in MB. The optional test of the MOF bit can be performed to detect a divide by zero operation if software has not previously checked for a non-zero divisor.

- 1. Load MA with dividend LSB.
- 2. Load MA with dividend LSB+1*
- 3. Load MA with dividend $LSB+2^*$
- 4. Load MA with dividend MSB.
- 5. Load MB with divisor LSB.
- 6. Load MB with divisor MSB.
- 7. Poll the MST bit until cleared (9 machine cycles).
- 8. Check MOF bit (MCNT1.6) to see if divide by zero occurred. (optional)
- 9. Read MA to retrieve the quotient MSB.
- 10. Read MA to retrieve the quotient LSB+2.
- 11. Read MA to retrieve the quotient LSB+1.
- 12. Read MA to retrieve the quotient LSB.
- 13. Read MB to retrieve the remainder MSB.
- 14. Read MB to retrieve the remainder LSB.

*Steps 2 and 3 not performed for 16 bit dividend.

Multiply (16x16)

This function multiplies two 16-bit values in MA and MB and places the 32-bit product into MA. If the product exceeds FFFFh then the Multiply Overflow Flag (MOF) will be set

- 1. Load MB with multiplier LSB.
- 2. Load MB with multiplier MSB.
- 3. Load MA with multiplicand LSB.
- 4. Load MA with multiplicand MSB.
- 5. Poll the MST bit until cleared (6 machine cycles).
- 6. Read MA for product MSB.
- 7. Read MA for product LSB+2.
- 8. Read MA for product LSB+1.
- 9. Read MA for product LSB.
- 10. Check MOF bit (MCNT1.6) to see if product exceeded FFFFh. (optional)

Shift right/left

The shift function rotates the 32 bits of the MA register as directed by the control bits of the MCNT0 register. MA will contain the shifted results following the operation. Note that the multiplier register shift bits (MCNT.4-0) must be set to a nonzero value or the Normalize function will be performed instead of the desired shift operation.

- 1. Load MA with data LSB.
- 2. Load MA with data LSB+1.
- 3. Load MA with data LSB+2.
- 4. Load MA with data MSB.
- 5. Configure MCNT0 register as required.
- 6. Poll the MST bit until cleared. (9 machine cycles)
- 7. Read MA for result MSB.
- 8. Read MA for result LSB+2.
- 9. Read MA for result LSB+1.
- 10. Read MA for result LSB.

Normalize

The normalize function is used to convert four byte unsigned binary integers into floating point format by removing all leading zeros by shift left operations. Following the operation MA will contain the normalized value (mantissa) and the MAS4-0 bits will contain the number of shifts performed (characteristic).

- 1. Load MA with data LSB.
- 2. Load MA with data LSB+1.
- 3. Load MA with data LSB+2.
- 4. Load MA with data MSB.
- 5. Write 00000b to the MAS4-0 bits in the MCNT0 register.
- 6. Poll the MST bit until cleared. (9 machine cycles)
- 7. Read MA for mantissa MSB.
- 8. Read MA for mantissa LSB+2.
- 9. Read MA for mantissa LSB+1.
- 10. Read MA for mantissa LSB.
- 11. Read MAS4-0 to determine the number of shifts performed.

40-BIT ACCUMULATOR

The accelerator also incorporates an automatic accumulator function, permitting the implementation of multiply-and-accumulate and divide-and-accumulate functions without any additional delay. Each time the accelerator is used for a multiply or divide operation, the result is transparently added to a 40-bit accumulator. This can greatly increase speed of DSP and other high-level math operations.

The accumulator can be accessed any time the Multiply/Accumulate Status Flag (MCNT1;D2h) is cleared. The accumulator is initialized by performing five writes to the Multiplier C Register (MC;D5h), LSB first. The 40-bit accumulator can be read by performing five reads of the Multiplier C Register, MSB first.