

LM3S1608 Microcontroller

DATA SHEET

Legal Disclaimers and Trademark Information

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.

Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office or your distributor to obtain the latest specifications before placing your product order.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Copyright © 2007-2008 Luminary Micro, Inc. All rights reserved. Stellaris, Luminary Micro, and the Luminary Micro logo are registered trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com

Table of Contents

Revis	sion History	
Abou	It This Document	
Audie	nce	
About	t This Manual	
Relate	ed Documents	
Docun	mentation Conventions	
1	Architectural Overview	
1.1	Product Features	
1.2	Target Applications	
1.3	High-Level Block Diagram	
1.4	Functional Overview	
1.4.1	ARM Cortex™-M3	
1.4.2	Motor Control Peripherals	
1.4.3	Analog Peripherals	
1.4.4	Serial Communications Peripherals	
1.4.5	System Peripherals	
1.4.6	Memory Peripherals	
1.4.7	Additional Features	
1.4.8	Hardware Details	
2	ARM Cortex-M3 Processor Core	
2.1	Block Diagram	
2.2	Functional Description	
2.2.1	Serial Wire and JTAG Debug	
2.2.2	Embedded Trace Macrocell (ETM)	
2.2.3	Trace Port Interface Unit (TPIU)	
2.2.4	ROM Table	
2.2.5	Memory Protection Unit (MPU)	
2.2.6	Nested Vectored Interrupt Controller (NVIC)	
3	Memory Map	
4	Interrupts	
5	JTAG Interface	
5.1	Block Diagram	
5.2	Functional Description	
5.2.1	JTAG Interface Pins	
5.2.2	JTAG TAP Controller	
5.2.3	Shift Registers	
5.2.4	Operational Considerations	
5.3	Initialization and Configuration	
5.4	Register Descriptions	
5.4.1	Instruction Register (IR)	
5.4.2	Data Registers	
6	System Control	
6.1	Functional Description	
6.1.1	Device Identification	

6.1.2	Reset Control	58
6.1.3	Power Control	61
6.1.4	Clock Control	. 61
6.1.5	System Control	. 64
6.2	Initialization and Configuration	
6.3	Register Map	
6.4	Register Descriptions	. 67
7	Hibernation Module	120
7.1	Block Diagram	121
7.2	Functional Description	121
7.2.1	Register Access Timing	121
7.2.2	Clock Source	122
7.2.3	Battery Management	123
7.2.4	Real-Time Clock	124
7.2.5	Non-Volatile Memory	124
7.2.6	Power Control	124
7.2.7	Interrupts and Status	125
7.3	Initialization and Configuration	125
7.3.1	Initialization	125
7.3.2	RTC Match Functionality (No Hibernation)	126
7.3.3	RTC Match/Wake-Up from Hibernation	126
7.3.4	External Wake-Up from Hibernation	
7.3.5	RTC/External Wake-Up from Hibernation	126
7.4	Register Map	126
1.4	•	
7. 4 7.5	Register Descriptions	
7.5 8	Register Descriptions Internal Memory	127 140
7.5 8 8.1	Register Descriptions Internal Memory Block Diagram	127 140 140
7.5 8 8.1 8.2	Register Descriptions Internal Memory Block Diagram Functional Description	127 140 140 140
7.5 8 8.1 8.2 8.2.1	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory	127 140 140 140 140
7.5 8 8.1 8.2 8.2.1 8.2.2	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory	127 140 140 140 140 141
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration	127 140 140 140 140 141 142
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming	127 140 140 140 140 141 142 142
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2	Register Descriptions	127 140 140 140 141 142 142 142
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4	Register Descriptions	127 140 140 140 141 142 142 143 143
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset)	127 140 140 140 141 142 142 143 143 144
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset)	127 140 140 140 141 142 142 143 143 143 144 151
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs)	127 140 140 140 141 142 142 143 143 144 151 164
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset)	127 140 140 140 141 142 142 143 143 143 144 151 164
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Data Control	127 140 140 140 141 142 142 143 143 144 151 164 165
7.5 8 8.1 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Description Data Control Interrupt Control	127 140 140 140 141 142 142 143 143 143 144 151 164 165 166
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control	127 140 140 140 141 142 142 142 143 143 143 144 151 164 165 166 167
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Description Data Control Interrupt Control Mode Control Commit Control	127 140 140 140 141 142 142 143 143 143 144 151 164 165 166 167 167
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) Detectional Description Data Control Interrupt Control Mode Control Commit Control Pad Control	127 140 140 140 141 142 142 143 143 144 151 164 165 166 167 167 167
7.5 8 8.1 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Interrupt Control Data Control Interrupt Control Mode Control Commit Control Pad Control Identification	127 140 140 140 141 142 142 143 143 143 144 151 164 165 166 167 167 167
7.5 8 8.1 8.2 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6 9.2	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Flash Memory Flash Memory Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Flash Register Descriptions (System Control Offset) General-Purpose Input/Outputs (GPIOs) Functional Description Data Control Interrupt Control Mode Control Commit Control Pad Control Identification Initialization and Configuration	127 140 140 141 142 142 143 143 143 143 144 151 164 165 166 167 167 167 167
7.5 8 8.1 8.2.1 8.2.2 8.3 8.3.1 8.3.2 8.4 8.5 8.6 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5 9.1.6	Register Descriptions Internal Memory Block Diagram Functional Description SRAM Memory Flash Memory Flash Memory Initialization and Configuration Flash Programming Nonvolatile Register Programming Register Map Flash Register Descriptions (Flash Control Offset) Flash Register Descriptions (System Control Offset) Interrupt Control Data Control Interrupt Control Mode Control Commit Control Pad Control Identification	127 140 140 140 141 142 142 143 143 143 144 151 164 165 166 167 167 167 167 167 168 169

10	General-Purpose Timers	206
10.1	Block Diagram	206
10.2	Functional Description	207
10.2.1	GPTM Reset Conditions	208
10.2.2	32-Bit Timer Operating Modes	208
10.2.3	16-Bit Timer Operating Modes	209
10.3	Initialization and Configuration	213
10.3.1	32-Bit One-Shot/Periodic Timer Mode	213
10.3.2	32-Bit Real-Time Clock (RTC) Mode	214
10.3.3	16-Bit One-Shot/Periodic Timer Mode	214
10.3.4	16-Bit Input Edge Count Mode	215
10.3.5	16-Bit Input Edge Timing Mode	215
10.3.6	16-Bit PWM Mode	216
10.4	Register Map	216
10.5	Register Descriptions	217
11	Watchdog Timer	242
11.1	Block Diagram	
11.2	Functional Description	
11.3	Initialization and Configuration	
11.4	Register Map	
11.5	Register Descriptions	
12	Analog-to-Digital Converter (ADC)	265
12.1	Block Diagram	
12.2	Functional Description	
12.2.1	Sample Sequencers	
12.2.2	Module Control	
12.2.3		
12.2.4	Analog-to-Digital Converter	
12.2.5	Differential Sampling	
12.2.6	Test Modes	270
12.2.7	Internal Temperature Sensor	270
12.3	Initialization and Configuration	271
12.3.1	Module Initialization	
12.3.2	Sample Sequencer Configuration	271
12.4	Register Map	271
12.5	Register Descriptions	
13	Universal Asynchronous Receivers/Transmitters (UARTs)	298
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	Transmit/Receive Logic	
13.2.2	-	
13.2.3	Data Transmission	
13.2.4	Serial IR (SIR)	301
13.2.5	FIFO Operation	
13.2.6	Interrupts	
13.2.7	Loopback Operation	
13.2.8	IrDA SIR block	
13.3	Initialization and Configuration	

13.4	Register Map	
13.5	Register Descriptions	
14	Synchronous Serial Interface (SSI)	
14.1	Block Diagram	
14.2	Functional Description	
14.2.1	Bit Rate Generation	
14.2.2	FIFO Operation	
14.2.3	Interrupts	
14.2.4	Frame Formats	
14.3	Initialization and Configuration	
14.4	Register Map	
14.5	Register Descriptions	
15 15.1	Inter-Integrated Circuit (I ² C) Interface Block Diagram	
15.1	Functional Description	
15.2.1	I ² C Bus Functional Overview	
15.2.1		
15.2.2	Available Speed Modes	
	Interrupts	
15.2.4 15.2.5	Loopback Operation	
	Command Sequence Flow Charts	
15.3	Initialization and Configuration	
15.4 15.5	Register Map Register Descriptions (I ² C Master)	
15.6		
	Register Descriptions (I2C Slave)	
16	Analog Comparators	
16.1	Block Diagram	
16.2	Functional Description	
16.2.1	Internal Reference Programming	
16.3	Initialization and Configuration	
16.4	Register Map	
16.5	Register Descriptions	415
17	Pin Diagram	423
18	Signal Tables	
18.1	100-Pin LQFP Package Pin Tables	425
18.2	108-Pin BGA Package Pin Tables	437
19	Operating Characteristics	451
20	Electrical Characteristics	452
20.1	DC Characteristics	452
20.1.1	Maximum Ratings	452
20.1.2	Recommended DC Operating Conditions	452
20.1.3	On-Chip Low Drop-Out (LDO) Regulator Characteristics	453
20.1.4	Power Specifications	453
20.1.5	Flash Memory Characteristics	455
20.1.6	Hibernation	
20.2	AC Characteristics	
20.2.1	Load Conditions	455

Clocks	455
Analog-to-Digital Converter	456
Analog Comparator	
Synchronous Serial Interface (SSI)	459
JTAG and Boundary Scan	
General-Purpose I/O	461
Reset	462
Package Information	464
Serial Flash Loader	468
Serial Flash Loader	468
Interfaces	468
UART	468
SSI	468
Packet Handling	469
Packet Format	469
Sending Packets	469
Receiving Packets	
Commands	470
COMMAND_PING (0X20)	
COMMAND_RESET (0x25)	471
Register Quick Reference	
Ordering and Contact Information	488
Ordering Information	
Kits	
Company Information	
Support Information	489
	Analog-to-Digital Converter

List of Figures

Figure 1-1.	Stellaris [®] 1000 Series High-Level Block Diagram	29
Figure 2-1.	CPU Block Diagram	
Figure 2-2.	TPIU Block Diagram	38
Figure 5-1.	JTAG Module Block Diagram	48
Figure 5-2.	Test Access Port State Machine	51
Figure 5-3.	IDCODE Register Format	56
Figure 5-4.	BYPASS Register Format	57
Figure 5-5.	Boundary Scan Register Format	57
Figure 6-1.	External Circuitry to Extend Reset	59
Figure 6-2.	Power Architecture	61
Figure 6-3.	Main Clock Tree	63
Figure 7-1.	Hibernation Module Block Diagram	121
Figure 7-2.	Clock Source Using Crystal	122
Figure 7-3.	Clock Source Using Dedicated Oscillator	123
Figure 8-1.	Flash Block Diagram	140
Figure 9-1.	GPIO Port Block Diagram	165
Figure 9-2.	GPIODATA Write Example	166
Figure 9-3.	GPIODATA Read Example	166
Figure 10-1.	GPTM Module Block Diagram	207
Figure 10-2.	16-Bit Input Edge Count Mode Example	211
Figure 10-3.	16-Bit Input Edge Time Mode Example	212
Figure 10-4.	16-Bit PWM Mode Example	213
Figure 11-1.	WDT Module Block Diagram	242
Figure 12-1.	ADC Module Block Diagram	266
Figure 12-2.	Differential Sampling Range, V _{IN_ODD} = 1.5 V	269
Figure 12-3.	Differential Sampling Range, V _{IN ODD} = 0.75 V	
Figure 12-4.	Differential Sampling Range, V _{IN_ODD} = 2.25 V	270
Figure 12-5.	Internal Temperature Sensor Characteristic	
Figure 13-1.	UART Module Block Diagram	299
Figure 13-2.	UART Character Frame	300
Figure 13-3.	IrDA Data Modulation	302
Figure 14-1.	SSI Module Block Diagram	339
Figure 14-2.	TI Synchronous Serial Frame Format (Single Transfer)	342
Figure 14-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	
Figure 14-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	343
Figure 14-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	343
Figure 14-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	344
Figure 14-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	345
Figure 14-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	345
Figure 14-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	346
Figure 14-10.	MICROWIRE Frame Format (Single Frame)	347
-	MICROWIRE Frame Format (Continuous Transfer)	
	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	
Figure 15-1.	•	
Figure 15-2.	I ² C Bus Configuration	377

Figure 15-3.	START and STOP Conditions	377
Figure 15-4.	Complete Data Transfer with a 7-Bit Address	378
Figure 15-5.	R/S Bit in First Byte	
Figure 15-6.	Data Validity During Bit Transfer on the I ² C Bus	378
Figure 15-7.	Master Single SEND	381
Figure 15-8.	Master Single RECEIVE	382
Figure 15-9.	Master Burst SEND	
	Master Burst RECEIVE	
Figure 15-11.	Master Burst RECEIVE after Burst SEND	385
Figure 15-12.	Master Burst SEND after Burst RECEIVE	386
Figure 15-13.	Slave Command Sequence	387
Figure 16-1.	Analog Comparator Module Block Diagram	411
Figure 16-2.	Structure of Comparator Unit	
Figure 16-3.	Comparator Internal Reference Structure	413
Figure 17-1.	100-Pin LQFP Package Pin Diagram	423
Figure 17-2.	108-Ball BGA Package Pin Diagram (Top View)	424
Figure 20-1.	Load Conditions	455
Figure 20-2.	I ² C Timing	458
Figure 20-3.	Hibernation Module Timing	458
Figure 20-4.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement	459
Figure 20-5.	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	459
Figure 20-6.	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	460
Figure 20-7.	JTAG Test Clock Input Timing	461
Figure 20-8.	JTAG Test Access Port (TAP) Timing	
Figure 20-9.	JTAG TRST Timing	
-	External Reset Timing (RST)	
-	Power-On Reset Timing	
•	Brown-Out Reset Timing	
-	Software Reset Timing	
-	Watchdog Reset Timing	
•	100-Pin LQFP Package	
Figure 21-2.	108-Ball BGA Package	466

List of Tables

Table 1.	Revision History	18
Table 2.	Documentation Conventions	20
Table 3-1.	Метогу Мар	42
Table 4-1.	Exception Types	44
Table 4-2.	Interrupts	
Table 5-1.	JTAG Port Pins Reset State	49
Table 5-2.	JTAG Instruction Register Commands	54
Table 6-1.	System Control Register Map	66
Table 7-1.	Hibernation Module Register Map	
Table 8-1.	Flash Protection Policy Combinations	
Table 8-2.	Flash Resident Registers	
Table 8-3.	Flash Register Map	
Table 9-1.	GPIO Pad Configuration Examples	168
Table 9-2.	GPIO Interrupt Configuration Example	168
Table 9-3.	GPIO Register Map	170
Table 10-1.	Available CCP Pins	207
Table 10-2.	16-Bit Timer With Prescaler Configurations	210
Table 10-3.	Timers Register Map	
Table 11-1.	Watchdog Timer Register Map	243
Table 12-1.	Samples and FIFO Depth of Sequencers	266
Table 12-2.	Differential Sampling Pairs	268
Table 12-3.	ADC Register Map	271
Table 13-1.	UART Register Map	304
Table 14-1.	SSI Register Map	350
Table 15-1.	Examples of I ² C Master Timer Period versus Speed Mode	
Table 15-2.	Inter-Integrated Circuit (I ² C) Interface Register Map	
Table 15-3.	Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)	
Table 16-1.	Comparator 0 Operating Modes	
Table 16-2.	Comparator 1 Operating Modes	
Table 16-3.	Internal Reference Voltage and ACREFCTL Field Values	
Table 16-4.	Analog Comparators Register Map	415
Table 18-1.	Signals by Pin Number	
Table 18-2.	Signals by Signal Name	
Table 18-3.	Signals by Function, Except for GPIO	433
Table 18-4.	GPIO Pins and Alternate Functions	
Table 18-5.	Signals by Pin Number	437
Table 18-6.	Signals by Signal Name	442
Table 18-7.	Signals by Function, Except for GPIO	
Table 18-8.	GPIO Pins and Alternate Functions	
Table 19-1.	Temperature Characteristics	451
Table 19-2.	Thermal Characteristics	451
Table 20-1.	Maximum Ratings	
Table 20-2.	Recommended DC Operating Conditions	
Table 20-3.	LDO Regulator Characteristics	
Table 20-4.	Detailed Power Specifications	
Table 20-5.	Flash Memory Characteristics	455

Table 20-6.	Hibernation Module DC Characteristics	455
Table 20-7.	Phase Locked Loop (PLL) Characteristics	455
Table 20-8.	Clock Characteristics	456
Table 20-9.	Crystal Characteristics	456
Table 20-10.	ADC Characteristics	456
Table 20-11.	Analog Comparator Characteristics	457
Table 20-12.	Analog Comparator Voltage Reference Characteristics	457
Table 20-13.	I ² C Characteristics	457
Table 20-14.	Hibernation Module AC Characteristics	458
Table 20-15.	SSI Characteristics	
Table 20-16.	JTAG Characteristics	460
Table 20-17.	GPIO Characteristics	462
Table 20-18.	Reset Characteristics	462
Table C-1.	Part Ordering Information	488

List of Registers

System Co	ntrol	
Register 1:	Device Identification 0 (DID0), offset 0x000	68
Register 2:	Brown-Out Reset Control (PBORCTL), offset 0x030	
Register 3:	LDO Power Control (LDOPCTL), offset 0x034	71
Register 4:	Raw Interrupt Status (RIS), offset 0x050	
Register 5:	Interrupt Mask Control (IMC), offset 0x054	
Register 6:	Masked Interrupt Status and Clear (MISC), offset 0x058	74
Register 7:	Reset Cause (RESC), offset 0x05C	
Register 8:	Run-Mode Clock Configuration (RCC), offset 0x060	
Register 9:	XTAL to PLL Translation (PLLCFG), offset 0x064	
Register 10:	Run-Mode Clock Configuration 2 (RCC2), offset 0x070	
Register 11:	Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	83
Register 12:	Device Identification 1 (DID1), offset 0x004	
Register 13:	Device Capabilities 0 (DC0), offset 0x008	86
Register 14:	Device Capabilities 1 (DC1), offset 0x010	87
Register 15:	Device Capabilities 2 (DC2), offset 0x014	89
Register 16:	Device Capabilities 3 (DC3), offset 0x018	
Register 17:	Device Capabilities 4 (DC4), offset 0x01C	
Register 18:	Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	
Register 19:	Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	
Register 20:	Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	
Register 21:	Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	101
Register 22:	Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	104
Register 23:	Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	
Register 24:	Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	110
Register 25:	Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118	112
Register 26:	Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	114
Register 27:	Software Reset Control 0 (SRCR0), offset 0x040	
Register 28:	Software Reset Control 1 (SRCR1), offset 0x044	117
Register 29:	Software Reset Control 2 (SRCR2), offset 0x048	119
Hibernatio	n Module	120
Register 1:	Hibernation RTC Counter (HIBRTCC), offset 0x000	128
Register 2:	Hibernation RTC Match 0 (HIBRTCM0), offset 0x004	129
Register 3:	Hibernation RTC Match 1 (HIBRTCM1), offset 0x008	130
Register 4:	Hibernation RTC Load (HIBRTCLD), offset 0x00C	131
Register 5:	Hibernation Control (HIBCTL), offset 0x010	132
Register 6:	Hibernation Interrupt Mask (HIBIM), offset 0x014	134
Register 7:	Hibernation Raw Interrupt Status (HIBRIS), offset 0x018	135
Register 8:	Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C	136
Register 9:	Hibernation Interrupt Clear (HIBIC), offset 0x020	137
Register 10:	Hibernation RTC Trim (HIBRTCT), offset 0x024	138
Register 11:	Hibernation Data (HIBDATA), offset 0x030-0x12C	139
Internal M	emory	140
Register 1:	Flash Memory Address (FMA), offset 0x000	
Register 2:	Flash Memory Data (FMD), offset 0x004	

Register 3:	Flash Memory Control (FMC), offset 0x008	147
Register 4:	Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	
Register 5:	Flash Controller Interrupt Mask (FCIM), offset 0x010	150
Register 6:	Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	
Register 7:	USec Reload (USECRL), offset 0x140	
Register 8:	Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200	153
Register 9:	Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400	154
Register 10:	User Debug (USER_DBG), offset 0x1D0	155
Register 11:	User Register 0 (USER_REG0), offset 0x1E0	
Register 12:	User Register 1 (USER_REG1), offset 0x1E4	
Register 13:	Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204	
Register 14:	Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208	
Register 15:	Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C	160
Register 16:	Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404	161
Register 17:	Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408	
Register 18:	Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C	163
General-Pur	pose Input/Outputs (GPIOs)	164
Register 1:	GPIO Data (GPIODATA), offset 0x000	
Register 2:	GPIO Direction (GPIODIR), offset 0x400	173
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	174
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	175
Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	176
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	177
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	178
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	179
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	181
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	183
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	184
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	185
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	186
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	187
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	188
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	189
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	190
Register 19:	GPIO Lock (GPIOLOCK), offset 0x520	191
Register 20:	GPIO Commit (GPIOCR), offset 0x524	192
Register 21:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	194
Register 22:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	195
Register 23:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	196
Register 24:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	197
Register 25:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	198
Register 26:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	199
Register 27:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	
Register 28:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	
Register 29:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 30:	GPIO PrimeCell Identification 1 (GPIOPCelIID1), offset 0xFF4	
Register 31:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	204

Register 32:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	205
General-Pur	pose Timers	206
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	219
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	221
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	223
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	226
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	228
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	229
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	230
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x028	232
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	233
Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	234
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	235
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	236
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	237
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	238
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	239
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	240
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	
Watchdog T	imer	242
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	
Register 3:	Watchdog Control (WDTCTL), offset 0x008	
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	
Register 7:	Watchdog Test (WDTTEST), offset 0x418	
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	258
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	260
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	261
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	262
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	263
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	
Analog-to-D	igital Converter (ADC)	265
Register 1:	ADC Active Sample Sequencer (ADCACTSS), offset 0x000	
Register 2:	ADC Raw Interrupt Status (ADCRIS), offset 0x004	
Register 3:	ADC Interrupt Mask (ADCIM), offset 0x008	
Register 4:	ADC Interrupt Status and Clear (ADCISC), offset 0x00C	
Register 5:	ADC Overflow Status (ADCOSTAT), offset 0x010	
Register 6:	ADC Event Multiplexer Select (ADCEMUX), offset 0x014	

Register 7:	ADC Underflow Status (ADCUSTAT), offset 0x018	. 281
Register 8:	ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020	. 282
Register 9:	ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028	. 283
Register 10:	ADC Sample Averaging Control (ADCSAC), offset 0x030	. 284
Register 11:	ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040	. 285
Register 12:	ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044	. 287
Register 13:	ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048	. 290
Register 14:	ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068	. 290
Register 15:	ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088	. 290
Register 16:	ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8	. 290
Register 17:	ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C	
Register 18:	ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C	
Register 19:	ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C	
Register 20:	ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC	
Register 21:	ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060	
Register 22:	ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080	
Register 23:	ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064	
Register 24:	ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084	
Register 25:	ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0	
Register 26:	ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4	
Register 27:	ADC Test Mode Loopback (ADCTMLB), offset 0x100	. 297
	synchronous Receivers/Transmitters (UARTs)	
Register 1:	UART Data (UARTDR), offset 0x000	
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	
Register 3:	UART Flag (UARTFR), offset 0x018	
Register 4:	UART IrDA Low-Power Register (UARTILPR), offset 0x020	
Register 5:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	
Register 6:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	
Register 7:	UART Line Control (UARTLCRH), offset 0x02C	
Register 8:	UART Control (UARTCTL), offset 0x030	
Register 9:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	
Register 10:	UART Interrupt Mask (UARTIM), offset 0x038 UART Raw Interrupt Status (UARTRIS), offset 0x03C	
Register 11:		
Register 12:	UART Masked Interrupt Status (UARTMIS), offset 0x040 UART Interrupt Clear (UARTICR), offset 0x044	
Register 13: Register 14:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	
Register 15:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	
Register 16:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 17:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	
Register 18:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	
Register 19:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	
Register 20:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	
Register 20:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	
Register 22:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	
Register 23:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	
Register 24:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	
-		
Register 25:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	. ააი

Synchronou	is Serial Interface (SSI)	
Register 1:	SSI Control 0 (SSICR0), offset 0x000	351
Register 2:	SSI Control 1 (SSICR1), offset 0x004	353
Register 3:	SSI Data (SSIDR), offset 0x008	355
Register 4:	SSI Status (SSISR), offset 0x00C	356
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	358
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	359
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	361
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	375
Inter-Integra	nted Circuit (I ² C) Interface	
Register 1:	I ² C Master Slave Address (I2CMSA), offset 0x000	390
Register 2:	I ² C Master Control/Status (I2CMCS), offset 0x004	391
Register 3:	I ² C Master Data (I2CMDR), offset 0x008	395
Register 4:	I ² C Master Timer Period (I2CMTPR), offset 0x00C	396
Register 5:	I ² C Master Interrupt Mask (I2CMIMR), offset 0x010	397
Register 6:	I ² C Master Raw Interrupt Status (I2CMRIS), offset 0x014	398
Register 7:	I ² C Master Masked Interrupt Status (I2CMMIS), offset 0x018	399
Register 8:	I ² C Master Interrupt Clear (I2CMICR), offset 0x01C	400
Register 9:	I ² C Master Configuration (I2CMCR), offset 0x020	
Register 10:	I ² C Slave Own Address (I2CSOAR), offset 0x000	
Register 11:	I ² C Slave Control/Status (I2CSCSR), offset 0x004	
Register 12:	I ² C Slave Data (I2CSDR), offset 0x008	
Register 13:	I ² C Slave Interrupt Mask (I2CSIMR), offset 0x00C	
Register 14:	I ² C Slave Raw Interrupt Status (I2CSRIS), offset 0x010	
Register 15:	I ² C Slave Masked Interrupt Status (I2CSMIS), offset 0x014	
Register 16:	I ² C Slave Interrupt Clear (I2CSICR), offset 0x018	
0		
	nparators	
Register 1:	Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00	
Register 2:	Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04	
Register 3:	Analog Comparator Interrupt Enable (ACINTEN), offset 0x08	
Register 4:	Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10	
Register 5:	Analog Comparator Status 0 (ACSTAT0), offset 0x20	
Register 6:	Analog Comparator Status 1 (ACSTAT1), offset 0x40	
Register 7:	Analog Comparator Control 0 (ACCTL0), offset 0x24	421

Register 8:	Analog Comparator Control	1 (ACCTL1), offset 0x44	
-------------	---------------------------	-------------------------	--

Revision History

The revision history table notes changes made between the indicated revisions of the LM3S1608 data sheet.

Table 1. Revision History

Date	Revision	Description		
March 2008	2550	Started tracking revision history.		
April 2008	2881	 The Θ_{JA} value was changed from 55.3 to 34 in the "Thermal Characteristics" table in the Operating Characteristics chapter. 		
		Bit 31 of the DC3 register was incorrectly described in prior versions of the datasheet. A reset of 1 indicates that an even CCP pin is present and can be used as a 32-KHz input clock.		
		 Values for I_{DD_HIBERNATE} were added to the "Detailed Power Specifications" table in the "Electrical Characteristics" chapter. 		
		The "Hibernation Module DC Electricals" table was added to the "Electrical Characteristics" chapter.		
		 The T_{VDDRISE} parameter in the "Reset Characteristics" table in the "Electrical Characteristics" chapter was changed from a max of 100 to 250. 		
		 The maximum value on Core supply voltage (V_{DD25}) in the "Maximum Ratings" table in the "Electrical Characteristics" chapter was changed from 4 to 3. 		
		 The operational frequency of the internal 30-kHz oscillator clock source is 30 kHz ± 50% (prior datasheets incorrectly noted it as 30 kHz ± 30%). 		
		• A value of 0x3 in bits 5:4 of the MISC register (OSCSRC) indicates the 30-KHz internal oscillator is the input source for the oscillator. Prior datasheets incorrectly noted 0x3 as a reserved value.		
		 The reset for bits 6:4 of the RCC2 register (OSCSRC2) is 0x1 (IOSC). Prior datasheets incorrectly noted the reset was 0x0 (MOSC). 		
		Two figures on clock source were added to the "Hibernation Module":		
		 Clock Source Using Crystal 		
		 Clock Source Using Dedicated Oscillator 		
		The following notes on battery management were added to the "Hibernation Module" chapter:		
		 Battery voltage is not measured while in Hibernate mode. 		
		 System level factors may affect the accuracy of the low battery detect circuit. The designer should consider battery type, discharge characteristics, and a test load during battery voltage measurements. 		
		A note on high-current applications was added to the GPIO chapter:		
		For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.		
		A note on Schmitt inputs was added to the GPIO chapter:		
		Pins configured as digital inputs are Schmitt-triggered.		
		The Buffer type on the WAKE pin changed from OD to - in the Signal Tables.		
		The "Differential Sampling Range" figures in the ADC chapter were clarified.		

Date	Revision	vision Description	
		 The last revision of the datasheet (revision 2550) introduced two errors that have now been corrected: The LQFP pin diagrams and pin tables were missing the comparator positive and negative input pins. The base address was listed incorrectly in the FMPRE0 and FMPPE0 register bit diagrams. Additional minor datasheet clarifications and corrections. 	
May 2008	2972	 The 108-Ball BGA pin diagram and pin tables had an error. The following signals were erroneously indicated as available and have now been changed to a No Connect (NC): Ball C1: Changed PE7 to NC Ball C2: Changed PE6 to NC Ball D2: Changed PE5 to NC Ball D1: Changed PE4 to NC Ball F1: Changed PD7 to NC Ball F2: Changed PD6 to NC Ball E2: Changed PD5 to NC Ball E1: Changed PD5 to NC As noted in the PCN, the option to provide VDD25 power from external sources was removed. Use the LDO output as the source of VDD25 input. Additional minor datasheet clarifications and corrections. 	
July 2008	3108	Additional minor datasheet clarifications and corrections.	
August 2008	3447	 Added note on clearing interrupts to Interrupts chapter. Added Power Architecture diagram to System Control chapter. Additional minor datasheet clarifications and corrections. 	

About This Document

This data sheet provides reference information for the LM3S1608 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following documents are referenced by the data sheet, and available on the documentation CD or from the Luminary Micro web site at www.luminarymicro.com:

- ARM® Cortex™-M3 Technical Reference Manual
- ARM® CoreSight Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual
- Stellaris[®] Peripheral Driver Library User's Guide
- Stellaris[®] ROM User's Guide

The following related documents are also referenced:

IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the Luminary Micro web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 2 on page 20.

Table 2. Documentation Conventions

Notation	Meaning		
General Register	General Register Notation		
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Contregisters: SRCR0, SRCR1 , and SRCR2 .		
bit	A single bit in a register.		
bit field	Two or more consecutive and related bits.		
offset 0x <i>nnn</i>	A hexadecimal increment to a register's address, relative to that module's base address as specified in "Memory Map" on page 42.		

Notation	Meaning	
Register N	Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software.	
reserved	Register bits marked <i>reserved</i> are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.	
уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 that register.	
Register Bit/Field Types	This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field.	
RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.	
RO	Software can read this field. Always write the chip reset value.	
R/W	Software can read or write this field.	
R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.	
	This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read.	
R/W1S	Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register.	
W1C	Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data.	
	This register is typically used to clear the corresponding bit in an interrupt register.	
WO	Only a write by software is valid; a read of the register returns no meaningful data.	
Register Bit/Field Reset Value	This value in the register bit diagram shows the bit/field value after any reset, unless noted.	
0	Bit cleared to 0 on chip reset.	
1	Bit set to 1 on chip reset.	
-	Nondeterministic.	
Pin/Signal Notation		
[]	Pin alternate function; a pin defaults to the signal without the brackets.	
pin	Refers to the physical connection on the package.	
signal	Refers to the electrical signal encoding of a pin.	
assert a signal	Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below).	
deassert a signal	Change the value of the signal from the logically True state to the logically False state.	
SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.	
SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.	
Numbers		
x	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.	

Notation	Meaning	
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number	
	All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.	

1 Architectural Overview

The Luminary Micro Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris[®] family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris[®] LM3S1000 series extends the Stellaris[®] family with larger on-chip memories, enhanced power management, and expanded I/O and control capabilities.

The LM3S1608 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

For applications requiring extreme conservation of power, the LM3S1608 microcontroller features a Battery-backed Hibernation module to efficiently power down the LM3S1608 to a low-power state during extended periods of inactivity. With a power-up/power-down sequencer, a continuous time counter (RTC), a pair of match registers, an APB interface to the system bus, and dedicated non-volatile memory, the Hibernation module positions the LM3S1608 microcontroller perfectly for battery applications.

In addition, the LM3S1608 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S1608 microcontroller is code-compatible to all members of the extensive Stellaris[®] family; providing flexibility to fit our customers' precise needs.

Luminary Micro offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 488 for ordering information for Stellaris[®] family devices.

1.1 **Product Features**

The LM3S1608 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 50-MHz operation
 - Hardware-division and single-cycle-multiplication

- Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
- 32 interrupts with eight priority levels
- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- Internal Memory
 - 128 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
 - 32 KB single-cycle SRAM
- General-Purpose Timers
 - Four General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - · As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
 - To trigger analog-to-digital conversions
 - 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU Halt flag during debug
 - ADC event trigger
 - 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler
 - Programmable one-shot timer

- Programmable periodic timer
- User-enabled stalling when the controller asserts CPU Halt flag during debug
- ADC event trigger
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- Synchronous Serial Interface (SSI)
 - Two SSI modules, each with the following features:
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
 - Programmable data frame size from 4 to 16 bits
 - Internal loopback test mode for diagnostic/debug testing
- UART
 - Two fully programmable 16C550-type UARTs with IrDA support
 - Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service loading
 - Programmable baud-rate generator allowing speeds up to 3.125 Mbps

- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- False-start-bit detection
- Line-break generation and detection
- ADC
 - Single- and differential-input configurations
 - Eight 10-bit channels (inputs) when used as single-ended inputs
 - Sample rate of 500 thousand samples/second
 - Flexible, configurable analog-to-digital conversion
 - Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
 - Each sequence triggered by software or internal event (timers, analog comparators, or GPIO)
 - On-chip temperature sensor
- Analog Comparators
 - Two independent integrated analog comparators
 - Configurable for output to: drive an output pin, generate an interrupt, or initiate an ADC sample sequence
 - Compare external pin input to external pin input or to internal programmable voltage reference
- I²C
 - Two l²C modules
 - Master and slave receive and transmit operation with transmission speed up to 100 Kbps in Standard mode and 400 Kbps in Fast mode
 - Interrupt generation
 - Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode
- GPIOs
 - 17-52 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable interrupt generation as either edge-triggered or level-sensitive

- Low interrupt latency; as low as 6 cycles and never more than 12 cycles
- Bit masking in both read and write operations through address lines
- Can initiate an ADC sample sequence
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Hibernation module handles the power-up/down 3.3 V sequencing and control for the core digital logic and analog circuits
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - User-enabled LDO unregulated voltage detection and automatic reset
 - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources
 - Power-on reset (POR)
 - Reset pin assertion
 - Brown-out (BOR) detector alerts to system power drops
 - Software reset
 - Watchdog timer reset
 - Internal low drop-out (LDO) regulator output goes unregulated
- Additional Features
 - Six reset sources
 - Programmable clock source control

- Clock gating to individual peripherals for power savings
- IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
- Debug access via JTAG and Serial Wire interfaces
- Full JTAG boundary scan
- Industrial and extended temperature 100-pin RoHS-compliant LQFP package
- Industrial-range 108-ball RoHS-compliant BGA package

1.2 Target Applications

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control
- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

1.3 High-Level Block Diagram

Figure 1-1 on page 29 represents the full set of features in the Stellaris[®] 1000 series of devices; not all features may be available on the LM3S1608 microcontroller.

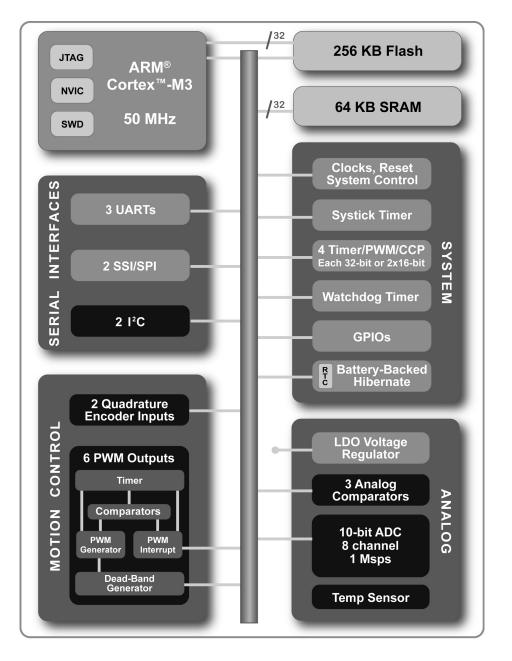


Figure 1-1. Stellaris[®] 1000 Series High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S1608 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 488.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 36)

All members of the Stellaris[®] product family, including the LM3S1608 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 36 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

1.4.1.2 System Timer (SysTick) (see page 39)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC) (see page 44)

The LM3S1608 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 32 interrupts.

"Interrupts" on page 44 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual*.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S1608 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control. On the LM3S1608, PWM motion control functionality can be achieved through:

The motion control features of the general-purpose timers using the CCP pins

CCP Pins (see page 212)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

To handle analog signals, the LM3S1608 microcontroller offers an Analog-to-Digital Converter (ADC).

For support of analog signals, the LM3S1608 microcontroller offers two analog comparators.

1.4.3.1 ADC (see page 265)

An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The LM3S1608 ADC module features 10-bit conversion resolution and supports eight input channels, plus an internal temperature sensor. Four buffered sample sequences allow rapid sampling of up to eight analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

1.4.3.2 Analog Comparators (see page 411)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S1608 microcontroller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event.

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

1.4.4 Serial Communications Peripherals

The LM3S1608 controller supports both asynchronous and synchronous serial communications with:

- Two fully programmable 16C550-type UARTs
- Two SSI modules
- Two I²C modules

1.4.4.1 UART (see page 298)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S1608 controller includes two fully programmable 16C550-type UARTs that support data transfer speeds up to 3.125 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.) In addition, each UART is capable of supporting IrDA.

Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 339)

Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.

The LM3S1608 controller includes two SSI modules that provide the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

Each SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

Each SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

Each SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 I²C (see page 376)

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL).

The I²C bus interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture.

The LM3S1608 controller includes two I²C modules that provide the ability to communicate to other IC devices over an I²C bus. The I²C bus supports devices that can both transmit and receive (write and read) data.

Devices on the I^2C bus can be designated as either a master or a slave. Each I^2C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. The four I^2C modes are: Master Transmit, Master Receive, Slave Transmit, and Slave Receive.

A Stellaris[®] I²C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts. The I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error). The I^2C slave generates interrupts when data has been sent or requested by a master.

1.4.5 System Peripherals

1.4.5.1 Programmable GPIOs (see page 164)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris[®] GPIO module is comprised of eight physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 17-52 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 425 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Four Programmable Timers (see page 206)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris[®] General-Purpose Timer Module (GPTM) contains four GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions.

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 242)

A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S1608 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 140)

The LM3S1608 static random access memory (SRAM) controller supports 32 KB SRAM. The internal SRAM of the Stellaris[®] devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 141)

The LM3S1608 Flash controller supports 128 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 42)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S1608 controller can be found in "Memory Map" on page 42. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (see page 47)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 58)

System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.7.4 Hibernation Module (see page 120)

The Hibernation module provides logic to switch power off to the main processor and peripherals, and to wake on external or time-based events. The Hibernation module includes power-sequencing logic, a real-time clock with a pair of match registers, low-battery detection circuitry, and interrupt signalling to the processor. It also includes 64 32-bit words of non-volatile memory that can be used for saving state during hibernation.

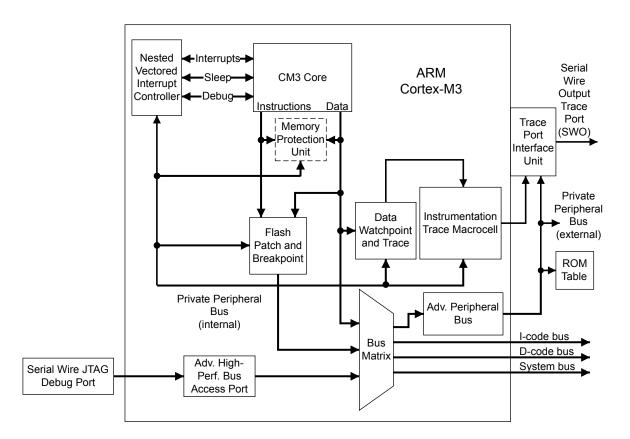
1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 423
- "Signal Tables" on page 425
- "Operating Characteristics" on page 451
- "Electrical Characteristics" on page 452
- "Package Information" on page 464

2 ARM Cortex-M3 Processor Core

The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:


- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution with a:
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex™-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

2.1 Block Diagram

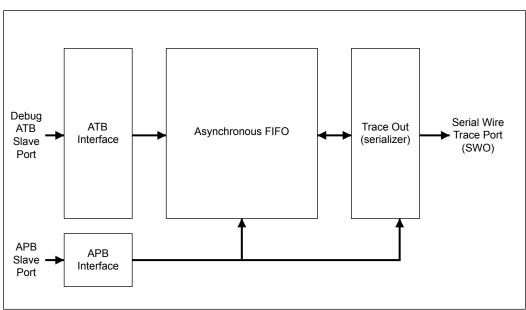
Figure 2-1. CPU Block Diagram

2.2 Functional Description

Important: The ARM® Cortex[™]-M3 Technical Reference Manual describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris[®] implementation.

Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 37. As noted in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug


Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, "Debug Port," of the *ARM*® *Cortex[™]-M3 Technical Reference Manual* does not apply to Stellaris[®] devices. The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight™ Design Kit Technical Reference Manual* for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris[®] devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris[®] devices have implemented TPIU as shown in Figure 2-2 on page 38. This is similar to the non-ETM version described in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*[®] *Cortex*[™]-*M3 Technical Reference Manual*.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S1608 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

Facilitates low-latency exception and interrupt handling

- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex[™]-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.6.1 Interrupts

The *ARM*® *Cortex*[™]-*M3 Technical Reference Manual* describes the maximum number of interrupts and interrupt priorities. The LM3S1608 microcontroller supports 32 interrupts with eight priority levels.

2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris® devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

Bit/Field	Name	Туре	Reset	Description		
31:17	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.		
16	COUNTFLAG	R/W	0	Count Flag		
				Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read.		
15:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.		
2	CLKSOURCE	R/W	0	Clock Source		
				Value Description		
				0 External reference clock. (Not implemented for Stellaris microcontrollers.)		
				1 Core clock		
				If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.		
1	TICKINT	R/W	0	Tick Interrupt		
				Value Description		
				0 Counting down to 0 does not generate the interrupt request to the NVIC. Software can use the COUNTFLAG to determine if ever counted to 0.		
				1 Counting down to 0 pends the SysTick handler.		
0	ENABLE	R/W	0	Enable		
				Value Description		
				0 Counter disabled.		
				1 Counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.		

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value

of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	RELOAD	W1C	-	Reload Value to load into the SysTick Current Value Register when the counter reaches 0.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	CURRENT	W1C	-	Current Value
				Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.
				This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S1608 controller is provided in Table 3-1 on page 42.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*™*-M3 Technical Reference Manual*.

Table 3-1. Memory Map^a

Start	End	d Description	
Memory			
0x0000.0000	0x0001.FFFF	On-chip flash ^b	144
0x0002.0000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.7FFF	Bit-banded on-chip SRAM ^c	144
0x2000.8000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x220F.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	140
0x2210.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			
0x4000.0000	0x4000.0FFF	Watchdog timer	244
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	171
0x4000.5000	0x4000.5FFF	GPIO Port B	171
0x4000.6000	0x4000.6FFF	GPIO Port C	171
0x4000.7000	0x4000.7FFF	GPIO Port D	171
0x4000.8000	0x4000.8FFF	SSIO	350
0x4000.9000	0x4000.9FFF	SSI1	350
0x4000.A000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	305
0x4000.D000	0x4000.DFFF	UART1	305
0x4000.E000	0x4001.FFFF	Reserved	-
Peripherals	I		
0x4002.0000	0x4002.07FF	I2C Master 0	389
0x4002.0800	0x4002.0FFF	I2C Slave 0	402
0x4002.1000	0x4002.17FF	I2C Master 1	389
0x4002.1800	0x4002.1FFF	I2C Slave 1	402
0x4002.2000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	171
0x4002.5000	0x4002.5FFF	GPIO Port F	171
0x4002.6000	0x4002.6FFF	GPIO Port G	171
0x4002.7000	0x4002.7FFF	GPIO Port H	171
0x4002.8000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer0	217
0x4003.1000	0x4003.1FFF	Timer1	217

Start	End	Description	For details on registers, see page	
0x4003.2000	0x4003.2FFF	Timer2	217	
0x4003.3000	0x4003.3FFF	Timer3	217	
0x4003.4000	0x4003.7FFF	Reserved	-	
0x4003.8000	0x4003.8FFF	ADC	272	
0x4003.9000	0x4003.BFFF	Reserved	-	
0x4003.C000	0x4003.CFFF	Analog Comparators	411	
0x4003.D000	0x400F.BFFF	Reserved	-	
0x400F.C000	0x400F.CFFF	Hibernation Module	127	
0x400F.D000	0x400F.DFFF	Flash control	144	
0x400F.E000	0x400F.EFFF	System control	67	
0x400F.F000	0x41FF.FFFF	Reserved	-	
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-	
0x4400.0000	0xDFFF.FFFF	Reserved	-	
Private Peripheral B	us		1	
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	ARM® Cortex™-M3 Technical Reference Manual	
0xE000.1000	0.1000 0xE000.1FFF Data Watchpoint and Trace (DWT)		ARM® Cortex™-M3 Technical Reference Manual	
0xE000.2000 0xE000.2FFF		Flash Patch and Breakpoint (FPB)	ARM® Cortex™-M3 Technical Reference Manual	
0xE000.3000	0xE000.DFFF	Reserved	-	
0xE000.E000 0xE000.EFFF		Nested Vectored Interrupt Controller (NVIC)	ARM® Cortex™-M3 Technical Reference Manual	
0xE000.F000	0xE003.FFFF	Reserved	-	
0xE004.0000	.0000 0xE004.0FFF Trace Port Interface Unit (TPIU)		ARM® Cortex™-M3 Technical Reference Manual	
0xE004.1000	0xFFFF.FFFF	Reserved	-	

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 44 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 32 interrupts (listed in Table 4-2 on page 45).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You also can group priorities by splitting priority levels into pre-emption priorities and subpriorities. All of the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

Important: It may take several processor cycles after a write to clear an interrupt source in order for NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer).

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

Exception Type	Vector Number	Priority ^a	Description	
-	0	-	Stack top is loaded from first entry of vector table on reset.	
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowes priority (and then is called the base level of activation). This is asynchronous.	
Non-Maskable Interrupt (NMI)	2	-2	Cannot be stopped or preempted by any exception but reset. This is asynchronous.	
			An NMI is only producible by software, using the NVIC Interrupt Control State register.	
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.	
Memory Management	4	settable	MPU mismatch, including access violation and no match. This is synchronous.	
			The priority of this exception can be changed.	

Table 4-1. Exception Types

Exception Type	Vector Number	Priority ^a	Description	
		settable	Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.	
			You can enable or disable this fault.	
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.	
-	7-10	-	Reserved.	
SVCall	11	settable	System service call with SVC instruction. This is synchronous.	
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.	
-	13	-	Reserved.	
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.	
SysTick	15	settable	System tick timer has fired. This is asynchronous.	
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 45 lists the interrupts on the LM3S1608 controller.	

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
0-15	-	Processor exceptions
16	0	GPIO Port A
17	1	GPIO Port B
18	2	GPIO Port C
19	3	GPIO Port D
20	4	GPIO Port E
21	5	UART0
22	6	UART1
23	7	SSI0
24	8	12C0
25-29	9-13	Reserved
30	14	ADC Sequence 0
31	15	ADC Sequence 1
32	16	ADC Sequence 2
33	17	ADC Sequence 3
34	18	Watchdog timer
35	19	Timer0 A
36	20	Timer0 B
37	21	Timer1 A
38	22	Timer1 B
39	23	Timer2 A
40	24	Timer2 B

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
41	25	Analog Comparator 0
42	26	Analog Comparator 1
43	27	Reserved
44	28	System Control
45	29	Flash Control
46	30	GPIO Port F
47	31	GPIO Port G
48	32	GPIO Port H
49	33	Reserved
50	34	SSI1
51	35	Timer3 A
52	36	Timer3 B
53	37	I2C1
54-58	38-42	Reserved
59	43	Hibernation Module
60-63	44-47	Reserved

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.

The JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions:
 - BYPASS instruction
 - IDCODE instruction
 - SAMPLE/PRELOAD instruction
 - EXTEST instruction
 - INTEST instruction
- ARM additional instructions:
 - APACC instruction
 - DPACC instruction
 - ABORT instruction
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

5.1 Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 48. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 54 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 460 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 49. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1. JTAG Port Pins Reset State

5.2.1.1 Test Reset Input (TRST)

The $\overline{\text{TRST}}$ pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When $\overline{\text{TRST}}$ is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while $\overline{\text{TRST}}$ is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the $\overline{\text{TRST}}$ pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 51.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 51. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

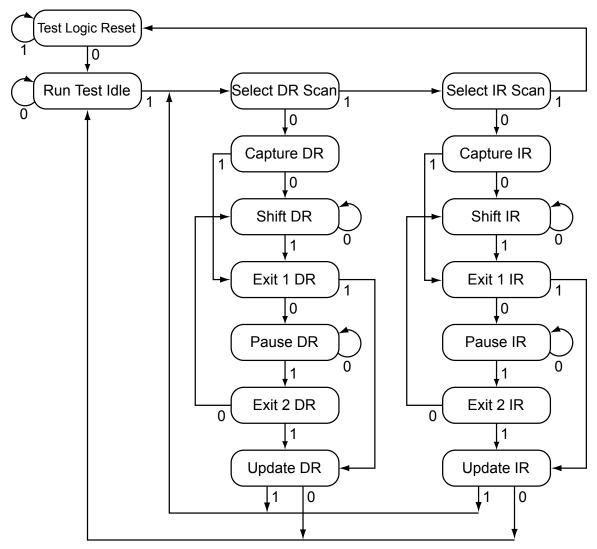


Figure 5-2. Test Access Port State Machine

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 54.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 181) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 191) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 192) have been set to 1.

Recovering a "Locked" Device

Note: Performing the below sequence will cause the nonvolatile registers discussed in "Nonvolatile Register Programming" on page 143 to be restored to their factory default values. The mass erase of the flash memory caused by the below sequence occurs prior to the nonvolatile registers being restored.

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the \overline{RST} signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.
- **11.** Perform the SWD-to-JTAG switch sequence.

- **12.** Release the \overline{RST} signal.
- 13. Wait 400 ms.
- **14.** Power-cycle the device.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 53. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence need to be performed.

5.2.4.2 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Run Test Idle, Run Test Idle, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® *Cortex*TM-*M3 Technical Reference Manual* and the ARM® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011100111100, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- 3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register.

5.4 **Register Descriptions**

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 54. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.

Table 5-2. JTA	G Instruction	n Reaister	Commands

5.4.1.1 EXTEST Instruction

The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,

the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity.

5.4.1.2 INTEST Instruction

The INTEST instruction does not have an associated Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 57 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 57 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 57 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this

register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 57 for more information.

5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 56 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 56 for more information.

5.4.2 Data Registers

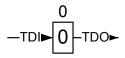
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 56. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA00477. This value indicates an ARM Cortex-M3, Version 1 processor. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

Figure 5-3. IDCODE Register Format



5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 57. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS

Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.

Figure 5-4. BYPASS Register Format

5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 57. Each GPIO pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure. In addition to the GPIO pins, the controller reset pin, \overline{RST} , is included in the chain. Because the reset pin is always an input, only the input signal is included in the Data Register chain.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

For detailed information on the order of the input, output, and output enable bits for each of the GPIO ports, please refer to the Stellaris[®] Family Boundary Scan Description Language (BSDL) files, downloadable from www.luminarymicro.com.

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.*

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 58
- Local control, such as reset (see "Reset Control" on page 58), power (see "Power Control" on page 61) and clock control (see "Clock Control" on page 61)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 64

6.1.1 Device Identification

Seven read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for use by Luminary Micro for testing the devices during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

6.1.2.2 Reset Sources

The controller has five sources of reset:

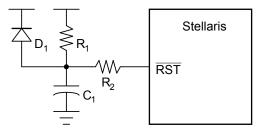
- **1.** External reset input pin (\overline{RST}) assertion, see "RST Pin Assertion" on page 58.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 59.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 59.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 60.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 60.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

6.1.2.3 **RST** Pin Assertion

The external reset pin (\mathbb{RST}) resets the controller. This resets the core and all the peripherals except the JTAG TAP controller (see "JTAG Interface" on page 47). The external reset sequence is as follows:

- **1.** The external reset pin (\overline{RST}) is asserted and then de-asserted.
- The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. A few clocks cycles from RST de-assertion to the start of the reset sequence is necessary for synchronization.


The external reset timing is shown in Figure 20-10 on page 462.

6.1.2.4 Power-On Reset (POR)

The Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}). The POR circuit generates a reset signal to the internal logic when the power supply ramp reaches a threshold value (V_{TH}). If the application only uses the POR circuit, the \overline{RST} input needs to be connected to the power supply (V_{DD}) through a pull-up resistor (1K to 10K Ω).

The device must be operating within the specified operating parameters at the point when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the device must reach 3.0 V within 10 msec of it crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset to hold the device in reset longer than the internal POR, the \overline{RST} input may be used with the circuit as shown in Figure 6-1 on page 59.

Figure 6-1. External Circuitry to Extend Reset

The R_1 and C_1 components define the power-on delay. The R_2 resistor mitigates any leakage from the \overline{RST} input. The diode (D₁) discharges C₁ rapidly when the power supply is turned off.

The Power-On Reset sequence is as follows:

- **1.** The controller waits for the later of external reset (\overline{RST}) or internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing is shown in Figure 20-11 on page 463.

Note: The power-on reset also resets the JTAG controller. An external reset does not.

6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivelent to an assertion of the external \overline{RST} input and the reset is held active until the proper V_{DD} level is restored. The **RESC** register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 20-12 on page 463.

6.1.2.6 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 64). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 20-13 on page 463.

6.1.2.7 Watchdog Timer Reset

The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- 3. The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 20-14 on page 463.

6.1.3 Power Control

The Stellaris[®] microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. The LDO regulator provides software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register. Figure 6-2 on page 61 shows the power architecture.

Note: On the printed circuit board, use the LDO output as the source of VDD25 input. In addition, the LDO requires decoupling capacitors. See "On-Chip Low Drop-Out (LDO) Regulator Characteristics" on page 453.

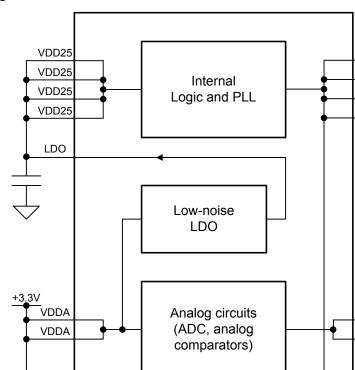
GND

GND

GND

GND

GNDA


GNDA

GND

GND

GND

GND

Figure 6-2. Power Architecture

6.1.4 Clock Control

VDD

VDD

VDD

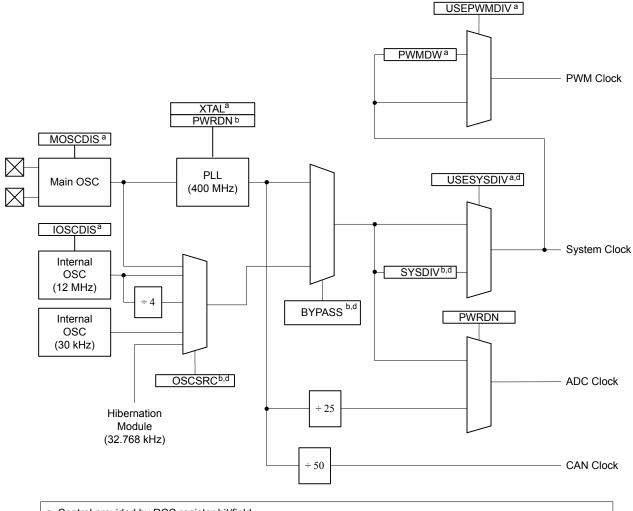
VDD

System control determines the control of clocks in this part.

I/O Buffers

6.1.4.1 Fundamental Clock Sources

There are four clock sources for use in the device:


- Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator (MOSC): The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. If the PLL is being used, the crystal value must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 76).
- Internal 30-kHz Oscillator: The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 50%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.
- **External Real-Time Oscillator:** The external real-time oscillator provides a low-frequency, accurate clock reference. It is intended to provide the system with a real-time clock source. The real-time oscillator is part of the Hibernation Module ("Hibernation Module" on page 120) and may also provide an accurate source of Deep-Sleep or Hibernate mode power savings.

The internal system clock (SysClk), is derived from any of the four sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four (3 MHz \pm 30%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

Figure 6-3 on page 63 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be programmatically enabled/disabled. The ADC clock signal is automatically divided down to 16 MHz for proper ADC operation.

Figure 6-3. Main Clock Tree

a. Control provided by RCC register bit/field.

b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2.

c. Control provided by RCC2 register bit/field.d. Also may be controlled by DSLPCLKCFG when in deep sleep mode.

Note: The figure above shows all features available on all Stellaris® Fury-class devices.

6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the RCC register (see page 76) describes the available crystal choices and default programming values.

Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

6.1.4.3 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 80). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency.

The Crystal Value field (XTAL) on page 76 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 76 and page 81).

6.1.4.5 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 20-7 on page 455). During the relock time, the affected PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC/RCC2** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

In Run mode, the processor executes code. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor is not clocked and therefore no longer executes code. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Each mode is described in more detail below.

There are four levels of operation for the device defined as:

- Run Mode. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ **Deep-Sleep Mode.** Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Hibernate Mode. In this mode, the power supplies are turned off to the main part of the device and only the Hibernation module's circuitry is active. An external wake event or RTC event is required to bring the device back to Run mode. The Cortex-M3 processor and peripherals outside of the Hibernation module see a normal "power on" sequence and the processor starts running code. It can determine that it has been restarted from Hibernate mode by inspecting the Hibernation module registers.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the **RCC** register. This configures the system to run off a "raw" clock source (using the main oscillator or internal oscillator) and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the **Raw Interrupt Status (RIS**) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

6.3 Register Map

Table 6-1 on page 66 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use by Luminary Micro, Inc. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	68
0x004	DID1	RO	-	Device Identification 1	84
0x008	DC0	RO	0x007F.003F	Device Capabilities 0	86
0x010	DC1	RO	0x0001.32FF	Device Capabilities 1	87
0x014	DC2	RO	0x030F.5033	Device Capabilities 2	89
0x018	DC3	RO	0xBFFF.0FC0	Device Capabilities 3	91
0x01C	DC4	RO	0x0000.C0FF	Device Capabilities 4	93
0x030	PBORCTL	R/W	0x0000.7FFD	Brown-Out Reset Control	70
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	71
0x040	SRCR0	R/W	0x0000000	Software Reset Control 0	116
0x044	SRCR1	R/W	0x0000000	Software Reset Control 1	117
0x048	SRCR2	R/W	0x0000000	Software Reset Control 2	119
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	72
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	73
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	74
0x05C	RESC	R/W	-	Reset Cause	75

Table 6-1. System Control Register Map

Offset	Name	Туре	Reset	Description	See page
0x060	RCC	R/W	0x0780.3AD1	Run-Mode Clock Configuration	76
0x064	PLLCFG	RO	-	XTAL to PLL Translation	80
0x070	RCC2	R/W	0x0780.2810	Run-Mode Clock Configuration 2	81
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	95
0x104	RCGC1	R/W	0x0000000	Run Mode Clock Gating Control Register 1	101
0x108	RCGC2	R/W	0x0000000	Run Mode Clock Gating Control Register 2	110
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	97
0x114	SCGC1	R/W	0x0000000	Sleep Mode Clock Gating Control Register 1	104
0x118	SCGC2	R/W	0x0000000	Sleep Mode Clock Gating Control Register 2	112
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	99
0x124	DCGC1	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 1	107
0x128	DCGC2	R/W	0x0000000	Deep Sleep Mode Clock Gating Control Register 2	114
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	83

6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

			on 0 (DI	D0)																
Offse	0x400F.E t 0x000 RO, rese																			
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	reserved	eserved VER reserved								[1	CL	ASS	1	I	1				
Type Reset	RO RO 0 0		RO RO 0 1		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
	ľ		1	MA	JOR	1	1 1			I	1	I MIN	NOR	- 1 1 1						
Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
E	Bit/Field		Nam	ie	Ту	rpe	Reset	Description												
31 reserved RO 0 Software should not rely on the value of compatibility with future products, the v preserved across a read-modify-write of the statement of th								value of	a reserv											
	30:28		VEF	२	RO 0x1			DID	0 Versio	n										
								This field defines the DID0 register format version. The version number is numeric. The value of the VER field is encoded as follows:												
								Valu	ue Desc	ription										
								0x1			on of the	e DID0 re	egister fo	ormat.						
	27:24 reserved					0	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.												
	23:16		CLAS	SS	R	0	0x1	Dev	ice Class	S										
								The CLASS field value identifies the internal design from which all mask sets are generated for all devices in a particular product line. The CLASS field value is changed for new product lines, for changes in fab process (for example, a remap or shrink), or any case where the MAJOR or MINOR fields require differentiation from prior devices. The value of the CLASS field is encoded as follows (all other encodings are reserved):												
								Valu	ue Desc	ription										
								0.1	Stoll	nria@ Eu		dovicoo								

0x1 Stellaris® Fury-class devices.

Bit/Field	Name	Туре	Reset	Description						
15:8	MAJOR	RO	-	Major Revision						
				This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows:						
				Value Description						
				0x0 Revision A (initial device)						
				0x1 Revision B (first base layer revision)						
				0x2 Revision C (second base layer revision)						
				and so on.						
7:0	MINOR	RO	-	Minor Revision						
				This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:						
				Value Description						
				0x0 Initial device, or a major revision update.						
				0x1 First metal layer change.						
				0x2 Second metal layer change.						
				and so on.						

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Offse	0x400F.E t 0x030 R/W, res		0.7FFD	(,												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1					rese	rved			1	1	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[1	1			reser	ved			1	1	1	1	BORIOR	reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
В	Bit/Field Name Type Reset					Description											
	31:2 reserved				RO 0x0			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	1		BORI	OR	R/W		0	BOF	BOR Interrupt or Reset								
									This bit controls how a BOR event is signaled to the controller. If set, a reset is signaled. Otherwise, an interrupt is signaled.								
	0		reserved RO			0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									

Brown-Out Reset Control (PBORCTL)

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

Base Offse	D Powe 0x400F.E t 0x034 R/W, res	E000	DI (LDOI	PCTL)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			•					rese	erved	•					•	•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
					rese	rved	•			•	VADJ						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
31:6 reserved			R	0	0	Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.											
	5:0		VAD)J	R/	W	0x0	LDC	Output	Voltage							
										ts the on ld are pro			age. The	progran	nming va	lues for	
								Val	ue	V _{OUT} (V))						
								0x0	00	2.50							
								0x0)1	2.45							
								0x0)2	2.40							
								0x0		2.35							
								0x0		2.30							
								0x0		2.25							
										Reserve	d						
								0x1 0x1		2.75 2.70							
								0x1		2.70							
								0x1		2.60							
								0x1		2.55							

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base Offse	/ Interru 0x400F.E t 0x050 RO, reset	000	tus (RIS))														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1 1					rese	rved						1	•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1 1		reserved		1 1			PLLLRIS		rese	rved		BORRIS	reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
E	Bit/Field	eld Name Type Reset Description																
	31:7 reserved		R	0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	6		PLLLRIS		RO		0	PLL Lock Raw Interrupt Status This bit is set when the PLL T _{READY} Timer asserts.										
	5:2		reserv	ved	R	0	0	com	patibility	with futu	re prod	ne value of a reserved bit. To provide ucts, the value of a reserved bit should be lify-write operation.						
	1		BORF	RIS	R	0	0	Brow	wn-Out F	Reset Rav	w Interru	upt Statu	S					
								This bit is the raw interrupt status for any a brown-out condition is currently active. from the brown-out detection circuit. An int bit in the IMC register is set and the BORIO is cleared.						his is an unregistered signal errupt is reported if the BORIM				
0 reserved RO 0 Software should not rely on the value of a reserved bit compatibility with future products, the value of a reserved preserved across a read-modify-write operation.																		

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask Control (IMC)

Base Offse	0x400F.E et 0x054 R/W, rese	E000	0.0000)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved	1 1		1	1	1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		reserved					PLLLIM		rese	erved	I	BORIM	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
31:7 reserved RO 0		0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv	•						
	6 PLLLIM		R/	w	0	This con	s bit spe troller in	terrupt M cifies whe terrupt. If wise, an i	ether a c set, an	interrupt	is gener	rated if ₽				
	5:2	reserved		R	С	0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv			
	1		BOR	IM	R/	W	0	Brov	wn-Out l	Reset Inte	errupt M	lask				
								con	troller in	cifies whe terrupt. If n interrup	set, an	interrupt	is gener	•		
	0		reserv	/ed	R	C	0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv		

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the **RIS** register (see page 72).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
]		Î	1		1 1		1 1	rese	rved	т т		1		1	1	
[D 0	DO	RO	RO	RO				RO	RO		RO				
Type Reset	RO 0	RO 0	0 RO	0 RO	ко 0	RO 0	RO 0	RO 0	RO 0	ко 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		'			reserved					PLLLMIS		rese	rved	'	BORMIS	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	RO	RO	RO	RO	R/W1C	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	8it/Field		Nam	ne	Тур	e	Reset	Des	cription							
	31:7		reserv	ved	R)	0	com	patibilit	ould not r y with futu across a re	re prod	ucts, the	value of	f a reserv	•	
	6		PLLL	MIS	R/W	1C	0	PLL	Lock N	lasked Inte	errupt S	Status				
										et when the 1 to this b		_{READY} tim	er asser	ts. The ir	iterrupt is	cleared
	5:2		reserv	ved	R)	0	com	patibilit	ould not r y with futu across a re	re prod	ucts, the	value of	f a reser	•	
	1		BORM	ЛIS	R/W	1C	0	BOF	R Maske	ed Interrup	t Statu	S				
								The	BORMI	s is simply	the BO	RRIS AN	Ded wit	n the ma	sk value,	BORIM.
	0		reserv	ved	R)	0	com	patibilit	iould not r y with futu across a re	re prod	ucts, the	value of	f a reserv		

Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an external reset is the cause, and then all the other bits in the **RESC** register are cleared.

Base Offse	0x400F.E t 0x05C R/W, rese	000	30)													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	'				rese	rved	· ·				LDO	SW	WDT	BOR	POR	EXT
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	-	-	-	-	-	-
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:6		reserv	/ed	R	0	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	5		LDC	С	R/	W	-	LDC	Reset							
			LDO R/W				en set, in erated a			circuit h	as lost re	egulation	and has	3		
	4		SW	/	R/	W	-	Soft	ware Re	set						
								\\/bc	en set, in	dicatos	a coftwa	ra rasat	is the ca	uso of th	o rosot d	wont
								VVIIC	511 SCI, 111	uicales	a sonwa	ie iesei				evenit.
	3		WD.	Т	R/	W	-	Wat	chdog Ti	mer Res	et					
								Whe	en set, in	dicates	a watcho	log rese	t is the c	ause of t	he reset	event.
	2		BOF	२	R/	W	-	Brov	wn-Out F	Reset						
								Whe	en set, in	dicates	a brown-	out rese	t is the c	ause of	the reset	event.
	4		DO	-												
	1		POF	۲	R/	vv	-		er-On R							
								Whe	en set, in	dicates	a power-	on reset	is the ca	ause of t	he reset	event.
	0		EX	Г	R/	W	-	Exte	ernal Res	set						
									en set, in reset eve		an exteri	nal reset	(RST as	sertion)	is the ca	use of

Reset Cause (RESC)

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Run-Mode Clock Configuration (RCC)
Base 0x400F.E000 Offset 0x060 Type R/W, reset 0x0780.3AD1

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		rese	erved	1	ACG		SYS	DIV	r I	USESYSDIV			rese	rved	1	J
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rese	rved	PWRDN	reserved	BYPASS	reserved		XT	ΓAL	I	osc	SRC	rese	rved	IOSCDIS	MOSCDIS
Туре	RO	RO	R/W	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Reset	0	0	1	1	1	0	1	0	1	1	0	1	0	0	0	1
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:28		reser	ved	R	0	0x0	com	npatibility	ould not r / with futu cross a re	ire prod	ucts, the	value of	a reserv	•	
	27		AC	G	R/	W	0	Auto	o Clock	Gating						
									•	cifies whe trol (SCC				•		

Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The $\ensuremath{\textbf{RCGCn}}$ registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description	
26:23	SYSDIV	R/W	0xF	System Clock Divisor	
				Specifies which divisor is PLL output.	s used to generate the system clock from the
				The PLL VCO frequency	y is 400 MHz.
				Value Divisor (BVDASS	S=1) Frequency (BYPASS=0)
				0x0 reserved	reserved
				0x1 /2	reserved
				0x2 /3	reserved
				0x3 /4	50 MHz
				0x4 /5	40 MHz
				0x5 /6	33.33 MHz
				0x6 /7	28.57 MHz
				0x7 /8	25 MHz
				0x8 /9	22.22 MHz
				0x9 /10	20 MHz
				0xA /11	18.18 MHz
				0xB /12	16.67 MHz
				0xC /13	15.38 MHz
				0xD /14	14.29 MHz
				0xE /15	13.33 MHz
				0xF /16	12.5 MHz (default)
				page 76), the SYSDIV va	Iode Clock Configuration (RCC) register (see alue is MINSYSDIV if a lower divider was s being used. This lower value is allowed to s.
22	USESYSDIV	R/W	0	Enable System Clock Di	ivider
					vider as the source for the system clock. The orced to be used when the PLL is selected as
21:14	reserved	RO	0	,	on the value of a reserved bit. To provide products, the value of a reserved bit should be I-modify-write operation.
13	PWRDN	R/W	1	PLL Power Down	
				This bit connects to the F down the PLL.	PLL PWRDN input. The reset value of 1 powers
12	reserved	RO	1		on the value of a reserved bit. To provide products, the value of a reserved bit should be I-modify-write operation.

Bit/Field	Name	Туре	Reset	Description		
11	BYPASS	R/W	1	PLL Bypas	5	
				the OSC so source. Oth	hether the system clock is der purce. If set, the clock that driv perwise, the clock that drives the ed by the system divider.	es the system is the OSC
				1 ti s	The ADC must be clocked from 4-MHz to 18-MHz clock source ne ADC works in a 14-18 MHz ample/second rate, the ADC r lock source.	e to operate properly. While range, to maintain a 1 M
10	reserved	RO	0	compatibilit	nould not rely on the value of a y with future products, the valu across a read-modify-write ope	ue of a reserved bit should be
9:6	XTAL	R/W	0xB	Crystal Val	Je	
					pecifies the crystal value attach or this field is provided below.	ned to the main oscillator. The
				Value	Crystal Frequency (MHz) Not Using the PLL	Crystal Frequency (MHz) Using the PLL
				0x0	1.000	reserved
				0x1	1.8432	reserved
				0x2	2.000	reserved
				0x3	2.4576	reserved
				0x4	3.5795	545 MHz
				0x5	3.686	64 MHz
				0x6	4	MHz
				0x7	4.09	6 MHz
				0x8	4.915	52 MHz
				0x9	5	MHz
				0xA	5.12	2 MHz
				0xB		eset value)
				0xC		4 MHz
				0xD		28 MHz
				0xE		MHz
				0xF	8.19	2 MHz
5:4	OSCSRC	R/W	0x1	Oscillator S	ource	
				Picks amor	ng the four input sources for th	e OSC. The values are:
				Value Inpu	ut Source	
				0x0 Mai	n oscillator	
				0x1 Inte	rnal oscillator (default)	
				0x2 Inte	rnal oscillator / 4 (this is neces	ssary if used as input to PLL)
				0x3 30 l	KHz internal oscillator	

Bit/Field	Name	Туре	Reset	Description
3:2	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	IOSCDIS	R/W	0	Internal Oscillator Disable
				0: Internal oscillator (IOSC) is enabled.
				1: Internal oscillator is disabled.
0	MOSCDIS	R/W	1	Main Oscillator Disable
				0: Main oscillator is enabled .
				1: Main oscillator is disabled (default).

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 76).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000 Offset 0x064

Type RO, reset -

	110,1000	•														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1				1 I	rese	erved		1	1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	ved					F		1	1	r		ı – – – –	R	1	
Type Reset	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -						
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
:	31:14		reserv	ved	R	0	0x0	com	patibility	with fut	ure prod	ucts, the	of a reso value of operatio	a reserv	•	
	13:5		F		R	0	-		. F Value s field spo		ie value	supplied	l to the P	'LL's F in	iput.	
	4:0		R		R	0	-	PLL	. R Value							

This field specifies the value supplied to the PLL's R input.

Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the **RCC** equivalent register fields when the USERCC2 bit is set. This allows RCC2 to be used to extend the capabilities, while also providing a means to be backward-compatible to previous parts. The fields within the **RCC2** register occupy the same bit positions as they do within the **RCC** register as LSB-justified.

The SYSDIV2 field is wider so that additional larger divisors are possible. This allows a lower system clock frequency for improved Deep Sleep power consumption.

Type	et 0x070 R/W, reset	0x0780	0.2810													
51	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	USERCC2	rese	erved		<u>г</u>	SYS	SDIV2		1		1	I	reserved		1	
Type Reset	R/W 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserv	red	PWRDN2	reserved	BYPASS2		rese	rved			OSCSRC2	2	' '	rese	rved	
Type Reset	RO 0	RO 0	R/W 1	RO 0	R/W 1	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	scription							
	31		USER	CC2	R/\	N	0	Use	RCC2							
								Wh	en set, o	verrides	the RCC	registe	r fields.			
	30:29		reserv	ved	R	C	0x0	con	npatibility	with fut	ure prod	ucts, the	of a rese value of operatio	a reserv	•	
	28:23		SYSD	IV2	R/\	N	0x0F	Sys	tem Cloc	k Diviso	r					
									ecifies wh . output.	iich divis	or is use	ed to gen	erate the	system	I Clock fro	om the
								The	PLL VC	O freque	ency is 4	00 MHz.				
								add muo the	litional di ch lower f RCC reg	visor val frequenc ister SY	ues. This cies durir SDIV en	s permits ng Deep coding o	er SYSDI s the syst Sleep mo f 1111 pro provides	em cloc de. For ovides /	k to be ri example	un at e, where
	22:14		reserv	ved	R	C	0x0	con	npatibility	with fut	ure prod	ucts, the	of a rese value of operatio	a reserv	•	
	13		PWRE	DN2	R/\	N	1	Pov	ver-Dowr	n PLL						
								Wh	en set, p	owers de	own the	PLL.				
	12		reserv	ved	R	C	0	con	npatibility	with fut	ure prod	ucts, the	of a rese value of operatio	a reserv	•	
	11		BYPAS	SS2	R/\	N	1	Вур	ass PLL							
								When set, bypasses the PLL for the clock source.								

Base 0x400F.E000

Run-Mode Clock Configuration 2 (RCC2)

Bit/Field	Name	Туре	Reset	Description
10:7	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6:4	OSCSRC2	R/W	0x1	Oscillator Source
				Picks among the input sources for the OSC. The values are:
				Value Description
				0x0 Main oscillator (MOSC)
				0x1 Internal oscillator (IOSC)
				0x2 Internal oscillator / 4
				0x3 30 kHz internal oscillator
				0x7 32 kHz external oscillator
3:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG)

Base 0x400F.E000 Offset 0x144

Type R/W,	reset 0x0780.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved				DSDI	VORIDE				•	•	reserved		•	
Type Reset	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•			reserved					[DSOSCSR	C		rese	erved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
В	it/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:29		reser	ved	R	C	0x0	com	patibility	with futu	ure prod	ucts, the	of a rese value of operatio	a reserv		
	28:23		DSDIVC	RIDE	R/	N	0x0F	Divi	der Field	Overrid	е					
								6-bit runr		divider f	ield to ov	verride w	hen Dee	p-Sleep	occurs v	vith PLL
	22:7		reser	ved	R	С	0x0	com	patibility	with futu	ure prod	ucts, the	of a rese value of operatio	a reserv		
	6:4		DSOSC	SRC	R/	N	0x0	Cloc	k Sourc	е						
								Spe	cifies the	e clock s	ource du	uring Dee	ep-Sleep	mode.		
								Valu	ue Desc	ription						
								0x0	NOC	RIDE						
								0x1			o the os	cillator cl	ock sour	ce is do	ne.	
									Use	internal ⁻	12 MHz	oscillato	r as sour	ce.		
								0x3	30k⊢	lz						
									Use	30 kHz ii	nternal c	scillator.				
								0x7	32k⊢	z						
									Use	32 kHz e	external	oscillator				
	3:0		reser	ved	R	C	0x0	com	patibility	with futu	ure prod	ucts, the	of a resevence value of operation	a reserv		

Register 12: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type.

Base Offse	ice Ide 0x400F. et 0x004 RO, rese		on 1 (DI	D1)												
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ER	•		F	АМ			•	•	PAR	RTNO	•		•
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1	RO 1	RO 0	RO 1	RO 0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PINCOUN	T			reserved	l'			TEMP	-	P	kg I	ROHS	QI	JAL
Type Reset	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO 1	RO -	RO -
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:28		VE	R	R	0	0x1	DID	1 Versio	on						
								is n	umeric.		e of the	-		sion. The ded as fo		
								Val	ue Des	cription						
								0x1	Seco	ond versi	on of the	e DID1 re	egister fo	ormat.		
	27:24		FAI	M	R	0	0x0	Fam	nily							
								Lum	ninary M		uct portf	olio. The		the devic s encode		
								Val	ue Des	cription						
								0x0	Stell					t is, all de //3S.	vices w	ith
					_	_		_								
	23:16		PART	NO	R	0	0xDA	Parl	Numbe	er						
									•		•			rice withir ngs are re		•
								Val	ue Des	cription						
								0xE	DA LM3	S1608						
	15:13		PINCO	UNT	R	0	0x2	Pac	kage Pir	n Count						
														evice pac e reserve		he value
								Val	ue Des	cription						
								0x2		pin or 10	8-ball pa	ackage				
										-	•	•				

Bit/Field	Name	Туре	Reset	Description
12:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	TEMP	RO	-	Temperature Range
				This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Commercial temperature range (0°C to 70°C)
				0x1 Industrial temperature range (-40°C to 85°C)
				0x2 Extended temperature range (-40°C to 105°C)
4:3	PKG	RO	-	Package Type
				This field specifies the package type. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 SOIC package
				0x1 LQFP package
				0x2 BGA package
2	ROHS	RO	1	RoHS-Compliance
				This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification Status
				This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Engineering Sample (unqualified)
				0x1 Pilot Production (unqualified)
				0x2 Fully Qualified

Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Base Offset	0x400F.E 0x008		s 0 (DC .003F	0)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			I	1			1 1	SRA	MSZ	1	I	I		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	•				FLAS	SHSZ		1	1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
_					-		-	_								
В	it/Field		Nam	ne	Ту	pe	Reset	t Description								
:	31:16		SRAM	ISZ	R	0	0x007F	SRA	AM Size							
								Indi	cates the	size of	the on-c	hip SRA	M memo	ory.		
									_							
								Val		scription						
								0x0	07F 32	KB of SI	RAM					
					_	_										
	15:0		FLASI	HSZ	R	0	0x003F	Flas	sh Size							
								Indi	cates the	e size of	the on-c	hip flash	memory	/.		
								Val	ue De	scription	1					
									03F 128	•						
								0.00	120		10011					

Register 14: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: CANs, PWM, ADC, Watchdog timer, Hibernation module, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Base Offse	0x400F.E et 0x010 RO, reset	000	-	•)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•			l		reserved								ADC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		MINS	YSDIV		rese	rved	MAXAI	DCSPD	MPU	HIB	TEMPSNS	PLL	WDT	SWO	SWD	JTAG
Type Reset	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nan	ne	Ty	pe	Reset	Des	cription							
31:17 reserved RO 0 Software should not rely on the value of a rese compatibility with future products, the value of a preserved across a read-modify-write operation 16 ADC RO 1 ADC Module Present								a reserv	•							
	16		AD	С	R	0	1	ADO	C Module	Preser	nt					
						When set, indicates that the ADC module is present.										
15:12 MINSYSDIV RO 0x3 System Clock Di							k Divide	er								
15:12 MINSYSDIV RO 0x3 System Clock Divider Minimum 4-bit divider valu hardware-dependent. See system clock divisor using						t. See the	RCC re	egister fo								
								Val	ue Desc	ription						
								0x3	Spec	ifies a 5	50-MHz Cl	PU cloc	k with a	PLL divid	der of 4.	
	11:10		reser	ved	R	0	0	com	patibility	with fut	rely on th ture produ read-mod	cts, the	value of	a reserv	•	
	9:8		MAXAD	CSPD	R	0	0x2	Мах	ADC Sp	beed						
								Indi	cates the	e maxim	um rate a	t which	the ADC	sample	s data.	
								Val	ue Desc	ription						
								0x2	500K	sample	es/second					
	7	MPU			R	0	1	MPU Present								
When set, indicates that module is present. See th for details on the MPU.						ee the ARI			•		. ,					

Device Capabilities 1 (DC1)

Bit/Field	Name	Туре	Reset	Description
6	HIB	RO	1	Hibernation Module Present When set, indicates that the Hibernation module is present.
5	TEMPSNS	RO	1	Temp Sensor Present When set, indicates that the on-chip temperature sensor is present.
4	PLL	RO	1	PLL Present When set, indicates that the on-chip Phase Locked Loop (PLL) is present.
3	WDT	RO	1	Watchdog Timer Present When set, indicates that a watchdog timer is present.
2	SWO	RO	1	SWO Trace Port Present When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present When set, indicates that the JTAG debugger interface is present.

Register 15: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Base Offse	0x400F.E 0x400F.E t 0x014 RO, reset	000	5033	-)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			reser	ved			COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0			rese	rved			SSI1	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 1	RO 1
В	Bit/Field		Nam	е	Ту	be	Reset	Des	cription							
	31:26		reserv	red	R	C	0	com	ware sho patibility erved ac	with futu	ire produ	ucts, the	value of	a reserv		
	25		COM	P1	R	С	1	Ana	log Com	parator 1	l Presen	t				
								Whe	en set, in	dicates t	hat anal	og comp	parator 1	is prese	nt.	
	24		COM	P0	R	С	1	Ana	log Com	parator () Presen	t				
								When set, indicates that analog comparator 0 is present.								
	23:20		reserv	red	R	C	0	com	ware sho patibility erved ac	with futu	ire produ	ucts, the	value of	a reserv		
	19		TIME	R3	R	С	1	Time	er 3 Pres	ent						
								Whe	en set, in	dicates t	hat Gen	eral-Pur	pose Tin	ner modu	ıle 3 is p	resent.
	18		TIME	R2	R	C	1	Time	er 2 Pres	ent						
								Whe	en set, in	dicates t	hat Gen	eral-Pur	pose Tin	ner modu	ıle 2 is p	resent.
	17		TIME	R1	R	C	1	Time	er 1 Pres	ent						
								When set, indicates that General-Purpose Timer module 1 is present.								
	16		TIME	R0	R	C	1	Time	er 0 Pres	ent						
								Whe	en set, in	dicates t	hat Gen	eral-Pur	pose Tin	ner modu	ıle 0 is p	resent.
	15		reserv	red	R	C	0	com	ware sho patibility erved ac	with futu	ire produ	ucts, the	value of	a reserv		
	14		12C ⁻	1	R	С	1	I2C	Module [·]	1 Preser	it					
When set, indicates that I2C module 1 is pro-							1 is pres	ent.								

Device Capabilities 2 (DC2)

Bit/Field	Name	Туре	Reset	Description
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	RO	1	I2C Module 0 Present
				When set, indicates that I2C module 0 is present.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	RO	1	SSI1 Present
				When set, indicates that SSI module 1 is present.
4	SSI0	RO	1	SSI0 Present
				When set, indicates that SSI module 0 is present.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	RO	1	UART1 Present
				When set, indicates that UART module 1 is present.
0	UART0	RO	1	UART0 Present
				When set, indicates that UART module 0 is present.

Register 16: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Offse	0x400F.I t 0x018 RO, rese	E000 et 0xBFFF.	0FC0	-												
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	32KHZ	reserved	CCP5	CCP4	CCP3	CCP2	CCP1	CCP0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
Type Reset	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reser			C10	C1PLUS	C1MINUS	C00		C0MINUS			rese	rved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31		32KH	ΗZ	R	0	1	32K	Hz Input	Clock A	vailable					
									en set, in KHz inpu	dicates a t clock.	an even	CCP pin	is prese	ent and c	an be us	ed as a
	30		reserv	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	29		CCF	25	R	0	1	CCF	P5 Pin P	resent						
								When set, indicates that Capture/Compare/PWM pin 5 is present.						ent.		
	28		CCF	94	R	0	1	CCF	P4 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	npare/P\	VM pin 4	is prese	ent.
	27		CCF	93	R	0	1	CCF	P3 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	npare/P\	VM pin 3	s is prese	ent.
	26		CCF	2	R	0	1	CCF	P2 Pin P	resent						
										dicates t	hat Cap	ture/Con	npare/PV	VM pin 2	is prese	ent.
	25		CCF	01	R	0	1		P1 Pin Pi						•	
	25		COP	1	П	0	I				hat Can	turo/Con	aparo/P\	MM nin 1	ie prose	nt
					_	_		When set, indicates that Capture/Compare/PWM pin 1 is present.								
	24		CCF	20	R	0	1	 CCP0 Pin Present When set, indicates that Capture/Compare/PWM pin 0 is present. 								
								Whe	en set, in	idicates t	hat Cap	ture/Con	npare/PV	VM pin 0) is prese	ent.
	23		ADC	7	R	0	1	ADO	C7 Pin Pi	resent						
								Whe	en set, in	dicates t	hat ADC	pin 7 is	present	•		
	22		ADC	6	R	0	1	ADO	C6 Pin P	resent						
When set, indicates that ADC pi							c pin 6 is	present								

Device Capabilities 3 (DC3)

Bit/Field	Name	Туре	Reset	Description
21	ADC5	RO	1	ADC5 Pin Present
				When set, indicates that ADC pin 5 is present.
20	ADC4	RO	1	ADC4 Pin Present
				When set, indicates that ADC pin 4 is present.
19	ADC3	RO	1	ADC3 Pin Present
				When set, indicates that ADC pin 3 is present.
18	ADC2	RO	1	ADC2 Pin Present
				When set, indicates that ADC pin 2 is present.
17	ADC1	RO	1	ADC1 Pin Present
				When set, indicates that ADC pin 1 is present.
16	ADC0	RO	1	ADC0 Pin Present
				When set, indicates that ADC pin 0 is present.
15:12	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
11	C10	RO	1	C1o Pin Present
				When set, indicates that the analog comparator 1 output pin is present.
10	C1PLUS	RO	1	C1+ Pin Present
				When set, indicates that the analog comparator 1 (+) input pin is present.
9	C1MINUS	RO	1	C1- Pin Present
				When set, indicates that the analog comparator 1 (-) input pin is present.
8	C0O	RO	1	C0o Pin Present
				When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present
				When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present
				When set, indicates that the analog comparator 0 (-) input pin is present.
5:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Ethernet MAC and PHY, GPIOs, and CCP I/Os. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

	RO, rese	t 0x0000.	C0FF														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								rese	erved	•	•	•	1		•	'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	CCP7	CCP6			rese	rved			GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA	
Type Reset	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	scription								
	31:16		reserv	ved	R	0	0	con	tware sh npatibility served a	with fut	ure prod	ucts, the	value of	a reserv			
	15		CCF	7	R	0	1	CC	P7 Pin P	resent							
								When set, indicates that Capture/Compare/PWM pin 7 is present.									
	14		CCF	P6	R	0	1	1 CCP6 Pin Present									
								When set, indicates that Capture/Compare/PWM pin 6 is present.									
	13:8		reserv	ved	R	0	0	con	tware sh npatibility served a	with fut	ure prod	ucts, the	value of	a reserv	•		
	7		GPIC	ЮН	R	0	1	GP	IO Port H	l Presen	t						
								Wh	en set, ir	dicates	that GPI	O Port H	is prese	ent.			
	6		GPIC)G	R	0	1	GP	IO Port G	Presen	ıt						
								Wh	en set, ir	dicates	that GPI	O Port G	is prese	ent.			
	5		GPIC	DF	R	0	1	GP	IO Port F	Present	t						
								Wh	en set, ir	dicates	that GPI	O Port F	is prese	nt.			
	4		GPIC	DE	R	0	1	1 GPIO Port E Present									
								Wh	en set, ir	dicates	that GPI	O Port E	is prese	ent.			
	3		GPIC	DD	R	0	1	GP	IO Port D	Presen	t						
								Wh	en set, ir	dicates	that GPI	O Port D	is prese	ent.			
	2		GPIC	C	R	0	1	GP	IO Port C	Presen	t						
When set, indicates that GPIO Po								PIO Port C is present.									

Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C Type RO, reset 0x0000 COEE

Bit/Field	Name	Туре	Reset	Description
1	GPIOB	RO	1	GPIO Port B Present
				When set, indicates that GPIO Port B is present.
0	GPIOA	RO	1	GPIO Port A Present
				When set, indicates that GPIO Port A is present.

Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	1	reserved	і і						1	ADC
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved		1	MAXAE	DCSPD	reserved	HIB	rese	rved	WDT		reserved	
Гуре eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:17		reserv	ved	R	0	0	com		with futu	ire prodi	ucts, the	value of	a reser	it. To prov ved bit sh	
	16		ADO	С	R/	W	0	ADO	C0 Clock	Gating (Control					
								rece disa	eives a clo	ock and	function	s. Other	wise, the	unit is	e 0. If set, unclockeo e unit gen	d and
	15:10		reserv	ved	R	0	0	com		with futu	ure produ	ucts, the	value of	a reser	it. To prov ved bit sh	
	9:8		MAXAD	CSPD	R	W	0	ADO	C Sample	Speed						
								the		er than t	he maxii	num rat	e. You ca		a. You car le sample	
								Val	ue Desci	ription						
								Val 0x2			s/second	ł				
									2 500K	sample	s/secono s/secono					

Run Mode Clock Gating Control Register 0 (RCGC0)

Bit/Field	Name	Туре	Reset	Description
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	HIB	R/W	0	HIB Clock Gating Control
				This bit controls the clock gating for the Hibernation module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.
5:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	1	reserved	· ·			1			-	ADC
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	1	erved	1	1	1		reserved	HIB		rved	WDT	2	reserved	0
уре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	R/W	RO	RO	R/W	RO	RO	RO
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	scription							
	31:17		reser	ved	R	0	0	con		with fut	ure prod	ucts, the	value of	a rese	it. To prov	
	16		AD	с	R	/W	0		C0 Clock							
								rece disa	eives a cl	ock and	function	s. Other	wise, the	e unit is	e 0. If set, unclocked e unit gen	d and
	15:10		reser	ved	R	0	0	con		with fut	ure prod	ucts, the	value of	a rese	it. To prov rved bit sh	
	9:8		MAXAD	CSPD	R	/W	0	AD	C Sample	Speed						
								the		er than t	the maxi	mum rat	e. You ca		a. You cai ne sample	
								Val	ue Desc	ription						
								0x2	2 500K	sample	s/secon	d				
								0x1	1 250K	sample	s/secon	b				
								0x2	2 500K	sample						

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Bit/Field	Name	Туре	Reset	Description
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	HIB	R/W	0	HIB Clock Gating Control
				This bit controls the clock gating for the Hibernation module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.
5:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	0x400F.E t 0x120 R/W, rese	E000	00040			togioto											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
								reserved						•	'	ADC	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			rese				MAXAE		reserved	HIB		rved	WDT		reserved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:17		reserved RO ADC R/W			0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.								
	16		ADO	С	R/	W	0	0 ADC0 Clock Gating Control									
			ADC R/W			rece disa	s bit contr eives a clo abled. If th us fault.	ock and	function	s. Other	wise, the	unit is	unclocke	d and			
	15:10		reserv	ved	R	0	0	com	tware sho npatibility served ac	with futu	ire prodi	ucts, the	value of	a reser			
	9:8		MAXAD	CSPD	R/	W	0	ADO	C Sample	Speed							
								the	s field sets rate highe ing the M2	er than t	he maxii	num rate	e. You ca				
								Val	ue Desci	ription							
								0x2	2 500K	sample	s/second	t					
								0x1	250K	sample	s/second	t					
								0x0) 125K	sample	s/second	t					

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Bit/Field	Name	Туре	Reset	Description
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	HIB	R/W	0	HIB Clock Gating Control
				This bit controls the clock gating for the Hibernation module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled.
5:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	WDT	R/W	0	WDT Clock Gating Control
				This bit controls the clock gating for the WDT module. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, a read or write to the unit generates a bus fault.
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x104 R/W, rese		00000		U	,	,									
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		resei	rved	1		COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0			rese	erved		1	SSI1	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nam	е	Ту	ре	Reset	Des	cription							
	31:26		reserv	red	R	0	0	com	patibility	ould not i with futu cross a re	ure produ	ucts, the	value of	a reserv		
	25		COM	P1	R/	W	0	Ana	log Com	parator 1	1 Clock (Gating				
					R/W			rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is u	inclocke	d and
	24		COM	P0	R/	W	0	Ana	log Com	parator () Clock (Gating				
								rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is u	inclocke	d and
	23:20		reserv	red	R	0	0	com	patibility	ould not i with futu cross a re	ure produ	ucts, the	value of	a reserv		
	19		TIME	R3	R/	W	0	Time	er 3 Clo	ck Gating	Control					
								lf se uncl	t, the ur ocked a	rols the c it receive nd disabl erate a b	es a cloc led. If the	k and fu	nctions.	Otherwis	se, the u	nit is

Run Mode Clock Gating Control Register 1 (RCGC1)

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E et 0x114 R/W, rese	000	00000	e en la e	i i togiot		0001)									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		reser	ved			COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	I2C1	reserved	I2C0			rese	erved			SSI1	SSI0	rese	rved	UART1	UART0
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
E	Bit/Field		Nam	е	Ту	ре	Reset	Des	cription							
	31:26		reserv	ed	R	0	0	com	patibility	with futu	ure prod	ucts, the	of a resolution of a resolutio	a reserv		
	25		COM	P 1	R/	W	0	Ana	log Com	parator '	1 Clock (Gating				
								rece disa	ives a c	ock and	function	s. Other	nalog cor wise, the s or write	unit is u	inclocke	d and
	24		COM	⊃0	R	W	0	Ana	log Com	parator (Clock	Gating				
								rece disa	ives a c	ock and	function	s. Other	nalog cor wise, the s or write	unit is u	inclocke	d and
	23:20		reserv	ed	R	0	0	com	patibility	with futu	ure prod	ucts, the	of a reso value of operation	a reserv		
	19		TIME	₹3	R/	W	0	Time	er 3 Cloc	k Gating	control					
								lf se uncl	t, the un ocked a	it receive	es a cloo led. If th	k and fu	General-F Inctions. unclocke	Otherwis	se, the u	nit is

Sleep Mode Clock Gating Control Register 1 (SCGC1)

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base 0x400F.E000 Offset 0x124																	
Туре	R/W, rese																
ſ	31	30	29	28	27	26	25 COMP1	24 COMP0	23	22	21	20	19 TIMER3	18 TIMER2	17 TIMER1	16 TIMER0	
_ l			rese		L		R/W			rese							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved	I2C1	reserved	I2C0			rese	rved		-	SSI1	SSI0	rese	rved	UART1	UART0	
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
В	Bit/Field		Name			Туре		Des	Description								
	31:26		reserved			0	0	com	,			he value of a reserved bit. To provide ucts, the value of a reserved bit should be dify-write operation.					
25			COMP1		R/W		0	Ana	Analog Comparator 1 Clock Gating								
									This bit controls the clock gating for analog comparator 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.								
24			COMP0			R/W		Ana	Analog Comparator 0 Clock Gating								
								rece disa	This bit controls the clock gating for analog comparator 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.								
23:20			reserved		RO		0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.								
	19		TIME	R3	R/	W	0	Time	er 3 Cloo	k Gating	Control						
								lf se uncl	t, the un ocked a	rols the c it receive nd disabl erate a b	es a cloc ed. If the	k and fu	nctions.	Otherwis	se, the u	nit is	

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

Bit/Field	Name	Туре	Reset	Description
18	TIMER2	R/W	0	Timer 2 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 2. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14	I2C1	R/W	0	I2C1 Clock Gating Control
				This bit controls the clock gating for I2C module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
13	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
12	I2C0	R/W	0	I2C0 Clock Gating Control
				This bit controls the clock gating for I2C module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Clock Gating Control
				This bit controls the clock gating for SSI module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
1	UART1	R/W	0	UART1 Clock Gating Control
				This bit controls the clock gating for UART module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate

a bus fault.

Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	0x400F.E t 0x108 R/W, rese	E000	00000	ontion	vegistei	2 (110	662)									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•		rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reser	0	0	0	0	0	0	0	U	0	Ū	Ū	0	0	U	Ū	0
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription							
31:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.																
	7		GPIC	ЭН	R/	W	0	Por	t H Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	e, the u	Port H. If nit is und o the unit	locked a	ind disat	oled. If
	6		GPIC	G	R/	W	0	Por	t G Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	e, the u	Port G. If nit is unc o the unif	locked a	ind disat	oled. If
	5		GPIC)F	R/	W	0	Por	t F Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	e, the u	Port F. If s nit is und o the unit	locked a	ind disat	oled. If
	4		GPIC	DE	R/	W	0	Por	t E Clock	Gating	Control					
								cloc	k and fu	nctions.	Otherwis	e, the u	Port E. If nit is und o the unif	locked a	ind disat	oled. If

Run Mode Clock Gating Control Register 2 (RCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x118 R/W, rese		000000		0	,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ſ				r r	rese	rved	ſ	i i	r	i I	i i	i	ſ
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese					GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
Reber	Ū	Ū	Ũ	0	0	Ū	Ū	Ū	Ū	Ū	Ũ	Ũ	0	Ũ	Ũ	Ū
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.								
	7		GPIC	ЭН	R/	W	0	Port	H Clock	Gating	Control					
			GPIOH R/W					cloc	k and fui	nctions.	Otherwis	se, the u	nit is und	set, the clocked a t will gen	and disat	oled. If
	6		GPIC)G	R/	W	0	Port	G Clock	Gating	Control					
			GPIOG R/W					This bit controls the clock gating for Port G. If set, the unit r clock and functions. Otherwise, the unit is unclocked and d the unit is unclocked, reads or writes to the unit will generate							and disat	oled. If
	5		GPIC	DF	R/	W	0	Port F Clock Gating Control								
								cloc	k and fu	nctions.	Otherwis	se, the u	nit is und	set, the u clocked a t will gen	and disat	oled. If
	4		GPIC	DE	R/	W	0	Port	E Clock	Gating	Control					
								cloc	k and fui	nctions.	Otherwis	se, the u	nit is und	set, the i clocked a t will gen	and disat	oled. If

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x128 R/W, rese		00000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1				т т	rese	erved		1	1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	Ū	Ū	°,	•	0		Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ũ
В	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	7		GPIC	ЭН	R/	N	0	Por	t H Clock	Gating	Control					
								cloc	bit cont k and fui unit is un	nctions.	Otherwis	se, the u	nit is und	locked a	ind disat	oled. If
	6		GPIC)G	R/	N	0	Por	t G Clock	Gating	Control					
						cloc	bit cont k and fui unit is un	nctions.	Otherwis	se, the u	nit is und	clocked a	ind disat	oled. If		
	5		GPIC	DF	R/	N	0	Por	t F Clock	Gating	Control					
								cloc	s bit cont k and fui unit is un	nctions.	Otherwis	se, the u	nit is und	locked a	ind disat	oled. If
	4		GPIC	DE	R/	N	0	Por	t E Clock	Gating	Control					
								cloc	bit cont k and fui unit is un	nctions.	Otherwis	se, the u	nit is und	locked a	ind disat	oled. If

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Bit/Field	Name	Туре	Reset	Description
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

r					î						
31 30 29 28 27 20											
Offse	0x400F.E t 0x040 R/W, rese	E000 et 0x00000	0000								
Soft	ware R	eset Co	ntrol 0	(SRCR))						

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
								reserved				1			1	ADC			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0			
Resel		-	-	-	-				-	-				-	-				
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
					reserved					HIB		erved	WDT		reserved				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0			
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription										
	04.47			1		~	0	0 - 6							· -				
	31:17		reserv	/ed	R	0	0		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be										
												dify-write							
	16		ADO	2	R/	W	0	ADC	0 Reset	Control									
							C C					nodule 0							
								NC5					•						
	15:7		reserv	/ed	R	0	0		Software should not rely on the value of a reserved bit. To pro compatibility with future products, the value of a reserved bit s						•				
									preserved across a read-modify-write operation.										
	0						0		Deseto			-							
	6		HIE	5	R/	VV	0		Reset C										
								Res	et contro	ol for the	Hiberna	tion mod	ule.						
	5:4		reserv	/ed	R	0	0	Software should not rely on the value of a reserved bit. To provide											
								compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
								pres	preserved across a read-modily-write operation.										
	3		WD.	Т	R/	W	0	WD.	T Reset	Control									
								Res	et contro	ol for Wat	chdog u	ınit.							
	2:0 reserved RO						0	Software should not rely on the value of a reserved bit. To provide							vide				
							U	compatibility with future products, the value of a reserved bit. To provide											
							pres	served a	cross a re	ead-mod	dify-write	operatio	on.						

Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.

Base Offset	0x400F.E t 0x044 R/W, rese	000		(SRUR	1)													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			rese	rved			COMP1	COMP0		rese	rved		TIMER3	TIMER2	TIMER1	TIMER0		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved	I2C1	reserved	I2C0		l	rese	erved		•	SSI1	SSI0	rese	rved	UART1	UART0		
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0		
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription									
:	31:26		reserv	/ed	R	0	0	con	npatibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv				
	25		COM	P1	R/	W	0	Ana	llog Com	p 1 Rese	et Contro	bl						
								Reset control for analog comparator 1.										
	24		COM	P0	R/	W	0	Ana	log Com	p 0 Rese	et Contro	bl						
								Res	et contro	ol for ana	alog com	parator (0.					
:	23:20		reserv	/ed	R	0	0	con	Software should not rely on the value of a reserved bit. To pr compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.									
	19		TIME	R3	R/	W	0	Tim	Timer 3 Reset Control									
								Res	et contro	ol for Gei	neral-Pu	rpose Ti	mer mod	ule 3.				
	18		TIME	R2	R/	W	0	Tim	er 2 Res	et Contro	ol							
								Res	et contro	ol for Gei	neral-Pu	rpose Ti	mer mod	ule 2.				
	17		TIME	R1	R/	W	0	Tim	er 1 Res	et Contro	ol							
								Res	et contro	ol for Gei	neral-Pu	rpose Ti	mer mod	ule 1.				
	16		TIME	R0	R/	W	0	Tim	er 0 Res	et Contro	ol							
	Reset										Reset control for General-Purpose Timer module 0.							
	15		reserv	ved	R	0	0	Software should not rely on th compatibility with future produ preserved across a read-mod				ucts, the	value of	a reserv				
	14		I2C	1	R/	W	0	I2C	1 Reset	Control								
								Res	et contro	ol for I2C	unit 1.							
	13		reserv	/ed	R	0	0	con	npatibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•			

Software Reset Control 1 (SRCR1)

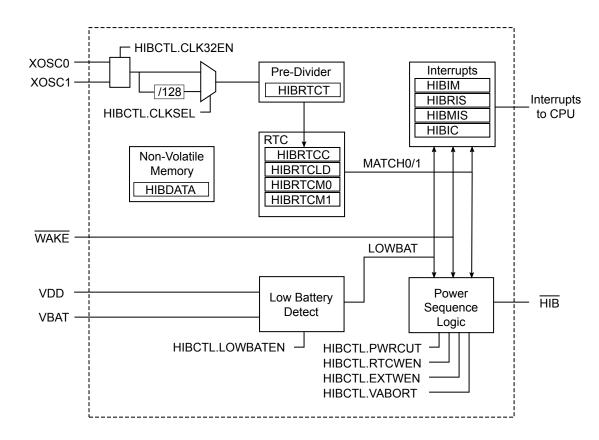
Bit/Field	Name	Туре	Reset	Description
12	I2C0	R/W	0	I2C0 Reset Control
				Reset control for I2C unit 0.
11:6	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
5	SSI1	R/W	0	SSI1 Reset Control
				Reset control for SSI unit 1.
4	SSI0	R/W	0	SSI0 Reset Control
				Reset control for SSI unit 0.
3:2	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	UART1	R/W	0	UART1 Reset Control
				Reset control for UART unit 1.
0	UART0	R/W	0	UART0 Reset Control
				Reset control for UART unit 0.

Register 29: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Base Offsei	0x400F.E t 0x048 R/W, rese	000	00000		~)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved					•	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	1				GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ie	Ty	pe	Reset	Des	scription							
	31:8		reserv	/ed	R	0	0	con	tware sho npatibility served a	with futu	ure prod	ucts, the	value of	a reserv		
	7		GPIC	ЭН	R/	W	0	Por	t H Rese	t Control	l					
								Res	set contro	ol for GP	IO Port I	١.				
	6		GPIC)G	R/	W	0	Por	t G Rese	t Contro	I					
								Res	set contro	ol for GP	IO Port (Э.				
	5		GPIC	DF	R/	W	0	Por	t F Rese	t Control						
								Res	set contro	ol for GP	IO Port F	Ξ.				
	4		GPIC	DE	R/	W	0	Por	t E Rese	t Control						
								Res	set contro	ol for GP	IO Port E	Ξ.				
	3		GPIC	DD	R/	W	0	Por	t D Rese	t Control	l					
								Res	set contro	ol for GP	IO Port I	Э.				
	2		GPIC	C	R/	W	0	Port C Reset Control								
								Res	set contro	ol for GP	IO Port (С.				
	1		GPIC	ЭB	R/	W	0	Por	t B Rese	t Control						
								Res	set contro	ol for GP	IO Port E	3.				
	0		GPIC	DA	R/	W	0	Por	t A Rese	t Control						
								Res	set contro	ol for GP	IO Port A	۹.				

Software Reset Control 2 (SRCR2)


7 Hibernation Module

The Hibernation Module manages removal and restoration of power to the rest of the microcontroller to provide a means for reducing power consumption. When the processor and peripherals are idle, power can be completely removed with only the Hibernation Module remaining powered. Power can be restored based on an external signal, or at a certain time using the built-in real-time clock (RTC). The Hibernation module can be independently supplied from a battery or an auxiliary power supply.

The Hibernation module has the following features:

- Power-switching logic to discrete external regulator
- Dedicated pin for waking from an external signal
- Low-battery detection, signaling, and interrupt generation
- 32-bit real-time counter (RTC)
- Two 32-bit RTC match registers for timed wake-up and interrupt generation
- Clock source from a 32.768-kHz external oscillator or a 4.194304-MHz crystal
- RTC predivider trim for making fine adjustments to the clock rate
- 64 32-bit words of non-volatile memory
- Programmable interrupts for RTC match, external wake, and low battery events

7.1 Block Diagram

Figure 7-1. Hibernation Module Block Diagram

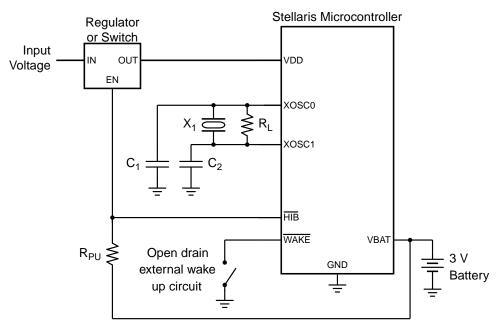
7.2 Functional Description

The Hibernation module controls the power to the processor with an enable signal (HIB) that signals an external voltage regulator to turn off. The Hibernation module power is determined dynamically. The supply voltage of the Hibernation module is the larger of the main voltage source (VDD) or the battery/auxilliary voltage source (VBAT). A voting circuit indicates the larger and an internal power switch selects the appropriate voltage source. The Hibernation module also has a separate clock source to maintain a real-time clock (RTC). Once in hibernation, the module signals an external voltage regulator to turn back on the power when an external pin (WAKE) is asserted, or when the internal RTC reaches a certain value. The Hibernation module can also detect when the battery voltage is low, and optionally prevent hibernation when this occurs.

Power-up from a power cut to code execution is defined as the regulator turn-on time (specified at $t_{\text{HIB TO VDD}}$ maximum) plus the normal chip POR (see "Hibernation Module" on page 458).

7.2.1 Register Access Timing

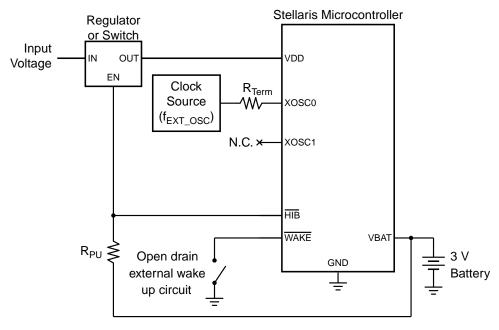
Because the Hibernation module has an independent clocking domain, certain registers must be written only with a timing gap between accesses. The delay time is $t_{HIB_REG_WRITE}$, therefore software must guarantee that a delay of $t_{HIB_REG_WRITE}$ is inserted between back-to-back writes to certain


Hibernation registers, or between a write followed by a read to those same registers. There is no restriction on timing for back-to-back reads from the Hibernation module.

7.2.2 Clock Source

The Hibernation module must be clocked by an external source, even if the RTC feature will not be used. An external oscillator or crystal can be used for this purpose. To use a crystal, a 4.194304-MHz crystal is connected to the xosco and xoscl pins. This clock signal is divided by 128 internally to produce the 32.768-kHz clock reference. To use a more precise clock source, a 32.768-kHz oscillator can be connected to the xosco pin. See Figure 7-2 on page 122 and Figure 7-3 on page 123. Note that these diagrams only show the connection to the Hibernation pins and not to the full system. See "Hibernation Module" on page 458 for specific values.

The clock source is enabled by setting the CLK32EN bit of the **HIBCTL** register. The type of clock source is selected by setting the CLKSEL bit to 0 for a 4.194304-MHz clock source, and to 1 for a 32.768-kHz clock source. If the bit is set to 0, the input clock is divided by 128, resulting in a 32.768-kHz clock source. If a crystal is used for the clock source, the software must leave a delay of t_{XOSC_SETTLE} after setting the CLK32EN bit and before any other accesses to the Hibernation module registers. The delay allows the crystal to power up and stabilize. If an oscillator is used for the clock source, no delay is needed.


Figure 7-2. Clock Source Using Crystal

Note: R_{TERM} = Optional series termination resistor.

 R_{PU} = Pull-up resistor (1 M¹/₂).

See "Hibernation Module" on page 458 for specific parameter values.

Figure 7-3. Clock Source Using Dedicated Oscillator

Note: X_1 = Crystal frequency is f_{XOSC_XTAL} .

 R_L = Load resistor is R_{XOSC_LOAD} .

 $C_{1,2}$ = Capacitor value derived from crystal vendor load capacitance specifications.

 R_{PU} = Pull-up resistor (1 M¹/₂).

See "Hibernation Module" on page 458 for specific parameter values.

7.2.3 Battery Management

The Hibernation module can be independently powered by a battery or an auxiliary power source. The module can monitor the voltage level of the battery and detect when the voltage drops below 2.35 V. When this happens, an interrupt can be generated. The module also can be configured so that it will not go into Hibernate mode if the battery voltage drops below this threshold. Battery voltage is not measured while in Hibernate mode.

Important: System level factors may affect the accuracy of the low battery detect circuit. The designer should consider battery type, discharge characteristics, and a test load during battery voltage measurements.

Note that the Hibernation module draws power from whichever source (VBAT or VDD) has the higher voltage. Therefore, it is important to design the circuit to ensure that VDD is higher that VBAT under nominal conditions or else the Hibernation module draws power from the battery even when VDD is available.

The Hibernation module can be configured to detect a low battery condition by setting the LOWBATEN bit of the **HIBCTL** register. In this configuration, the LOWBAT bit of the **HIBRIS** register will be set when the battery level is low. If the VABORT bit is also set, then the module is prevented from entering Hibernation mode when a low battery is detected. The module can also be configured to generate an interrupt for the low-battery condition (see "Interrupts and Status" on page 125).

7.2.4 Real-Time Clock

The Hibernation module includes a 32-bit counter that increments once per second with a proper clock source and configuration (see "Clock Source" on page 122). The 32.768-kHz clock signal is fed into a predivider register which counts down the 32.768-kHz clock ticks to achieve a once per second clock rate for the RTC. The rate can be adjusted to compensate for inaccuracies in the clock source by using the predivider trim register, **HIBRTCT**. This register has a nominal value of 0x7FFF, and is used for one second out of every 64 seconds to divide the input clock. This allows the software to make fine corrections to the clock rate by adjusting the predivider trim register up or down from 0x7FFF. The predivider trim should be adjusted up from 0x7FFF in order to slow down the RTC rate, and down from 0x7FFF in order to speed up the RTC rate.

The Hibernation module includes two 32-bit match registers that are compared to the value of the RTC counter. The match registers can be used to wake the processor from hibernation mode, or to generate an interrupt to the processor if it is not in hibernation.

The RTC must be enabled with the RTCEN bit of the **HIBCTL** register. The value of the RTC can be set at any time by writing to the **HIBRTCLD** register. The predivider trim can be adjusted by reading and writing the **HIBRTCT** register. The predivider uses this register once every 64 seconds to adjust the clock rate. The two match registers can be set by writing to the **HIBRTCM0** and **HIBRTCM1** registers. The RTC can be configured to generate interrupts by using the interrupt registers (see "Interrupts and Status" on page 125).

7.2.5 Non-Volatile Memory

The Hibernation module contains 64 32-bit words of memory which are retained during hibernation. This memory is powered from the battery or auxiliary power supply during hibernation. The processor software can save state information in this memory prior to hibernation, and can then recover the state upon waking. The non-volatile memory can be accessed through the **HIBDATA** registers.

7.2.6 Power Control

Important: The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces of the system must be driven to $0 V_{DC}$ or powered down with the same regulator controlled by HIB. See "Hibernation Module" on page 458 for more details.

The Hibernation module controls power to the processor through the use of the HIB pin, which is intended to be connected to the enable signal of the external regulator(s) providing 3.3 V and/or 2.5 V to the microcontroller. When the HIB signal is asserted by the Hibernation module, the external regulator is turned off and no longer powers the microcontroller. The Hibernation module remains powered from the VBAT supply, which could be a battery or an auxiliary power source. Hibernation mode is initiated by the microcontroller setting the HIBREQ bit of the **HIBCTL** register. Prior to doing this, a wake-up condition must be configured, either from the external WAKE pin, or by using an RTC match.

The Hibernation module is configured to wake from the external \overline{WAKE} pin by setting the PINWEN bit of the **HIBCTL** register. It is configured to wake from RTC match by setting the RTCWEN bit. Either one or both of these bits can be set prior to going into hibernation. The \overline{WAKE} pin includes a weak internal pull-up. Note that both the \overline{HIB} and \overline{WAKE} pins use the Hibernation module's internal power supply as the logic 1 reference.

When the Hibernation module wakes, the microcontroller will see a normal power-on reset. It can detect that the power-on was due to a wake from hibernation by examining the raw interrupt status

register (see "Interrupts and Status" on page 125) and by looking for state data in the non-volatile memory (see "Non-Volatile Memory" on page 124).

When the $\overline{\text{HIB}}$ signal deasserts, enabling the external regulator, the external regulator must reach the operating voltage within t_{HIB TO VDD}.

7.2.7 Interrupts and Status

The Hibernation module can generate interrupts when the following conditions occur:

- Assertion of WAKE pin
- RTC match
- Low battery detected

All of the interrupts are ORed together before being sent to the interrupt controller, so the Hibernate module can only generate a single interrupt request to the controller at any given time. The software interrupt handler can service multiple interrupt events by reading the **HIBMIS** register. Software can also read the status of the Hibernation module at any time by reading the **HIBRIS** register which shows all of the pending events. This register can be used at power-on to see if a wake condition is pending, which indicates to the software that a hibernation wake occurred.

The events that can trigger an interrupt are configured by setting the appropriate bits in the **HIBIM** register. Pending interrupts can be cleared by writing the corresponding bit in the **HIBIC** register.

7.3 Initialization and Configuration

The Hibernation module can be set in several different configurations. The following sections show the recommended programming sequence for various scenarios. The examples below assume that a 32.768-kHz oscillator is used, and thus always show bit 2 (CLKSEL) of the **HIBCTL** register set to 1. If a 4.194304-MHz crystal is used instead, then the CLKSEL bit remains cleared. Because the Hibernation module runs at 32 kHz and is asynchronous to the rest of the system, software must allow a delay of $t_{\text{HIB}_\text{REG}_\text{WRITE}}$ after writes to certain registers (see "Register Access Timing" on page 121). The registers that require a delay are listed in a note in "Register Map" on page 126 as well as in each register description.

7.3.1 Initialization

The clock source must be enabled first, even if the RTC will not be used. If a 4.194304-MHz crystal is used, perform the following steps:

- 1. Write 0x40 to the **HIBCTL** register at offset 0x10 to enable the crystal and select the divide-by-128 input path.
- 2. Wait for a time of t_{XOSC_SETTLE} for the crystal to power up and stabilize before performing any other operations with the Hibernation module.
- If a 32.678-kHz oscillator is used, then perform the following steps:
- 1. Write 0x44 to the HIBCTL register at offset 0x10 to enable the oscillator input.
- 2. No delay is necessary.

The above is only necessary when the entire system is initialized for the first time. If the processor is powered due to a wake from hibernation, then the Hibernation module has already been powered

up and the above steps are not necessary. The software can detect that the Hibernation module and clock are already powered by examining the CLK32EN bit of the **HIBCTL** register.

7.3.2 RTC Match Functionality (No Hibernation)

Use the following steps to implement the RTC match functionality of the Hibernation module:

- 1. Write the required RTC match value to one of the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Set the required RTC match interrupt mask in the RTCALT0 and RTCALT1 bits (bits 1:0) in the HIBIM register at offset 0x014.
- 4. Write 0x0000.0041 to the **HIBCTL** register at offset 0x010 to enable the RTC to begin counting.

7.3.3 RTC Match/Wake-Up from Hibernation

Use the following steps to implement the RTC match and wake-up functionality of the Hibernation module:

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the **HIBDATA** register at offsets 0x030-0x12C.
- 4. Set the RTC Match Wake-Up and start the hibernation sequence by writing 0x0000.004F to the **HIBCTL** register at offset 0x010.

7.3.4 External Wake-Up from Hibernation

Use the following steps to implement the Hibernation module with the external \overline{WAKE} pin as the wake-up source for the microcontroller:

- 1. Write any data to be retained during power cut to the HIBDATA register at offsets 0x030-0x12C.
- 2. Enable the external wake and start the hibernation sequence by writing 0x0000.0056 to the **HIBCTL** register at offset 0x010.

7.3.5 RTC/External Wake-Up from Hibernation

- 1. Write the required RTC match value to the **HIBRTCMn** registers at offset 0x004 or 0x008.
- 2. Write the required RTC load value to the **HIBRTCLD** register at offset 0x00C.
- 3. Write any data to be retained during power cut to the HIBDATA register at offsets 0x030-0x12C.
- 4. Set the RTC Match/External Wake-Up and start the hibernation sequence by writing 0x0000.005F to the **HIBCTL** register at offset 0x010.

7.4 Register Map

Table 7-1 on page 127 lists the Hibernation registers. All addresses given are relative to the Hibernation Module base address at 0x400F.C000.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of $t_{HIB_REG_WRITE}$ between write accesses. See "Register Access Timing" on page 121.

Table 7-1. Hibernation Module Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	HIBRTCC	RO	0x0000.0000	Hibernation RTC Counter	128
0x004	HIBRTCM0	R/W	0xFFFF.FFFF	Hibernation RTC Match 0	129
0x008	HIBRTCM1	R/W	0xFFFF.FFFF	Hibernation RTC Match 1	130
0x00C	HIBRTCLD	R/W	0xFFFF.FFFF	Hibernation RTC Load	131
0x010	HIBCTL	R/W	0x0000.0000	Hibernation Control	132
0x014	НІВІМ	R/W	0x0000.0000	Hibernation Interrupt Mask	134
0x018	HIBRIS	RO	0x0000.0000	Hibernation Raw Interrupt Status	135
0x01C	HIBMIS	RO	0x0000.0000	Hibernation Masked Interrupt Status	136
0x020	HIBIC	R/W1C	0x0000.0000	Hibernation Interrupt Clear	137
0x024	HIBRTCT	R/W	0x0000.7FFF	Hibernation RTC Trim	138
0x030- 0x12C	HIBDATA	R/W	0x0000.0000	Hibernation Data	139

7.5 **Register Descriptions**

The remainder of this section lists and describes the Hibernation module registers, in numerical order by address offset.

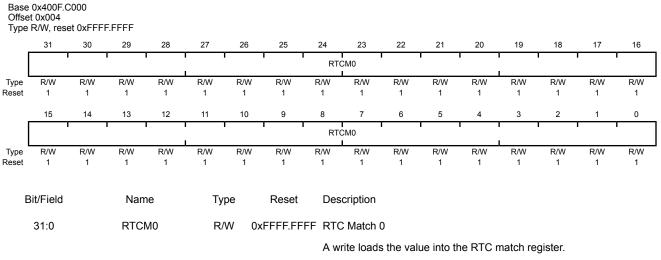
Register 1: Hibernation RTC Counter (HIBRTCC), offset 0x000

This register is the current 32-bit value of the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Counter (HIBRTCC)

Offse	0x400F.0 et 0x000 RO, rese		.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		ı ı	r	1 1	RT	cc	1			r 1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1		1	I	1 1	RT	cc	I			1 1	1	1	·
Г Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset				0	0			0								
Reset	0		0	o	o Ty	o pe	0	0 Des	0	0						

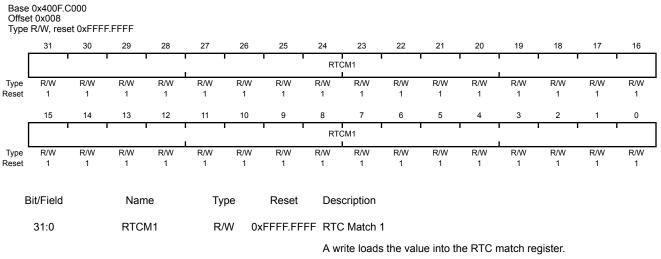

A read returns the 32-bit counter value. This register is read-only. To change the value, use the **HIBRTCLD** register.

Register 2: Hibernation RTC Match 0 (HIBRTCM0), offset 0x004

This register is the 32-bit match 0 register for the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Match 0 (HIBRTCM0)

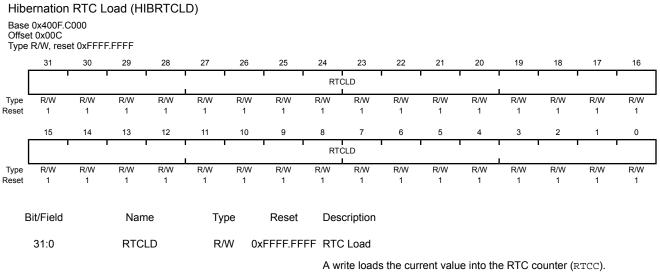

A read returns the current match value.

Register 3: Hibernation RTC Match 1 (HIBRTCM1), offset 0x008

This register is the 32-bit match 1 register for the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Hibernation RTC Match 1 (HIBRTCM1)



A read returns the current match value.

Register 4: Hibernation RTC Load (HIBRTCLD), offset 0x00C

This register is the 32-bit value loaded into the RTC counter.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

A read returns the 32-bit load value.

Register 5: Hibernation Control (HIBCTL), offset 0x010

This register is the control register for the Hibernation module.

Base Offse	ox400F.C 0x400F.C t 0x010 R/W, rese	000	ol (HIBC	TL)												
71	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1				1 1	rese	erved	ſ	1		1	ı.	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved				VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTCEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	con	npatibility	with futu	ure produ	ucts, the		a reserv	t. To prov ved bit sh	
	7		VABO	RT	R/	W	0	Pov	ver Cut A	bort Ena	able					
Value Description 0 Power cut occurs during a low 1 Power cut is aborted.												v-battery	alert.			
	6		CLK32	2EN	R/	W	0	32-1	kHz Osci	llator En	able					
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	led						
								use	d, then s		should w	ait 20 m			le. If a cr is bit to a	
	5		LOWBA	ATEN	R/	W	0	Low	/ Battery	Monitori	ng Enab	le				
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	led						
								Wh	en set, lo	w batter	y voltage	e detecti	on is ena	abled (VI	BAT < 2.:	35 V).
	4		PINW	'EN	R/	W	0	Exte	ernal WAI	E Pin E	nable					
								Val	ue Desc	ription						
								C) Disa	bled						
								1	Enat	led						

When set, an external event on the $\overline{\mathtt{WAKE}}$ pin will re-power the device.

Bit/Field	Name	Туре	Reset	Description
3	RTCWEN	R/W	0	RTC Wake-up Enable
				Value Description 0 Disabled 1 Enabled When set, an RTC match event (RTCM0 or RTCM1) will re-power the device based on the RTC counter value matching the corresponding match register 0 or 1.
2	CLKSEL	R/W	0	 Hibernation Module Clock Select Value Description 0 Use Divide by 128 output. Use this value for a 4-MHz crystal. 1 Use raw output. Use this value for a 32-kHz oscillator.
1	HIBREQ	R/W	0	 Hibernation Request Value Description 0 Disabled 1 Hibernation initiated After a wake-up event, this bit is cleared by hardware.
0	RTCEN	R/W	0	RTC Timer Enable Value Description 0 Disabled 1 Enabled

Register 6: Hibernation Interrupt Mask (HIBIM), offset 0x014

This register is the interrupt mask register for the Hibernation module interrupt sources.

Base Offsei	0x400F.0 t 0x014		pt Masl	k (HIBIN	Л)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•					rese	rved					•	'	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Hobot	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	1		1	i 1	, <u> </u>		served	-		-	r	1	EXTW	LOWBAT	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x000.0000	com	patibility	with futu	ure prod		value of	a reserv	t. To prov ved bit sł	
	3		EXT	W	R/	W	0	Exte	ernal Wa	ke-Up In	terrupt N	/lask				
								Valı	ue Desc	ription						
								0								
								1	Unm	asked						
	2		LOWE	BAT	R/	W	0	Low	Battery	Voltage	Interrup	t Mask				
								Vali	ue Desc	ription						
								0								
								1	Unm	asked						
	1		RTCA	LT1	R/	W	0	RTC	CAlert1 I	nterrupt	Mask					
								Valu	ue Desc	ription						
								0	Masł	ked						
								1	Unm	asked						
	0		RTCA	LT0	R/	W	0	RTC	CAlert0 I	nterrupt	Mask					
								Val	ue Desc	ription						
								0	Masł	ked						
								1	Unm	asked						

Register 7: Hibernation Raw Interrupt Status (HIBRIS), offset 0x018

This register is the raw interrupt status for the Hibernation module interrupt sources.

Base 0x400F.C000	
Offset 0x018	

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1				rese	rved	1	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	1 1 1	re	served		1	1	1	1	EXTW	LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	31:4			ime erved	Typ R(Reset 0x000.0000	Soft corr	patibility	/ with fut	ure proc	the value lucts, the odify-write	value of	a reserv	•	
	3		EX	TW	R	C	0	Exte	ernal Wa	ike-Up R	aw Inte	rrupt Stat	us			
	2		LOV	VBAT	R	C	0	Low	Battery	Voltage	Raw In	terrupt St	atus			
	1		RTC	ALT1	R	C	0	RTC	CAlert1	Raw Inte	rrupt St	atus				
	0		RTC	ALT0	R	C	0	RTC	CAlert0	Raw Inte	rrupt St	atus				

Register 8: Hibernation Masked Interrupt Status (HIBMIS), offset 0x01C

This register is the masked interrupt status for the Hibernation module interrupt sources.

Hibernation Masked Interrupt Status (HIBMIS)

Base 0x400F.C000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1				rese	rved	1	1	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	1	т т т	re	served		1	1	1	1	EXTW	LOWBAT	RTCALT1	RTCALT0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:4		rese	me rved	Typ RC)	Reset 0x000.0000	Soft com pres	patibility served a	v with fut cross a r	ure proc ead-mo	the value ducts, the odify-write	value of operation	a reserv	•	
	3		EX	TW	RC)	0	Exte	ernal Wa	ike-Up M	lasked	Interrupt S	Status			
	2		LOW	/BAT	RC)	0	Low	Battery	Voltage	Maske	d Interrup	t Status			
	1 RTCALT1 RO					0	RTC	CAlert1	Masked	Interrup	ot Status					
	0		RTC	ALT0	RC)	0	RTC	CAlert0	Masked	Interrup	ot Status				

Register 9: Hibernation Interrupt Clear (HIBIC), offset 0x020

This register is the interrupt write-one-to-clear register for the Hibernation module interrupt sources.

Base Offset	0x400F. t 0x020	.C000 reset 0x0		(
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1				1 1	rese	erved			1			1	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						re	served						EXTW	LOWBAT	RTCALT1	RTCALT0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W1C 0
Reser	Ū	Ũ	Ũ	0	0	Ū	0	Ū	Ū	0	Ŭ	Ũ	0	Ũ	Ũ	Ŭ
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	Bit/Field Name 31:4 reserved				R	C	0x000.0000	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	3		EXT	W	R/W	/1C	0	Exte	ernal Wal	ke-Up M	asked Ir	iterrupt (Clear			
								Rea	ids returr	n an inde	termina	te value.				
	2		LOWE	BAT	R/W	/1C	0	Low	/ Battery	Voltage	Masked	Interrup	t Clear			
								Rea	ads returr	n an inde	termina	te value.				
	1		RTCA	LT1	R/M	/1C	0	RT	C Alert1 M	Aasked I	nterrupt	Clear				
								Rea	ads returr	n an inde	termina	te value.				
0 RTCALT0 R/W1						/1C	0	RT	C Alert0 N	Aasked I	nterrupt	Clear				
								Rea	ids returr	n an inde	termina	te value.				

Hibernation Interrupt Clear (HIBIC)

Register 10: Hibernation RTC Trim (HIBRTCT), offset 0x024

This register contains the value that is used to trim the RTC clock predivider. It represents the computed underflow value that is used during the trim cycle. It is represented as $0x7FFF \pm N$ clock cycles.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Base Offse	ernation 0x400F.0 t 0x024 R/W, rese	000	rim (HII	BRTCT)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Ì		1		1 1	rese	erved		Ì	Ì	1	Ì	Î	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[Î		, , , , , , , , , , , , , , , , , , ,		1 1	TR	RIM I	1	1	I	1	1	Î	
Type Reset	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x0000	com	patibility	with fut	ure prod	ucts, the	of a res value of operatio	a reserv	•	
	15:0		TRI	М	R/	W	0x7FFF	RTC	C Trim Va	alue						
								to a	djust the	RTC rat	te to acc	ount for	ivider ev drift and / softwar	inaccura	acy in the	

value of 0x7FFF up or down.

July 26, 2008

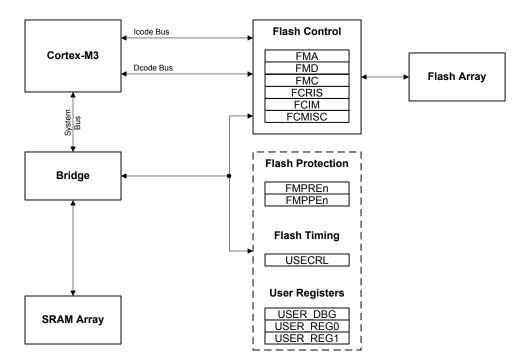
Register 11: Hibernation Data (HIBDATA), offset 0x030-0x12C

This address space is implemented as a 64x32-bit memory (256 bytes). It can be loaded by the system processor in order to store any non-volatile state data and will not lose power during a power cut operation.

Note: HIBRTCC, **HIBRTCM0**, **HIBRTCM1**, **HIBRTCLD**, **HIBRTCT**, and **HIBDATA** are on the Hibernation module clock domain and require a delay of t_{HIB_REG_WRITE} between write accesses. See "Register Access Timing" on page 121.

Base Offse	0x400F. t 0x030-0	C000		ΓA)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ı –	T	1	1 1	r	1	R	TD	ſ	r	1	1 1	1	ſ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1		I	1	R	TD		I	1	1	1		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:0		RT	D	R/	W 0>	0000.00	00 Hibe	ernation	Module	NV Regi	sters[63:	0]			

July 26, 2008


8 Internal Memory

The LM3S1608 microcontroller comes with 32 KB of bit-banded SRAM and 128 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

8.1 Block Diagram

Figure 8-1 on page 140 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

Figure 8-1. Flash Block Diagram

8.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

8.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

```
bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)
```

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.*

8.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 468 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

8.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

8.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two pairs of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read by software or debuggers. If cleared, the block may only be executed and contents of the memory block are prohibited from being accessed as data.

The policies may be combined as shown in Table 8-1 on page 141.

Table 8-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection	
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode	
		is used to protect code.	

FMPPEn	FMPREn	Protection
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0		Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt may be optionally generated (by setting the AMASK bit in the **FIM** register) to alert software developers of poorly behaving software during the development and debug phases.

An access that attempts to read an RE-protected block is prohibited. Such accesses return data filled with all 0s. A controller interrupt may be optionally generated to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This implements a policy of open access and programmability. The register bits may be changed by writing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 143.

8.3 Flash Memory Initialization and Configuration

8.3.1 Flash Programming

The Stellaris[®] devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

8.3.1.1 To program a 32-bit word

- 1. Write source data to the **FMD** register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the **FMC** register until the WRITE bit is cleared.

8.3.1.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the **FMC** register.
- 3. Poll the **FMC** register until the ERASE bit is cleared.

8.3.1.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the **FMC** register until the MERASE bit is cleared.

8.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the flash memory itself. These registers exist in a separate space from the main flash array and are not affected by an ERASE or MASS ERASE operation. These nonvolatile registers are updated by using the COMT bit in the **FMC** register to activate a write operation. For the **USER_DBG** register, the data to be written must be loaded into the **FMD** register before it is "committed". All other registers are R/W and can have their operation tried before committing them to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by user programming, but can be restored to their factory default values by performing the sequence described in the section called "Recovering a "Locked" Device" on page 52. The mass erase of the main flash array caused by the sequence is performed prior to restoring these registers.

In addition, the **USER_REG0**, **USER_REG1**, and **USER_DBG** use bit 31 (NW) of their respective registers to indicate that they are available for user write. These three registers can only be written once whereas the flash protection registers may be written multiple times. Table 8-2 on page 143 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the COMT bit of the **FMC** register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the **FMC** register to wait for the commit operation to complete.

Register to be Committed	FMA Value	Data Source
FMPRE0	0x0000.0000	FMPRE0
FMPRE1	0x0000.0002	FMPRE1
FMPRE2	0x0000.0004	FMPRE2
FMPRE3	0x0000.0008	FMPRE3
FMPPE0	0x0000.0001	FMPPE0
FMPPE1	0x0000.0003	FMPPE1
FMPPE2	0x0000.0005	FMPPE2
FMPPE3	0x0000.0007	FMPPE3
USER_REG0	0x8000.0000	USER_REG0
USER_REG1	0x8000.0001	USER_REG1
USER_DBG	0x7510.0000	FMD

Table 8-2. Flash Resident Registers^a

a. Which FMPREn and FMPPEn registers are available depend on the flash size of your particular Stellaris[®] device.

8.4 Register Map

Table 8-3 on page 144 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** registers are relative to the Flash control base address of 0x400F.D000. The **FMPREn**, **FMPPEn**, **USECRL**, **USER_DBG**, and **USER_REGn** registers are relative to the System Control base address of 0x400F.E000.

Table 8-3. Flash Register Map

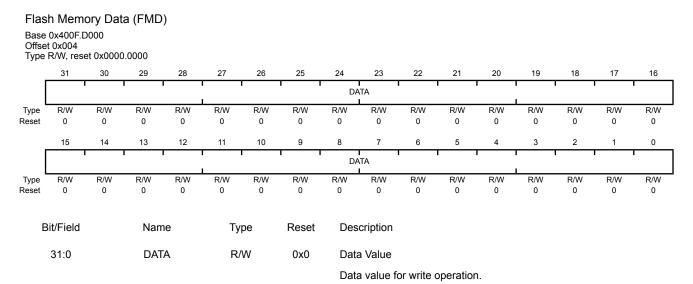
Offset	Name	Туре	Reset	Description	See page
Flash Reg	gisters (Flash Control Of	fset)		·	
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	145
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	146
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	147
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	149
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	150
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	151
Flash Reg	gisters (System Control (Offset)			
0x130	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	153
0x200	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	153
0x134	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	154
0x400	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	154
0x140	USECRL	R/W	0x31	USec Reload	152
0x1D0	USER_DBG	R/W	0xFFFF.FFFE	User Debug	155
0x1E0	USER_REG0	R/W	0xFFFF.FFFF	User Register 0	156
0x1E4	USER_REG1	R/W	0xFFFF.FFFF	User Register 1	157
0x204	FMPRE1	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 1	158
0x208	FMPRE2	R/W	0x0000.0000	Flash Memory Protection Read Enable 2	159
0x20C	FMPRE3	R/W	0x0000.0000	Flash Memory Protection Read Enable 3	160
0x404	FMPPE1	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 1	161
0x408	FMPPE2	R/W	0x0000.0000	Flash Memory Protection Program Enable 2	162
0x40C	FMPPE3	R/W	0x0000.0000	Flash Memory Protection Program Enable 3	163

8.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.


	R/W, res	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1	1		reserved		1				1	1	OFFSET
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1	1	1 1	OFF	SET	1	1	1		1	1	T
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:17		reser	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide hould be
	16:0		OFFS	SET	R/	W	0x0	Add	ress Off	set						
								non	volatile r	egisters	(see "No	operation operation operation	Registe		•	or on page

143 for details on values for this field).

Flash Memory Address (FMA) Base 0x400F.D000 Offset 0x000

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

July 26, 2008

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 145). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 146) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

	h Mem		ntrol (FN	/IC)												
Offse	et 0x400F.L et 0x008 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		1			WR	KEY		1	1	1		1	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•			res	erved			l	•		СОМТ	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		WRK	EY	W	0	0x0	Flas	sh Write	Kev						
	15:4		reserv	ved	R	0	0x0	of a field valu Soft	ccidenta for a wr e are igr ware sho	l flash wi ite to occ nored. A puld not	rites. The cur. Write read of t rely on t	e value (es to the this field he value	0xA442 FMC re returns of a res	to minimi must be v gister wit the value served bit	written in thout this e 0. To prov	to this WRKEY
											•	dify-write		f a reserv on.	red bit sr	
	3		CON	1T	R	W	0	Con	nmit Reg nmit (writ effect on	e) of reg	gister val		nvolatile	storage.	A write	of 0 has
								prev	ious cor	nmit acc	ess is co		a 0 is re	ss is prov eturned; c ed.		
								This	s can tak	e up to 5	50 µs.					
	2		MERA	SE	R	W	0	Mas	s Erase	Flash M	emory					
												n memoi e state o		device is	all eras	ed. A
								prev	ious ma	ss erase	access	is comp	lete, a 0	access is is return ete, a 1 is	ed; othe	rwise, if
								This	can tak	e up to 2	250 ms.					

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.
				This can take up to 50 up

This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000

Type RO R	22 21 20 19 18 17 16
Type RO R	
Reset 0 <td></td>	
Reset 0 <td>L</td>	L
15 14 13 12 11 10 9 8 7 6 reserved Type RO RO <td>RO RO RO RO RO 0 0 0 0 0 0 0</td>	RO RO RO RO RO 0 0 0 0 0 0 0
Type RO	
Type RO	6 5 4 3 2 1 0
Reset 0 0 0 0 0 0 0 0 0	PRIS ARIS
	RO RO RO RO RO RO
Bit/Field Name Type Reset Description	0 0 0 0 0 0
Bit/Field Name Type Reset Description	
31:2 reserved RO 0x0 Software should	d not rely on the value of a reserved bit. To provide
compatibility with	th future products, the value of a reserved bit should be
preserved across	ss a read-modify-write operation.
1 PRIS RO 0 Programming Ra	Raw Interrupt Status
This bit indicates	es the current state of the programming cycle. If set, the
	ycle completed; if cleared, the programming cycle has
	Programming cycles are either write or erase actions
generated throug	ugh the Flash Memory Control (FMC) register bits (see
page 147).	
0 ARIS RO 0 Access Raw Inte	terrupt Status
This bit indicates	s if the flash was improperly accessed. If set, the program
tried to access th	he flash counter to the policy as set in the Flash Memory
Protection Read	ad Enable (FMPREn) and Flash Memory Protection
Program Enable	le (FMPPEn) registers. Otherwise, no access has tried
to improperly act	ccess the flash.

Flash Controller Interrupt Mask (FCIM)

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

Base Offse	0x400F.D t 0x010 R/W, rese	0000	0.0000		Olivij											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ſ		1 1				т т 		erved		1		I	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1 I				reser	ved	1		1				PMASK	AMASK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:2		Nam reserv	ved	Ty R	0	Reset 0x0	Soft com pres	patibility served a	with futu cross a r	rely on tl ure produ read-moo	ucts, the	value of	a reserv	•	
	1		PMAS	SK	R/	W	0	Prog	grammin	g Interru	pt Mask					
								to th to th	ne contro	ller. If se ller. Othe	reporting et, a prog erwise, in	ramming	g-genera	ted inter	rupt is pi	romoted
	0		AMAS	SK	R/	W	0	Acc	ess Inter	rupt Ma	sk					
								cont cont	troller. If	set, an a	reporting access-go , interrup	enerated	l interrup	ot is pron	noted to	the

July 26, 2008

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

Offse	0x400F.[t 0x014 R/W1C, i		000.0000	·			·									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1			1	1 I		erved	1	1		1 I	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[Ì	r			i	reser	ved	1	r	i I	r	1	ì	PMISC	AMISC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field 31:2		Nam reserv	ved	R	pe O	Reset 0x0	Soft com pres	patibility served a	with futi cross a r	rely on tl ure produ ead-mod	ucts, the lify-write	value of operation	a reservon.	•	
	1		PMIS	SC	R/V	V1C	0	This prog by w	s bit indic grammin vriting a f	ates whe g cycle c I. The PF	ed Interru ether an complete RIS bit in RISC bit is	interrup d and wa the FCF	t was sig as not ma RIS regist	naled be asked. T	his bit is	cleared
	0		AMIS	SC	R/V	V1C	0	Acc	ess Mas	ked Inter	rrupt Sta	tus and	Clear			
								acce a 1.	ess was a	attempte	ther an ir d and wa he FCRI	is not ma	asked. Th	nis bit is o	cleared b	y writing

8.6 Flash Register Descriptions (System Control Offset)

Flash Controller Masked Interrupt Status and Clear (FCMISC)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

Register 7: USec Reload (USECRL), offset 0x140

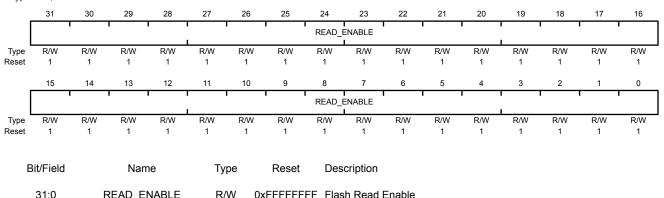
Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

USe	c Relo	ad (US	ECRL)													
Offse	0x400F.I t 0x140 R/W, res															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[I	1	1			т т	rese	erved	1		ï	1 1 1			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[ı	1	rese	rved		· ·			I	r	US	i i SEC			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x0	com	patibility	with futu	ure prod	ucts, the	of a rese value of operatio	a reserv	•	
	7:0		USE	C	R/	W	0x31	Mici	rosecono	d Reload	Value					
									z -1 of th grammed		ler clock	when th	he flash is	s being e	erased o	or
								If the	e maxim	um syste	em frequ	ency is b	being use	d, usec	should	be set to

If the maximum system frequency is being used, USEC should be set to 0x31 (50 MHz) whenever the flash is being erased or programmed.

Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200


Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 0 (FMPRE0)

Base 0x400F.E000 Offset 0x130 and 0x200 Type R/W, reset 0xFFF.FFF

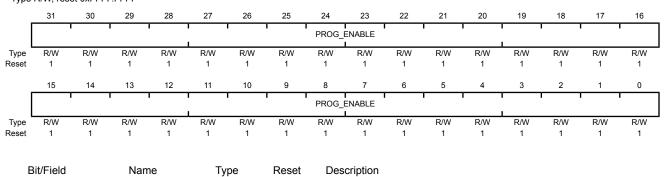
READ_ENABLE 0xFFFFFFF Flash Read Enable R/W

> Enables 2-KB flash blocks to be executed or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400


Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 0 (FMPPE0)

Base 0x400F.E000 Offset 0x134 and 0x400 Type R/W, reset 0xFFF.FFFF

31:0 PROG_ENABLE R/W 0xFFFFFFF Flash Programming Enable

Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value Description

0xFFFFFFF Enables 128 KB of flash.

Register 10: User Debug (USER_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NOTWRITTEN bit (bit 31) indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once.

Base Offse	r Debug 0x400F.E t 0x1D0 R/W, res	E000	R_DBG)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		I				1 1		DATA			1		I	I	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•		I	DA	TA			•	•		•	DBG1	DBG0
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
Reset	1	1		I	1	I	I	I		1	'	'	1			0
F	Bit/Field		Nam		Ту	00	Reset	Dec	scription							
L			Indii		i y	þe	Reset	Dea	scription							
	31		NW	/	R/	W	1	Use	er Debug	Not Writ	ten					
								Spe	ecifies that	at this 32	-bit dwo	rd has no	ot been v	written.		
									_							
	30:2		DAT	A	R/	W 0×	(1FFFFF	FF Use	er Data							
									ntains the			. This fie	ld is initi	alized to	all 1s ar	nd can
								only	/ be writte	en once.						
	1		DBG	61	R/	W	1	Deb	oug Conti	rol 1						
								The	e DBG1 bi	t must be	e 1 and 1	DBG0 mu	st be 0 f	or debug	n to be a	vailable
															,	
	0		DBG	90	R/	W	0	Deb	oug Conti	rol 0						
								The	e DBG1 bi	t must be	e 1 and 1	DBG0 mu	st be 0 f	or debug	g to be a	vailable.

Register 11: User Register 0 (USER_REG0), offset 0x1E0

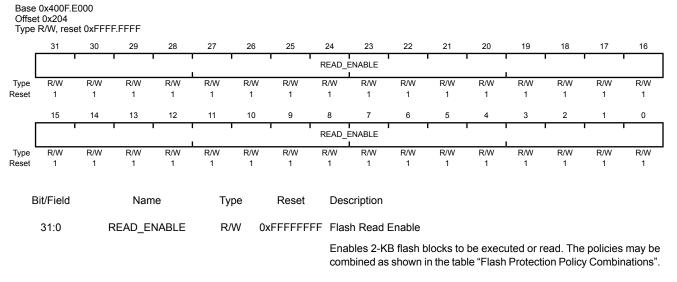
Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

Use	r Regist	er 0 (U	ISER_R	EG0)												
Offse	0x400F.E t 0x1E0 R/W, rese		F.FFFF													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[NW		1		r r I		r r		DATA			1	r 1		ſ	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		1		г г 1		1 1		ATA			1	1 I		I	1
Туре	R/W 1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset E	¹ Bit/Field	1	1 Nam	1 IE	1 Typ	1 De	1 Reset	1 Des	1 cription	1	1	1	1	1	1	1
	31		NM	/	R/	N	1	Not	Written							
								Spe	cifies tha	at this 32	-bit dwo	rd has n	ot been v	written.		
	30:0		DAT	A	R/	N 0>	v7FFFFF	F Use	r Data							
									itains the		ta value	. This fie	ld is initi	alized to	all 1s ar	ıd can

Register 12: User Register 1 (USER_REG1), offset 0x1E4

Note: Offset is relative to System Control base address of 0x400FE000.


This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device.

Base Offse	r Regis 0x400F.E t 0x1E4 R/W, rese	2000	ISER_R	EG1)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		1	1	1 1 1		1 1		DATA	ſ	1	1	1	r	1	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1		, n		1 1	DA	ATA		1	I	1	I	1	
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31		NW	/	R/	W	1	Not	Written							
								Spe	cifies that	at this 32	2-bit dwo	rd has n	ot been v	written.		
	30:0		DAT	A	R/	W 0	x7FFFFFI	FF Use	er Data							
									tains the			. This fie	eld is initi	alized to	all 1s ar	nd can

Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Value

Description 0xFFFFFFF Enables 128 KB of flash.

Flash Memory Protection Read Enable 1 (FMPRE1)

Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

	t 0x208 R/W, res	et 0x0000	0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1		г т 1		1 1	READ_E	ENABLE		1	I	1	1	1	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ			I		r r		i i	READ_E	I I ENABLE		î	Ì	1	i	Î	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:0	F	READ_EI	NABLE	R/\	N (0000000x0) Flas	h Read E	Enable						
									bles 2-KE bined as						•	

Value

Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Read Enable 2 (FMPRE2) Base 0x400F.E000

Base 0x400F.E000

Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset	t 0x20C R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		I		r r			READ_I	ENABLE		Î	I	r 1	1	1	I
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	r	1		г г 1		1 1	READ_I	ENABLE		1	I	1 1	1	1	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:0		READ_EI	NABLE	R/\	N (0x00000000) Flas	h Read E	Enable						
									bles 2-KI bined as						•	

Value

Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Read Enable 3 (FMPRE3)

Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x404 Type R/W, reset 0xFFF.FFFF 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/W R/W R/W R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Туре Reset Description PROG_ENABLE 0xFFFFFFFF Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description 0xFFFFFFF Enables 128 KB of flash.

Flash Memory Protection Program Enable 1 (FMPPE1) Base 0x400F.E000 Offset 0x404

Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 2 (FMPPE2) Base 0x400F.E000 Offset 0x408 Type R/W, reset 0x0000.0000

10.00, 103		.0000											
31	30	29	28	27	26	25	24	23	22	21	20	19	
	Γ	1		1		1 1	PROG_I	ENABLE			1	1	1
R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	l
15	14	13	12	11	10	9	8	7	6	5	4	3	
	I	I		1		1 1	PROG_I	ENABLE			1	1	
R/W	R/W	R/W	R/W	I I R/W	R/W	R/W	PROG_I	ENABLE R/W	R/W	R/W	R/W	I I R/W	•
R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			R/W 0	R/W 0	R/W 0	R/W 0	
			0		0		R/W 0	R/W					

31:0 PROG_ENABLE R/W 0x000000

0x00000000 Flash Programming Enable

Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value Description

0x00000000 Enables 128 KB of flash.

16

R/W

0

R/W

0

18

R/W

0

R/W

0

17

R/W

0

1

R/W

0

Type Reset

Type Reset

Bit

Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

Note: Offset is relative to System Control base address of 0x400FE000.

Flash Memory Protection Program Enable 3 (FMPPE3)

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

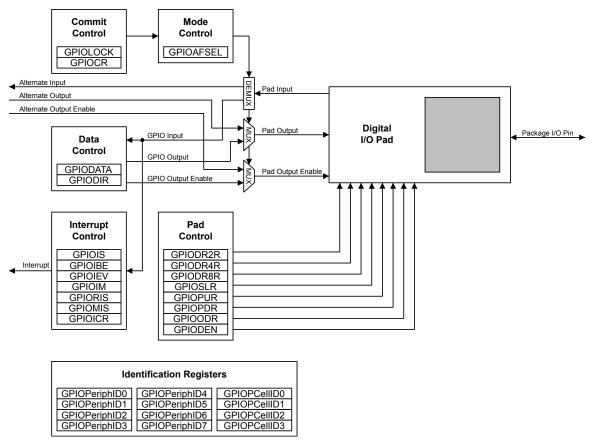
Base 0x400F.E000 Offset 0x40C Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/M R/W R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description PROG_ENABLE 0x00000000 Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description

0x00000000 Enables 128 KB of flash.

9 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of eight physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, and Port H). The GPIO module supports 17-52 programmable input/output pins, depending on the peripherals being used.

The GPIO module has the following features:


- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- 5-V-tolerant input/outputs
- Bit masking in both read and write operations through address lines
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration:
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

9.1 Functional Description

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

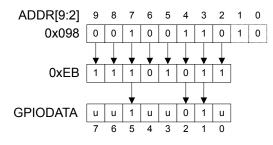
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 9-1 on page 165). The LM3S1608 microcontroller contains eight ports and thus eight of these physical GPIO blocks.

9.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

9.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 173) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


9.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 172) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

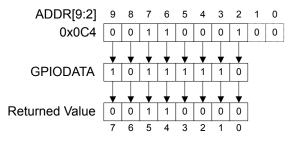

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 9-2 on page 166, where u is data unchanged by the write.

Figure 9-2. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 9-3 on page 166.

Figure 9-3. GPIODATA Read Example

9.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- **GPIO Interrupt Sense (GPIOIS)** register (see page 174)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 175)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 176)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 177).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 178 and page 179). As the name implies, the **GPIOMIS** register only shows interrupt conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt or the SETNA register and the PortB interrupt handler polls the ADC registers until the conversion is completed.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 180).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

9.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 181), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

9.1.4 Commit Control

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 181) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 191) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 192) have been set to 1.

9.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPUR**, **GPIOPUR**, **GPIOSLR**, and **GPIODEN** registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

9.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

9.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL**=0, **GPIODEN**=0, **GPIOPDR**=0, and **GPIOPUR**=0. Table 9-1 on page 168 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 9-2 on page 168 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	GPIO Reg	gister Bit Va	alue ^a							
	AFSEL	DIR	ODR	DEN	PUR	PDR	DR2R	DR4R	DR8R	SLR
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	Х	Х
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?
Open Drain Input (GPIO)	0	0	1	1	X	X	X	X	X	X
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?
Open Drain Input/Output (I ² C)	1	X	1	1	X	X	?	?	?	?
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	Х
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?

Table 9-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 9-2. GPIO Interrupt Configuration Example

Register		Pin 2 Bit Value ^a												
	Interrupt Event Trigger	7	6	5	4	3	2	1	0					
GPIOIS	0=edge 1=level	X	X	X	Х	X	0	Х	Х					
GPIOIBE	0=single edge 1=both edges	X	X	Х	Х	Х	0	Х	X					

Register		Pin 2 Bit Va	lue ^a						
	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		X	X	X	X	1	X	X
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

9.3 Register Map

Table 9-3 on page 170 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

- GPIO Port A: 0x4000.4000
- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000
- GPIO Port H: 0x4002.7000

Important: The GPIO registers in this chapter are duplicated in each GPIO block, however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect and reading those unconnected bits returns no meaningful data.

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-committable.

Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.

Table 9-3. GPIO Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	172
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	173
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	174
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	175
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	176
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	177
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	178
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	179
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	180
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	181
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	183
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	184
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	185
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	186
0x510	GPIOPUR	R/W	-	GPIO Pull-Up Select	187
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	188
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	189
0x51C	GPIODEN	R/W	-	GPIO Digital Enable	190
0x520	GPIOLOCK	R/W	0x0000.0001	GPIO Lock	191
0x524	GPIOCR	-	-	GPIO Commit	192
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	194
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	195
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	196
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	197
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	198
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	199
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	200
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	201
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	202
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	203

Offset	Name	Туре	Reset	Description	See page
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	204
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	205

9.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 173).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x000

Type R/W, reset 0x0000.0000

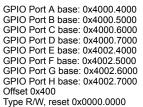
7:0

DATA

R/W

0x00

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved		•	•				•
Type	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	U	0	0	0	U	0	0	0	U	0	0	0	0	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved			l			1	DA	TΑ	1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod		value of	erved bit a reserv	•	


GPIO Data

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines <code>ipaddr[9:2]</code>. Reads from this register return its current state. Writes to this register only affect bits that are not masked by <code>ipaddr[9:2]</code> and are configured as outputs. See "Data Register Operation" on page 165 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							DI	R			
Type Reset	RO 0	R/W 0														

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DIR	R/W	0x00	GPIO Data Direction

The DIR values are defined as follows:

Value Description

- 0 Pins are inputs.
- Pins are outputs. 1

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIC GPIC GPIC GPIC GPIC GPIC Offse	Port B b Port C b Port D b Port E b Port E b Port F b Port G b	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 4002.6000 002.7000	,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Ì	1		Î	î î	rese	erved		Î	Ì	1	Ì		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ï		1	rese	rved	1	, ,				1	I	I S I	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	/ide

reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
IS	R/W	0x00	GPIO Interrupt Sense

The IS values are defined as follows:

Value Description

0 Edge on corresponding pin is detected (edge-sensitive).

1 Level on corresponding pin is detected (level-sensitive).

7:0

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 174) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 176). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x408 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1		1 1	rese	rved	I	1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		, ,			I	1	I	1 3E 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8	1:8 reserved RO 0x00 S							patibility	with fut	ure prod	he value ucts, the dify-write	value of	f a reserv	•	
	7:0		IBE	Ξ	R/	W	0x00	GPI	O Interru	ipt Both	Edges					

Value Description

The IBE values are defined as follows:

- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 176).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 174). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x40C Type R/W, reset 0x0000.0000

216.5	,																		
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			1			1	1												
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			1	rese	rved		1 1				I	I IE	V	1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
B	Bit/Field		Nam	Type Reset			Des	Description											
	31:8		reserv	RO 0x00			com	patibility	with fut	not rely on the value of a reserved bit. To provide h future products, the value of a reserved bit should be s a read-modify-write operation.									
	7:0		IEV		R/W		0x00	GPI	O Interru	ipt Even	t								
								The	IEV val	ues are o	defined a	as follow:	s:						

Value Description

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

GPIO GPIO GPIO GPIO GPIO GPIO GPIO Offse	Port B b Port C b Port D b Port E b Port F b Port G b	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserv								rved			1	1		1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved																	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
В	it/Field		Name		Ту	ре	Reset	Des	cription									
	31:8			ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be										

preserved across a read-modify-write operation.

GPIO Interrupt Mask Enable

The IME values are defined as follows:

Value Description

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

7:0

IME

R/W

0x00

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 177). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.7000 Offset 0x414 Type RO, reset 0x0000.0000

11																						
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16						
	ĩ		I	1)]		1 1	rese	rved			1	1	1	1							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0						
			I	rese	erved		1	RIS														
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0						
В	lit/Field	Field Name			Type Reset			Des	cription													
	31:8		reser	RO 0x00			com		with futu	ure prod	ucts, the	value of	eserved bit. To provide of a reserved bit should be ation.									
	7:0		RIS	5	R	0	0x00	GPI	GPIO Interrupt Raw Status													

Reflects the status of interrupt trigger condition detection on pins (raw, prior to masking).

The RIS values are defined as follows:

Value Description

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The **GPIOMIS** register is the masked interrupt status register. Bits read High in **GPIOMIS** reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set to 1), not only is an interrupt for PortB generated, but an external trigger signal is sent to the ADC. If the **ADC Event Multiplexer Select (ADCEMUX)** register is configured to use the external trigger, an ADC conversion is initiated.

If no other PortB pins are being used to generate interrupts, the ARM Integrated Nested Vectored Interrupt Controller (NVIC) Interrupt Set Enable (SETNA) register can disable the PortB interrupts and the ADC interrupt can be used to read back the converted data. Otherwise, the PortB interrupt handler needs to ignore and clear interrupts on B4, and wait for the ADC interrupt or the ADC interrupt or the SETNA register and the PortB interrupt handler polls the ADC interrupt controller (NUC) is completed.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port H base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x418 Type RO, reset 0x000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	1				rese	rved					1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved																
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	MIS	RO	0x00	GPIO Masked Interrupt Status Masked value of interrupt due to corresponding pin.

The MIS values are defined as follows:

Value Description

- 0 Corresponding GPIO line interrupt not active.
- 1 Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)

Port B ba Port C ba Port D ba Port E ba Port F ba Port G ba Port H ba Dx41C	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	00.5000 00.6000 00.7000 02.4000 02.5000 002.6000 002.7000																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
		· · ·					rese	erved	1						,				
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0				
U	0	U	U	0	0	U	U	U	0	0	0	U	0	U	0				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
			rese	rved		· ·					10	, C			'				
RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C				
0	U	U	U	U	U	U	U	U	U	0	U	U	U	U	0				
/Field		Nam	e	Type Res			Description												
31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
7:0		IC		W	1C	0x00	GPI	O Interru	upt Clear										
							The	IC valu	es are de	efined as	s follows:								
							Value Description												
										0 Corresponding interrupt is unaffected.									
	Port B ba Port C ba Port C ba Port F ba Port F ba Port F ba Port F ba Port H ba Port F	Port B base: 0x40 Port C base: 0x40 Port D base: 0x40 Port F base: 0x40 Port H base: 0x40	11C, reset 0x0000.0000 31 30 29 R0 R0 R0 0 0 0 15 14 13 R0 R0 R0 0 0 0 15 14 13 R0 R0 R0 0 0 0 //Field Nam 11:8 reserv	Port B base: 0x4000.5000 Port D base: 0x4000.6000 Port D base: 0x4000.7000 Port E base: 0x4002.4000 Port F base: 0x4002.4000 Port F base: 0x4002.5000 Port F base: 0x4002.6000 Port H base: 0x4002.7000 Port H base: 0x4000.700	Ror B base: 0x4000.5000 Vort D base: 0x4000.6000 Vort D base: 0x4000.7000 Vort E base: 0x4002.4000 Vort F base: 0x4002.5000 Vort F base: 0x4002.6000 Vort F base: 0x4002.7000 Vort F base: 0x4002.7000 Vat C 1000 11 30 29 28 27 RO RO RO RO RO 0 0 15 14 13 12 11 reserved RO RO RO RO RO 0 0 15 14 13 12 11 reserved RO RO RO RO RO 0 0 0 15 14 13 12 11 14 13 12 11 Image: RO RO	Port B base: 0x4000.5000 Port D base: 0x4000.6000 Port D base: 0x4000.7000 Port D base: 0x4002.4000 Port F base: 0x4002.5000 Port F base: 0x4002.6000 Port H base: 0x4002.7000 Port H base: 0x4000.0000 31 30 29 28 Provide H base: 0x4000.0000 31 30 29 28 Provide H base: 0x4002.7000 Provide H base: 0x4002.7000	Port B base: 0x4000.5000 Port D base: 0x4000.7000 Port D base: 0x4002.4000 Port F base: 0x4002.5000 Port F base: 0x4002.6000 Port H base: 0x4002.7000 Port H base: 0x4000.0000 31 30 29 28 27 26 25 Image: Port H base: 0x4002.7000 Port H base: 0x4000.0000 Image: Port H base: 0x4000.7000 Image: Port H base: 0x4002.7000 Image: Port H base: P	Ror B base: 0x4000.5000 Yort C base: 0x4000.6000 Yort C base: 0x4000.7000 Yort F base: 0x4002.4000 Yort F base: 0x4002.6000 Yort H base: 0x4002.6000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort C reset 0x4002.7000 Yort C reset 0x4002.7000 Yort C reset reset RO RO RO RO RO Yort C reset RO RO RO RO RO Yort D base: Yort D base: Yort D base: RO RO RO Yort D base: Yort D ba	Ror B base: 0x4000.5000 Yort C base: 0x4000.7000 Yort C base: 0x4002.4000 Yort F base: 0x4002.4000 Yort F base: 0x4002.6000 Yort H base: 0x4002.6000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort H base: 0x4002.7000 Yort C reset reserved ''TC, reset 0x0000.0000 13 31 30 29 28 27 26 25 24 23 RO 0	Port B base: 0x4000.5000 Yort C base: 0x4000.6000 Yort D base: 0x4000.7000 Yort E base: 0x4002.4000 Yort G base: 0x4002.5000 Yort G base: 0x4002.7000 Yort G base: 0x4002.7000 Yort G base: 0x4002.7000 Yort G base: 0x4002.7000 Yat1C (10, reset 0x0000.0000) 31 30 29 28 27 26 25 24 23 22 RO RO <td< td=""><td>Port B base: 0x4000.5000 Yort C base: 0x4000.6000 Yort E base: 0x4002.7000 Yort G base: 0x4002.5000 Yort G base: 0x4002.5000 Yort G base: 0x4002.6000 Yort G base: 0x4002.7000 Yort H base: 0x400.700 Yort H base: 0x60 RO RO RO RO RO RO RO Name Type Reset</td><td>Port B base: 0x4000.5000 0x4000.6000 Port D base: 0x4002.4000 0x4002.4000 Port F base: 0x4002.5000 0x4002.5000 Port G base: 0x4002.7000 0x4002.7000 Port G base: 0x4002.7000 0000 Port G base: 0x4002.7000 0000 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.700 Port G base: 0x4002.700</td><td>Nort B base: 0x4000.6000 Nort C base: 0x4000.7000 Nort C base: 0x4002.4000 Nort C base: 0x4002.4000 Nort F base: 0x4002.5000 Nort C base: 0x4002.7000 Nort G base: 0x4002.7000 Nort C base: 0x4002.7000 31 30 29 28 27 26 25 24 23 22 21 20 19 Nort C base: 0x4002.7000 Nort C base: 0x4002.700 Nort C base: 0x4002.700</td><td>Yort B base: 0x4000.5000 Yort C base: 0x4000.5000 Yort C base: 0x4002.4000 Yort C base: 0x4002.4000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 (Field Name Type Reset Description Yort C base: 0x400 Yort C base: 0x400 Yort C base: 0x400.500 Yort C base: 0x400.500 Yort C base: 0x400 Yort C base: 0x</td><td>Port B base: 0x4000 5000 Port C base: 0x4002 5000 Port C base: 0x4002 5000 Port F base: 0x4002 5000 Port C base: 0x4002 5000 Port F base: 0x4002 5000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved reserved reserved RO<ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<0< td=""> 0</ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<0<></td></td<>	Port B base: 0x4000.5000 Yort C base: 0x4000.6000 Yort E base: 0x4002.7000 Yort G base: 0x4002.5000 Yort G base: 0x4002.5000 Yort G base: 0x4002.6000 Yort G base: 0x4002.7000 Yort H base: 0x400.700 Yort H base: 0x60 RO RO RO RO RO RO RO Name Type Reset	Port B base: 0x4000.5000 0x4000.6000 Port D base: 0x4002.4000 0x4002.4000 Port F base: 0x4002.5000 0x4002.5000 Port G base: 0x4002.7000 0x4002.7000 Port G base: 0x4002.7000 0000 Port G base: 0x4002.7000 0000 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.7000 Port G base: 0x4002.700 Port G base: 0x4002.700 Port G base: 0x4002.700	Nort B base: 0x4000.6000 Nort C base: 0x4000.7000 Nort C base: 0x4002.4000 Nort C base: 0x4002.4000 Nort F base: 0x4002.5000 Nort C base: 0x4002.7000 Nort G base: 0x4002.7000 Nort C base: 0x4002.7000 31 30 29 28 27 26 25 24 23 22 21 20 19 Nort C base: 0x4002.7000 Nort C base: 0x4002.700 Nort C base: 0x4002.700	Yort B base: 0x4000.5000 Yort C base: 0x4000.5000 Yort C base: 0x4002.4000 Yort C base: 0x4002.4000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort F base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.5000 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 Yort C base: 0x4002.500 (Field Name Type Reset Description Yort C base: 0x400 Yort C base: 0x400 Yort C base: 0x400.500 Yort C base: 0x400.500 Yort C base: 0x400 Yort C base: 0x	Port B base: 0x4000 5000 Port C base: 0x4002 5000 Port C base: 0x4002 5000 Port F base: 0x4002 5000 Port C base: 0x4002 5000 Port F base: 0x4002 5000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved reserved reserved RO <ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<0< td=""> 0</ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<ro<0<>				

1 Corresponding interrupt is cleared.

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

The commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 181) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 191) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 192) have been set to 1.

Important: All GPIO pins are tri-stated by default (**GPIOAFSEL=**0, **GPIODEN=**0, **GPIOPDR=**0, and **GPIOPUR=**0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (**GPIOAFSEL=**1, **GPIODEN=1** and **GPIOPUR=**1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x420 Type R/W, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		· · ·		1 1	rese	rved	r r		r r				
I					ļ											
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	.0	1	1				<u> </u>		· · · ·			· · ·		-		<u> </u>
		•		rese	rved							AFS	SEL			·
					1							1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	-	-		-	-	-	-	-
B	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
					,				•							
	~ ~ ~					_	0 00	~ ~					,		-	
	31:8		reserv	/ed	R	ر	0x00	Soft	ware sho	ould not i	rely on t	ne value	of a rese	erved bit	. Io prov	/ide
	31:8		reserv	/ed	R	D	0x00					he value				

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description								
7:0	AFSEL	R/W	-	GPIO Alternate Function Select								
				The AFSEL values are defined as follows:								
				Value Description								
				Value Description 0 Software control of corresponding GPIO line (GPIO mode								
				 Hardware control of corresponding GPIO line (alternate hardware function). 								
				Note: The default reset value for the GPIOAFSEL , GPIOPUR , and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.								

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO GPIO GPIO GPIO GPIO GPIO GPIO Offsei	 Port A b Port B b Port C b Port D b Port E b Port F b Port F b Port G b Port H b Port H b Port H b 	pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	0.102.	,											
_	31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved															
ſ		1	1			1		rese	rved	1				1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		1	1	rese	rved	1				1		DF	RV2	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	ould not with futu cross a re	ure produ	ucts, the	value of	a reserv	•	vide hould be
	7:0		DRV	/2	R/	W	0xFF	Out	out Pad	2-mA Dri	ve Enab	le				
										to either ng 2-mA						e second

clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIC GPIC GPIC GPIC GPIC GPIC Offse) Port B b) Port C b) Port D b) Port E b) Port E b) Port F b) Port G b) Port H b et 0x504	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved	r			1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved					I	· · · ·	DF	I RV4	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
			0	0	Ū	-	•	Ū	0	0	Ū					
			0	0	0	-	Ū	Ū	0	Ū	0					
E	Bit/Field		Nam		Ту		Reset		cription	Ū	Ū					
E	Bit/Field 31:8			ie		pe		Des Soft com	cription ware sho patibility	ould not with fut	rely on th	ucts, the	value of	erved bi	t. To prov ved bit sh	
E			Nam	ved	Ту	pe O	Reset	Des Soft com pres	cription ware sho patibility served ac	ould not with futu cross a r	rely on th ure produ	icts, the lify-write	value of	erved bi		

corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIO GPIO GPIO GPIO GPIO GPIO Offsei	Port A b Port B b Port C b Port D b Port E b Port F b Port F b Port H b Port H b	pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000		- ,											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		1	1			1	т т	rese	erved			1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	rese	rved	r	т т					DF	1 RV8	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			New		т.		Deset	Dee								
В	lit/Field		Nam	le	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ire produ	ucts, the	value of	a reserv		
	7:0		DRV	/8	R/	W	0x00	Out	put Pad a	8-mA Dri	ve Enab	le				
									rite of 1 t							socond

A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 190). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open drain input if the corresponding bit in the **GPIODIR** register is set to 0; and as an open drain output when set to 1.

When using the l²C module, in addition to configuring the pin to open drain, the **GPIO Alternate Function Select (GPIOAFSEL)** register bit for the l²C clock and data pins should be set to 1 (see examples in "Initialization and Configuration" on page 168).

GPIO Open Drain Select (GPIOODR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x50C Type R/W, reset 0x0000.0000 31 25 19 18 30 29 28 27 26 24 23 22 21 20 17 16 reserved RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 4 1 ODE reserved RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Туре 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description 0x00 Software should not rely on the value of a reserved bit. To provide 31:8 reserved RO compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 ODE R/W 0x00 Output Pad Open Drain Enable The ODE values are defined as follows:

Value Description

- 0 Open drain configuration is disabled.
- 1 Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 188).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000

GPIC GPIC GPIC GPIC GPIC Offse	Port C b Port D b Port E b Port F b Port G b	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 et -	000.6000 000.7000 002.4000 002.5000 002.6000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1 1	rese	erved	1		1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved		1 1			1		P	I UE	1	1	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served a	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		PUE	Ξ	R/	W	-	Pad	Weak P	ull-Up E	nable					
									rite of 1 t bles. The e.							
								Not	e: Th	ne defaul	t reset v	alue for t	the GPIC	AFSEL	GPIOP	UR and

Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 187).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000

GPIC GPIC GPIC GPIC GPIC GPIC Offse	Port C b Port D b Port E b Port F b Port G b	base: 0x4 base: 0x4 base: 0x4 base: 0x4 base: 0x4 base: 0x4 base: 0x4	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000 0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				т т	rese	rved							'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		· ·					P	I DE I			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with futu	ure produ	ucts, the	of a reso value of operatio	a reserv		vide hould be
	7:0		PD	E	R/	W	0x00	Pad	Weak P	ull-Dowr	n Enable					
													e corresp ne secon			

write.

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The GPIOSLR register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see page 185).

GPIO Slew Rate Control Select (GPIOSLR)

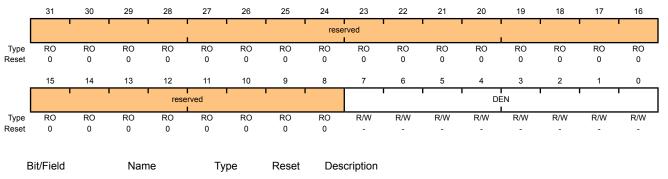
GPIO GPIO GPIO GPIO GPIO GPIO GPIO Offset	Port B b Port C b Port D b Port E b Port F b Port G b Port H b t 0x518	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	, ,		,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1		i i	rese	rved	l I		ì		ì		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	rese	rved					1		SI	RL	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field 31:8		Nam			pe O	Reset 0x00		cription ware sho	ould not	rely on t	he value	of a res	erved bit	. To prov	vide
	7:0		SRI	L	R/	W	0x00	pres	patibility served ac w Rate Li		ead-moo	dify-write	operatio		ed bit sł	nould be

The SRL values are defined as follows:

Value Description

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C


Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x51C Type R/W, reset -

31:8

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

7:0 DEN R/W

RO

0x00

reserved

Digital Enable The DEN values are defined as follows:

Value Description

- 0 Digital functions disabled.
- 1 Digital functions enabled.
 - Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 192). Writing 0x1ACC.E551 to the **GPIOLOCK** register will unlock the **GPIOCR** register. Writing any other value to the **GPIOLOCK** register re-enables the locked state. Reading the **GPIOLOCK** register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the **GPIOLOCK** register returns 0x00000001. When write accesses are enabled, or unlocked, reading the **GPIOLOCK** register returns 0x00000000.

GPIC GPIC GPIC GPIC GPIC GPIC Offse	O Lock) Port A ba) Port B ba) Port C b) Port C b) Port E ba) Port E ba) Port F ba) Port G b) Port G b) Port H b) Port H b) Port H b) Port H ba) Po	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1	1		1 1	LO	III ICK		1	ſ	1	1	1	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		I	I	1		1 1	LO	I I ICK		1		1	1	I	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:0		LOC	К	R/	W 0	x0000.000	1 GPI	O Lock							
									rite of the ster for w			551 unio	ocks the (GPIO Co	ommit (G	PIOCR)

A write of any other value or a write to the **GPIOCR** register reapplies the lock, preventing any register updates. A read of this register returns the following values:

Value Description

0x0000.0001 locked

0x0000.0000 unlocked

Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register are committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.

The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the **GPIOCR** register are ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and the corresponding registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

GPIO Commit (GPIOCR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 GPIO Port H base: 0x4002.7000 Offset 0x524 Type -, reset -

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1	1 1	rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	•	rese	I erved	1				1		С	R			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	-	-	-	-	-	-	-	-
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							

RO

reserved

0x00

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

31:8

Bit/Field	Name	Туре	Reset	Description
7:0	CR	-	-	GPIO Commit
				On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL bit to be set to its alternate function.
				Note: The default register type for the GPIOCR register is RO for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the GPIOCR register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.
				The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins ($PB7$ and $PC[3:0]$). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-committable. Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.

Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

GPIO GPIO GPIO GPIO GPIO GPIO Offsel	Port B b Port C b Port D b Port E b Port F b Port G b Port H b t 0xFD0	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 t 0x0000.	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	, , , , , , , , , , , , , , , , , , ,		•	,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		1		1	r	1 1	rese	rved				1	1	I	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	J	1 1					PI	I D4 I	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	U	0	0	0	0	0	0
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	rely on th ure produ ead-moc	ucts, the	value of	a reserv		
	7:0		PID	4	R	0	0x00	GPI	O Periph	ieral ID F	Register[7:0]				

Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

GPIO GPIO GPIO GPIO GPIO GPIO Offse	Port D b Port E b Port F b Port G b	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	, ,			,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Ĩ		1				î î	rese	rved	I			1	ì	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1		PI	D5	1	I	1
Type Reset	RO 0	RO	RO	RO 0	RO 0	RO	RO	RO	RO	RO 0	RO	RO	RO	RO	RO	RO
		0	0		U	0	0	0	0	0	0	0	0	0	0	0
В	lit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	5	R	0	0x00	GPI	O Peripł	neral ID F	Register[15:8]				

Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

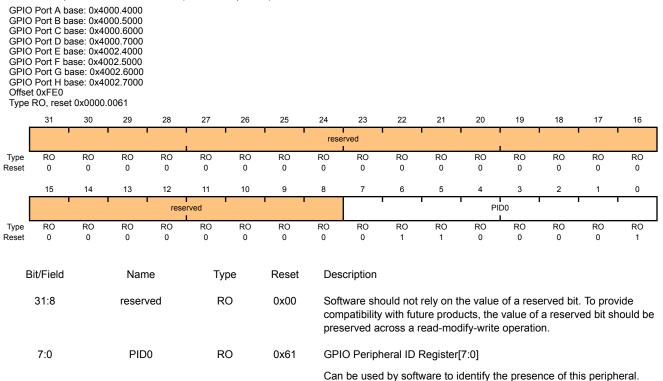
The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

GPIO GPIO GPIO GPIO GPIO GPIO Offsel	Port B b Port C b Port D b Port E b Port F b Port G b Port H b t 0xFD8	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	, , , , , , , , , , , , , , , , , , ,			,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		1		1		, ,	rese	rved				1	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ			1	rese	rved I							PI	1 D6 1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	rely on th ure produ ead-moc	ucts, the	value of	a reserv		
	7:0		PID	6	R	0	0x00	GPI	O Periph	ieral ID F	Register[23:16]				

Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.


GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO GPIO GPIO GPIO GPIO GPIO GPIO Offsel	Port A b Port B b Port C b Port D b Port E b Port E b Port F b Port G b	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	002.5000 002.6000 002.7000			- F	,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1 1				т т	rese	rved	1 1			r I	Ì	ì	Ì
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D7	•	•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	Bit/Field Name Type Ro 31:8 reserved RO 0.								patibility	ould not i with futu cross a re	ire produ	ucts, the	value of	a reserv	•	
	7:0		PID	7	R	0	0x00	GPI	O Peripl	neral ID F	Register[31:24]				

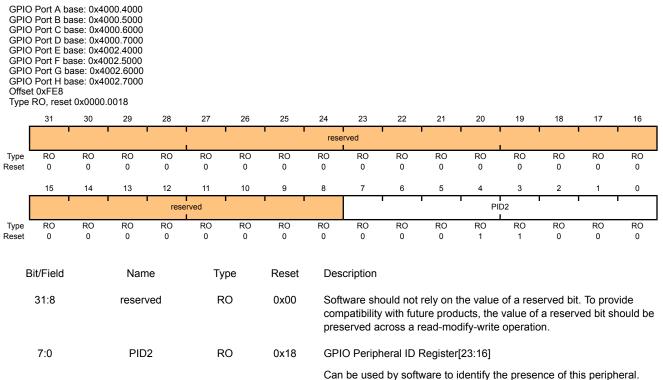
Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

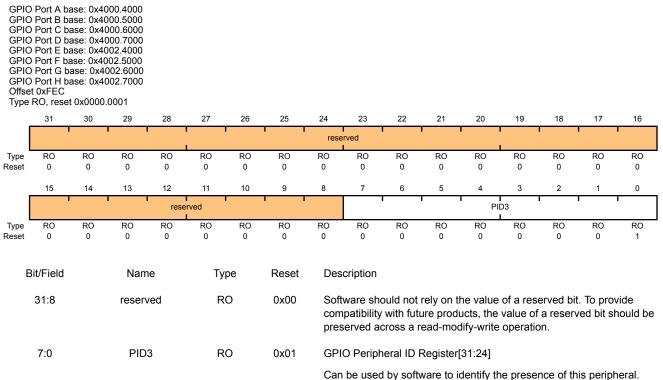
The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.


GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse) Port A b) Port B b) Port C b) Port C b) Port D b) Port E b) Port F b) Port G b	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	002.6000			51101112	')									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1				1 1	rese	rved		, ,		1	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							PI	1 D1 I	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	rely on th ure produ ead-mod	ucts, the	value of	a reserv	•	vide 1ould be
	7:0		PID	1	R	0	0x00	GPI	O Periph	eral ID I	Register[15:8]				
								Can	ha usar	hy soft	ware to ic	dontify th	no nroco	nco of th	ie norint	horal

Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.


GPIO Peripheral Identification 2 (GPIOPeriphID2)

Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

GPIC GPIC GPIC GPIC GPIC GPIC GPIC Offse) Port A b) Port B b) Port C b) Port D b) Port E b) Port F b) Port G b	ase: 0x44 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1		rese	rved	1	1	1	1		1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	erved					•	•	CI	D0		•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	I RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0			RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		I	RO 1	RO 0	RO 1
Reset	0		0	RO 0	RO 0	0	0	0	0			RO	I RO			
Reset				RO 0	RO 0			0				RO	I RO			
Reset	0		0	RO 0	RO 0 Ty	0	0	0 Des Soft com	o cription ware sh	o ould not with fut	0 rely on ti	RO 0 he value ucts, the	RO 1 of a res value of	1 erved bit a reserv	o t. To prov	1
Reset	⁰ Bit/Field		⁰ Nam	RO 0 ne ved	RO 0 Ty R	o pe	0 Reset	0 Des Soft com pres	0 cription ware sh apatibility served a	ould not with fut cross a r	0 rely on ti ure produ	RO 0 he value ucts, the dify-write	RO 1 of a res value of	1 erved bit a reserv	o t. To prov	1 vide
Reset	o Bit/Field 31:8		0 Nam resen	RO 0 ne ved	RO 0 Ty R	o pe O	0 Reset 0x00	0 Des Soft com pres GPI	0 cription ware sh patibility served a O Prime	0 ould not with fut cross a r Cell ID F	0 rely on ti ure produ read-mod	RO 0 he value ucts, the dify-write 7:0]	RO 1 of a res value of operatio	1 erved bit a reserv on.	0 t. To prov ved bit sł	1 vide nould be

Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO GPIO GPIO GPIO GPIO GPIO Offsei	Port A b Port B b Port C b Port D b Port E b Port F b Port G b	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 base: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.5000 002.6000 002.7000				,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	l	r	1 1				т т	rese	rved		r r				1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1 1	rese	rved		r r			[r r	CI	D1		ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	rely on th ure produ ead-mod	icts, the	value of	a reserv	•	
	7:0		CID	1	R	0	0xF0	GPI	O Prime	Cell ID F	Register[1	5:8]				
								Prov	vides sof	tware a	standard	cross-p	eriphera	l identific	ation sy	stem.

Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

GPIC GPIC GPIC GPIC GPIC GPIC Offse) Port B b) Port C b) Port D b) Port E b) Port F b) Port G b	ase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4 pase: 0x4	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 002.7000	, , , , , , , , , , , , , , , , , , ,			,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	î	î î	rese	rved	i	i i		î 1	1	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	Î	rese	rved	Ì	1 1			I	· · · ·	CI	D2	l	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
E	31:8		Nan reser			pe O	Reset 0x00	Soft com	ware sho patibility	with fut	rely on th ure produ ead-mod	icts, the	value of	a reserv		
E				ved		0		Soft com pres	ware sho patibility served ac	with futu cross a r	ure produ	icts, the lify-write	value of	a reserv		
E	31:8		reser	ved	R	0	0x00	Soft com pres	ware sho patibility erved ao O Prime	with futu cross a r Cell ID F	ure produ ead-mod	icts, the lify-write 23:16]	value of operation	a reservon.	ved bit sh	nould be

Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIC GPIC GPIC GPIC GPIC GPIC Offse	 Port B b. Port C b Port D b Port E b. Port F b. Port G b Port G b Port H b Port 0xFFC 	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 t 0x0000.	00.5000 00.6000 00.7000 02.4000 02.5000 002.6000 002.7000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1			1			1 1	rese	rved					1	1	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	10		10	12		10	т <u>т</u> т	0	, 		J			1	' 1	
				rese	rved							CI	D3			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
Reset				0		0		0								
Reset	⁰ Bit/Field		0	0	o Ty	o pe	0 Reset	0 Des	1 cription	0	1	1	0	0	0	1
Reset	0		0	0 ne	0	o pe	0	0 Des Soft	1 cription ware sho	o ould not	1 rely on tl	1 ne value	0 of a res	0 erved bit	0 t. To prov	1 vide
Reset	⁰ Bit/Field		⁰ Nam	0 ne	o Ty	o pe	0 Reset	⁰ Des Soft com	1 cription ware sho patibility	0 Duld not with futu	1 rely on ti ure produ	1 ne value ucts, the	0 of a res value of	0 erved bit f a reserv	0 t. To prov	1 vide
Reset	⁰ Bit/Field		⁰ Nam	0 ne	o Ty	o pe	0 Reset	⁰ Des Soft com	1 cription ware sho	0 Duld not with futu	1 rely on ti ure produ	1 ne value ucts, the	0 of a res value of	0 erved bit f a reserv	0 t. To prov	1 vide
Reset	⁰ Bit/Field		⁰ Nam	o ne ved	o Ty	o pe O	0 Reset	0 Des Soft com pres	1 cription ware sho patibility	o Duld not with futu cross a r	1 rely on ti ure produ ead-mod	1 ne value ucts, the lify-write	0 of a res value of	0 erved bit f a reserv	0 t. To prov	1 vide
Reset	o Bit/Field 31:8		0 Nam reserv	o ne ved	0 Ty R	o pe O	0 Reset 0x00	0 Des Soft com pres GPI	1 cription ware sho patibility served ac O Prime	0 Duld not With futu Cross a r Cell ID F	1 rely on ti ure produ ead-moo tegister[;	1 ne value ucts, the lify-write 31:24]	of a res value of operatio	0 erved bit f a reserv	0 t. To prov ved bit sh	1 vide nould be

10 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains four GPTM blocks (Timer0, Timer1, Timer 2, and Timer 3). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions. The trigger signals from all of the general-purpose timers are ORed together before reaching the ADC module, so only one timer should be used to trigger ADC events.

The General-Purpose Timer Module is one timing resource available on the Stellaris[®] microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 39).

The following modes are supported:

- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock using 32.768-KHz input clock
 - Software-controlled event stalling (excluding RTC mode)
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - Software-controlled event stalling
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

10.1 Block Diagram

Note: In Figure 10-1 on page 207, the specific CCP pins available depend on the Stellaris[®] device. See Table 10-1 on page 207 for the available CCPs.

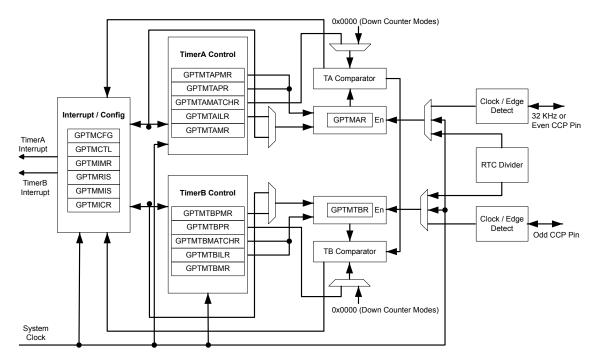


 Table 10-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	CCP4	-
	TimerB	-	CCP5
Timer 3	TimerA	CCP6	-
	TimerB	-	CCP7

10.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 218), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 219), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 221). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

10.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the **GPTM TimerA Interval Load** (**GPTMTAILR**) register (see page 232) and the **GPTM TimerB Interval Load (GPTMTBILR**) register (see page 233). The prescale counters are initialized to 0x00: the **GPTM TimerA Prescale** (**GPTMTAPR**) register (see page 236) and the **GPTM TimerB Prescale (GPTMTBPR)** register (see page 237).

10.2.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 232
- **GPTM TimerB Interval Load (GPTMTBILR)** register [15:0], see page 233
- **GPTM TimerA (GPTMTAR)** register [15:0], see page 240
- GPTM TimerB (GPTMTBR) register [15:0], see page 241

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

10.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 219), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 223), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status (GPTMRIS) register (see page 228), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 230). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 226), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 229). The trigger is enabled by setting the TAOTE bit in GPTMCTL, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is asserted, the timer freezes counting until the signal is deasserted.

10.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 234) by the controller.

The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

10.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 218). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an *n* to reference both.

10.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt. The trigger is enabled by setting the TnOTE bit in the **GPTMCTL** register, and can trigger SoC-level events such as ADC conversions.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is enabled, the timer freezes counting until the signal is deasserted.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
00000000	1	1.3107	mS
0000001	2	2.6214	mS
00000010	3	3.9321	mS
11111100	254	332.9229	mS
11111110	255	334.2336	mS
11111111	256	335.5443	mS

Table 10-2. 16-Bit Timer With Prescaler Configurations

a. Tc is the clock period.

10.2.3.2 16-Bit Input Edge Count Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- Note: The prescaler is not available in 16-Bit Input Edge Count mode.

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 10-2 on page 211 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

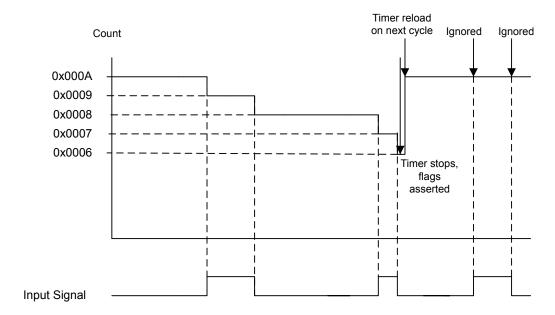
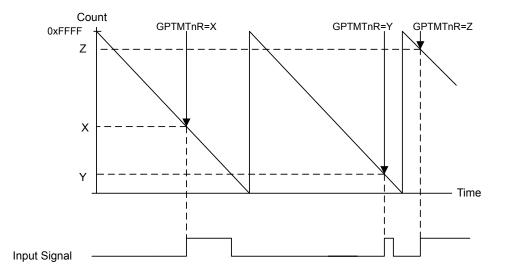


Figure 10-2. 16-Bit Input Edge Count Mode Example

10.2.3.3 16-Bit Input Edge Time Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- **Note:** The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.

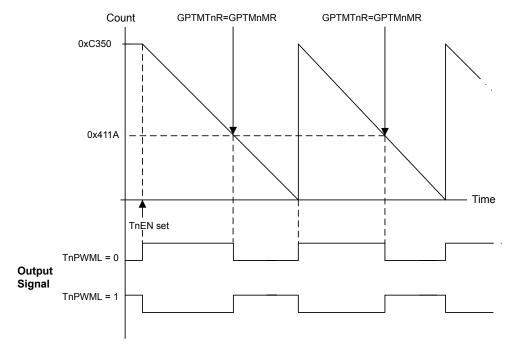
When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current **Tn** counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 10-3 on page 212 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

10.2.3.4 16-Bit PWM Mode


Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTNILR**. PWM mode is enabled with the **GPTMTNMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 10-4 on page 213 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

Figure 10-4. 16-Bit PWM Mode Example

10.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, TIMER2, and TIMER3 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

10.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - a. Write a value of 0x1 for One-Shot mode.
 - b. Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 214. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4 pins. To enable the RTC feature, follow these steps:

- 1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

10.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - a. Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 214. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

10.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TNEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the **TREVENT** field of the **GPTM Control (GPTMCTL)** register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 215 through step 9 on page 215.

10.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

10.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the **GPTM Control (GPTMCTL)** register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

10.4 Register Map

Table 10-3 on page 216 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000
- Timer3: 0x4003.3000

Table 10-3. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	218
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	219
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	221
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	223

Offset	Name	Туре	Reset	Description	See page
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	226
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	228
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	229
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	230
0x028	GPTMTAILR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Interval Load	232
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	233
0x030	GPTMTAMATCHR	R/W	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA Match	234
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	235
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	236
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	237
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	238
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	239
0x048	GPTMTAR	RO	0x0000.FFFF (16-bit mode) 0xFFFF.FFFF (32-bit mode)	GPTM TimerA	240
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	241

10.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x000 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1		1 1	rese	rved	1		1	т 1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	1		reserved		1	1		T	1 1		GPTMCFG	l S
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	3it/Field		Na	me	Ту	ре	Reset	Des	cription							
	31:3		rese	rved	R	0	0x00	com	patibilit	ould not y with futu across a r	ure proc	ducts, the	value of	f a reser	•	
	2:0		GPTM	ICFG	R/	W	0x0	GP1	TM Cont	figuration						
								The	GPTMC:	FG values	s are de	fined as	follows:			
								Va	alue D	escription	1					
								0	x0 32	2-bit timer	config	uration.				

- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved
- 0x3 Reserved
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Timer3 base: 0x4003.3000
Offset 0x004
Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
]	1		1	1	1		т т	rese	rved	I	1	1	1	· · · ·		
T		RO	RO	RO		RO	RO	RO	RO		RO		RO	RO		
Type Reset	RO 0	RU 0	0 RU	0	RO 0	0	КU 0	0	RU 0	RO 0	RU 0	RO 0	0 0	0 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	erved				•		TAAMS	TACMR	TA	MR
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	sit/Field		Nar	ne	Ту	ре	Reset	Des	cription							
					,											
	31:4		reser	ved	R	0	0x00						of a res		•	
													value of		ed bit sl	nould be
								pres	served a	cross a r	ead-mo	dify-write	e operatio	on.		
	3		TAA	MS	R/	\\/	0	CDI	CM Timo		ato Mor	te Select				
	5		IAA	IVI O	Γ\/	vv	0	GFI					L			
								The	TAAMS	values a	re define	ed as foll	ows:			
								Val	ue Desc	rintion						
										•						
								0	Capt	ure mod	e is ena	bled.				
								1	PWN	1 mode i	s enable	ed.				
									Note	· To	enable F	PWM mod	de, you m	nust also	clear the	TACMR
													R field to			, 11101110
														•••		
	2		TAC	MR	R/	W	0	GP1	rM Time	rA Captu	ire Mode	е				
								The	TACMR	values a	re define	ed as foll	ows:			
													-			
								Val	ue Desc	ription						
								0	Edae	e-Count r	node					
										-						

1 Edge-Time mode

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode
				The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, TAMR controls the 16-bit timer modes for TimerA.

In 32-bit timer configuration, this register controls the mode and the contents of **GPTMTBMR** are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Time Time Time Time Offse	r0 base: 0: r1 base: 0: r2 base: 0: r3 base: 0: et 0x008 R/W, rese	x4003.0 x4003.1 x4003.2 x4003.3	000 2000 3000		,											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		•	•			• •	rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		•	•		res	erved				'	•	TBAMS	TBCMR	ТВ	MR
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:4		reser	ved	R	80	0x00	com	patibility	with futu	ure produ	ucts, the	of a resolution of a resolutio	a reserv		
	3		TBAI	MS	R	/W	0	GPT	rM Time	rB Altern	ate Mod	e Select				
								The	TBAMS	alues a	re define	ed as foll	ows:			
								Val	ue Desc	ription						
								0	Capt	ure mod	e is enal	oled.				
								1	PWN	1 mode i	s enable	d.				
									Note				de, you m R field to		clear the	TBCMR
	2		TBCI	MR	R	/W	0	GP1	rM Time	rB Captu	ire Mode	e				
								The	TBCMR	alues a	re define	d as foll	ows:			
									ue Desc	•						
								0	Edge	-Count r	node					

1 Edge-Time mode

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode
				The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 32-bit timer configuration, this register's contents are ignored and GPTMTAMR is used.

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall and the output trigger. The output trigger can be used to initiate transfers on the ADC module.

Timer Timer Timer Timer Offse	r0 base: (r1 base: (r2 base: (r3 base: (t 0x00C	ntrol (GP 0x4003.00 0x4003.10 0x4003.20 0x4003.30 set 0x0000	00 00 00 00	_)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved	TBPWML	TBOTE	reserved	TBE\	/ENT	TBSTALL	TBEN	reserved	TAPWML	TAOTE	RTCEN	TAE	VENT	TASTALL	TAEN
Туре	RO	R/W	R/W	RO	R/W	R/W	R/W	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:15		reser	ved	R	0	0x00	com		with futu	ure produ	ucts, the	value of	f a reserv	t. To prov ved bit sh	
	14		TBPW	/ML	R/	W	0	GP ⁻	TM Time	rB PWM	Output I	_evel				
								The	TBPWML	values a	are defin	ed as fol	llows:			
								Val	ue Desc	ription						
								0		ut is una	ffected					
								1		ut is inve						
								•	outp							
	13		TBO	TE	R/	W	0	GP ⁻	TM Time	rB Outpu	ıt Triggei	- Enable				
								The	TBOTE	values ar	e define	d as follo	ows:			
								Val	ue Desc	ription						
								0	The	output Ti	merB trig	gger is di	isabled.			
								1	The	output Ti	merB trig	gger is ei	nabled.			
	12		reser	ved	R	0	0	com		with futu	ure produ	ucts, the	value of	f a reserv	t. To prov ved bit sh	

Bit/Field	Name	Туре	Reset	Description
11:10	TBEVENT	R/W	0x0	GPTM TimerB Event Mode
				The TBEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
9	TBSTALL	R/W	0	GPTM TimerB Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 TimerB stalling is disabled.
				1 TimerB stalling is enabled.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	TAOTE	R/W	0	GPTM TimerA Output Trigger Enable
				The TAOTE values are defined as follows:
				Value Description
				0 The output TimerA trigger is disabled.
				1 The output TimerA trigger is enabled.

Bit/Field	Name	Туре	Reset	Description
4	RTCEN	R/W	0	GPTM RTC Enable
				The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges
1	TASTALL	R/W	0	GPTM TimerA Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 TimerA stalling is disabled.
				1 TimerA stalling is enabled.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x018 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1 1					rese	ved			ſ	1	1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[·	reserved			CBEIM	CBMIM	твтоім		rese		r	RTCIM	CAEIM	CAMIM	ΤΑΤΟΙΜ
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	е	Ту	ре	Reset	Des	cription							
	31:11		reserv	red	R	0	0x00	com	patibility	with futu	ure produ	ucts, the	e of a rese value of e operatio	a reserv		
	10		CBEI	М	R/	W	0	GPT	M Capt	ureB Eve	ent Interr	upt Mas	sk			
								The	CBEIM	/alues ar	re define	d as fol	ows:			
								Valu	ie Desc	ription						
								0		rupt is di	sabled.					
								1	Inter	rupt is er	nabled.					
	9		CBM	М	R/	W	0	GPT	M Capt	ureB Mat	tch Inter	rupt Ma	sk			
								The	CBMIN	alues ar	re define	d as fol	ows:			
								Valu	le Desc	ription						
								0	Inter	rupt is di	sabled.					
								1	Inter	rupt is er	nabled.					
	8		твто	IM	R/	W	0	GPT	M Time	rB Time-	Out Inte	rrupt Ma	isk			
								The	TBTOIM	values	are defin	ied as fo	ollows:			
								Valu	le Desc	ription						
								0	Inter	rupt is di	sabled.					
								1	Inter	rupt is er	nabled.					
	7:4		reserv	red	R	0	0	com	patibility	with futu	ure produ	ucts, the	e of a rese value of e operatio	a reserv		

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	 GPTM RTC Interrupt Mask The RTCIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
2	CAEIM	R/W	0	 GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.
1	CAMIM	R/W	0	 GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	 GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer Timer Timer Timer Offse	r0 base: 0: r1 base: 0: r2 base: 0: r3 base: 0: et 0x01C RO, reset	x4003.0 x4003.1 x4003.2 x4003.3	000 000 000		NII (IO)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		· ·			'		resei	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBERIS	CBMRIS	TBTORIS		rese	rved		RTCRIS	CAERIS	CAMRIS	TATORIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Desc	cription							
	31:11	compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.														
	10 CBERIS RO 0 GPTM CaptureB Event Raw Interrupt															
		CBERIS RO 0 GPTM CaptureB Event Raw Interrupt This is the CaptureB Event interrupt status prior to masking.														
	9		CBMF	RIS	R	0	0	GPT	M Captu	ireB Mat	ch Raw	Interrup	t			
												•	status pri	or to ma	asking.	
	8		TBTO	RIS	R	0	0	GPT	M Timer	B Time-	Out Raw	Interrup	ot			
								This	is the Ti	merB tin	ne-out in	terrupt s	status pri	or to ma	isking.	
	7:4		reserv	ved	R	0	0x0	com	patibility	with futu	ire produ	ucts, the	of a rese value of operatio	a reserv	•	
	3		RTCR	RIS	R	0	0	GPT	M RTC I	Raw Inte	rrupt					
								This	is the R	TC Even	t interru	pt status	prior to	masking] .	
	2		CAER	RIS	R	0	0	GPT	M Captu	ireA Eve	nt Raw I	Interrupt				
								This	is the Ca	aptureA	Event in	terrupt s	tatus pri	or to ma	sking.	
	1		CAMF	RIS	R	0	0	GPT	M Captu	ireA Mat	ch Raw	Interrup	t			
								This	is the Ca	aptureA	Match ir	nterrupt	status pri	or to ma	asking.	
	0		TATOF	RIS	R	0	0	GPT	M Timer	A Time-	Out Raw	Interrup	ot			
								This	the Time	erA time	-out inter	rrupt sta	tus prior	to mask	ing.	

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Timer Timer Timer Timer Offse	r0 base: (r1 base: (r2 base: (r3 base: (r3 base: (r3 0x020	0x4003.00 0x4003.10 0x4003.20 0x4003.30 0x4003.30	000 000 000			,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	· ·			l		rese	rved						•	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBEMIS	CBMMIS	TBTOMIS		rese	rved		RTCMIS	CAEMIS	CAMMIS	TATOMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:11	reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.CBEMISRO0GPTM CaptureB Event Masked Interrupt														
	10															
			CBEMIS RO 0 GPTM CaptureB Event Masked Interrupt This is the CaptureB event interrupt status after masking.													
	9		CBMN	<i>I</i> IS	R	0	0	GP1	M Captu	ureB Mat	ch Mask	ed Inter	rupt			
								This	is the C	aptureB	match ir	nterrupt	status af	ter mask	ing.	
	8		TBTO	MIS	R	0	0	GP1	M Time	B Time-	Out Mas	ked Inte	rrupt			
								This	is the Ti	merB tin	ne-out in	terrupt s	status aft	er mask	ing.	
	7:4		reserv	ved	R	0	0x0	com	patibility	ould not i with futu cross a re	ire produ	ucts, the	value of	a reserv	•	
	3		RTCM	1IS	R	0	0	GP1	M RTC	Masked	Interrupt	:				
								This	is the R	TC even	t interru	ot status	after ma	asking.		
	2		CAEM	1IS	R	0	0	GP1	M Captu	ureA Eve	nt Mask	ed Inter	rupt			
								This	is the C	aptureA	event in	terrupt s	tatus aft	er maski	ng.	
	1		CAMN	/IS	R	0	0	GP1	M Captu	ureA Mat	ch Mask	ed Inter	rupt			
								This	is the C	aptureA	match ir	nterrupt	status af	ter mask	ing.	
	0		TATO	MIS	R	0	0	GP1	M Time	A Time-	Out Mas	ked Inte	rrupt			
								This	is the Ti	imerA tin	ne-out in	terrupt s	status aft	er mask	ing.	

GPTM Masked Interrupt Status (GPTMMIS)

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

GPTM Interrupt Clear (GPTMICR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x024 Type W1C, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						'		rese	rved	•	•	•		'	•	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ī	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			CBECINT	CBMCINT	TBTOCINT		rese	erved		RTCCINT	CAECINT	CAMCINT	TATOCINT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	Ū	0	Ū	Ū
E	Bit/Field		Nam	ie	Ty	ре	Reset	Des	cription							
	~							~ ~							-	
	31:11		reserv	/ed	R	0	0x00						e of a res e value of			
													e operatio			
	10		CBEC		W	10	0	CDT	M Cant	ureB Eve	ont Intor	unt Clo	or			
	10		CBLC		vv		0		•			•				
								Ine	CBECIN	T values	s are det	ined as	follows:			
Value Description																
0 The interrupt is unaffected.																
								1	The	interrupt	is cleare	ed.				
	9		CBMC	INT	W	1C	0	GPT	M Capt	ureB Ma	tch Inter	rupt Cle	ar			
								The	CBMCIN	T values	s are def	ined as	follows:			
								\/alı	ue Desc	rintion						
								0		interrupt	is unaffe	ected				
								1		interrupt						
									ine	interrupt		<i>.</i>				
	8		твтос	CINT	W	1C	0	GPT	M Time	rB Time-	Out Inte	rrupt Cle	ear			
								The	TBTOCI	INT value	es are de	efined a	s follows:	:		
								Vol	ue Desc	rintion						
								van 0		interrupt	ie upoff	octod				
								1		interrupt						
								1	me	menupt	is cleare					
	7:4		reserv	vod	R	0	0x0	6.4	ware ob	ould not	roly on t	ho volu	e of a res	onvod hil	To pro	vido
	1.4		iesel\	/eu	ĸ	0	0.00						e value of		•	
								pres	erved a	cross a r	ead-mo	dify-write	e operatio	on.		

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	 GPTM RTC Interrupt Clear The RTCCINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared.
2	CAECINT	W1C	0	 GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows: Value Description The interrupt is unaffected. The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Raw Interrupt This is the CaptureA match interrupt status after masking.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Raw Interrupt The TATOCINT values are defined as follows: Value Description 0 The interrupt is unaffected.
				1 The interrupt is cleared.

GPTM TimerA Interval Load (GPTMTAILR)

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Timer Timer Timer Offsei	0 base: 0 1 base: 0 2 base: 0 3 base: 0 t 0x028)x4003.0()x4003.1()x4003.2()x4003.3(000 000 000	,	e) and 0xF	FFF.FF	FF (32-bit mo	ode)								
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1	1				TAI	LRH			1	1 1	1	1	'
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ		· · ·	1	1	1		1 1				-	r ·	1	-	1	
Туре	R/W	R/W	R/W	R/W	I R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	it/Field 31:16		Nan TAIL		Ty R/	W (Reset 0xFFFF 32-bit mode 0x0000 16-bit mode	GP ⁻ ^{;)} Whe	cription TM Timer en config e rB Inte r e. A read	ured for rval Loa	32-bit m I d (GPT	ode via tł MTBILR	ne GPTN) register	loads th	nis value	
	15:0		TAIL	RL	R/	W	0xFFFF	In 1 stat GP ⁻ For	e. A read 6-bit moc e of GPT TM Timer both 16- erA. A re	de, this fi MTBILF A Interv and 32-	eld reac 8. al Load bit mode	ls as 0 ai Register es, writing	nd does Low g this fiel	not have	an effect	

July 26, 2008

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x02C Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1 1	rese	rved	I	r	1		1		·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1					TBI	LRL	1	1			1		·
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	Bit/Field	Name Type Rese				Reset	Des	cription								
	31:16					0x0000	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv			
	15:0		TBIL	RL	R/	W	0xFFFF	GP1	M Time	rB Interv	al Load	Register				
									gured as bit mode							

return the current value of **GPTMTBILR**.

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

Timer Timer Timer Timer Offse	0 base: (1 base: (2 base: (3 base: (t 0x030)x4003.00)x4003.10)x4003.20)x4003.30	000 000 000 000	ΤΜΤΑΝ												
Туре							FF (32-bit m	,								
Г	31	30	29 I	28	27	26	25	24	23	22	21	20	19 1	18 I	17 I	16
					1				MRH				I			
Type Reset	R/W 0	R/W 1	R/W 1	R/W 0	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		i	I	I	1		1 1	TA	n MRL		I	I	1	1	I	·
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
	it/Field 31:16		Nan TAM		Ty R/	W (3	Reset 0xFFFF 32-bit mode 0x0000 16-bit mode	GP [.] ^{e)} Wh _{e)} GP [.]	Scription TM Time en config TMCFG I TMTAR,	ured for egister,	32-bit R this valu	eal-Time e is com	pared to	,		
									6-bit mod te of GPT	,		s as 0 a	nd does	not have	an effe	ct on the
	15:0		TAM	RL	R/	W	0xFFFF	GP	TM Time	rA Match	n Registe	er Low				
								GP	en config TMCFG I TMTAR,	egister,	this valu	e is com	pared to			
									en config ermines t					•	GPTM	TAILR,
								GP [.] nun	en config TMTAILF nber of en lus this va	t , determ dge ever	nines how	v many e	edge eve	nts are c	ounted.	

July 26, 2008

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Timer Timer Timer Timer Offse	M Time 10 base: 0 11 base: 0 12 base: 0 13 base: 0 13 base: 0 10x034 R/W, rese)x4003.0)x4003.1)x4003.2)x4003.3	000 000 000 000	TMTBN	IATCHR)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ſ		r r I		r r	rese	erved	1		ſ	r i	r	r	ſ
Type RO R																
	15	14	- 13	12	- 11	10		8	7	6	5	4	3	2	1	0
[15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0															
l	TINE TINE TINE TINE TINE TINE TINE TINE															
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	8it/Field		Nam	ie	Тур	Reset	Des	cription								
	31:16		reserv	/ed	R	D	0x0000	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	15:0		TBM	RL	R/\	N	0xFFFF	GP	TM Time	rB Match	Registe	er Low				
									en config ermines t			,		0	GPTM1	ſBILR,
					ured for	Edge Co	ount moo	de, this v	alue alo	ng with						

When configured for Edge Count mode, this value along with **GPTMTBILR**, determines how many edge events are counted. The total number of edge events counted is equal to the value in **GPTMTBILR** minus this value.

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		T	· · ·			г г	rese	rved	1		· · · ·		1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved	l				1		TAP	SR	I	I	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	it/Field		Name Type Reset						cription							
	31:8 reserved RO				0	0x00	com	patibility	with futu	ire prod	he value ucts, the	value of	f a reser	•		
												dify-write	operatio	on.		
	7:0		TAP	SR	R/	VV	0x00	GPT	M lime	rA Presc	ale					
									register ie registe		s value o	on a write	. A read	returns	the curre	nt value

Refer to Table 10-2 on page 210 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r						1 1	rese	rved	I		· · ·		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	rese	rved		1 1			I		TBP	SR	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	it/Field	/Field Name Type Reset					Reset	Des	cription							
				R	0	0x00					he value ucts, the			•		
											•	dify-write				
	7:0		TBPS	SR	R/	W	0x00	GPT	M Time	rB Presc	ale					
									register iis regist		s value o	on a write	. A read	returns	the curre	nt value

Refer to Table 10-2 on page 210 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ľ		1				1 1	rese	rved	1				1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reper				-					-			-			-	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				resei	ved					•		TAPS	SMR		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field 31:8			ie ved	Ty R		Reset 0x00		cription	ould not	rely on t	he value	of a res	erved h	it. To prov	vide
				veu	K	0	0,000	com	patibility	with futu	ure prod	ucts, the dify-write	value o	f a reser	•	
	7:0		TAPS	MR	R/	W	0x00	GPT	rM Time	rA Presc	ale Mat	ch				
									s used al e using a		GPTMTA er.	MATC	HR to de	etect time	r match	

July 26, 2008

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Timer3 base: 0x4003.3000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1				1 1	rese	rved	1		1		1	1	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved	l				1	I	TBP	I SMR I	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
B	Bit/Field Name				Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00				,	he value			•	
											•	ucts, the dify-write			ed dit sr	
	7:0		TBPS	MR	R/	W	0x00	GPT	M Time	rB Presc	ale Mate	ch				
								s used alle e using a		GPTMTI er.	BMATCI	HR to de	tect time	r match		

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

GPTM TimerA (GPTMTAR)

Timer Timer Timer Offsel	1 base: 0 2 base: 0 3 base: 0 0x048)x4003.00)x4003.10)x4003.20)x4003.30)x4003.30	000	-bit mode) and 0xFf	FF.FFF	F (32-bit mod	le)								
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	1		I		, i		1 1	TA	RH	1		1		1	1	
Type Reset	RO 0	RO 1	RO 1	RO 0	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					1 I		1 1	TA	I RL	I		I	1	I	1	
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
В	it/Field		Nam	ne	Ту	be	Reset	Des	cription							
:	31:16		TAR	Н	R	С	0xFFFF	GP1	rM Time	rA Regis	ter High					
						(3	32-bit mode 0x0000 16-bit mode) If the	e GPTM	CFG is in is in a 16	n a 32-bi	it mode,			read. If ti	ne
	15:0		TAR	۱L	R	С	0xFFFF	GP1	rM Time	rA Regis	ter Low					
								exce		ns the cu out Edge e event.						•

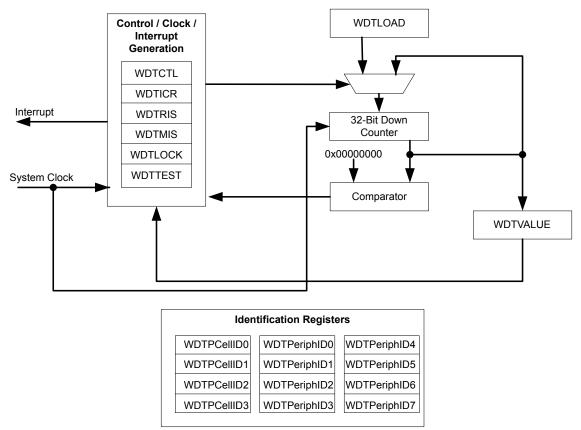
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

Timer Timer Timer Offse	⁻⁰ base: 0 ⁻¹ base: 0 ⁻² base: 0 ⁻³ base: 0 t 0x04C RO, reset	x4003.10 x4003.20 x4003.30	000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1						1 1	rese	rved				1 1 1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TBRL																
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
В	lit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:16		reserv	ved	R	C	0x0000	com	patibility	with futu	ire produ	ucts, the	e of a rese value of e operatio	a reserv	•	
	15:0		TBR	L	R	С	0xFFFF	GP1	M Timer	B						
								exce		ut Edge			e GPTM 1 hen it retu			-

GPTM TimerB (GPTMTBR)

11 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, a locking register, and user-enabled stalling.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

11.1 Block Diagram

11.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the

Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

11.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the **WDTLOAD** register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

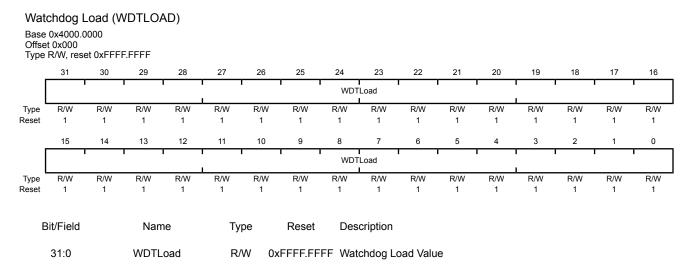
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

11.4 Register Map

Table 11-1 on page 243 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

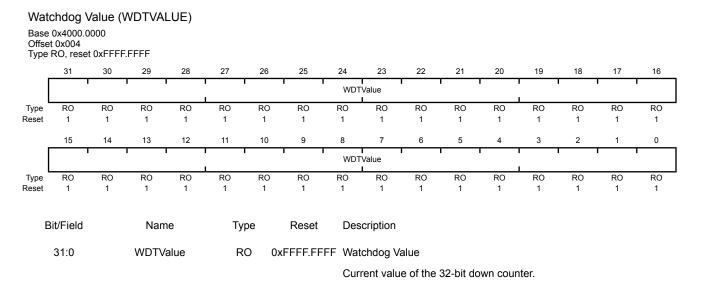
Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	245
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	246
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	247
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	248
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	249
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	250
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	251
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	252

Table 11-1. Watchdog Timer Register Map


Offset	Name	Туре	Reset	Description	See page
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	253
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	254
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	255
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	256
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	257
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	258
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	259
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	260
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	261
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	262
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	263
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	264

11.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

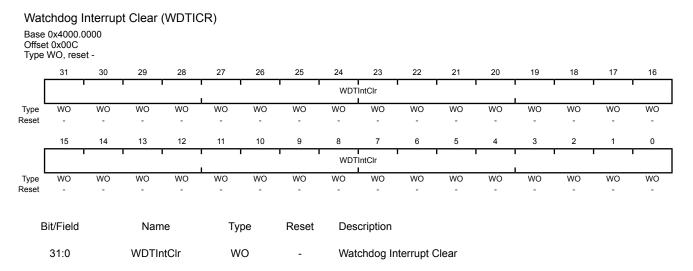

Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008


This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Base Offse	chdog (0x4000.0 t 0x008 R/W, rese	0000	(WDTC 0.0000	TL)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 1		1	ĺ	1 1	rese	erved				1 T		1	l I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							reser								RESEN	INTEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field Name Type Reset Description															
31:2 reserved RO 0x00 Software should not rely on the value of a reserved bit. To pro compatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.																
	1		RESE	ΞN	R/	W	0	Wat	chdog R	eset Ena	able					
								The	RESEN	alues ar	e define	d as foll	ows:			
								Val	ue Desc	ription						
								0	Disat	oled.						
								1	Enab	le the W	/atchdog	module	reset out	put.		
	0		INTE	N	R/	W	0	Wat	chdog In	terrupt E	nable					
	The INTEN values are defined as follows:															
								Val	ue Desc	ription						
								0		upt ever ed by a l			e this bit is	s set, it	can only	be
								1	Interr	upt ever	nt enable	ed. Once	enabled	, all writ	es are ig	nored.

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Offse	0x4000.0 t 0x010 RO, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T	ſ	ı 1		1 1	rese			T	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	, , , , , , , , , , , , , , , , , , ,		· ·	reserved			1	1	1 I	1	1	WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription							
31:1 reserved RO 0x00 Software should no compatibility with fu preserved across a										with fut	ure prod	ucts, the	value of	a reserv	•	
	0		WDT	RIS	R	0	0	Wate	chdog R	aw Inter	rupt Sta	tus				
								Give	es the ra	w interru	upt state	(prior to	masking) of WD	TINTR.	

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Offse	0x4000.0 t 0x014 RO, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ſ	1	1 1	1	1	rese		1	1	T	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1	1	1	1	1	reserved		1	1	1	1	1	1	WDTMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	lit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1 reserved RO 0x00									with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	0		WDTI	MIS	R	0	0	Wate	chdog N	lasked Ir	nterrupt	Status				
									es the m rrupt.	asked in	terrupt s	state (afte	er maskii	ng) of th	e WDTIN	NTR

Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Base Offse	chdog ⁻ 0x4000.0 t 0x418 R/W, rese	0000	VDTTES 00.0000	ST)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1					rese	rved	1				1	1	'	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			Ì	reserved			1	STALL		Í		rese	rved	Ì	Ì	·	
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription								
	31:9		reser	ved	R	0	0x00	com	patibility	with futu	ire prod	he value ucts, the dify-write	value of	a reserv	•		
	8		STA	LL	R/	W	0	Wat	chdog S	tall Enab	le						
									When set to 1, if the Stellaris [®] microcontroller is stopped with a debugger, the watchdog timer stops counting. Once the microcontroller is restarted, the watchdog timer resumes counting.								
	7:0		reser	ved	R	0	0x00	com	patibility	with futu	ire prod	he value ucts, the dify-write	value of	a reserv	•		

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Base Offse	chdog L 0x4000.0 tt 0xC00 R/W, rese	0000	/DTLOC	CK)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		[1 1		1		1 1	WDT	Lock		1 1	r	1	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1 1		ı – – – –		1 1	WDT	Lock		i 1		r 1	1	1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:0		WDTL	ock	R/	W	0x0000	Wat	chdog Lo	ock						
								write		. A write)x1ACC. of any o				0 0	
								A re	ad of this	s registe	r returns	the follo	wing val	lues:		

Value Description

0x0000.0001 Locked

0x0000.0000 Unlocked

16

RO

0

0

RO

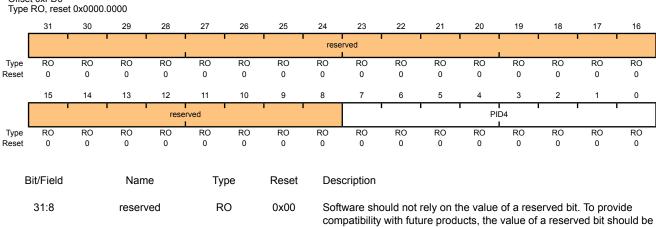
0

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

preserved across a read-modify-write operation.

WDT Peripheral ID Register[7:0]


Watchdog Peripheral Identification 4 (WDTPeriphID4)

PID4

RO

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

7:0

0x00

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000 Offset 0xFD4 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		l	•	l				rese	rved					•	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ			1	rese	rved							PI	D5	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	8it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	compati				Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
7:0 PID5 RO 0x00		WD	T Periph	eral ID F	Register[15:8]										

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 12 4 15 14 13 11 10 9 8 7 6 5 3 2 0 1 PID6 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID6 RO 0x00 WDT Peripheral ID Register[23:16]

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	1					rese	rved		'	1		•	•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved						1	PI	D7	•	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	Software should not rely on the value of a compatibility with future products, the valu preserved across a read-modify-write ope					value of	a reserv	•	
7:0 PID7 RO 0x0			0x00	WD.	T Periph	eral ID F	Register[31:24]								

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000 Offset 0xFE0 Type RO, reset 0x0000.0005

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 12 4 15 14 13 11 10 9 8 7 6 5 3 2 0 1 PID0 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID0 RO 0x05 Watchdog Peripheral ID Register[7:0]

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000 Offset 0xFE4 Type RO, reset 0x0000.0018

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	•					rese	rved		•	•		•	•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved						•	PII	D1		•	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
_					-		-	_								
B	Bit/Field		Nam	ie	Ty	be	Reset	Des	cription							
com			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.													
7:0		PID1 RO		С	0x18	Watchdog Peripheral ID Register[15:8]										

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 12 4 15 14 13 11 10 9 8 7 6 5 3 2 0 1 PID2 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 Bit/Field Description Reset Name Туре 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID2 RO 0x18 Watchdog Peripheral ID Register[23:16]

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•					•	rese	rved			•		•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							PI	D3		•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	Software should not rely on the valu compatibility with future products, th preserved across a read-modify-wr				value of	a reserv	•	
	7:0 PID3 RO 0x01 Wa			Watchdog Peripheral ID Register[31:24]												

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

~~ ~ ~~

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		, , , , , , , , , , , , , , , , , , ,		т т	rese	rved					1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved							CI	D0	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
B	Bit/Field		Nam	ie	Туј	be	Reset	Des	cription							
	31:8		reser	/ed	R	C	0x00	Software should not rely on the value of a reserved bit. To prove compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
7:0 CID0 RO 0x0D W			Wat	chdog P	rimeCell	ID Regi	ster[7:0]									

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Offse	0x4000.0 t 0xFF4 RO, reset		0.00F0													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		, ,				1 I	rese	rved		1	1			ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			rese	rved						1	CI	D1		I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
31:8 reserved RO 0x00 Software should not rely on th compatibility with future produ preserved across a read-mod				ucts, the	value of	a reserv	•									
	7:0		CID	1	R	С	0xF0	Wat	chdog P	rimeCell	ID Regi	ster[15:8]			

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			, ,		, , , , , , , , , , , , , , , , , , ,		г г	rese	erved	1	r	1	1	1	1	,
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved		т т			1	1	CI	1 D2	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
B	Bit/Field		Nam	e	Туј	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		CID	2	R	C	0x05	0x05 Watchdog PrimeCell ID Register[23:16]								

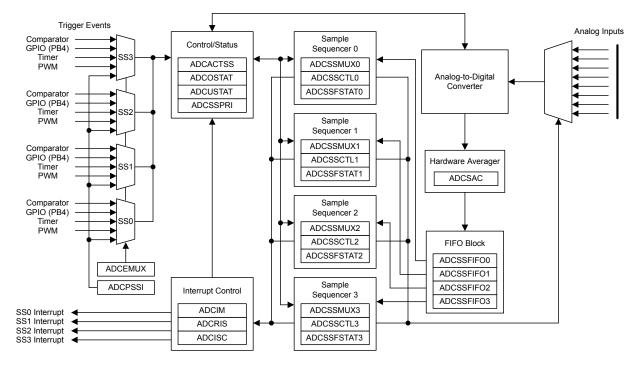
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

Offse	0x4000.0 t 0xFFC RO, reset).00B1													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1				· ·	rese	erved		1	I		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1	rese	rved		1 1			I	1	CI	D3	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ne	Ty	be	Reset	Des	cription							
	31:8		reser	ved	R	С	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CID	3	R	С	0xB1	Wat	chdog Pi	rimeCell	ID Regi	ster[31:2	4]			

12 Analog-to-Digital Converter (ADC)


An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number.

The Stellaris[®] ADC module features 10-bit conversion resolution and supports eight input channels, plus an internal temperature sensor. The ADC module contains a programmable sequencer which allows for the sampling of multiple analog input sources without controller intervention. Each sample sequence provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequence priority.

The Stellaris[®] ADC provides the following features:

- Eight analog input channels
- Single-ended and differential-input configurations
- Internal temperature sensor
- Sample rate of 500 thousand samples/second
- Four programmable sample conversion sequences from one to eight entries long, with corresponding conversion result FIFOs
- Flexible trigger control
 - Controller (software)
 - Timers
 - Analog Comparators
 - GPIO
- Hardware averaging of up to 64 samples for improved accuracy
- An internal 3-V reference is used by the converter.
- Power and ground for the analog circuitry is separate from the digital power and ground.

12.1 Block Diagram

Figure 12-1. ADC Module Block Diagram

12.2 Functional Description

The Stellaris[®] ADC collects sample data by using a programmable sequence-based approach instead of the traditional single or double-sampling approach found on many ADC modules. Each *sample sequence* is a fully programmed series of consecutive (back-to-back) samples, allowing the ADC to collect data from multiple input sources without having to be re-configured or serviced by the controller. The programming of each sample in the sample sequence includes parameters such as the input source and mode (differential versus single-ended input), interrupt generation on sample completion, and the indicator for the last sample in the sequence.

12.2.1 Sample Sequencers

The sampling control and data capture is handled by the Sample Sequencers. All of the sequencers are identical in implementation except for the number of samples that can be captured and the depth of the FIFO. Table 12-1 on page 266 shows the maximum number of samples that each Sequencer can capture and its corresponding FIFO depth. In this implementation, each FIFO entry is a 32-bit word, with the lower 10 bits containing the conversion result.

Sequencer	Number of Samples	Depth of FIFO
SS3	1	1
SS2	4	4
SS1	4	4
SS0	8	8

For a given sample sequence, each sample is defined by two 4-bit nibbles in the **ADC Sample Sequence Input Multiplexer Select (ADCSSMUXn)** and **ADC Sample Sequence Control (ADCSSCTLn)** registers, where "n" corresponds to the sequence number. The **ADCSSMUXn** nibbles select the input pin, while the **ADCSSCTLn** nibbles contain the sample control bits corresponding to parameters such as temperature sensor selection, interrupt enable, end of sequence, and differential input mode. Sample Sequencers are enabled by setting the respective ASENn bit in the **ADC Active Sample Sequencer (ADCACTSS)** register, but can be configured before being enabled.

When configuring a sample sequence, multiple uses of the same input pin within the same sequence is allowed. In the **ADCSSCTLn** register, the Interrupt Enable (IE) bits can be set for any combination of samples, allowing interrupts to be generated after every sample in the sequence if necessary. Also, the END bit can be set at any point within a sample sequence. For example, if Sequencer 0 is used, the END bit can be set in the nibble associated with the fifth sample, allowing Sequencer 0 to complete execution of the sample sequence after the fifth sample.

After a sample sequence completes execution, the result data can be retrieved from the ADC Sample Sequence Result FIFO (ADCSSFIFOn) registers. The FIFOs are simple circular buffers that read a single address to "pop" result data. For software debug purposes, the positions of the FIFO head and tail pointers are visible in the ADC Sample Sequence FIFO Status (ADCSSFSTATn) registers along with FULL and EMPTY status flags. Overflow and underflow conditions are monitored using the ADCOSTAT and ADCUSTAT registers.

12.2.2 Module Control

Outside of the Sample Sequencers, the remainder of the control logic is responsible for tasks such as interrupt generation, sequence prioritization, and trigger configuration.

Most of the ADC control logic runs at the ADC clock rate of 14-18 MHz. The internal ADC divider is configured automatically by hardware when the system XTAL is selected. The automatic clock divider configuration targets 16.667 MHz operation for all Stellaris[®] devices.

12.2.2.1 Interrupts

The Sample Sequencers dictate the events that cause interrupts, but they don't have control over whether the interrupt is actually sent to the interrupt controller. The ADC module's interrupt signal is controlled by the state of the MASK bits in the **ADC Interrupt Mask (ADCIM)** register. Interrupt status can be viewed at two locations: the **ADC Raw Interrupt Status (ADCRIS)** register, which shows the raw status of a Sample Sequencer's interrupt signal, and the **ADC Interrupt Status and Clear (ADCISC)** register, which shows the logical AND of the **ADCRIS** register's INR bit and the **ADCIM** register's MASK bits. Interrupts are cleared by writing a 1 to the corresponding IN bit in **ADCISC**.

12.2.2.2 Prioritization

When sampling events (triggers) happen concurrently, they are prioritized for processing by the values in the **ADC Sample Sequencer Priority (ADCSSPRI)** register. Valid priority values are in the range of 0-3, with 0 being the highest priority and 3 being the lowest. Multiple active Sample Sequencer units with the same priority do not provide consistent results, so software must ensure that all active Sample Sequencer units have a unique priority value.

12.2.2.3 Sampling Events

Sample triggering for each Sample Sequencer is defined in the **ADC Event Multiplexer Select** (ADCEMUX) register. The external peripheral triggering sources vary by Stellaris[®] family member,

but all devices share the "Controller" and "Always" triggers. Software can initiate sampling by setting the CH bits in the **ADC Processor Sample Sequence Initiate (ADCPSSI)** register.

When using the "Always" trigger, care must be taken. If a sequence's priority is too high, it is possible to starve other lower priority sequences.

12.2.3 Hardware Sample Averaging Circuit

Higher precision results can be generated using the hardware averaging circuit, however, the improved results are at the cost of throughput. Up to 64 samples can be accumulated and averaged to form a single data entry in the sequencer FIFO. Throughput is decreased proportionally to the number of samples in the averaging calculation. For example, if the averaging circuit is configured to average 16 samples, the throughput is decreased by a factor of 16.

By default the averaging circuit is off and all data from the converter passes through to the sequencer FIFO. The averaging hardware is controlled by the **ADC Sample Averaging Control (ADCSAC)** register (see page 284). There is a single averaging circuit and all input channels receive the same amount of averaging whether they are single-ended or differential.

12.2.4 Analog-to-Digital Converter

The converter itself generates a 10-bit output value for selected analog input. Special analog pads are used to minimize the distortion on the input. An internal 3 V reference is used by the converter resulting in sample values ranging from 0x000 at 0 V input to 0x3FF at 3 V input when in single-ended input mode.

12.2.5 Differential Sampling

In addition to traditional single-ended sampling, the ADC module supports differential sampling of two analog input channels. To enable differential sampling, software must set the **D** bit (in the **ADCSSCTL0** register) in a step's configuration nibble.

When a sequence step is configured for differential sampling, its corresponding value in the **ADCSSMUX** register must be set to one of the four differential pairs, numbered 0-3. Differential pair 0 samples analog inputs 0 and 1; differential pair 1 samples analog inputs 2 and 3; and so on (see Table 12-2 on page 268). The ADC does not support other differential pairings such as analog input 0 with analog input 3. The number of differential pairs supported is dependent on the number of analog inputs (see Table 12-2 on page 268).

Table 12-2. Differential	I Sampling Pairs
--------------------------	------------------

Differential Pair	Analog Inputs
0	0 and 1
1	2 and 3
2	4 and 5
3	6 and 7

The voltage sampled in differential mode is the difference between the odd and even channels:

 ΔV (differential voltage) = V_{IN EVEN} (even channels) – V_{IN ODD} (odd channels), therefore:

- If $\Delta V = 0$, then the conversion result = 0x1FF
- If $\Delta V > 0$, then the conversion result > 0x1FF (range is 0x1FF–0x3FF)
- If $\Delta V < 0$, then the conversion result < 0x1FF (range is 0–0x1FF)

The differential pairs assign polarities to the analog inputs: the even-numbered input is always positive, and the odd-numbered input is always negative. In order for a valid conversion result to appear, the negative input must be in the range of \pm 1.5 V of the positive input. If an analog input is greater than 3 V or less than 0 V (the valid range for analog inputs), the input voltage is clipped, meaning it appears as either 3 V or 0 V, respectively, to the ADC.

Figure 12-2 on page 269 shows an example of the negative input centered at 1.5 V. In this configuration, the differential range spans from -1.5 V to 1.5 V. Figure 12-3 on page 269 shows an example where the negative input is centered at -0.75 V, meaning inputs on the positive input saturate past a differential voltage of -0.75 V since the input voltage is less than 0 V. Figure 12-4 on page 270 shows an example of the negative input centered at 2.25 V, where inputs on the positive channel saturate past a differential voltage of 0.75 V since the input voltage would be greater than 3 V.

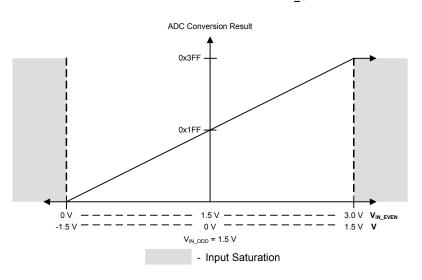


Figure 12-2. Differential Sampling Range, $V_{IN_{ODD}} = 1.5 V$

Figure 12-3. Differential Sampling Range, V_{IN ODD} = 0.75 V

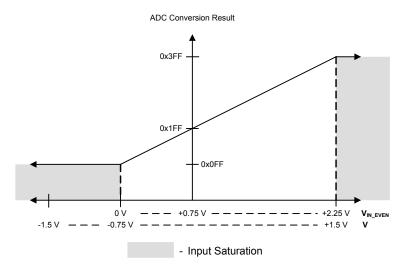
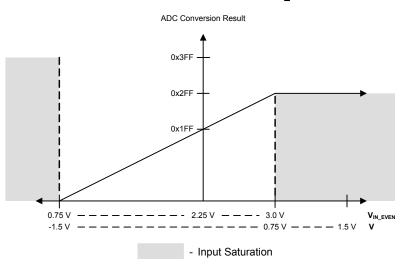
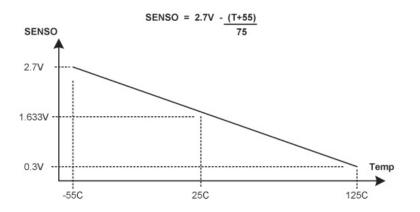



Figure 12-4. Differential Sampling Range, V_{IN_ODD} = 2.25 V

12.2.6 Test Modes

There is a user-available test mode that allows for loopback operation within the digital portion of the ADC module. This can be useful for debugging software without having to provide actual analog stimulus. This mode is available through the **ADC Test Mode Loopback (ADCTMLB)** register (see page 297).


12.2.7 Internal Temperature Sensor

The internal temperature sensor provides an analog temperature reading as well as a reference voltage. The voltage at the output terminal SENSO is given by the following equation:

SENSO = 2.7 - ((T + 55) / 75)

This relation is shown in Figure 12-5 on page 270.

Figure 12-5. Internal Temperature Sensor Characteristic

12.3 Initialization and Configuration

In order for the ADC module to be used, the PLL must be enabled and using a supported crystal frequency (see the **RCC** register). Using unsupported frequencies can cause faulty operation in the ADC module.

12.3.1 Module Initialization

Initialization of the ADC module is a simple process with very few steps. The main steps include enabling the clock to the ADC and reconfiguring the Sample Sequencer priorities (if needed).

The initialization sequence for the ADC is as follows:

- 1. Enable the ADC clock by writing a value of 0x0001.0000 to the **RCGC0** register (see page 95).
- 2. If required by the application, reconfigure the Sample Sequencer priorities in the **ADCSSPRI** register. The default configuration has Sample Sequencer 0 with the highest priority, and Sample Sequencer 3 as the lowest priority.

12.3.2 Sample Sequencer Configuration

Configuration of the Sample Sequencers is slightly more complex than the module initialization since each sample sequence is completely programmable.

The configuration for each Sample Sequencer should be as follows:

- Ensure that the Sample Sequencer is disabled by writing a 0 to the corresponding ASEN bit in the ADCACTSS register. Programming of the Sample Sequencers is allowed without having them enabled. Disabling the Sequencer during programming prevents erroneous execution if a trigger event were to occur during the configuration process.
- 2. Configure the trigger event for the Sample Sequencer in the **ADCEMUX** register.
- **3.** For each sample in the sample sequence, configure the corresponding input source in the **ADCSSMUXn** register.
- 4. For each sample in the sample sequence, configure the sample control bits in the corresponding nibble in the **ADCSSCTLn** register. When programming the last nibble, ensure that the END bit is set. Failure to set the END bit causes unpredictable behavior.
- 5. If interrupts are to be used, write a 1 to the corresponding MASK bit in the ADCIM register.
- 6. Enable the Sample Sequencer logic by writing a 1 to the corresponding ASEN bit in the **ADCACTSS** register.

12.4 Register Map

Table 12-3 on page 271 lists the ADC registers. The offset listed is a hexadecimal increment to the register's address, relative to the ADC base address of 0x4003.8000.

Table 12-3. ADC Register Ma	p	

Offset	Name	Туре	Reset	Description	See page
0x000	ADCACTSS	R/W	0x0000.0000	ADC Active Sample Sequencer	273

Offset	Name	Туре	Reset	Description	See page
0x004	ADCRIS	RO	0x0000.0000	ADC Raw Interrupt Status	274
0x008	ADCIM	R/W	0x0000.0000	ADC Interrupt Mask	275
0x00C	ADCISC	R/W1C	0x0000.0000	ADC Interrupt Status and Clear	276
0x010	ADCOSTAT	R/W1C	0x0000.0000	ADC Overflow Status	277
0x014	ADCEMUX	R/W	0x0000.0000	ADC Event Multiplexer Select	278
0x018	ADCUSTAT	R/W1C	0x0000.0000	ADC Underflow Status	281
0x020	ADCSSPRI	R/W	0x0000.3210	ADC Sample Sequencer Priority	282
0x028	ADCPSSI	WO	-	ADC Processor Sample Sequence Initiate	283
0x030	ADCSAC	R/W	0x0000.0000	ADC Sample Averaging Control	284
0x040	ADCSSMUX0	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 0	285
0x044	ADCSSCTL0	R/W	0x0000.0000	ADC Sample Sequence Control 0	287
0x048	ADCSSFIF00	RO	0x0000.0000	ADC Sample Sequence Result FIFO 0	290
0x04C	ADCSSFSTAT0	RO	0x0000.0100	ADC Sample Sequence FIFO 0 Status	291
0x060	ADCSSMUX1	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 1	292
0x064	ADCSSCTL1	R/W	0x0000.0000	ADC Sample Sequence Control 1	293
0x068	ADCSSFIF01	RO	0x0000.0000	ADC Sample Sequence Result FIFO 1	290
0x06C	ADCSSFSTAT1	RO	0x0000.0100	ADC Sample Sequence FIFO 1 Status	291
0x080	ADCSSMUX2	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 2	292
0x084	ADCSSCTL2	R/W	0x0000.0000	ADC Sample Sequence Control 2	293
0x088	ADCSSFIF02	RO	0x0000.0000	ADC Sample Sequence Result FIFO 2	290
0x08C	ADCSSFSTAT2	RO	0x0000.0100	ADC Sample Sequence FIFO 2 Status	291
0x0A0	ADCSSMUX3	R/W	0x0000.0000	ADC Sample Sequence Input Multiplexer Select 3	295
0x0A4	ADCSSCTL3	R/W	0x0000.0002	ADC Sample Sequence Control 3	296
0x0A8	ADCSSFIFO3	RO	0x0000.0000	ADC Sample Sequence Result FIFO 3	290
0x0AC	ADCSSFSTAT3	RO	0x0000.0100	ADC Sample Sequence FIFO 3 Status	291
0x100	ADCTMLB	R/W	0x0000.0000	ADC Test Mode Loopback	297

12.5 Register Descriptions

The remainder of this section lists and describes the ADC registers, in numerical order by address offset.

Register 1: ADC Active Sample Sequencer (ADCACTSS), offset 0x000

This register controls the activation of the Sample Sequencers. Each Sample Sequencer can be enabled/disabled independently.

ADC Active Sample Sequencer (ADCACTSS)

Base 0x4003.8000 Offset 0x000 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ï		1 1				r r	rese	rved	1 1		1	1	1	1	
Туре	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							erved		1				ASEN3	ASEN2	ASEN1	ASEN0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x00	com	patibility	ould not i with futu cross a re	ure prod	ucts, the	value of	a reserv		
	3		ASE	N 3	R/	W	0	ADC	SS3 E	nable						
									uence lo	nether Sa gic for Se						
	2		ASE	N2	R/	W	0	ADC	SS2 E	nable						
								•	uence lo	nether Sa gic for Se	•	•				•
	1		ASE	N1	R/	W	0	ADC	SS1 E	nable						
								•	uence lo	nether Sa gic for Se	•	•				•
	0		ASE	٧0	R/	W	0	ADC	SS0 E	nable						
										nether Sa gic for Se	•	•				•

inactive.

Register 2: ADC Raw Interrupt Status (ADCRIS), offset 0x004

This register shows the status of the raw interrupt signal of each Sample Sequencer. These bits may be polled by software to look for interrupt conditions without having to generate controller interrupts.

Base Offse	C Raw I 0x4003.8 t 0x004 RO, rese	3000	ot Status	s (ADCF	RIS)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1				rese	erved			1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		res	erved		і і		1	1	INR3	INR2	INR1	INR0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	8it/Field		Nan	ne	Ту	ре	Reset	Des	scription							
	31:4		reser	ved	R	С	0x00	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	3		INF	83	R	С	0	SSS	3 Raw Int	errupt S	tatus					
	3							has	by hardw complete CISC IN3	ed conve						
	2		INF	R2	R	С	0	SS2	2 Raw Int	errupt S	tatus					
								has	by hardw complete CISC IN2	ed conve						
	1		INF	R1	R	С	0	SS1	I Raw Int	errupt S	tatus					
								has	by hardw complete CISC INI	ed conve		•				
	0		INF	RO	R	С	0	SSC) Raw Int	errupt S	tatus					
								has	by hardw complete CISC INC	ed conve		•				

Register 3: ADC Interrupt Mask (ADCIM), offset 0x008

This register controls whether the Sample Sequencer raw interrupt signals are promoted to controller interrupts. The raw interrupt signal for each Sample Sequencer can be masked independently.

ADC	Interru	pt Mas	sk (ADC	IM)												
Offse	0x4003.8 t 0x008 R/W, rese		0.0000													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	'					'		rese	erved	•	'	•	<u>'</u>	•		•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	erved						MASK3	MASK2	MASK1	MASK0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ne.	Τv	ре	Reset	Des	cription							
_					.,	P 0			•							
	31:4		reserv	/ed	R	0	0x00	com	patibility	with fut	ure prod	ucts, the	e of a res e value of e operatio	a reserv		
	3		MAS	K3	R	W	0	SS3	8 Interrup	ot Mask						
								(AD	CRIS realized realize	gister IN	IR3 bit) i	s promo	ignal fron oted to a c o a contro	controlle	r interrup	ot. If set,
	2		MAS	K2	R	W	0	SS2	2 Interrup	ot Mask						
								(AD	CRIS realized realize	gister IN	IR2 bit) i	s promo	ignal fron ited to a c o a contro	controlle	r interrup	ot. If set,
	1		MAS	K1	R/	W	0	SS1	Interrup	ot Mask						
								(AD the	CRIS re	gister IN	IR1 bit) i	s promo	ignal fron ited to a c o a contro	controlle	r interrup	ot. If set,
	0		MAS	K0	R	W	0	SSC) Interrup	ot Mask						
								(AD	CRIS realized realize	gister IN	IRO bit) i	s promo	ignal from ited to a c o a contro	controlle	r interrup	ot. If set,

Register 4: ADC Interrupt Status and Clear (ADCISC), offset 0x00C

This register provides the mechanism for clearing interrupt conditions, and shows the status of controller interrupts generated by the Sample Sequencers. When read, each bit field is the logical AND of the respective INR and MASK bits. Interrupts are cleared by writing a 1 to the corresponding bit position. If software is polling the ADCRIS instead of generating interrupts, the INR bits are still cleared via the **ADCISC** register, even if the IN bit is not set.

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1	т т	rese	rved	r	1	ſ	1	1	1	1
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1			res	erved		1		1		IN3	IN2	IN1	IN0
/pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W10 0
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:4		reserv	/ed	R	0	0x00	com	patibility	with fut	ure prod	ucts, the	e of a res value of e operatio	a reserv	•	
	3		ING	3	R/V	V1C	0	SS3	Interrup	ot Status	and Cle	ar				
								prov	iding a l	evel-bas		upt to th	MASK3 a e control			
	2		IN2	2	R/V	V1C	0	SS2	2 Interrup	ot Status	and Cle	ar				
								prov	iding a l	evel bas		upt to th	MASK2 a e control			
	1		IN1		R/V	V1C	0	SS1	Interrup	ot Status	and Cle	ar				
								prov	iding a l	evel bas		upt to th	MASK1 a e control			
	0		INC)	R/V	V1C	0	SS0	Interrup	ot Status	and Cle	ar				
								This	s bit is se	t by har	dware wl	nen the	mask0 a	nd INR0	bits are	both 1

ADC Interrupt Status and Clear (ADCISC)

Base 0x4003.8000

Register 5: ADC Overflow Status (ADCOSTAT), offset 0x010

This register indicates overflow conditions in the Sample Sequencer FIFOs. Once the overflow condition has been handled by software, the condition can be cleared by writing a 1 to the corresponding bit position.

ADC Overflow Status (ADCOSTAT)

Base 0x4003.8000 Offset 0x010 Type R/W1C, reset 0x0000.0000

)	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĩ		r 1				<u>г г</u>	rese	rved		· · · · ·		r	1	r i	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[10	17	10	12			rved	0	·			-	OV3	OV2	OV1	0V0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	e	Ty	ре	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x00	Soft	ware shr	ould not i	rely on th	ne value	of a res	erved hit		vide
	0111		100011			0	UNUU	com	patibility	with futu	ure produ ead-mod	ucts, the	value of	a reserv	•	
	3		OV:	3	R/W	/1C	0	SS3	FIFO O	verflow						
								over Whe bit is	flow con en an ove	dition wherflow is on ardware	t the FIF nere the detected to indic ng a 1.	FIFO is , the mo	full and a st recent	a write w write is o	as reque	ested. and this
	2		OV2	2	R/M	/1C	0	SS2	FIFO O	verflow						
								over Whe bit is	flow con en an ove	dition wherflow is on ardware	t the FIF nere the detected to indicang a 1.	FIFO is , the mo	full and a st recent	a write w write is o	as reque	ested. and this
	1		OV	1	R/M	/1C	0	SS1	FIFO O	verflow						
								over Whe bit is	flow con en an ove	dition wherflow is on ardware	t the FIF nere the detected to indic ng a 1.	FIFO is , the mo	full and a st recent	a write w ∶write is o	as reque	ested. and this
	0		OVO	C	R/M	/1C	0	SSO	FIFO O	verflow						
								over Whe bit is	flow con en an ove	dition wherflow is on ardware	t the FIF nere the detected e to indic ng a 1.	FIFO is , the mo	full and a st recent	a write w write is o	as reque	ested. and this

Register 6: ADC Event Multiplexer Select (ADCEMUX), offset 0x014

The **ADCEMUX** selects the event (trigger) that initiates sampling for each Sample Sequencer. Each Sample Sequencer can be configured with a unique trigger source.

ADC Event Multiplexer Select (ADCEMUX)

Base Offse	0x4003.8 t 0x014 R/W, rese	3000	0.0000			,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							· ·	rese	rved						•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		E	M3	-		E	M2				M1	-			M0	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
nooor	Ū	Ū		Ū	Ū	Ū	Ū	Ū	Ū	ů.	Ū	Ū	Ū	Ū	Ū	Ū
В	it/Field		Nan	ne	Ту	pe	Reset	Des	cription							
	31:16		reser	ved	R	0	0x00	com	patibilit	nould not y with fut across a r	ure prod	ucts, the	value of	a reserv		
	15:12		EM	3	R	W	0x00	SS3	Trigge	r Select						
								This	field se	elects the	trigger s	source fo	or Sample	e Seque	ncer 3.	
								The	valid co	onfigurati	ons for tl	nis field a	are:			
								Valu	le E	vent						
								0x0	С	ontroller	(default)					
								0x1	A	nalog Co	mparato	r 0				
								0x2	A	nalog Co	mparato	r 1				
								0x3	R	eserved						
								0x4	E	xternal (C	GPIO PB	4)				
								0x5	Т	imer						
								0x6	R	eserved						
								0x7	R	eserved						
								0x8	R	eserved						
								0x9	-0xE re	eserved						
								0xF	A	lways (co	ontinuous	sly samp	le)			

Bit/Field	Name	Туре	Reset	Description	on
11:8	EM2	R/W	0x00	SS2 Trig	ger Select
				This field	selects the trigger source for Sample Sequencer 2.
				The valid	configurations for this field are:
				Value	Event
				Value 0x0	Event
				0x0 0x1	Controller (default) Analog Comparator 0
				0x1	Analog Comparator 1
				0x2	Reserved
				0x3 0x4	External (GPIO PB4)
				0x5	Timer
				0x6	Reserved
				0x7	Reserved
				0x8	Reserved
				0x9-0xE	reserved
				0xF	Always (continuously sample)
7.4		DAA	000	004 Tria	
7:4	EM1	R/W	0x00		ger Select
				This field	selects the trigger source for Sample Sequencer 1.
				The valid	configurations for this field are:
				Value	Event
				0x0	Controller (default)
				0x1	Analog Comparator 0
				0x2	Analog Comparator 1
				0x3	Reserved
				0x4	External (GPIO PB4)
				0x5	Timer
				0x6	Reserved
				0x6 0x7	Reserved Reserved
				0x7 0x8	Reserved

Bit/Field	Name	Туре	Reset	Description	
3:0	EM0	R/W	0x00	SS0 Trigger Select	
				This field selects the trigger source for Sample Se	equencer 0.
				The valid configurations for this field are:	
				Value Event	
				0x0 Controller (default)	
				0x1 Analog Comparator 0	
				0x2 Analog Comparator 1	
				0x3 Reserved	
				0x4 External (GPIO PB4)	
				0x5 Timer	
				0x6 Reserved	
				0x7 Reserved	
				0x8 Reserved	
				0x9-0xE reserved	
				0xF Always (continuously sample)	

Register 7: ADC Underflow Status (ADCUSTAT), offset 0x018

This register indicates underflow conditions in the Sample Sequencer FIFOs. The corresponding underflow condition can be cleared by writing a 1 to the relevant bit position.

Base	C Under 0x4003.8 et 0x018		atus (Al	CUST	AT)											
Туре	R/W1C, 1 31	reset 0x0 30	000.0000 29	28	27	26	25	24	23	22	21	20	19	18	17	16
		l	1		Ì		1 1	rese	erved		r	ì	1	Ì	i	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1			res	erved				1	1	UV3	UV2	UV1	UV0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1C 0	R/W1C 0	R/W10 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	ved	R	0	0x00	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	3		UV:	3	R/V	/1C	0	SS3	B FIFO U	nderflow	1					
								und The	s bit spec erflow co problem rned. Th	ndition v atic read	vhere the d does n	e FIFO is ot move	empty a the FIFC	nd a read	d was red	queste
	2		UV	2	R/V	/1C	0	SS2	2 FIFO U	nderflow	,					
								und The	s bit spec erflow co problem rned. Th	ndition v atic read	vhere the d does n	e FIFO is ot move	empty a the FIF0	nd a read	d was red	quested
	1		UV	1	R/V	/1C	0	SS1	I FIFO U	nderflow	,					
								und The	s bit spec erflow co problem rned. Th	ndition v atic read	vhere the d does n	e FIFO is ot move	empty a the FIF0	nd a read	d was red	quested
	0		UVU	0	R/V	/1C	0	SSC) FIFO U	nderflow	,					
								und	s bit spec erflow co problem	ndition v atic read	vhere the	e FIFO is ot move	empty a the FIFC	nd a read	d was red	queste

returned. This bit is cleared by writing a 1.

Register 8: ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020

This register sets the priority for each of the Sample Sequencers. Out of reset, Sequencer 0 has the highest priority, and sample sequence 3 has the lowest priority. When reconfiguring sequence priorities, each sequence must have a unique priority or the ADC behavior is inconsistent.

ADC Sample Sequencer Priority (ADCSSPRI)

Base 0x4003.8000 Offset 0x020 Type R/W, reset 0x0000.3210

71	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ				1			1 1	rese	erved		ı –			1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	rese	rved	SS3		reserved		SS2		reserved		SS1		reserved		SS0	
Type Reset	RO 0	RO 0	R/W 1	R/W 1	RO 0	RO 0	R/W 1	R/W 0	RO 0	RO 0	R/W 0	R/W 1	RO 0	RO 0	R/W 0	R/W 0
			Туре		Depet	Dee	oriation									
D	it/Field		Nan	le	ТУ	þe	Reset	Des	cription							
;	cor		com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.												
	13:12		SS	3	R/	W	0x3	SS3	8 Priority							
The SS3 fie encoding o and 3 is low uniquely m are equal.				oding of 3 is low juely ma	Sample est. The	Sequent priorities	cer 3. A p assigne	oriority e ed to the	ncoding Sequen	of 0 is hi cers mus	ghest at be					
	11:10		reser	ved	compatibility wit		with futu	uld not rely on the value of a reserved bit. To provide with future products, the value of a reserved bit should be ross a read-modify-write operation.								
	9:8		SS	2	R/	W	0x2	SS2	2 Priority							
									The SS2 field contains a binary-encoded value that specifies the pencoding of Sample Sequencer 2.						e priority	
	7:6		reser	ved	RO		0x0	com	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved b preserved across a read-modify-write operation.							
	5:4		SS	1	R/	W	0x1	SS1	Priority							
									The SS1 field contains a binary-encoded value that specifies the p encoding of Sample Sequencer 1.						e priority	
	3:2		reser	ved	R	0	0x0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.							
	1:0		SS	0	R/	W	0x0	SSC) Priority							
										d contain Sample		-	ed value	that spe	cifies the	e priority

Register 9: ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028

This register provides a mechanism for application software to initiate sampling in the Sample Sequencers. Sample sequences can be initiated individually or in any combination. When multiple sequences are triggered simultaneously, the priority encodings in **ADCSSPRI** dictate execution order.

ADC Processor Sample Sequence	Initiate (ADCPSSI)
-------------------------------	--------------------

Base 0x4003.8000

Offset 0x028 Type WO, reset -

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
			1					rese	erved								
Type Reset	WO	WO -	WO	WO	WO -	WO	WO	WO	wo	WO -	WO	WO	WO	WO	WO	WO	
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
ſ	10		1			r	i i erved		, i			· · ·	SS3	SS2	SS1	SS0	
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	wo	WO	
Reset	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Bit/Field			Nam	ne	Ту	ре	Reset	Description									
	31:4		reserv	ved	W	0	-		tware sho								
								compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	3		SS	3	W	0	-	SS3	3 Initiate								
								Only a write by software is valid; a read of the register returns no									
				meaningful data. When set by software, sampling is triggered on Sam Sequencer 3, assuming the Sequencer is enabled in the ADCACT ? register.													
	2		SS	2	W	0	-	SS2	2 Initiate								
			mea Seo	Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Sample Sequencer 2, assuming the Sequencer is enabled in the ADCACTSS register.													
	1		SS	1	W	0	-	SS1	1 Initiate								
						Only a write by software is valid; a read of the register returns no meaningful data. When set by software, sampling is triggered on Samp Sequencer 1, assuming the Sequencer is enabled in the ADCACTS register.											
	0		SS	D	W	0	-	SSC) Initiate								
								mea Seo	y a write aningful d juencer C ster.	ata. Whe	en set by	software	e, sampli	ng is trigg	gered on	Sample	

Register 10: ADC Sample Averaging Control (ADCSAC), offset 0x030

This register controls the amount of hardware averaging applied to conversion results. The final conversion result stored in the FIFO is averaged from 2^{AVG} consecutive ADC samples at the specified ADC speed. If AVG is 0, the sample is passed directly through without any averaging. If AVG=6, then 64 consecutive ADC samples are averaged to generate one result in the sequencer FIFO. An AVG = 7 provides unpredictable results.

ADC Sample Av	eraging Contro	(ADCSAC)
neo oumpio n	oluging contro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Base 0x4003.8000

Туре Reset

Туре

Reset

Offset 0x030

Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 AVG reserved RO R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit/Field	Name	Туре	Reset	Description
31:3	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	AVG	R/W	0x0	Hardware Averaging Control
				Specifies the amount of hardware averaging that will be applied to ADC

samples. The AVG field can be any value between 0 and 6. Entering a value of 7 creates unpredictable results.

Value Description

- 0x0 No hardware oversampling
- 0x1 2x hardware oversampling
- 0x2 4x hardware oversampling
- 0x3 8x hardware oversampling
- 16x hardware oversampling 0x4
- 0x5 32x hardware oversampling
- 0x6 64x hardware oversampling
- 0x7 Reserved

Register 11: ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 0.

This register is 32-bits wide and contains information for eight possible samples.

ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0)

Offse	0x4003.8 t 0x040 R/W, rese		0.0000		·		,		,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	reserved		MUX7		reserved		MUX6		reserved		MUX5		reserved		MUX4				
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reserved		MUX3		reserved		MUX2		reserved		MUX1		reserved		MUX0				
Type Reset	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0	R/W 0			
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	scription										
31 reso		reserv	ved	R	0	0	con	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
30:28 MUX7			R/	W	0	8th	3th Sample Input Select												
			The MUX7 field is used during the eighth sample of with the Sample Sequencer. It specifies which of sampled for the analog-to-digital conversion. The the corresponding pin, for example, a value of 1 ADC1.		of the a e value s	analog inp set here ir	outs is idicates												
	27		reserv	ved	R	0	0	con	npatibility	with fut	ure produ	icts, the		a reserv	t. To prov ved bit sh				
	26:24		MUX	(6	R/	W	0	7th	Sample I	nput Se	lect								
			The MUX6 field is used during the seven executed with the Sample Sequencer an inputs is sampled for the analog-to-digit		and spec	cifies wh	•												
	23		reserv	ved	R	0	0	0 Software should not rely on the value of a rese compatibility with future products, the value of preserved across a read-modify-write operatio			a reserv	•							
	22:20		MUX	MUX5 R/W 0 6th Sample Input Select															
								with	The MUX5 field is used during the sixth sample of a sequence executed ith the Sample Sequencer and specifies which of the analog inputs is ampled for the analog-to-digital conversion.										
	19		reserv	ved	R	0	0	con	npatibility	with fut	ure produ	icts, the		a reserv	t. To prov ved bit sh				

Bit/Field	Name	Туре	Reset	Description
18:16	MUX4	R/W	0	5th Sample Input Select
				The MUX4 field is used during the fifth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
15	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
14:12	MUX3	R/W	0	4th Sample Input Select
				The MUX3 field is used during the fourth sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
11	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
10:8	MUX2	R/W	0	3rd Sample Input Select
				The MUX2 field is used during the third sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6:4	MUX1	R/W	0	2nd Sample Input Select
				The MUX1 field is used during the second sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog-to-digital conversion.
3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	MUX0	R/W	0	1st Sample Input Select
				The MUX0 field is used during the first sample of a sequence executed with the Sample Sequencer and specifies which of the analog inputs is sampled for the analog to digital conversion

sampled for the analog-to-digital conversion.

Register 12: ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 0. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between.

This register is 32-bits wide and contains information for eight possible samples.

18	17	16						
IE4	END4	D4						
R/W 0	R/W 0	R/W 0						
2	1	0						
IE0	END0	D0						
R/W 0	R/W 0	R/W 0						
Description								
The TS7 bit is used during the eighth sample of the sample sequence and specifies the input source of the sample. If set, the temperature sensor is read. Otherwise, the input pin specified by the ADCSSMUX register is read.								
8th Sample Interrupt Enable								
The IE7 bit is used during the eighth sample of the sample sequence and specifies whether the raw interrupt signal (INR0 bit) is asserted at the end of the sample's conversion. If the MASK0 bit in the ADCIM register is set, the interrupt is promoted to a controller-level interrupt. When this bit is set, the raw interrupt is asserted, otherwise it is not. It is legal to have multiple samples within a sequence generate interrupts.								
The END7 bit indicates that this is the last sample of the sequence. It is possible to end the sequence on any sample position. Samples defined after the sample containing a set END are not requested for conversion even though the fields may be non-zero. It is required that software write the END bit somewhere within the sequence. (Sample Sequencer 3, which only has a single sample in the sequence, is hardwired to have the END0 bit set.)								
last in t	the seq	uence.						
The D7 bit indicates that the analog input is to be differentially sampled. The corresponding ADCSSMUXx nibble must be set to the pair number "i", where the paired inputs are "2i and 2i+1". The temperature sensor does not have a differential option. When set, the analog inputs are differentially sampled.								
Same definition as ${\tt TS7}$ but used during the seventh sample.								
	e of tl sition. quest uired t ample e, is ha ast in e diffe e set t ne ten ne ana	e of the seque sition. Sample quested for co uired that softw ample Seque e, is hardwired ast in the seq e differentially e set to the pai he temperatur le analog inpu						

ADC Sample Sequence Control 0 (ADCSSCTL0)

Bit/Field	Name	Туре	Reset	Description
26	IE6	R/W	0	7th Sample Interrupt Enable
				Same definition as IE7 but used during the seventh sample.
25	END6	R/W	0	7th Sample is End of Sequence
				Same definition as END7 but used during the seventh sample.
24	D6	R/W	0	7th Sample Diff Input Select
				Same definition as ${\tt D7}$ but used during the seventh sample.
23	TS5	R/W	0	6th Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the sixth sample.
22	IE5	R/W	0	6th Sample Interrupt Enable
				Same definition as ${\tt IE7}$ but used during the sixth sample.
21	END5	R/W	0	6th Sample is End of Sequence
				Same definition as END7 but used during the sixth sample.
20	D5	R/W	0	6th Sample Diff Input Select
				Same definition as ${}_{\mathrm{D7}}$ but used during the sixth sample.
19	TS4	R/W	0	5th Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the fifth sample.
18	IE4	R/W	0	5th Sample Interrupt Enable
				Same definition as IE7 but used during the fifth sample.
17	END4	R/W	0	5th Sample is End of Sequence
				Same definition as END7 but used during the fifth sample.
16	D4	R/W	0	5th Sample Diff Input Select
				Same definition as ${\ensuremath{ {\rm D7}}}$ but used during the fifth sample.
15	TS3	R/W	0	4th Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the fourth sample.
14	IE3	R/W	0	4th Sample Interrupt Enable
				Same definition as IE7 but used during the fourth sample.
13	END3	R/W	0	4th Sample is End of Sequence
				Same definition as ${\tt END7}$ but used during the fourth sample.
12	D3	R/W	0	4th Sample Diff Input Select
				Same definition as ${\ensuremath{\mathbb D}} 7$ but used during the fourth sample.
11	TS2	R/W	0	3rd Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the third sample.

Bit/Field	Name	Туре	Reset	Description
10	IE2	R/W	0	3rd Sample Interrupt Enable
				Same definition as $\mathtt{IE7}$ but used during the third sample.
9	END2	R/W	0	3rd Sample is End of Sequence
				Same definition as ${\tt END7}$ but used during the third sample.
8	D2	R/W	0	3rd Sample Diff Input Select
				Same definition as $D7$ but used during the third sample.
7	TS1	R/W	0	2nd Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the second sample.
6	IE1	R/W	0	2nd Sample Interrupt Enable
				Same definition as $IE7$ but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence
				Same definition as ${\tt END7}$ but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select
				Same definition as ${\tt D7}$ but used during the second sample.
3	TS0	R/W	0	1st Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable
				Same definition as $IE7$ but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence
				Same definition as ${\tt END7}$ but used during the first sample.
				Since this sequencer has only one entry, this bit must be set.
0	D0	R/W	0	1st Sample Diff Input Select
				Same definition as ${\tt D7}$ but used during the first sample.

Register 13: ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 Register 14: ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 Register 15: ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 Register 16: ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8

This register contains the conversion results for samples collected with the Sample Sequencer (the **ADCSSFIFO0** register is used for Sample Sequencer 0, **ADCSSFIFO1** for Sequencer 1, **ADCSSFIFO2** for Sequencer 2, and **ADCSSFIFO3** for Sequencer 3). Reads of this register return conversion result data in the order sample 0, sample 1, and so on, until the FIFO is empty. If the FIFO is not properly handled by software, overflow and underflow conditions are registered in the **ADCOSTAT** and **ADCUSTAT** registers.

ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0) Base 0x4003.8000 Offset 0x048

Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ			l	· ·	l		rese	rved		l		1	•	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved					1		DA	TA		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:10		reser	/ed	R	0	0x00	com	ware sho	with futu	ure produ	ucts, the	value of	a reserv	•	
								pres	served ad	cross a r	ead-mod	lity-write	operatio	on.		
	9:0		DAT	A	R	0	0x00	Con	version l	Result D	ata					

Register 17: ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C

Register 18: ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C

Register 19: ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C

Register 20: ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC

This register provides a window into the Sample Sequencer, providing full/empty status information as well as the positions of the head and tail pointers. The reset value of 0x100 indicates an empty FIFO. The **ADCSSFSTAT0** register provides status on FIF0, **ADCSSFSTAT1** on FIFO1, **ADCSSFSTAT2** on FIFO2, and **ADCSSFSTAT3** on FIFO3.

ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0)

Base 0x4003.8000

Offset 0x04C Type RO, reset 0x0000.0100

Type	110, 1630		100													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ		г г		1			1	resei	rved	l l			1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		FULL		reserved		EMPTY		HP	TR	1		TP	TR	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
В	it/Field		Nan	ne	Ту	pe	Reset	Desc	cription							
:	31:13		reser	ved	R	0	0x00	com	patibility	with futu	ire prod	he value ucts, the dify-write	value of	a reserv		
	12		FUL	L	R	0	0	FIFC) Full							
								Whe	en set, in	dicates t	hat the	FIFO is c	urrently	full.		
	11:9		reser	ved	R	0	0x00	com	patibility	with futu	ire prod	he value ucts, the dify-write	value of	a reserv		
	8		EMP	TY	R	0	1	FIFC) Empty							
								Whe	en set, in	dicates t	hat the	FIFO is c	urrently	empty.		
	7:4		HPT	R	R	0	0x00	FIFC) Head F	Pointer						
										ntains the y to be v		t "head" p	ointer ir	ndex for t	he FIFC), that is,
	3:0		TPT	R	R	0	0x00	FIFC) Tail Po	inter						
										ntains the y to be re		it "tail" po	inter ind	ex for th	e FIFO,	that is,

Register 21: ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060

Register 22: ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 1 or 2. These registers are 16-bits wide and contain information for four possible samples. See the **ADCSSMUX0** register on page 285 for detailed bit descriptions.

ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1)

Base 0x4003.8000

Offset 0x060 Type R/W, reset 0x0000.0000

Type	10,00,1030		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		1 1		г г		1 I	rese	erved		1 1		· ·		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved		MUX3		reserved		MUX2		reserved		MUX1		reserved		MUX0	
Туре	RO	R/W	R/W	R/W	RO	R/W	R/W	R/W	RO	R/W	R/W	R/W	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	e	Тур	e	Reset	Des	scription							
	31:15							con	tware sho npatibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	
	14:12		MUX	(3	R/\	N	0	4th	Sample li	nput Se	lect					
	11		reserv	ved	R)	0	con	tware sho npatibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	
	10:8		MUX	(2	R/\	N	0	3rd	Sample I	nput Se	lect					
	7		reserv	ved	R	D	0	con	tware sho npatibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	6:4		MUX	(1	R/\	N	0	2nd	Sample	Input Se	elect					
	3		reserv	ved	R	D	0	con	tware sho npatibility served ac	with fut	ure produ	ucts, the	value of	a reserv		
	2:0		MUX	(0	R/\	N	0	1st	Sample Ir	nput Se	lect					

Register 23: ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 Register 24: ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084

These registers contain the configuration information for each sample for a sequence executed with Sample Sequencer 1 or 2. When configuring a sample sequence, the END bit must be set at some point, whether it be after the first sample, last sample, or any sample in between. This register is 16-bits wide and contains information for four possible samples. See the **ADCSSCTL0** register on page 287 for detailed bit descriptions.

ADC Sample Sequence Control 1 (ADCSSCTL1)

Base 0x4003.8000

Offset 0x064 Type R/W, reset 0x0000.0000

.)po	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1		1	r	1	rese	rved	1	r	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ſ	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Туре	TS3 R/W	IE3 R/W	END3 R/W	D3 R/W	TS2 R/W	IE2 R/W	END2 R/W	D2 R/W	TS1 R/W	IE1 R/W	END1 R/W	D1 R/W	TS0 R/W	IE0 R/W	END0 R/W	D0 R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x00	Soft	ware sh	ould not	rely on tl	he value	of a res	erved bi	t. To prov	vide
									•		•		value of operatio		/ed bit sh	nould be
								•				2	operatio	лт.		
	15		TS	3	R/	W	0	4th	Sample	Temp Se	ensor Se	lect				
								San	ne defini	tion as T	s7 but u	sed duri	ng the fo	ourth san	nple.	
	14		IE3	3	R/	W	0 4th Sample Interrupt Enable									
								Sam	ne defini	tion as I	E7 but u	sed duri	ng the fo	ourth san	nple.	
	13		END)3	R/	w	0	4th	Sample	is End of	f Sequer	ice				
			2.12				Ū		•		•		ring the f	fourth sa	mole	
					_							4004 44	ing the		inpio.	
	12		D3		R/	W	0		•	Diff Inpu						
								San	ne defini	tion as ⊃	7 but us	ed durin	g the fou	rth sam	ole.	
	11		TS2	2	R/	W	0	3rd	Sample	Temp Se	ensor Se	lect				
								San	ne defini	tion as T	s7 but u	sed duri	ng the th	ird sam	ole.	
	10		IE2	2	R/	W	0	3rd Sample Interrupt Enable								
								Sam	ne definit	tion as I	E7 but u	sed duri	ng the th	ird sam	ole.	
	9		END	12	R/	\\/	0	Srd	Samolo	is End of	f Sequer					
	3			~~		vv	U		•		•		ring the f	third con	anlo	
								Sdll		uon as E	DU / DUI		ring the f		ipie.	
	8		D2		R/	W	0	3rd	Sample	Diff Inpu	t Select					
								San	ne defini	tion as ⊃	7 but us	ed durin	g the thir	d sampl	e.	

Bit/Field	Name	Туре	Reset	Description
7	TS1	R/W	0	2nd Sample Temp Sensor Select
				Same definition as $\ensuremath{\mathbb{TS7}}$ but used during the second sample.
6	IE1	R/W	0	2nd Sample Interrupt Enable
				Same definition as ${\tt IE7}$ but used during the second sample.
5	END1	R/W	0	2nd Sample is End of Sequence
				Same definition as ${\tt END7}$ but used during the second sample.
4	D1	R/W	0	2nd Sample Diff Input Select
				Same definition as ${\tt D7}$ but used during the second sample.
3	TS0	R/W	0	1st Sample Temp Sensor Select
				Same definition as ${\tt TS7}$ but used during the first sample.
2	IE0	R/W	0	1st Sample Interrupt Enable
				Same definition as ${\tt IE7}$ but used during the first sample.
1	END0	R/W	0	1st Sample is End of Sequence
				Same definition as END7 but used during the first sample.
				Since this sequencer has only one entry, this bit must be set.
0	D0	R/W	0	1st Sample Diff Input Select
				Same definition as $D7$ but used during the first sample.

Register 25: ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0

This register defines the analog input configuration for each sample in a sequence executed with Sample Sequencer 3. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSMUX0** register on page 285 for detailed bit descriptions.

	t 0x0A0 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1			· ·	rese			1	1	,		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	U	0	U	U	0	U	U	U	U	U	0	U	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	I		reserved				1	1			MUX0	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0 Decet	0	0	0	0	0	0	0	0	0
В	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:3		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	2:0		MU>	K 0	R/	W	0	1st S	Sample I	nput Sel	lect					

ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3)

Base 0x4003.8000

Register 26: ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4

This register contains the configuration information for each sample for a sequence executed with Sample Sequencer 3. The END bit is always set since there is only one sample in this sequencer. This register is 4-bits wide and contains information for one possible sample. See the **ADCSSCTL0** register on page 287 for detailed bit descriptions.

ADC Sample Sequence Control 3 (ADCSSCTL3)

Base 0x4003.8000

Offset 0x0A4 Type R/W, reset 0x0000.0002

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		r r			rese	rved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						rese	erved						TS0	IE0	END0	D0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:4		reserv	ved	R	D	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	3		TSC)	R/\	N	0	1st s	Sample T	emp Se	nsor Sel	ect				
								San	ne definiti	on as T	s7 but u	sed durii	ng the fir	st samp	le.	
	2		IE0)	R/\	N	0	1st s	Sample I	nterrupt	Enable					
								San	ne definiti	ion as I	E7 but u	sed durii	ng the fir	st samp	le.	
	1		END	0	R/\	N	1	1st s	Sample is	s End of	Sequen	ce				
								Sam	ne definiti	ion as E	ND7 but	used du	ring the f	first sam	ple.	
								Sinc	e this se	quencer	has onl	y one en	try, this I	oit must	be set.	
	0		D0		R/\	N	0	1st s	Sample E	Diff Input	Select					
								Sam	ne definiti	ion as D	7 but us	ed during	g the first	t sample		

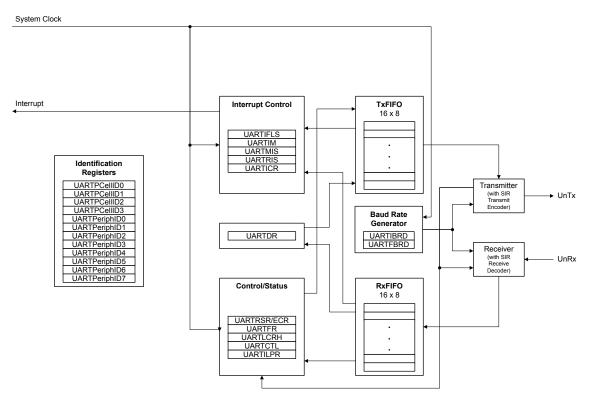
Register 27: ADC Test Mode Loopback (ADCTMLB), offset 0x100

This register provides loopback operation within the digital logic of the ADC, which can be useful in debugging software without having to provide actual analog stimulus. This test mode is entered by writing a value of 0x0000.0001 to this register. When data is read from the FIFO in loopback mode, the read-only portion of this register is returned.

Base (Offset	0x4003.80 0x100 R/W, rese	000).0000		IVILD)											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RC 0	D RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								reserved								LB
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RC 0		RO 0	RO 0	RO 0	RO 0	R/W 0
Bi	it/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:1 reserved RO 0x00 Software should not rely on the compatibility with future production preserved across a read-model 0 LB R/W 0 Loopback Mode Enable					ucts, the	value of	a reserv	•							
	0		LB		R/	N	0	Loop	back M	lode E	Enable					
When set, forces a loopback within the digital block to provide informatio on input and unique numbering. The ADCSSFIFOn registers do not provide sample data, but instead provide the 10-bit loopback data as shown below. Bit/Field Name Description									lo not							
								Bit/I	Field Na	ame	Description					
								9:6	CI	NT	Continuous	Sample	Counter			
											Continuous counts each provide a ui	n sample	e as it pro	ocessed.	This he	lps
								5	C	DNT	Continuatio	n Sampl	e Indicat	or		
											When set, ir For example back-to-bac continuousl	e, if two k, this ir	sequenc idicates f	ers were that the c	to run	•
							4 DIFF Differential Sample Indicator									
						When set, indicates that this is a differential sar					ample.					
								3	т	6	Temp Sense	or Samp	le Indica	tor		
											When set, ii sample.	ndicates	that this	is a tem	perature	sensor
								2:0	M	UX	Analog Inpu	it Indicat	or			
											Indicates w	hich ana	log input	t is to be	sampleo	d.

ADC Test Mode Loopback (ADCTMLB)

13 Universal Asynchronous Receivers/Transmitters (UARTs)


The Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable, 16C550-type serial interface characteristics. The LM3S1608 controller is equipped with two UART modules.

Each UART has the following features:

- Separate transmit and receive FIFOs
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Programmable baud-rate generator allowing rates up to 3.125 Mbps
- Standard asynchronous communication bits for start, stop, and parity
- False start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics:
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing:
 - Programmable use of IrDA Serial Infrared (SIR) or UART input/output
 - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
 - Support of normal 3/16 and low-power (1.41-2.23 µs) bit durations
 - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

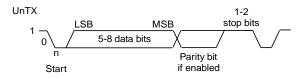
13.1 Block Diagram

Figure 13-1. UART Module Block Diagram

13.2 Functional Description

Each Stellaris[®] UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 317). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.


The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.

13.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 13-2 on page 300 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

13.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 313) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 314). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 315), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- **UARTFBRD** write, **UARTIBRD** write, and **UARTLCRH** write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

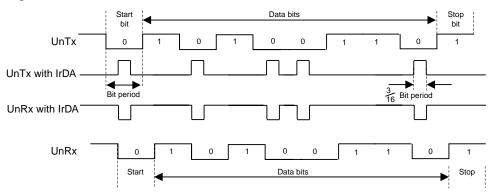
13.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit

FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 310) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 299).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 308). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.


Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.

13.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output, and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register. See page 312 for more information on IrDA low-power pulse-duration configuration.

Figure 13-3 on page 302 shows the UART transmit and receive signals, with and without IrDA modulation.

Figure 13-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

13.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 306). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 315).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 310) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 319). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

13.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error

- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 324).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 321) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 323).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 325).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

13.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 317). In loopback mode, data transmitted on UnTx is received on the UnRx input.

13.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physical layer specifies a minimum 10-ms delay between transmission and reception.

13.3 Initialization and Configuration

To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

- 115200 baud rate
- Data length of 8 bits
- One stop bit

- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 300, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 313) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 314) is calculated by the equation:

```
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
```

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the UARTIBRD register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- 4. Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the **UARTCTL** register.

13.4 Register Map

Table 13-1 on page 304 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- UART1: 0x4000.D000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 317) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Table 13-1. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	306
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	308
0x018	UARTFR	RO	0x0000.0090	UART Flag	310
0x020	UARTILPR	R/W	0x0000.0000	UART IrDA Low-Power Register	312
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	313

Offset	Name	Туре	Reset	Description	See page
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	314
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	315
0x030	UARTCTL	R/W	0x0000.0300	UART Control	317
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	319
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	321
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	323
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	324
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	325
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	327
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	328
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	329
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	330
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	331
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	332
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	333
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	334
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	335
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	336
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	337
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	338

13.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

Register 1: UART Data (UARTDR), offset 0x000

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

UART Data (UARTDR) UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x000 Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 11 10 9 8 6 5 3 2 0 14 7 4 1 OE ΒE PE FE DATA reserved RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Type RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Type Reset 31:12 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. OE RO UART Overrun Error 11 0 The OE values are defined as follows: Value Description 0 There has been no data loss due to a FIFO overrun. 1 New data was received when the FIFO was full, resulting in data loss. RO UART Break Error 10 ΒE 0 This bit is set to 1 when a break condition is detected, indicating that the receive data input was held Low for longer than a full-word transmission time (defined as start, data, parity, and stop bits). In FIFO mode, this error is associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded into the FIFO. The next character is only enabled after the received data input goes to a 1 (marking state) and the next valid start bit is received.

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Read-Only Receive Status (UARTRSR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Í	r		1 1		r r		г т	rese	rved					1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[, r				r í	rese	i i erved		r			l	OE	BE	PE	FE
_ L																
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei	0	0	U	0	U	U	0	0	0	0	0	0	U	U	0	U
В	lit/Field		Nam	ie	Тур	ре	Reset	Des	cription							
	31:4		reserv	ved	R	C	0	com	patibility	with futu	ire prodi		value of			vide nould be
	3		OE		R	С	0	UAF	RT Overr	un Error						
	3 OE									-	is receiv rite to U		the FIFC R .) is alrea	idy full.	
								the	FIFO is f	ull, only	the cont	ents of th	ne shift r	ner data i register a empty the	re overv	
	2		BE		R	С	0	UAF	RT Break	Error						
								the	received	data inp	ut was h	eld Low	for long	etected, er than a ty, and st	a full-wor	ď
								This	bit is cle	eared to	0 by a w	rite to U	ARTEC	२.		
							the I FIF0	FIFO. W D. The n	hen a bre ext chara	eak occu acter is c	irs, only o only enat	one 0 ch bled afte	e charact aracter i r the reco start bit	s loaded eive data	l into the a input	

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Write-Only Error Clear (UARTECR) Register

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							г т	rese	rved							
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		т т	-			r	DA		r	r	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
10000	°	Ū	Ū	0	°	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū	Ū
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	W	0	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		DAT	A	W	0	0		r Clear			-1-41				

A write to this register of any data clears the framing, parity, break, and overrun flags.

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UAR UAR Offse	RT Flag F0 base: (F1 base: (t 0x018 RO, rese	0x4000.C 0x4000.D	000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	erved	1		1			1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved				TXFE	RXFF	TXFF	RXFE	BUSY		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8					0	0	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit show preserved across a read-modify-write operation.								
	7		TXF	E	R	0	1	UAF	RT Trans	mit FIFC) Empty					
									meaning RTLCRH	-		nds on tl	ne state o	of the F	EN bit in th	ne
								e FIFO is ster is er		d (fen is	0), this t	oit is set v	vhen the	e transmit	holding	
									e FIFO i: mpty.	s enable	d (FEN is	s 1), this	bit is set	when t	he transm	it FIFO
	6		RXF	F	R	0	0	UAF	RT Rece	ve FIFO	Full					
									meaning	-	•	nds on tł	ne state o	of the F	EN bit in th	ne
								lf th is fu		s disable	d, this b	it is set v	vhen the	receive	holding r	egister
								lf th	e FIFO i	s enable	d, this bi	t is set v	/hen the	receive	FIFO is fu	JII.
	5		TXF	F	R	0	0	UAF	RT Trans	mit FIFC) Full					
	Э							The meaning of this bit depends on the state of the FEN UARTLCRH register.						EN bit in th	ie	
							lf th is fu		s disable	d, this b	it is set v	vhen the	transmi	it holding i	register	
								lf th	e FIFO i	s enable	d, this bi	t is set v	hen the	transmi	t FIFO is f	full.

Bit/Field	Name	Туре	Reset	Description
4	RXFE	RO	1	UART Receive FIFO Empty
				The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register.
				If the FIFO is disabled, this bit is set when the receive holding register is empty.
				If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The **UARTILPR** register is an 8-bit read/write register that stores the low-power counter divisor value used to derive the low-power SIR pulse width clock by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The internal IrLPBaud16 clock is generated by dividing down SysClk according to the low-power divisor value written to **UARTILPR**. The duration of SIR pulses generated when low-power mode is enabled is three times the period of the IrLPBaud16 clock. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F_{IrLPBaud16}

where F_{IrLPBaud16} is nominally 1.8432 MHz.

You must choose the divisor so that $1.42 \text{ MHz} < F_{IrLPBaud16} < 2.12 \text{ MHz}$, which results in a low-power pulse duration of $1.41-2.11 \mu s$ (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being generated.

UART IrDA Low-Power Register (UARTILPR)

UAP				egister	UARTI	_F N)											
UAR		0x4000. 0x4000.															
Туре	R/W, re	set 0x000	0000.00														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
1		1	1	1	l I	-	1 1		1	r	r	1	1	r	1	1	
								rese	rved								
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	45		10	40		10	•	0	-	0	-		0	0		0	
1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved									-	-	ILPI	DVSR	•	•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nar	ne	Ту	ре	Reset	Des	cription								
	31:8		reser	ved	R	0	0	Software should not rely on the value of a reserved bit. To provide									
								compatibility with future products, the value of a reserved bit should be									
								preserved across a read-modify-write operation.									
	7:0		ILPDVSR	R/	W	0x00	0x00 IrDA Low-Power Divisor										
								Thio	io on 9	hit low n	owor di	vicor vol					
					Ī			THIS	5 15 di 10-	·bit low-p	ower an	visor vali	ue.				

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD=0**), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 300 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000

UART1 base: 0x4000.D000 Offset 0x024 Type R/W, reset 0x0000.0000 31 30 29 28 25 24 23 22 27 26 21 20 19 18 17 16 reserved RO Туре RO RO RO RO RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 DIVINT Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Туре Reset Description RO 31:16 reserved 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:0 DIVINT R/W 0x0000 Integer Baud-Rate Divisor

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 300 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD)

UART0 base: 0x4000.C000

Offse	l 1 base: 0 t 0x028 R/W, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ſ		I				1 I	rese	erved			1	1 I		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		rese	rved	· ·		1			1	i Divf	RAC	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	8it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:6		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	vide nould be
	5:0		DIVFF	RAC	R/	W	0x000	Frac	ctional Ba	aud-Rate	e Divisor					

July 26, 2008

Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x02C
Type R/W, reset 0x0000.0000

lype	R/W, res	et 0x0000	00000															
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
							1 1	rese	erved									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
				rese	rved				SPS	WI	LEN	FEN	STP2	EPS	PEN	BRK		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
	•		0	Ū	Ū	Ū	0		Ū	Ū	°,	°,	Ū	Ū	Ū	0		
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription									
	31:8		reserv	/ed	R	0	0	Soft	ware sho	ould not	rely on t	he value	of a res	erved bit	t. To prov	/ide		
								com	patibility served a	with fut	ure prod	ucts, the	value of	a reserv				
	7		SPS R			W	0	UART Stick Parity Select										
								When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transmitted										
								and	checked ty bit is t	l as a 0.	When b	its 1 and	7 are se					
								Whe	en this bi	t is clea	red, stick	c parity is	s disable	d.				
	6:5		WLE	N	R	W	0	UAF	RT Word	Length								
									bits indi ne as foll		number	of data	bits trans	smitted o	r receive	ed in a		
								Val	ue Desc	ription								
									3 8 bits									
								0x										
								0x	1 6 bits	6								
								0x	0 5 bits	s (defaul	t)							
	4		FEI	Ν	R	W	0	UAF	RT Enab	e FIFOs	6							
								lf thi mod	is bit is se le).	et to 1, tr	ansmit a	nd receiv	ve FIFO b	ouffers a	re enable	ed (FIFO		
									en cleare ome 1-b					acter mo	de). The	FIFOs		
												0.00						

Bit/Field	Name	Туре	Reset	Description
3	STP2	R/W	0	UART Two Stop Bits Select If this bit is set to 1, two stop bits are transmitted at the end of a frame. The receive logic does not check for two stop bits being received.
2	EPS	R/W	0	UART Even Parity Select If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits. When cleared to 0, then odd parity is performed, which checks for an odd number of 1s. This bit has no effect when parity is disabled by the PEN bit.
1	PEN	R/W	0	UART Parity Enable If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be cleared to 0.

Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - 1. Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - 4. Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x030 Type R/W, reset 0x0000.0300

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1				1 1	rese	rved	ı		ı	1	r	ı	1
_ L					L											
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	Ũ	0	Ū	Ū	Ū	0	Ũ	Ū	0	Ũ	Ũ	Ŭ	Ũ	Ū	0	Ū
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		rese	rved			RXE	TXE	LBE		rese	erved		SIRLP	SIREN	UARTEN
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
В	sit/Field		Nam	1e	Ту	ne	Reset	Des	cription							
			nun		' y	pe	10000	Des	onption							
	31:10	1:10 reserved		R	0	0	Soft	ware sh	ould not	relv on t	he value	e of a res	erved bit	t. To prov	/ide	
													value of		•	
						pres	served a	cross a r	ead-mo	dify-write	e operatio	on.				
	9		RXI	E	R/	W	1	UAF	RT Rece	ive Enab	le					
								If th	is hit is s	set to 1 t	he recei	ve sectio	on of the	UART is	enable	When
										,			a receive			
										efore stop				.,		
								Not	e: To	enable	receptio	n, the 🗤	ARTEN b i	t must al	lso be se	et.
	8		ТХІ	=	R/	W	1	UAF	RT Trans	mit Enat	ble					
	0		174	-	10	•••		0/ 1								
										,			on of the			
										disabled acter bef			f a transr	nission,	it comple	etes the
						Not	e: To	enable	transmis	ssion the	e uartei	N bit mus	st also be	e set		
												,	• 0111111			

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable If this bit is set to 1, the UnTX path is fed through the UnRX path.
6:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	SIRLP	R/W	0	UART SIR Low Power Mode
				This bit selects the IrDA encoding mode. If this bit is cleared to 0, low-level bits are transmitted as an active High pulse with a width of 3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted with a pulse width which is 3 times the period of the IrLPBaud16 input signal, regardless of the selected bit rate. Setting this bit uses less power, but might reduce transmission distances. See page 312 for more information.
1	SIREN	R/W	0	UART SIR Enable
				If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.
0	UARTEN	R/W	0	UART Enable
				If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current

character before stopping.

July 26, 2008

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

	t 0x034 R/W, rese	et 0x000	0.0012														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	Ĩ		1		1		î î	resei	ved	1 1		1			Ì		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			'		rese	rved				1		RXIFLSEL			TXIFLSEL	·	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0	
Bit/Field			Nam	ie	Ту	ре	Reset	Desc	pription								
31:6			reserv	ved	R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	5:3		RXIFL	SEL	R/W 0x2			UART Receive Interrupt FIFO Level Select									
								The	trigger p	points for	the rece	eive inter	rupt are	as follov	vs:		
								Va	lue De	escription	1						
								0	κ0 R)	K FIFO ≥	1/8 full						
								0	(1 R)	K FIFO ≥	¼ full						
								0	κ2 R)	K FIFO ≥	½ full (d	lefault)					
								0	(3 R)	K FIFO ≥	¾ full						
								0	κ4 R)	K FIFO ≥	7/8 full						
								0x5	-0x7 Re	eserved							

UART Interrupt FIFO Level Select (UARTIFLS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000

Bit/Field	Name	Туре	Reset	Description								
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level Select								
				The trigger points for the transmit interrupt are as follows:								
				Value Description								
				0x0 TX FIFO ≤ 1/8 full								
				0x1 TX FIFO ≤ ¼ full								
				0x2 TX FIFO $\leq \frac{1}{2}$ full (default)								
				0x3 TX FIFO ≤ ¾ full								
				0x4 TX FIFO ≤ 7/8 full								
				0x5-0x7 Reserved								

Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

UART Interrupt Mask (UARTIM)

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART UART Offse	T0 base: 0 T1 base: 0 t 0x038 R/W, rese	x4000.C x4000.D	000	XTIIVI)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•		rese	rved		•					•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	1	0						
			reserved			OEIM	BEIM	PEIM	erved	•						
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
В	8it/Field		Nam	е	Ту	ре	Reset	Des	cription							
31:11 reserved					R	0	0x00	com	patibility	with futu	ure prod	ucts, the	of a rese value of operatio	a reserv		
	10		OEI	M	R/	w	0	UAF	RT Overr	un Error	Interrup	t Mask				
								On	a read, tl	ne currei	nt mask	for the O	EIM inter	rupt is r	eturned.	
								Sett	ing this b	it to 1 pro	omotes t	heOEIM	interrupt	to the in	terrupt co	ontroller.
	9		BEI	N	R/	W	0	UAF	RT Break	Error In	terrupt N	/lask				
								On	a read, tl	ne currei	nt mask	for the BI	EIM inter	rupt is r	eturned.	
								Sett	ing this b	it to 1 pro	omotes t	he BEIM	interrupt	to the in	terrupt co	ontroller.
	8		PEI	N	R/	W	0			Error In	•					
													EIM inter			
								Sett	ing this b	it to 1 pro	omotes t	he PEIM	interrupt	to the in	terrupt co	ontroller.
	7		FEIN	N	R/	W	0			ing Error						
													EIM inter			
									-				interrupt	to the in	terrupt co	ontroller.
	6		RTIN	N	R/	W	0					errupt Ma			4	
													тім inter interrupt			ontroller
	F		T \/! B				0		0	•			incirupt		ion upi O	
	5		TXIN	VI	R/	W	0			mit Inter						
													XIM inter			
								Sell	ing uns b	n to i pro	JINOLES	ILE TAIM	interrupt	to the In	terrupt Co	Jindollel.

Bit/Field	Name	Туре	Reset	Description
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the RXIM interrupt is returned.
				Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The **UARTRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x03C Type RO, reset 0x0000.000F

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
ſ	- 1		1 1					rese	rved	1	1		1		1					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
			reserved			OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS		rese	rved					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1				
_					_			_												
В	it/Field		Nam	е	Ту	pe	Reset	Description												
31:11 reserved				red	R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	10		OER	IS	R	0	0	UAF	UART Overrun Error Raw Interrupt Status											
								Give	Gives the raw interrupt state (prior to masking) of this interrupt.											
	9		BERI	S	R	0	0	UAF	UART Break Error Raw Interrupt Status											
									Gives the raw interrupt state (prior to masking) of this interrupt.											
	8		PERI	S	R	0	0	UAF	RT Parity	Frror R	aw Interr	unt Stati	IS							
	0			0	i v	0	Ū		UART Parity Error Raw Interrupt Status Gives the raw interrupt state (prior to masking) of this interru						interrupt.					
	7			0	D	0	0		UART Framing Error Raw Interrupt Status											
	7		FERI	5	R	0	0		o											
								Gives the raw interrupt state (prior to masking) of this interrupt.												
	6		RTRI	S	R	0	0		UART Receive Time-Out Raw Interrupt Status											
								Gives the raw interrupt state (prior to masking) of this interrupt.												
	5		TXRI	S	R	0	0	UAF	RT Trans	mit Raw	Interrup	t Status								
								Give	Gives the raw interrupt state (prior to masking) of this interrupt.											
	4		RXR	IS	R	0	0	UAF	RT Recei	ve Raw	Interrupt	Status								
								Give	es the ra	w interru	ipt state	(prior to ı	masking) of this	interrupt					
	3:0		reserv	red	R	0	0xF	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.												

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The **UARTMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0x040 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
ſ	r		1 1					rese	rved	1	1				1				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			reserved			OEMIS	BEMIS	PEMIS											
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
Bit/Field Name				Ту	ре	Reset	Des	cription											
31:11 reserved				R	0	0x00	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.												
10 OEMIS				R	0	0	UAF	UART Overrun Error Masked Interrupt Status											
								Gives the masked interrupt state of this interrupt.											
9 BEMIS					R	0	0	UAF	UART Break Error Masked Interrupt Status										
								Give	Gives the masked interrupt state of this interrupt.										
	8		PEM	IS	R	0	0	UAF	UART Parity Error Masked Interrupt Status										
							Gives the masked interrupt state of this interrupt.												
	7		FEM	IS	R	0	0	UAF	UART Framing Error Masked Interrupt Status										
								Gives the masked interrupt state of this interrupt.											
	6		RTM	IS	R	0	0	UAF	UART Receive Time-Out Masked Interrupt Status										
								Gives the masked interrupt state of this interrupt.											
	5 TXMIS					0	0	UAF	UART Transmit Masked Interrupt Status										
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.					
	4		RXM	IS	R	0	0	UAF	UART Receive Masked Interrupt Status										
								Give	es the m	asked in	terrupt s	tate of th	is interru	ıpt.					
3:0 reserved					R	0	0	Software should not rely on the value of a reserved bit. To p compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.						•					

Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

UAR UAR Offse	RT Inter T0 base: (T1 base: (t 0x044 W1C, res	0x4000.C 0x4000.E	0000	RTICR)												
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1 1				1 1	rese	rved			1 1		r	r	r I
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC		rese	rved	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RO 0
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:11 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation. 10 OEIC W1C 0 Overrun Error Interrupt Clear																
								The	OEIC Va	lues are	defined	as follov	VS:			
								Val	ue Desc	ription						
								0	No e	ffect on t	he interi	upt.				
								1	Clea	rs interru	pt.					
	9		BEI	С	W	1C	0	Brea	ak Error	Interrupt	Clear					
								The	BEIC Va	alues are	defined	as follov	VS:			
								Val	ue Desc	ription						
								0		ffect on t		rupt.				
								1	Clea	rs interru	pt.					
	8		PEI	С	W	1C	0	Pari	ty Error I	nterrupt	Clear					
								The	PEIC Va	alues are	defined	as follow	VS:			
								Val	ue Desc	ription						
								0		ffect on t		upt.				
								1	Clea	rs interru	pt.					

Bit/Field	Name	Туре	Reset	Description
7	FEIC	W1C	0	Framing Error Interrupt Clear
				The FEIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear
				The RTIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear
				The TXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear
				The RXIC values are defined as follows:
				Value Description
				0 No effect on the interrupt.
				1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
r	31	30	29	20	2/	20	25	24	23	22	21	20	19	10	17	10
								rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	1	1 1				r	PI	1 D4 I	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with fut	ure produ		value of	erved bit f a reserv on.	•	
	7:0		PID	4	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[7:0]				
								Can	be used	by soft	ware to i	dentify th	ne prese	nce of th	is periph	neral.

Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD4 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1	1	1 1	rese	rved		1	1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reser									-						0	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	rese	rved	1	1 1			ſ	1	I Pl	l D5 l	1	1	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	5	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[15:8]				
								Can	be used	l by soft	ware to i	dentify th	ne prese	nce of th	is peripl	neral.
										-						

Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFD8 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I		1	I	1 1	rese	rved		I					1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber												-			ů A	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	erved						•	PII	D6			•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В							Reset	Des	cription							
	31:8 reserved RO 0x00							com	patibility	with fut	ure produ		value of	erved bit a reserv on.	•	
	7:0		PID	6	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[23:16]				
								Can	be used	by soft	ware to i	dentify th	ie prese	nce of th	is periph	ieral.

Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFDC Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	1	1 1	rese	rved		1		1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber				-					-						0	
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	erved							Pli	D7	•	-	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	7	R	0	0x0000	UAF	RT Peripl	neral ID	Register	[31:24]				
								Can	be used	l by soft	ware to i	dentify th	ne prese	nce of th	is peripł	neral.

Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE0 Type RO, reset 0x0000.0011

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	1		rese	rved		1		1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber						-						-			ů ,	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	rese	erved	1						PI	D0			I
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	0	R	0	0x11	UAF	RT Periph	neral ID	Register	[7:0]				
								Can	be used	by soft	ware to i	dentify th	ne prese	nce of th	is periph	neral.

Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		T				1 1	rese	rved	1		, ,		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0							
Resel				-	-	-						0			0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			1		PI	01	I	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO							
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name Type Reset							Des	cription								
	31:8		reserv	ved	R	0	0x00	com	patibility	/ with futu	ure prod	the value ucts, the dify-write	value of	f a reser		
	7:0		PID	1	R	0	0x00	UAF	RT Perip	heral ID	Registe	r[15:8]				
								Can	be used	d by softw	vare to i	identify th	e prese	nce of th	nis peripł	neral.

Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFE8 Type RO, reset 0x0000.0018

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	1		rese	rved		1		1	1		1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber						-						-			ů	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	erved	1						PI	D2	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8 reserved RO 0x0							com	patibility	with fut	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	2	R	0	0x18	UAF	RT Peripl	neral ID	Register	[23:16]				
								Can	be used	by soft	ware to i	dentify th	ne prese	nce of th	is periph	neral.

Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The **UARTPeriphIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFEC Type RO, reset 0x0000.0001

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		1	1	т т	rese	rved		1		1			1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reper									-						ů ,	
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	rese	erved		1 1				1	PI	D3			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	3	R	0	0x01	UAF	RT Peripl	neral ID	Register	[31:24]				
								Can	be used	by soft	ware to i	dentify th	ie prese	nce of th	is periph	neral.

Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF0 Type RO, reset 0x0000.000D

	04	00	29	00	27	00	05	24	23	22	21	00	19	40	17	16
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	10
					1			rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	rese	erved	ï	г г			I	l I	CI	D0	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
B	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with fut	ure produ		value of		•	vide hould be
	7:0		CID	0	R	0	0x0D	UAF	RT Prime	Cell ID I	Register[[7:0]				
								Prov	vides sof	tware a	standard	l cross-p	eriphera	l identific	ation sy	stem.

Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF4 Type RO, reset 0x0000.00F0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 4 2 0 7 5 3 1 CID1 reserved RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID1 RO 0xF0 UART PrimeCell ID Register[15:8] Provides software a standard cross-peripheral identification system.

Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCelIID2)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFF8 Type RO, reset 0x0000.0005

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							т т	rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		1		rved	10	<u>г г</u>		· ·			CII		-		
_ [
Туре	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 1	RO 0	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	I
В	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CID	2	R	0	0x05	UAF	RT Prime	Cell ID F	Register[23:16]				
								Prov	ides sof	tware a	standard	l cross-p	eriphera	l identific	ation sy	stem.

Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

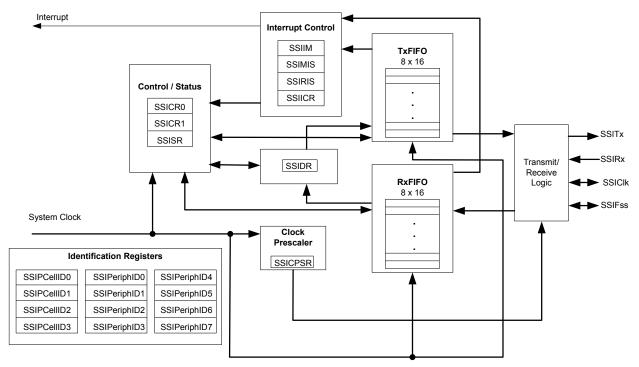
The **UARTPCellIDn** registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 UART1 base: 0x4000.D000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1			r	т т	rese	rved					1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	I						CI	D3	1	1	·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 1
В	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		CID	3	R	0	0xB1	0xB1 UART PrimeCell ID Register[31:24] Provides software a standard cross-						l identific	cation sy	stem.

14 Synchronous Serial Interface (SSI)


The Stellaris[®] microcontroller includes two Synchronous Serial Interface (SSI) modules. Each SSI is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

Each Stellaris[®] SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

14.1 Block Diagram

Figure 14-1. SSI Module Block Diagram

14.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

14.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 358). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0** (SSICR0) register (see page 351).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: Although the SSIClk transmit clock can theoretically be 25 MHz, the module may not be able to operate at that speed. For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 459 to view SSI timing parameters.

14.2.2 FIFO Operation

14.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 355), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

14.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

14.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service
- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 359). Setting the appropriate mask bit to 1 enables the interrupt.

Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 361 and page 362, respectively).

14.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

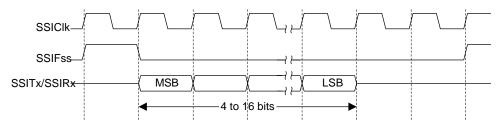
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

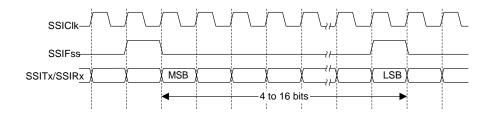
For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIC1k, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

14.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 14-2 on page 342 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.




Figure 14-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 14-3 on page 342 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

Figure 14-3. TI Synchronous Serial Frame Format (Continuous Transfer)

14.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.

SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

14.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 14-4 on page 343 and Figure 14-5 on page 343.

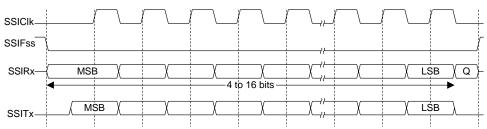
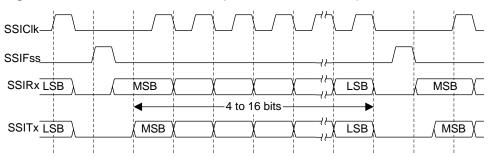



Figure 14-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its

serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSICIk period after the last bit has been captured.

14.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 14-6 on page 344, which covers both single and continuous transfers.

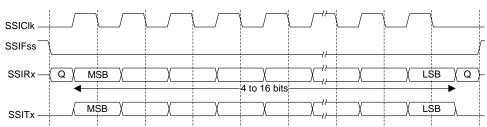


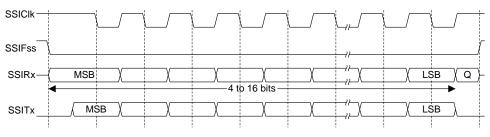
Figure 14-6. Freescale SPI Frame Format with SPO=0 and SPH=1

Note: Q is undefined.

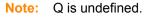
In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.


Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.


For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

14.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

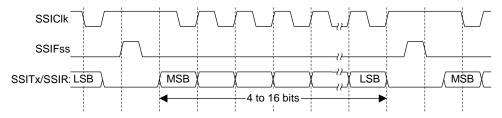

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 14-7 on page 345 and Figure 14-8 on page 345.

Figure 14-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0

Figure 14-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.

One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSIC1k master clock pin becomes Low after one further half SSIC1k period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIC1k signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSIC1k period after the last bit has been captured.

14.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 14-9 on page 346, which covers both single and continuous transfers.

SSICIk							
SSIFss					<i>u</i>		
SSIRx—	(Q) MSB (■	χ	X	4 to 16 bits	<u>~</u> ~	χ	
SSITx	MSB X	χ	X	X		χ	LSB)

Figure 14-9. Freescale SPI Frame Format with SPO=1 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSICIK is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.

After all bits have been transferred, in the case of a single word transmission, the SSIFss line is returned to its idle high state one SSIClk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

14.2.4.7 MICROWIRE Frame Format

Figure 14-10 on page 347 shows the MICROWIRE frame format, again for a single frame. Figure 14-11 on page 348 shows the same format when back-to-back frames are transmitted.

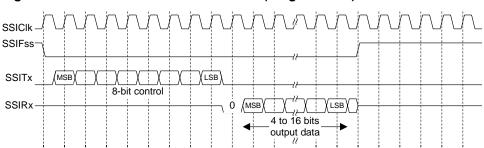


Figure 14-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:

- SSICIK is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIC1k after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.

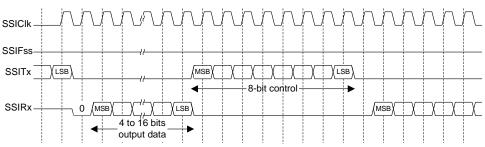
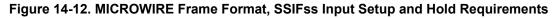
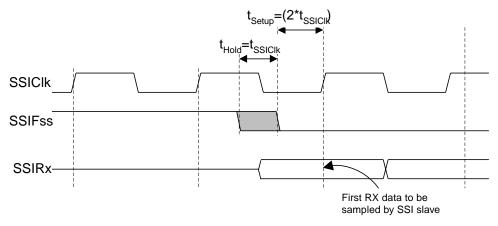




Figure 14-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 14-12 on page 348 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

14.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - a. For master operations, set the **SSICR1** register to 0x0000.0000.
 - b. For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the **SSICPSR** register.

- 4. Write the **SSICR0** register with the following configuration:
 - Serial clock rate (SCR)
 - Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
 - The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
 - The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled.
- 2. Write the **SSICR1** register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the **SSICR1** register to 1.

14.4 Register Map

Table 14-1 on page 350 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

- SSI0: 0x4000.8000
- SSI1: 0x4000.9000
- Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control registers are reprogrammed.

Table 14-1. SSI Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	351
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	353
0x008	SSIDR	R/W	0x0000.0000	SSI Data	355
0x00C	SSISR	RO	0x0000.0003	SSI Status	356
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	358
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	359
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	361
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	362
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	363
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	364
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	365
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	366
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	367
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	368
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	369
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	370
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	371
0xFF0	SSIPCellID0	RO	0x0000.000D	SSI PrimeCell Identification 0	372
0xFF4	SSIPCellID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	373
0xFF8	SSIPCellID2	RO	0x0000.0005	SSI PrimeCell Identification 2	374
0xFFC	SSIPCellID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	375

14.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI0 SSI1 Offse	Control base: 0x4 base: 0x4 t 0x000 R/W, rese	4000.800 4000.900	0																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
			•					rese	erved					•	•				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
			•	S	CR				SPH	SPO	Ff	RF		DS	SS	•			
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0			
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription										
31:16 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.																			
15:8 SCR R/W 0x0000 SSI Serial Clock Rate																			
TI th									SSI. The	CR is use bit rate i k/(CPSI	is:			iit and re	ceive bit	rate of			
										vsr is ar gister, ar					med in t	he			
	7		SPI	4	R/	W	0	SSI	Serial C	lock Pha	se								
								This	s bit is or	ly applic	able to t	he Frees	cale SP	I Format					
This bit is only applicable to the Freescale SPI Format. The SPH control bit selects the clock edge that captures data and it to change state. It has the most impact on the first bit transmi either allowing or not allowing a clock transition before the first capture edge.												itted by							
										PH bit is 0 ata is ca		•			0				
	6		SPO	C	R/	W	0	SSI	Serial C	lock Pola	arity								
								This	s bit is or	ly applic	able to t	he Frees	cale SP	I Format					
								This bit is only applicable to the Freescale SPI Format. When the SPO bit is 0, it produces a steady state Low value on the SSICIk pin. If SPO is 1, a steady state High value is placed on the SSICIk pin when data is not being transferred.											

Bit/Field	Name	Туре	Reset	Description									
5:4	FRF	R/W	0x0	SSI Frame Format Select									
				The FRF values are defined as follows:									
				Value Frame Format									
				0x0 Freescale SPI Frame Format									
				0x1 Texas Intruments Synchronous Serial Frame Format									
				0x2 MICROWIRE Frame Format									
				0x3 Reserved									
3:0	DSS	R/W	0x00	SSI Data Size Select									
				The DSS values are defined as follows:									
				Value Data Size									
				0x0-0x2 Reserved									
				0x3 4-bit data									
				0x4 5-bit data									
				0x5 6-bit data									
				0x6 7-bit data									
				0x7 8-bit data									
				0x8 9-bit data									
				0x9 10-bit data									
				0xA 11-bit data									
				0xB 12-bit data									
				0xC 13-bit data									
				0xD 14-bit data									
				0xE 15-bit data									
				0xF 16-bit data									

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

	Control	-														
SSI1	base: 0x4 base: 0x4															
	et 0x004 R/W, rese	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								reser	ved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	13	14	13	12	1		erved			1			SOD	MS	SSE	LBM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Desc	cription							
	31:4		reserv	ved	R	with futu	ure produ	ucts, the	of a resolution of a resolutio	a reserv						
3 SOD R/W 0 SSI Slave Mode Output Disable This bit is relevant only in the Slave mode (MS=1). In multiple-slave																
								syste slave the s could confi	ems, it is es in the erial out d be tiec igured s	s possible system put line. togethe	e for the while ens In such s r. To ope e SSI sla	SSI mas suring th systems, erate in s ave does	ster to broad only o the TXD such a sy s not drive	oadcast ne slave lines froi stem, th	a messa drives d m multipl e SOD bi	ige to all ata onto e slaves t can be
								Valu	ie Desc	ription						
								0	SSL	can drive	SSITx	output ir	n Slave C	Output m	ode.	
								1	SSL	must not	drive the	SSITx	output in	n Slave i	node.	
	2		MS	;	R/	W	0	SSI	Master/	Slave Se	lect					
										cts Mast		ve mode	e and car	n be moo	dified onl	ly when
The MS values are def											efined as	follows	:			
								Valu	ie Desc	ription						
								0	Devi	ce config	jured as	a maste	er.			
								1	Devi	ce config	jured as	a slave.				

Bit/Field	Name	Туре	Reset	Description						
1	SSE	R/W	0	SSI Synchronous Serial Port Enable						
				Setting this bit enables SSI operation.						
				The SSE values are defined as follows:						
				Value Description						
				0 SSI operation disabled.						
				1 SSI operation enabled.						
				Note: This bit must be set to 0 before any control registers are reprogrammed.						
0	LBM	R/W	0	SSI Loopback Mode						
				Setting this bit enables Loopback Test mode.						
				The LBM values are defined as follows:						
				Value Description						
				0 Normal serial port operation enabled.						

1 Output of the transmit serial shift register is connected internally to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI0 SSI1 Offse	Data (S base: 0x4 base: 0x4 t 0x008 R/W, rese	4000.800 4000.900	00 00													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	î		1	î	1		î î	rese	rved	i	Î	i	1		Î	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA																
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0x0000	com	patibility	with fut	rely on t ure prode ead-mod	ucts, the	value of	a reserv		vide nould be
15:0 DATA						W	0x0000	A re	Receive ad opera smit FIF	ation rea	it Data ds the re	eceive FI	FO. A w	rite oper	ation wri	tes the

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

SSI	Status (SSISR	2)													
SSI1 Offse	base: 0x4 base: 0x4 t 0x00C RO, reset	000.9000	0													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1	1			rese	l erved		1	1	I	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•		I	1	1	reserved	1 1		1		1	BSY	RFF	RNE	TNF	TFE
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be															ida
	,															
	preserved across a read-modify-write operation.															
	preserved across a read-modify-write operation. 4 BSY RO 0 SSI Busy Bit															
								The	BSY val	ues are	defined a	as follow	S:			
								Val	ue Desc	ription						
								0		, s idle.						
								1			tly transr	mitting a	nd/or rec	ceiving a	frame c	or the
								') is not e	-			name, e	
	3		RFI	F	R	0	0	221	Receive		ull					
	0					0	0									
								The	RFF val	ues are (defined a	as tollow	S:			
								Val	ue Desc	ription						
								0	Rece	ive FIFC	D is not f	ull.				
								1	Rece	ive FIFC) is full.					
	2		RN	E	R	0	0	SSI	Receive	FIFO N	ot Empty	/				
	The RNE values are defined as follows:															
									ue Desc							
								C) is emp	-				
								1	Rece	eive FIFC	D is not e	empty.				

Bit/Field	Name	Туре	Reset	Description
1	TNF	RO	1	SSI Transmit FIFO Not Full
				 The TNF values are defined as follows: Value Description 0 Transmit FIFO is full. 1 Transmit FIFO is not full.
0	TFE	R0	1	SSI Transmit FIFO Empty The TFE values are defined as follows: Value Description 0 Transmit FIFO is not empty.

1

Transmit FIFO is empty.

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

SSI	SSI Clock Prescale (SSICPSR) SSI0 base: 0x4000.8000															
SSI1 Offse	base: 0x4 base: 0x4 t 0x010 R/W, rese	4000.900	0													
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
I	31	30	29	20	2/	20	1 1	24	23	22	21	20	19	10	17	
								rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
reserved CPSDVSR														ر آر آر ا		
				rese	rved							CPSI	DVSR			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00				-		of a res			
															ed bit sr	nould be
								pres	served a	cross a r	ead-mod	arry-write	operatio	on.		
	7:0		CPSD	VSR	R/	N	0x00	SSI	Clock P	rescale [Divisor					
								This	value m	nust he a	n even r	umber f	rom 2 to	254 de	nendina	on the
													/s return			

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI0 SSI1 Offse	Interrup base: 0x4 base: 0x4 t 0x014 R/W, rese	1000.800 1000.900	0 0	1)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
				•			• •	rese	rved			•					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
						res	erved						ТХІМ	RXIM	RTIM	RORIM	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription								
	31:4reservedRO0x00Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.3TXIMR/W0SSI Transmit FIFO Interrupt Mask																
3 TXIM R/W 0 SSI Transmit FIFO Interrupt Mask																	
	The TXIM values are defined as follows:																
								Val	ue Desc	ription							
								0	TX F	IFO half	-full or le	ss condi	tion inte	rrupt is n	nasked.		
								1	TX F	IFO half	-full or le	ss condi	tion inte	rrupt is n	ot mask	ed.	
	2		RXI	М	R/	W	0	SSI	Receive	FIFO In	terrupt N	/lask					
								The	RXIM Va	alues are	e defined	as follo	NS:				
								Val	ue Desc	ription							
								0	RX F	IFO half	-full or m	nore con	dition int	errupt is	masked		
								1	RX F	IFO half	-full or m	nore con	dition int	errupt is	not mas	ked.	
	1 RTIM R/W 0 SSI Receive Time-Out Interrupt Mask																
							The RTIM values are defined as follows:										
									ue Desc	•							
								0				•	masked.				
								1	RX F	IFO time	e-out inte	errupt is	not masl	ked.			

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask The RORIM values are defined as follows:
				Value Description 0 RX FIFO overrun interrupt is masked.

1 RX FIFO overrun interrupt is not masked.

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI Raw Interrupt Status (SSIRIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x018 Type RO, reset 0x0000.0008

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1	1		1 1	rese	rved	1	1	1	1	I	1	1
Turne	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Type Reset	0	КU 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						res	erved			•	•	•	TXRIS	RXRIS	RTRIS	RORRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	/ed	R	0	0x00						of a res		•	
									. ,		•	,	value of		/ed bit sl	nould be
								pres	erved a	cross a r	ead-mod	dify-write	e operatio	on.		
	3		TXR	IS	R	0	1	SSI	Transmi	t FIFO F	aw Inter	runt Sta	tus			
	0		1741			0	•					•				
								Indio	cates that	at the tra	nsmit FI	FO is ha	If full or I	ess, whe	en set.	
	0			10		~	0	001	Deeeive							
	2		RXR	15	R	0	0	551	Receive	FIFO R	aw inten	upt Stat	us			
								Indic	cates that	at the rec	eive FIF	O is hal	f full or m	nore, wh	en set.	
					_	_			_							
	1		RTR	IS	R	0	0	SSI	Receive	Time-O	ut Raw I	nterrupt	Status			
								Indio	cates that	at the rec	eive tim	e-out ha	s occurre	ed, wher	n set.	
	0		RORF	RIS	R	0	0	SSI	Receive	Overrur	n Raw In	terrupt S	Status			
								India	cates that	at the rec	eive FIF	O has o	verflowe	d when	set	

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The **SSIMIS** register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0x01C Type RO, reset 0x0000.0000

Type RO	RO 0 RORMIS
	0
	0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	
reserved TXMIS RXMIS RXMIS RXMIS RXMIS	
Type RO	RO
Type RO R	0
Bit/Field Name Type Reset Description	
31:4 reserved RO 0 Software should not rely on the value of a reserved bit. To pr	vide
compatibility with future products, the value of a reserved bit	
preserved across a read-modify-write operation.	
3 TXMIS RO 0 SSI Transmit FIFO Masked Interrupt Status	
Indicates that the transmit FIFO is half full or less, when set.	
2 RXMIS RO 0 SSI Receive FIFO Masked Interrupt Status	
Indicates that the receive FIFO is half full or more, when set.	
1 RTMIS RO 0 SSI Receive Time-Out Masked Interrupt Status	
Indicates that the receive time-out has occurred, when set.	
0 RORMIS RO 0 SSI Receive Overrun Masked Interrupt Status	
Indicates that the receive FIFO has overflowed, when set.	

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI0 SSI1 Offse	Interrup base: 0x4 base: 0x4 t 0x020 W1C, res	000.800	0	R)												
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			•	•		•		rese	rved		•					'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1	1		1	reser	ved			1	1			RTIC	RORIC
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	it/Field 31:2 1		Nan resen RTI	ved	Ty R W		Reset 0x00 0	Soft com pres SSI The	patibility erved ac Receive RTIC va ue Desc No e	with futu cross a r Time-O alues are cription	ead-moo ut Interru e defined interrupt.	ucts, the dify-write upt Clear as follov	value of operatio	a reserv		vide hould be
	0		ROR	RIC	W	1C	0	The	RORIC ue Desc No e	values a	n Interrup re define interrupt. upt.	d as folle	ows:			

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T				1 1	rese	rved	1		, ,		T	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Neset				-	-							-			0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	. 1	0
			1	rese	rved		1 1			I		PI	D4	I	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ıe	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	the value lucts, the dify-write	value of	f a reser		
	7:0		PID	4	R	0	0x00	SSI	Periphe	ral ID Re	gister[7	:0]				
								Can	be used	d by soft	ware to i	identify th	e prese	nce of th	nis periph	neral.

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T				1 1	rese	rved	1		, ,		T	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset				-	-	-						0			0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			I		PI	55	I	I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ıe	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	/ with futu	ure prod	the value lucts, the dify-write	value of	f a reser		
	7:0		PID	5	R	0	0x00	SSI	Periphe	ral ID Re	gister[1	5:8]				
								Can	be used	d by soft	ware to i	identify th	e prese	nce of th	nis periph	neral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			, ,	rese	rved	1		1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10001	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	15	14	1	1		10	1 1		,	1		1		1	1	<u> </u>
				rese	rved							PII	D6			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	Soft	ware sh	ould not	relv on t	the value	of a res	served b	it. To pro	vide
	• • • •					-						lucts, the				
								pres	served a	cross a r	ead-mo	dify-write	operati	on.		
	7:0		PID	6	R	0	0x00	501	Perinha	ral ID Re	aistar	2.161				
	1.0		FID	0		0	0,000	551	i enpire		gister[z	.5.10]				
								Can	be use	d by soft	vare to	identify th	ie prese	ence of t	his perip	heral.

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1				1 1	rese	l rved	1				1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	l				1		PI	07	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	y with futu	ure prod	he value ucts, the dify-write	value o	f a reser	•	
	7:0		PID	7	R	0	0x00	SSI	Periphe	eral ID Re	gister[3	1:24]				
								Can	be use	d by softv	vare to i	dentify th	e prese	ence of the	nis peripł	neral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ĺ		1 1				1 1	rese	rved	I		1		Î	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			I		PI	0	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0
E	Bit/Field		Nam	e	Туј	ре	Reset	Des	cription							
	31:8		reserv	ved	R	C	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value o	f a reser	•	
	7:0		PID	0	R	С	0x22	SSI	Periphe	ral ID Re	gister[7	:0]				
								Can	be used	d by soft	ware to i	identify th	e prese	ence of t	his peripł	neral.

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		1	rese	rved		г т					PI	D1	r		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	8it/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure produ		value of	erved bit f a reserv on.		
	7:0		PID	1	R	0	0x00		Peripher		• •	-	e prese	nce of th	is periph	eral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved	T		1		T	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Neset				-	-	-						-			0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	. 1	0
			•	rese	rved					I		PI	D2	I	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	/ with futu	ure prod	the value ucts, the dify-write	value o	f a reser		
	7:0		PID	2	R	0	0x18	SSI	Periphe	ral ID Re	gister [2	23:16]				
								Can	be use	d by soft	ware to i	identify th	e prese	nce of th	nis periph	neral.

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			T				1 1	rese	rved	1	r	, ,		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resel				-	-	-						0			0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		•			I	I	PI	53	1	I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ıe	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	/ with futu	ure prod	the value lucts, the dify-write	value o	f a reser		
	7:0		PID	3	R	0	0x01	SSI	Periphe	ral ID Re	egister [3	31:24]				
								Can	be use	d by soft	ware to	identify th	e prese	nce of t	nis periph	neral.

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1		1	1	т т	rese	rved		1			1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	rese	rved	r				r	1	CI	D0	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		CID	0	R	0	0x0D				gister [7: standard	:0] I cross-p	eriphera	l identific	cation sv	rstem.

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCellID1)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			, ,		 		· ·	rese	rved	I	r	, ,		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									1	1	CII	D1	1	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	e	Туј	ре	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reser	•	
	7:0		CID	1	R	С	0xF0	SSI	PrimeCe	ell ID Re	gister [1	5:8]				
					Prov	vides sof	ftware a	standar	d cross-p	eriphera	l identifi	cation sy	stem.			

July 26, 2008

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFF8 Type RO, reset 0x0000.0005

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 6 4 2 0 7 5 3 1 CID2 reserved RO RO RO RO RO RO Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 Bit/Field Name Туре Reset Description RO 0x00 31:8 reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID2 RO 0x05 SSI PrimeCell ID Register [23:16] Provides software a standard cross-peripheral identification system.

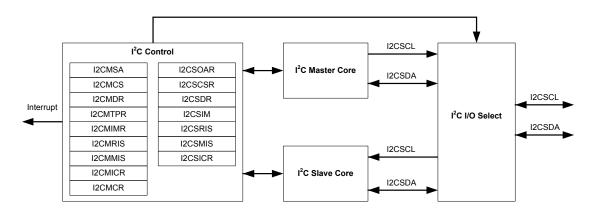
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The **SSIPCeIIIDn** registers are hard-coded and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 SSI1 base: 0x4000.9000 Offset 0xFFC Type RO, reset 0x0000.00B1

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		1		1		rese	rved		1		1	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber				-					-						0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	erved	•					1	CI	D3	•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	ure produ	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CID	3	R	0	0xB1	SSI	PrimeCe	ell ID Re	gister [3 ⁻	1:24]				
						Provides software a standard cross-peripheral identification system.										

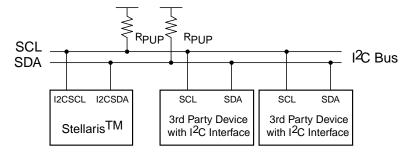

15 Inter-Integrated Circuit (I²C) Interface

The Inter-Integrated Circuit (I²C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL), and interfaces to external I²C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I²C bus may also be used for system testing and diagnostic purposes in product development and manufacture. The LM3S1608 microcontroller includes two I²C modules, providing the ability to interact (both send and receive) with other I²C devices on the bus.

Devices on the I²C bus can be designated as either a master or a slave. Each Stellaris[®] I²C module supports both sending and receiving data as either a master or a slave, and also supports the simultaneous operation as both a master and a slave. There are a total of four I²C modes: Master Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris[®] I²C modules can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).

Both the I^2C master and slave can generate interrupts; the I^2C master generates interrupts when a transmit or receive operation completes (or aborts due to an error) and the I^2C slave generates interrupts when data has been sent or requested by a master.

15.1 Block Diagram


Figure 15-1. I²C Block Diagram

15.2 Functional Description

Each I²C module is comprised of both master and slave functions which are implemented as separate peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional open-drain pads. A typical I²C bus configuration is shown in Figure 15-2 on page 377.

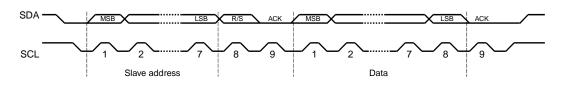
See "I²C" on page 457 for I²C timing diagrams.

15.2.1 I²C Bus Functional Overview

The I²C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris[®] microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line. The bus is considered idle when both lines are high.

Every transaction on the I²C bus is nine bits long, consisting of eight data bits and a single acknowledge bit. The number of bytes per transfer (defined as the time between a valid START and STOP condition, described in "START and STOP Conditions" on page 377) is unrestricted, but each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.

15.2.1.1 START and STOP Conditions

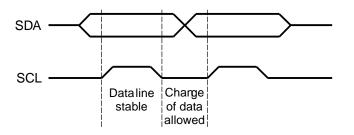

The protocol of the I^2C bus defines two states to begin and end a transaction: START and STOP. A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus is considered busy after a START condition and free after a STOP condition. See Figure 15-3 on page 377.


15.2.1.2 Data Format with 7-Bit Address

Data transfers follow the format shown in Figure 15-4 on page 378. After the START condition, a slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction bit (\mathbb{R}/S bit in the **I2CMSA** register). A zero indicates a transmit operation (send), and a one indicates a request for data (receive). A data transfer is always terminated by a STOP condition generated by the master, however, a master can initiate communications with another device on the bus by generating a repeated START condition and addressing another slave without first generating a STOP condition. Various combinations of receive/send formats are then possible within a single transfer.

The first seven bits of the first byte make up the slave address (see Figure 15-5 on page 378). The eighth bit determines the direction of the message. A zero in the R/S position of the first byte means that the master will write (send) data to the selected slave, and a one in this position means that the master will receive data from the slave.

Figure 15-5. R/S Bit in First Byte



15.2.1.3 Data Validity

The data on the SDA line must be stable during the high period of the clock, and the data line can only change when SCL is low (see Figure 15-6 on page 378).

Figure 15-6. Data Validity During Bit Transfer on the I²C Bus

Figure 15-4. Complete Data Transfer with a 7-Bit Address

15.2.1.4 Acknowledge

All bus transactions have a required acknowledge clock cycle that is generated by the master. During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data validity requirements described in "Data Validity" on page 378.

When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave so that the master can generate a STOP condition and abort the current transfer. If the master device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer made by the slave. Since the master controls the number of bytes in the transfer, it signals the end of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a repeated START condition.

15.2.1.5 Arbitration

A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate a START condition within minimum hold time of the START condition. In these situations, an arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low) will switch off its data output stage and retire until the bus is idle again.

Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if both masters are trying to address the same device, arbitration continues on to the comparison of data bits.

15.2.2 Available Speed Modes

The I²C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.

where:

CLK_PRD is the system clock period

SCL_LP is the low phase of SCL (fixed at 6)

SCL_HP is the high phase of SCL (fixed at 4)

TIMER_PRD is the programmed value in the I²C Master Timer Period (I2CMTPR) register (see page 396).

The I²C clock period is calculated as follows:

SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD

For example:

```
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
```

yields a SCL frequency of:

1/T = 333 Khz

Table 15-1 on page 379 gives examples of timer period, system clock, and speed mode (Standard or Fast).

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
4 Mhz	0x01	100 Kbps	-	-
6 Mhz	0x02	100 Kbps	-	-
12.5 Mhz	0x06	89 Kbps	0x01	312 Kbps
16.7 Mhz	0x08	93 Kbps	0x02	278 Kbps
20 Mhz	0x09	100 Kbps	0x02	333 Kbps
25 Mhz	0x0C	96.2 Kbps	0x03	312 Kbps
33Mhz	0x10	97.1 Kbps	0x04	330 Kbps
40Mhz	0x13	100 Kbps	0x04	400 Kbps

Table 15-1. Examples of I²C Master Timer Period versus Speed Mode

System Clock	Timer Period	Standard Mode	Timer Period	Fast Mode
50Mhz	0x18	100 Kbps	0x06	357 Kbps

15.2.3 Interrupts

The I²C can generate interrupts when the following conditions are observed:

- Master transaction completed
- Master transaction error
- Slave transaction received
- Slave transaction requested

There is a separate interrupt signal for the I^2C master and I^2C slave modules. While both modules can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt controller.

15.2.3.1 I²C Master Interrupts

The I²C master module generates an interrupt when a transaction completes (either transmit or receive), or when an error occurs during a transaction. To enable the I²C master interrupt, software must write a '1' to the I²C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition is met, software must check the ERROR bit in the I²C Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction. An error condition is asserted if the last transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of the bus due to a lost arbitration round with another master. If an error is not detected, the application can proceed with the transfer. The interrupt is cleared by writing a '1' to the I²C Master Interrupt Clear (I2CMICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the **I²C Master Raw Interrupt Status (I2CMRIS)** register.

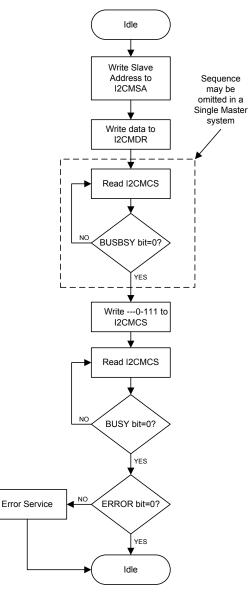
15.2.3.2 I²C Slave Interrupts

The slave module generates interrupts as it receives requests from an I²C master. To enable the I²C slave interrupt, write a '1' to the I²C Slave Interrupt Mask (I2CSIMR) register. Software determines whether the module should write (transmit) or read (receive) data from the I²C Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I²C Slave Control/Status (I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received, the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I²C Slave Interrupt Clear (I2CSICR) register.

If the application doesn't require the use of interrupts, the raw interrupt status is always visible via the I²C Slave Raw Interrupt Status (I2CSRIS) register.

15.2.4 Loopback Operation

The I²C modules can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LPBK bit in the I²C Master Configuration (I2CMCR) register. In loopback mode, the SDA and SCL signals from the master and slave modules are tied together.


15.2.5 Command Sequence Flow Charts

This section details the steps required to perform the various I^2C transfer types in both master and slave mode.

15.2.5.1 I²C Master Command Sequences

The figures that follow show the command sequences available for the I^2C master.

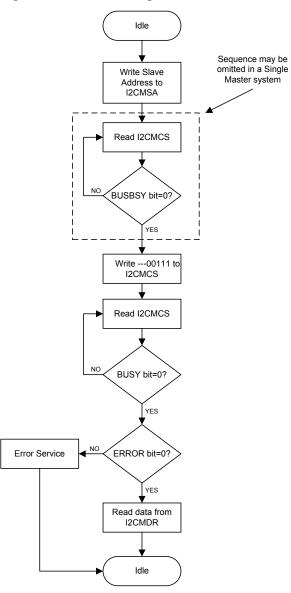
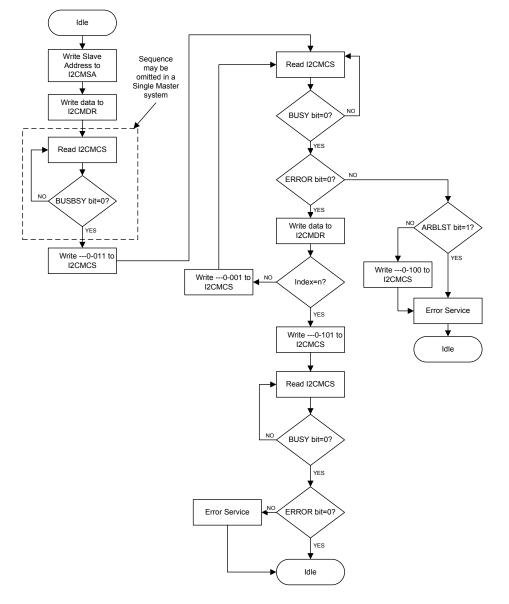



Figure 15-8. Master Single RECEIVE

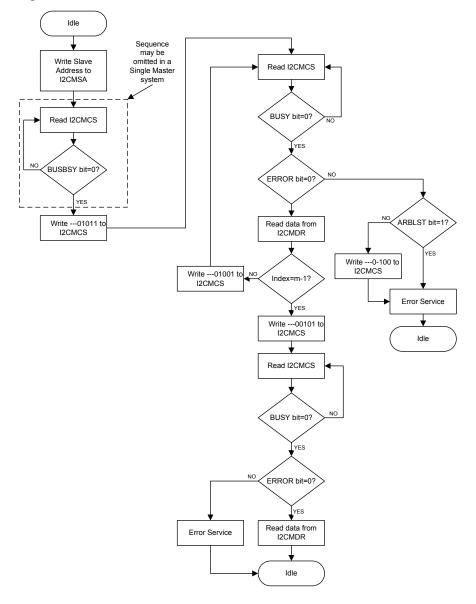


Figure 15-10. Master Burst RECEIVE

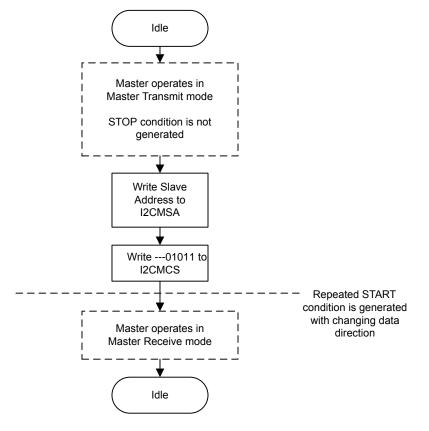


Figure 15-11. Master Burst RECEIVE after Burst SEND

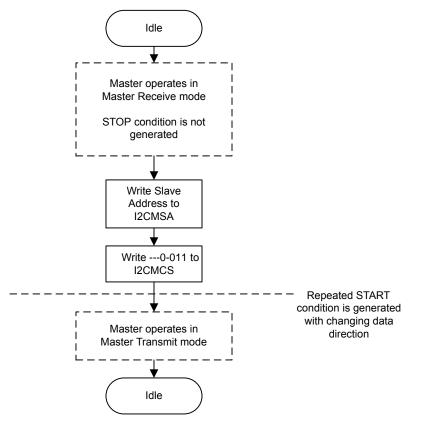
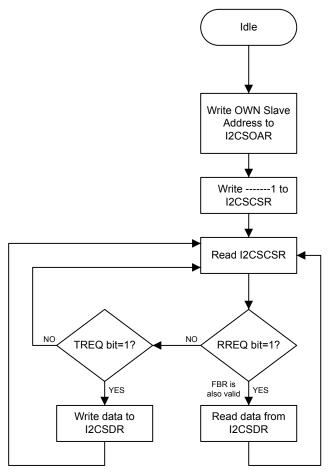



Figure 15-12. Master Burst SEND after Burst RECEIVE

15.2.5.2 I²C Slave Command Sequences

Figure 15-13 on page 387 presents the command sequence available for the I^2C slave.

15.3 Initialization and Configuration

The following example shows how to configure the I^2C module to send a single byte as a master. This assumes the system clock is 20 MHz.

- 1. Enable the I²C clock by writing a value of 0x0000.1000 to the **RCGC1** register in the System Control module.
- 2. Enable the clock to the appropriate GPIO module via the **RCGC2** register in the System Control module.
- 3. In the GPIO module, enable the appropriate pins for their alternate function using the **GPIOAFSEL** register. Also, be sure to enable the same pins for Open Drain operation.
- 4. Initialize the I²C Master by writing the I2CMCR register with a value of 0x0000.0020.
- 5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct value. The value written to the I2CMTPR register represents the number of system clock periods in one SCL clock period. The TPR value is determined by the following equation:

TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1; TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1; TPR = 9

Write the I2CMTPR register with the value of 0x0000.0009.

- 6. Specify the slave address of the master and that the next operation will be a Send by writing the **I2CMSA** register with a value of 0x0000.0076. This sets the slave address to 0x3B.
- 7. Place data (byte) to be sent in the data register by writing the **I2CMDR** register with the desired data.
- 8. Initiate a single byte send of the data from Master to Slave by writing the **I2CMCS** register with a value of 0x0000.0007 (STOP, START, RUN).
- 9. Wait until the transmission completes by polling the I2CMCS register's BUSBSY bit until it has been cleared.

15.4 Register Map

Table 15-2 on page 388 lists the I^2C registers. All addresses given are relative to the I^2C base addresses for the master and slave:

- I²C Master 0: 0x4002.0000
- I²C Slave 0: 0x4002.0800
- I²C Master 1: 0x4002.1000
- I²C Slave 1: 0x4002.1800

Table 15-2. Inter-Integrated Circuit (I²C) Interface Register Map

Offset	Name	Туре	Reset	Description	See page
I ² C Maste	r				·
0x000	I2CMSA	R/W	0x0000.0000	I2C Master Slave Address	390
0x004	I2CMCS	R/W	0x0000.0000	I2C Master Control/Status	391
0x008	I2CMDR	R/W	0x0000.0000	I2C Master Data	395
0x00C	I2CMTPR	R/W	0x0000.0001	I2C Master Timer Period	396
0x010	I2CMIMR	R/W	0x0000.0000	I2C Master Interrupt Mask	397
0x014	I2CMRIS	RO	0x0000.0000	I2C Master Raw Interrupt Status	398
0x018	I2CMMIS	RO	0x0000.0000	I2C Master Masked Interrupt Status	399
0x01C	I2CMICR	WO	0x0000.0000	I2C Master Interrupt Clear	400
0x020	I2CMCR	R/W	0x0000.0000	I2C Master Configuration	401
I ² C Slave					
0x000	I2CSOAR	R/W	0x0000.0000	I2C Slave Own Address	403

Offset	Name	Туре	Reset	Description	See page
0x004	I2CSCSR	RO	0x0000.0000	I2C Slave Control/Status	404
0x008	I2CSDR	R/W	0x0000.0000	I2C Slave Data	406
0x00C	I2CSIMR	R/W	0x0000.0000	I2C Slave Interrupt Mask	407
0x010	I2CSRIS	RO	0x0000.0000	I2C Slave Raw Interrupt Status	408
0x014	I2CSMIS	RO	0x0000.0000	I2C Slave Masked Interrupt Status	409
0x018	I2CSICR	WO	0x0000.0000	I2C Slave Interrupt Clear	410

15.5 Register Descriptions (I²C Master)

The remainder of this section lists and describes the I²C master registers, in numerical order by address offset. See also "Register Descriptions (I2C Slave)" on page 402.

Register 1: I²C Master Slave Address (I2CMSA), offset 0x000

This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which determines if the next operation is a Receive (High), or Send (Low).

I2C Master Slave Address (I2CMSA)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x000

Type R/W, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1		1			rese	rved	1			ı 1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	, I		1	rese	erved					1	1	SA	1	I	1	R/S
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
L	31:8	COL				Soft com pres	ware sho patibility served a	with futi cross a r	ure prod	ucts, the	value of		•	vide nould be		
	7:1		SA	L .	R/	W	0	I ² C	Slave Ac	ddress						
								This	s field sp	ecifies b	its A6 th	rough A() of the s	slave add	dress.	
	0		R/S	6	R/	W	0	Rec	eive/Ser	nd						
								The (Lov		specifies	s if the n	ext opera	ation is a	Receive	e (High)	or Send

Value Description

- 0 Send.
- 1 Receive.

Register 2: I²C Master Control/Status (I2CMCS), offset 0x004

This register accesses four control bits when written, and accesses seven status bits when read.

The status register consists of seven bits, which when read determine the state of the I²C bus controller.

The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes the generation of the START, or REPEATED START condition.

The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst. To generate a single send cycle, the I^2C Master Slave Address (I2CMSA) register is written with the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1), STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed (or aborted due an error), the interrupt pin becomes active and the data may be read from the I2CMDR register. When the I^2C module operates in Master receiver mode, the ACK bit must be set normally to logic 1. This causes the I^2C bus controller to send an acknowledge automatically after each byte. This bit must be reset when the I^2C bus controller requires no further data to be sent from the slave transmitter.

Read-Only Status Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x004

Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved	г г				1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	•		reserved		• •			BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	sit/Field		Nan	ne	Тур	е	Reset	Des	cription							
	31:7		reser	ved	RC)	0x00	com	patibility	ould not r / with futu cross a re	re produ	ucts, the	value of	a reserv	•	
	6		BUSE	BSY	RC)	0	Bus	Busy							
								othe	•	cifies the she he bus is itions.						
	5		IDL	E	RC)	0	I ² C	ldle							
									-	cifies the le controll			ate. If se	t, the cor	ntroller is	idle;
	4		ARBL	ST	RC)	0	Arbi	tration L	ost						
									•	cifies the otherwise,					e controll	er lost

Bit/Field	Name	Туре	Reset	Description
3	DATACK	RO	0	Acknowledge Data
				This bit specifies the result of the last data operation. If set, the transmitted data was not acknowledged; otherwise, the data was acknowledged.
2	ADRACK	RO	0	Acknowledge Address
				This bit specifies the result of the last address operation. If set, the transmitted address was not acknowledged; otherwise, the address was acknowledged.
1	ERROR	RO	0	Error
				This bit specifies the result of the last bus operation. If set, an error occurred on the last operation; otherwise, no error was detected. The error can be from the slave address not being acknowledged, the transmit data not being acknowledged, or because the controller lost arbitration.
0	BUSY	RO	0	I ² C Busy
				This bit specifies the state of the controller. If set, the controller is busy; otherwise, the controller is idle. When the BUSY bit is set, the other status bits are not valid.

Write-Only Control Register

I2C Master Control/Status (I2CMCS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000	
Offset 0x004	
Type WO, reset 0x0000.0000	

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1	· · ·		т т	rese	rved			1	1	1	, , , ,	
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			T	1		res	erved					1	ACK	STOP	START	RUN
Туре	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field		Nam	20	Ту	20	Reset	Doc	cription							
C	sil/Field		Indii	le	i yi	Je	Resel	Des	cription							
	31:4		reser	ved	W	0	0x00	com		with futu	ire prod	ucts, the	value of	a reserv	t. To prov ved bit sh	
	3		AC	К	W	0	0	Data	a Acknov	vledge E	nable					
														nowledg -3 on pa	ed auton ge 393.	natically
	2		STC	P	W	0	0	Gen	erate ST	OP						
								Whe	en set, ca	auses the	e genera	ation of t	he STOF	o conditio	on. See f	ield

When set, causes the generation of the STOP condition. See field decoding in Table 15-3 on page 393.

Bit/Field	Name	Туре	Reset	Description
1	START	WO	0	Generate START
				When set, causes the generation of a START or repeated START condition. See field decoding in Table 15-3 on page 393.
0	RUN	WO	0	I ² C Master Enable
				When set, allows the master to send or receive data. See field decoding in Table 15-3 on page 393.

	I2CMSA[0]		I2CMC	S[3:0]		Description						
State	R/S	ACK STOP START RUN		RUN	1							
Idle	0	X ^a	0	1	1	START condition followed by SEND (master goes to the Master Transmit state).						
	0	Х	1	1	1	START condition followed by a SEND and STOP condition (master remains in Idle state).						
	1	0	0	1	1	START condition followed by RECEIVE operation with negative ACK (master goes to the Master Receive state)						
	1	0	1	1	1	START condition followed by RECEIVE and STOP condition (master remains in Idle state).						
	1	1	0	1	1	START condition followed by RECEIVE (master goes to the Master Receive state).						
	1	1	1	1	1	Illegal.						
	All other co	mbination	s not listed	are non-o	perations.	NOP.						
Master Transmit	Х	Х	0	0	1	SEND operation (master remains in Master Transmit state).						
	Х	Х	1	0	0	STOP condition (master goes to Idle state).						
	х	х	1	0	1	SEND followed by STOP condition (master goes to Idle state).						
	0	Х	0	1	1	Repeated START condition followed by a SEND (master remains in Master Transmit state).						
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).						
	1	0	0	1	1	Repeated START condition followed by a RECEIVE operation with a negative ACK (master goes to Master Receive state).						
	1	0	1	1	1	Repeated START condition followed by a SEND and STOP condition (master goes to Idle state).						
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master goes to Master Receive state).						
	1	1	1	1	1	Illegal.						
	All other co	mbination	s not listed	are non-o	perations.	NOP.						

Current	I2CMSA[0]		I2CMC	S[3:0]		Description						
State	R/S	ACK	STOP	START	RUN							
Master Receive	х	0	0	0	1	RECEIVE operation with negative ACK (master remains in Master Receive state).						
	Х	Х	1	0	0	STOP condition (master goes to Idle state). ^b						
	X 0 1 0 1 RECEIVE followed by STOP of Idle state).					RECEIVE followed by STOP condition (master goes to Idle state).						
	Х	1 0 0 1 RECEIVE operation (master remains in state).										
	Х	1	1	0	1	Illegal.						
	1	1 0 0 1			1	Repeated START condition followed by RECEIVE operation with a negative ACK (master remains in Master Receive state).						
	1	0	1	1	1	Repeated START condition followed by RECEIVE and STOP condition (master goes to Idle state).						
	1	1	0	1	1	Repeated START condition followed by RECEIVE (master remains in Master Receive state).						
	0	Х	0	1	Repeated START condition followed by SEND (master goes to Master Transmit state).							
	0	Х	1	1	1	Repeated START condition followed by SEND and STOP condition (master goes to Idle state).						
	All other co	mbination	s not listed	are non-op	perations.	NOP.						

a. An X in a table cell indicates the bit can be 0 or 1.

b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by the master or an Address Negative Acknowledge executed by the slave.

Register 3: I²C Master Data (I2CMDR), offset 0x008

This register contains the data to be transmitted when in the Master Transmit state, and the data received when in the Master Receive state.

I2C	I2C Master Data (I2CMDR)																
I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x008																	
Туре	R/W, rese	et 0x0000	0.0000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved																
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	reserved							DATA									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Field Name Type Reset						Des	Description										
31:8			reserved F			0	0x00	com	patibility	with futu	uld not rely on the value of a reserved bit. To provide with future products, the value of a reserved bit should be oss a read-modify-write operation.						
7:0			DATA		R/W		0x00		Data Transferred								
						Data	Data transferred during transaction.										

Register 4: I²C Master Timer Period (I2CMTPR), offset 0x00C

This register specifies the period of the SCL clock.

I2C Master Timer Period (I2CMTPR)																	
I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x00C Type R/W, reset 0x0000.0001																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	reserved											•					
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
Reset										-							
Г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
reserved																	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 1	
B	lit/Field		Nam	ie	Туре		Reset	Des	Description								
31:8			reserved		RO 0x00		com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		TPR		R/W		0x1	SCL	SCL Clock Period								
									This field specifies the period of the SCL clock.								
								SCL	SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD								
								whe	where:								
							SCL	SCL_PRD is the SCL line period (I ² C clock).									
							TPR	TPR is the Timer Period register value (range of 1 to 255).									
							SCL	SCL_LP is the SCL Low period (fixed at 6).									
SCL_HP is the SCL High period (fixed at 4).																	

Register 5: I²C Master Interrupt Mask (I2CMIMR), offset 0x010

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C N I2C N Offse	/aster 0 b	base: 0x4 base: 0x4	upt Mask 1002.0000 1002.1000 0.0000	(I2CM	IMR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	ſ) 	1	1 1	resei	rved		r i	r	î I	ï	i	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	r	1	1	1 1	reserved			1	r	1	1	i	ІМ
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset E	⁰ Bit/Field	0	0 Nam	o ne	o Ty	o pe	0 Reset	0 Desc	0 cription	0	0	0	0	0	0	0
	31:1		reserv	ved	R	0	0x00	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv	•	vide nould be
	0		IM		R	W	0	Inter	rupt Ma	sk						
											ther a ra terrupt is		• •			

otherwise, the interrupt is masked.

Register 6: I²C Master Raw Interrupt Status (I2CMRIS), offset 0x014

This register specifies whether an interrupt is pending.

I2C Master Raw Interrupt Status (I2CMRIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1	rese	erved		1			1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1			1	reserved	1		1		1	1	1	RIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	t 0 0 0 0 0 Bit/Field Name Type						Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	0	RIS	6	R	0	0	Raw	v Interrup	ot Status	i						
								This	s bit spec	ifies the	raw inte	errupt stat	te (prior	to mask	ina) of th	e l ² C

This bit specifies the raw interrupt state (prior to masking) of the I²C master block. If set, an interrupt is pending; otherwise, an interrupt is not pending.

Register 7: I²C Master Masked Interrupt Status (I2CMMIS), offset 0x018

This register specifies whether an interrupt was signaled.

I2C Master Masked Interrupt Status (I2CMMIS)

I2C Master 0 base: 0x4002.0000 I2C Master 1 base: 0x4002.1000 Offset 0x018 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1 1	rese	erved			1		1	1	1
									I.							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1		· · ·	1				<u> </u>					· · · ·			· · · ·	
							-	reserved	-				-			MIS
					1				1							-
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E								Des	cription							
	31:1		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv		
	0		MIS	6	R	0	0		ked Inte	•						
								Thic	hit enor	ifiae tha	aw intor	runt state	(ofter m	acking)	of the 1^2	maetor

This bit specifies the raw interrupt state (after masking) of the I²C master block. If set, an interrupt was signaled; otherwise, an interrupt has not been generated since the bit was last cleared.

Register 8: I²C Master Interrupt Clear (I2CMICR), offset 0x01C

This register clears the raw interrupt.

I2C N I2C N Offse	laster 0 b	ase: 0x ase: 0x	upt Clear 4002.0000 4002.1000 0.0000		ICR)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		1	r	1 1		1 1	rese	rved	I	r	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r		i	ï	i i		r r	reserved		r		i	1	Ì	i	IC
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	ucts, the	of a res value of operation	a reserv	•	vide nould be
	0		IC	;	W	0	0	Inter	rrupt Cle	ar						
								This	bit cont	rols the o	clearing	of the rav	w interru	pt. A wri	te of 1 cl	ears the

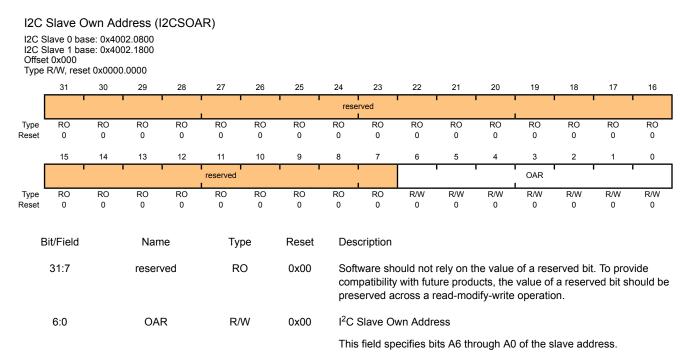
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A

read of this register returns no meaningful data.

July 26, 2008

Register 9: I²C Master Configuration (I2CMCR), offset 0x020

This register configures the mode (Master or Slave) and sets the interface for test mode loopback.


I2C N I2C N Offse		ase: 0x40 ase: 0x40		(I2CMC	R)											
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
1		50	1	20	1	1	1 1		rved		1	1		1 1	17	10
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]	r		ì		rese	rved			l I		SFE	MFE		reserved		LPBK
Т уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit/Field Name Type Reset Description 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide													vido			
31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.																
	5		SFI	Ξ	R/	W	0	I ² C	Slave Fu	Inction E	nable					
									•					perate in mode is o		
	4		MF	E	R/	W	0	l ² C	Master F	unction	Enable					
								set,	•	node is	enabled;	otherwi		perate in ter mode		
	3:1		reserv	ved	R	0	0x00	com		with fut	ure produ	ucts, the	value o	erved bit. f a reserve on.		
	0		LPB	к	R/	W	0	l ² C	Loopbac	k						
								Loo	, pback m	ode. If s	et, the de	evice is p	out in a	rating nor test mode normally.	loopba	

15.6 Register Descriptions (I2C Slave)

The remainder of this section lists and describes the l^2C slave registers, in numerical order by address offset. See also "Register Descriptions (l^2C Master)" on page 389.

Register 10: I²C Slave Own Address (I2CSOAR), offset 0x000

This register consists of seven address bits that identify the Stellaris[®] I^2C device on the I^2C bus.

Register 11: I²C Slave Control/Status (I2CSCSR), offset 0x004

This register accesses one control bit when written, and three status bits when read.

The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First Byte Received (FBR) bit is set only after the Stellaris[®] device detects its own slave address and receives the first data byte from the I²C master. The Receive Request (RREQ) bit indicates that the Stellaris[®] I²C device has received a data byte from an I²C master. Read one data byte from the I²C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit indicates that the Stellaris[®] I²C device is addressed as a Slave Transmitter. Write one data byte into the I²C Slave Data (I2CSDR) register to clear the TREQ bit.

The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the Stellaris[®] I^2C slave operation.

Read-Only Status Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	, <u> </u>		reserved				-		-	FBR	TREQ	RREQ
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Ty	be	Reset	Des	cription							
	31:3		reser	ved	R	C	0x00	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv	•	
	2		FBI	R	R	С	0	Firs	t Byte R	eceived						
								This	bit is on	at the first ly valid w las been	hen the I	RREQ bit i	is set, an	d is auto		
								Not	e: Ti	nis bit is r	not used	for slave	e transm	it operat	ions.	
	1		TRE	Q	R	С	0	Trar	nsmit Re	quest						
								tran tran	smit req smitter a	cifies the uests. If s and uses to the I2	set, the l clock sti	l ² C unit h retching f	has been to delay	address the mast	sed as a ter until c	slave lata has

transmit request.

Bit/Field	Name	Туре	Reset	Description
0	RREQ	RO	0	Receive Request This bit specifies the status of the I ² C slave with regards to outstanding receive requests. If set, the I ² C unit has outstanding receive data from the I ² C master and uses clock stretching to delay the master until the data has been read from the I2CSDR register. Otherwise, no receive data is outstanding.

Write-Only Control Register

I2C Slave Control/Status (I2CSCSR)

I2C Slave 0 base: 0x4002.0800 I2C Slave 1 base: 0x4002.1800 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved						1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							ı ı	reserved						I	r	DA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	WO 0
E	Bit/Field		Nam	е	Ty	ре	Reset	Des	cription							
	31:1		reserv	red	R	0	0x00	com	patibility	with futu	ure produ	ne value ucts, the lify-write	value of	f a reserv	•	
	0		DA		W	0	0	Dev	ice Activ	е						
								Valu	ue Desc	ription						

0 Disables the I²C slave operation.

1 Enables the I²C slave operation.

Register 12: I²C Slave Data (I2CSDR), offset 0x008

This register contains the data to be transmitted when in the Slave Transmit state, and the data received when in the Slave Receive state.

I2C	Slave D	ata (I2	CSDR)													
12C S	lave 0 bas lave 1 bas t 0x008															
Туре	R/W, rese	et 0x0000	.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	· ·							rese	rved				1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							D/	I ATA		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_					-			-								
В	lit/Field		Nam	e	Тур	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	ware sho patibility erved ac	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		DAT	A	R/	N	0x0	Data	a for Trar	nsfer						
									field cor ration.	ntains the	e data for	transfer	during a	slave re	ceive or	transmit

requested is promoted to a controller interrupt. If set, the interrupt is not masked and the interrupt is promoted; otherwise, the interrupt is masked.

Register 13: I²C Slave Interrupt Mask (I2CSIMR), offset 0x00C

This register controls whether a raw interrupt is promoted to a controller interrupt.

I2C	Slave	Interru	pt Mask	(I2CSIN	ИR)											
I2C S Offse	lave 1 b t 0x00C	base: 0x4	002.0800 002.1800 00.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	Î	1	1		1 1	rese	rved		1	1	1	i	Î	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I		1	1		1 1	reserved			1	I	1	I	I	DATAIM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field	1	Nar	ne	Ту	ре	Reset	Des	cription							
	31:1		resei	rved	R	0	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reser	•	vide hould be
	0		DAT	AIM	R/	W	0	Data	a Interru	ot Mask						
								This	bit cont	rols whe	ther the	raw inter	rupt for	data rec	ceived ar	nd data

July 26, 2008

Register 14: I²C Slave Raw Interrupt Status (I2CSRIS), offset 0x010

This register specifies whether an interrupt is pending.

I2C S I2C S Offse	Slave F Slave 0 ba Slave 1 ba t 0x010 RO, reset	se: 0x40 se: 0x40	02.1800	tatus (l2	2CSRIS)										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1		l l		1 T	rese	rved	i.	i i					1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		r I		, ,	reserved	, , , , , , , , , , , , , , , , , , ,		1					DATARIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	com	ware sho patibility served ac	with futu	ire produ	icts, the	value of	a reserv	•	vide hould be
	0		DATA	RIS	R	C	0	Data	a Raw Int	terrupt S	tatus					
								This	hit shar	ifice the	raw into	runt eta	to for da	ta racaiv	hac ha	eteb

This bit specifies the raw interrupt state for data received and data requested (prior to masking) of the I^2C slave block. If set, an interrupt is pending; otherwise, an interrupt is not pending.

Register 15: I²C Slave Masked Interrupt Status (I2CSMIS), offset 0x014

This register specifies whether an interrupt was signaled.

I2C Slave Masked Interrupt Status (I2CSMIS)

I2C S Offse	Slave 0 ba Slave 1 ba tt 0x014 RO, reset	se: 0x40	02.1800		- (- ,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		1 î				1 1	rese	rved			1		1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1 1				1 I	reserved						1	1	DATAMIS
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	е	Ту	be	Reset	Des	cription							
	31:1		reserv	red	R	C	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide hould be
	0		DATAN	ЛIS	R	C	0		a Masked							
																equested signaled;

cleared.

otherwise, an interrupt has not been generated since the bit was last

July 26, 2008

Register 16: I²C Slave Interrupt Clear (I2CSICR), offset 0x018

This register clears the raw interrupt. A read of this register returns no meaningful data.

I2C Slave Interrupt Clear (I2CSICR) I2C Slave 0 base: 0x4002.0800																		
12C S	lave 0 bas lave 1 bas t 0x018																	
Туре	WO, reset	t 0x0000	0.0000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1		, , , , , , , , , , , , , , , , , , ,		, , ,	reser	ved		1		ı ı		1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
[1		1		r r		1	reserved			ı i		r I	1	I	DATAIC		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	WO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_					_		_	_										
B	Bit/Field		Nam	e	Тур	be	Reset	Desc	cription									
	31:1 reserved RO 0x00									with futu	rely on tl ure produ ead-moo	ucts, the	value of	a reserv	•	vide hould be		
0 DATAIC WO 0 Data Interru										ot Clear								
	0 DATAIC WO 0									This bit controls the clearing of the raw interrupt for data received and data requested. When set, it clears the DATARIS interrupt bit; otherwise,								

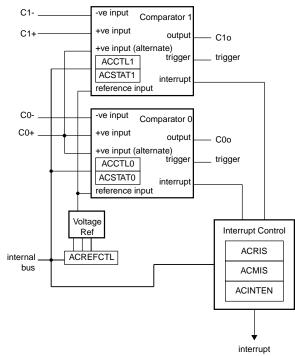
it has no effect on the DATARIS bit value.

16 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S1608 controller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event.

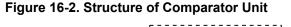
Note: Not all comparators have the option to drive an output pin. See the Comparator Operating Mode tables in "Functional Description" on page 412 for more information.

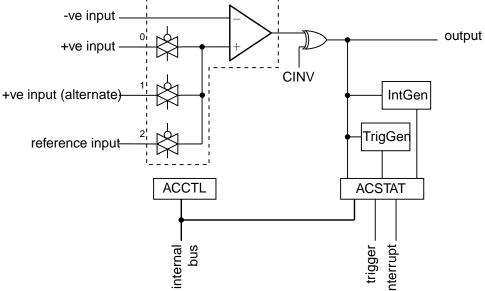

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge.

16.1 Block Diagram


16.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 16-2 on page 412, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.

A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the comparators are shown in the Comparator Operating Mode tables.

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin or generate an analog-to-digital converter (ADC) trigger.

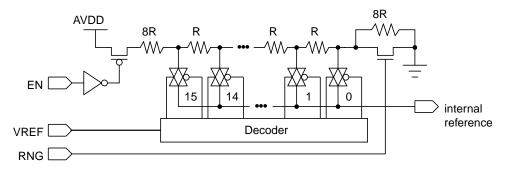
Important: Certain register bit values must be set before using the analog comparators. The proper pad configuration for the comparator input and output pins are described in the Comparator Operating Mode tables.

 Table 16-1. Comparator 0 Operating Modes

ACCNTL0	Com	Comparator 0									
ASRCP	VIN-	VIN+	Output	Interrupt	ADCTrigger						
00	C0-	C0+	C0o	yes	yes						
01	C0-	C0+	C0o	yes	yes						

ACCNTL0	Comparator 0											
ASRCP	VIN-	VIN+	Output	Interrupt	ADCTrigger							
10	C0-	Vref	C0o	yes	yes							
11	C0-	reserved	C0o	yes	yes							

Table 16-2. Comparator 1 Operating Modes


ACCNTL1	Comparator 1											
ASRCP	VIN-	VIN+	Output	Interrupt	ADCTrigger							
00	C1-	C1o/C1+ ^a	C1o/C1+	yes	yes							
01	C1-	C0+	C1o/C1+	yes	yes							
10	C1-	Vref	C1o/C1+	yes	yes							
11	C1-	reserved	C1o/C1+	yes	yes							

a. C1o and C1+ signals share a single pin and may only be used as one or the other.

16.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 16-3 on page 413. This is controlled by a single configuration register (**ACREFCTL**). Table 16-3 on page 413 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 16-3. Comparator Internal Reference Structure

Table 16-3. Internal Reference Voltage and ACREFCTL Field Values

ACREFCTL F	Register	Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=0		0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.

	legister	Output Reference Voltage Based on VREF Field Value								
EN Bit Value	RNG Bit Value									
EN=1	RNG=0	Total resistance in ladder is 31 R. $V_{REF} = AV_{DD} \times \frac{Rv_{REF}}{Rr}$								
		$V_{REF} = AV_{DD} \times \frac{(VREF + 8)}{31}$ $V_{REF} = 0.85 + 0.106 \times VREF$ The range of internal reference in this mode is 0.85-2.448 V.								
		Total resistance in ladder is 23 R. $V_{REF} = AV_{DD} \times \frac{Rv_{REF}}{Rr}$ $V_{REF} = AV_{DD} \times \frac{VREF}{23}$								
		$V_{RBF} = 0.143 \times VREF$ The range of internal reference for this mode is 0-2.152 V.								

16.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with CO- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.
- 4. Configure comparator 0 to use the internal voltage reference and to *not* invert the output on the C0o pin by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

16.4 Register Map

Table 16-4 on page 415 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Offset	Name	Туре	Reset	Description	See page
0x00	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	416
0x04	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	417
0x08	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	418
0x10	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	419
0x20	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	420
0x24	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	421
0x40	ACSTAT1	RO	0x0000.0000	Analog Comparator Status 1	420
0x44	ACCTL1	R/W	0x0000.0000	Analog Comparator Control 1	421

Table 16-4. Analog Comparators Register Map

16.5 Register Descriptions

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00

This register provides a summary of the interrupt status (masked) of the comparators.

Analog Comparator Masked Interrupt Status (ACMIS)

Base 0x4003.C000 Offset 0x00 Type R/W1C, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0000.0/10														
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1				1 1	rese	erved			1			1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		, ,				reser	rved	ı — – – – – – – – – – – – – – – – – – –			1	1		IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	8it/Field 31:2		Nam reserv		Ty R		Reset 0x00	Soff corr	scription tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	1		IN1	l	R/W	/1C	0	Cor	nparator	1 Maske	d Interru	upt Statu	IS			
	1 IN1							Comparator 1 Masked Interrupt Status Gives the masked interrupt state of this interrupt. Write 1 to clear the pending interrupt.						e 1 to thi	s bit to	
	0 INC)	R/W	/1C	0	Cor	nparator	0 Maske	ed Interru	upt Statu	IS			
									es the ma ar the per		•	tate of th	nis interru	upt. Writ	e 1 to thi	s bit to

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04

This register provides a summary of the interrupt status (raw) of the comparators.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x04 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Î	1	Í			т т	rese	rved	1	1	1	Í	r	ı	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1			reser	ved	1	I	T	1	1	1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan		Ту		Reset		cription				r		-	.,
	31:2		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	the value lucts, the dify-write	value of	f a reserv	•	
	1		IN	1	R	0	0	Con	nparator	1 Interru	upt Statu	IS				
	1 INT							Whe 1.	en set, in	dicates t	hat an ir	nterrupt h	as been	generate	ed by con	nparator
	0 IN0)	R	0	0	Con	nparator	0 Interru	upt Statu	IS				
								Whe 0.	en set, in	dicates t	hat an ir	nterrupt h	as been	generate	ed by con	nparator

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08

This register provides the interrupt enable for the comparators.

Base 0x4003.C000 Offset 0x08 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				, ,	rese	erved		1	1	1	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1				reser	rved	1		1		1	1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:2		reser	ved	R	С	0x00	com	patibility	with fut	ure prod		value o	f a resei	it. To pro ved bit sl	
	1		IN	1	R/	W	0	Con	nparator	1 Interru	upt Enab	le				
							Whe	en set, er	nables th	ne contro	oller interi	rupt from	n the cor	nparator	1 output.	
	0 IN0)	R/	W	0	Con	nparator	0 Interru	upt Enab	le				
								Whe	en set, er	hables th	ne contro	oller interi	rupt from	the cor	nparator) output.

July 26, 2008

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x10 Type R/W, reset 0x0000.0000

Type	10,00,1000		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1		1	1		1	1	rese	erved	1	I	1		1	r	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	erved		•	EN	RNG		rese	rved	1		VF	I REF	
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
					-			0.4							-	
	31:10		reserv	ved	R	0	0x00					he value ucts, the			•	
											•	dify-write				
	9		EN	1	R/	W	0	Res	istor Lad	lder Ena	ble					
								The	EN bit s	pecifies v	whether	the resis	tor ladde	er is pow	ered on.	lf 0, the
								resi		er is unp		. If 1, the				
												he intern and prog			sumes th	ie least
	8		RN	G	R/	W	0	Res	Resistor Ladder Range							
								The	RNG bit	specifies	the ran	ge of the	resistor	ladder.	lf 0, the	resistor
									ler has a stance o		istance	of 31 R.	If 1, the r	resistor l	adder ha	is a tota
	7:4		reserv	ved	R	0	0x00	Soft	ware sh	ould not	rely on t	he value	of a res	erved bi	t. To pro	∕ide
								compatibility with future products, the value of a reserved bit shou preserved across a read-modify-write operation.							nould be	
	3:0		VREF			w	0x00	00 Resistor Ladder Voltage Ref								
								an a	analog m	ultiplexe	r. The v	e resisto oltage co	rrespon	ding to th	ne tap po	osition is
											•	e availab		•		aule

16-3 on page 413 for some output reference voltage examples.

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40

These registers specify the current output value of the comparator.

Analog Comparator Status 0 (ACSTAT0)

Base 0x4003.C000 Offset 0x20 Type RO, reset 0x0000.0000

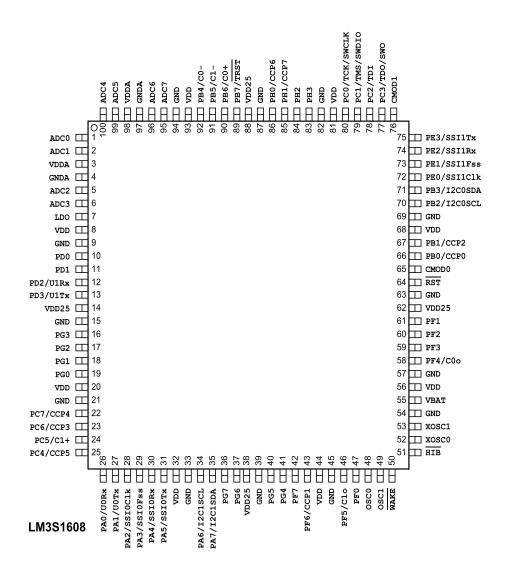
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			, ,	rese	rved	l I		I	1	1	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			T	1	1		reser	ved	1	1		1	1	1	OVAL	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:2		Nar reser	ved	Ty R	0	Reset 0x00	Soft com pres	patibility served a	with futu cross a r	ure prod ead-mod	he value ucts, the dify-write	value of	a reserv	•	
	1		OV	AL	R	0	0	Con	Comparator Output Value							
							The OVAL bit specifies the current output value of the comparator.							ator.		
0			reser	rved	R	0	0	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	

Register 7: Analog Comparator Control 0 (ACCTL0), offset 0x24 Register 8: Analog Comparator Control 1 (ACCTL1), offset 0x44

These registers configure the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

Base 0x4003.C000 Offset 0x24 Type R/W, reset 0x0000.0000


	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	ı –			1	l rese	rved		1	1		1	1	1
Туре	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset																
ſ	15	14	13 I erved	12	11 TOEN	10	9 RCP	8 reserved	7 TSLVAL	6 	5 I iEN	4 ISLVAL	3	2 I EN	1 CINV	0 reserved
Туре	RO	RO	RO	RO	R/W	R/W	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nan	ne	Ту	pe	Reset	Des	Description							
31:12 reserved RO 0x00								he value								
												ucts, the dify-write			/ed bit sł	nould be
												any write	operation			
	11		TOE	IN	R/	W	0	Trig	ger Outp	ut Enab	le					
												C event to the sent to the sen				
									smitted t			Sent to ti	IE ADC.	n i, uie	eventis	
	10:9		ASR	СР	R/	W	0x00	Ana	log Sour	ce Posit	ive					
									-			source of	input vo	ltage to t	he VIN+	terminal
												dings for				
								Valu	ue Func	tion						
								0x0	Pin v	alue						
								0x1	Pin v	alue of (C0+					
								0x2	Inter	nal volta	ge refere	ence				
								0x3	Rese	erved						
	0				-	~	0	0 - 6							. .	4 d a
	8		reser	vea	R	0	0					he value ucts, the				
								pres	served a	cross a r	ead-mod	dify-write	operatio	on.		
	7		TSLV	/AL	R/	W	0	Trig	ger Sens	e Level	Value					
								The	TSLVAL	bit spec	cifies the	sense v	alue of t	he input	that gen	erates
												se mode w. Other	,			
									e compa						Sincio ge	

Bit/Field	Name	Туре	Reset	Description
6:5	TSEN	R/W	0x0	Trigger Sense
				The TSEN field specifies the sense of the comparator output that generates an ADC event. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see TSLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
4	ISLVAL	R/W	0	Interrupt Sense Level Value
				The ISLVAL bit specifies the sense value of the input that generates an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator output is High.
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

17 Pin Diagram

The LM3S1608 microcontroller pin diagrams are shown below.

Figure 17-1. 100-Pin LQFP Package Pin Diagram

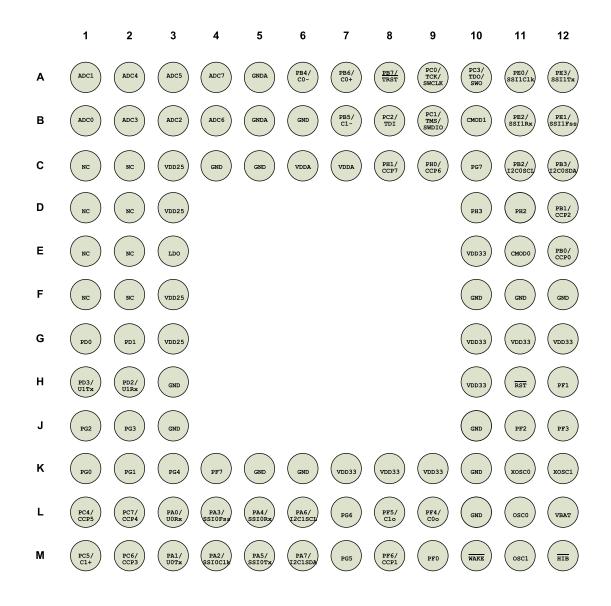


Figure 17-2. 108-Ball BGA Package Pin Diagram (Top View)

LM3S1608

18 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 18-1 on page 425 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 18-2 on page 429 lists the signals in alphabetical order by signal name.

Table 18-3 on page 433 groups the signals by functionality, except for GPIOs. Table 18-4 on page 436 lists the GPIO pins and their alternate functionality.

18.1 100-Pin LQFP Package Pin Tables

Pin Number	Pin Name	Pin Type	Buffer Type	Description
1	ADC0	I	Analog	Analog-to-digital converter input 0.
2	ADC1	I	Analog	Analog-to-digital converter input 1.
3	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
4	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
5	ADC2	I	Analog	Analog-to-digital converter input 2.
6	ADC3	I	Analog	Analog-to-digital converter input 3.
7	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
8	VDD	-	Power	Positive supply for I/O and some logic.
9	GND	-	Power	Ground reference for logic and I/O pins.
10	PD0	I/O	TTL	GPIO port D bit 0
11	PD1	I/O	TTL	GPIO port D bit 1
12	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
13	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
14	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Table 18-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type	Description
15	GND	-	Power	Ground reference for logic and I/O pins.
16	PG3	I/O	TTL	GPIO port G bit 3
17	PG2	I/O	TTL	GPIO port G bit 2
18	PG1	I/O	TTL	GPIO port G bit 1
19	PG0	I/O	TTL	GPIO port G bit 0
20	VDD	-	Power	Positive supply for I/O and some logic.
21	GND	-	Power	Ground reference for logic and I/O pins.
22	PC7	I/O	TTL	GPIO port C bit 7
	CCP4	I/O	TTL	Capture/Compare/PWM 4
23	PC6	I/O	TTL	GPIO port C bit 6
	CCP3	I/O	TTL	Capture/Compare/PWM 3
24	PC5	I/O	TTL	GPIO port C bit 5
	C1+	I	Analog	Analog comparator positive input
25	PC4	I/O	TTL	GPIO port C bit 4
	CCP5	I/O	TTL	Capture/Compare/PWM 5
26	PAO	I/O	TTL	GPIO port A bit 0
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
27	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode this signal has IrDA modulation.
28	PA2	I/O	TTL	GPIO port A bit 2
	SSIOClk	I/O	TTL	SSI module 0 clock
29	PA3	I/O	TTL	GPIO port A bit 3
	SSIOFss	I/O	TTL	SSI module 0 frame
30	PA4	I/O	TTL	GPIO port A bit 4
	SSIORx	I	TTL	SSI module 0 receive
31	PA5	I/O	TTL	GPIO port A bit 5
	SSIOTx	0	TTL	SSI module 0 transmit
32	VDD	-	Power	Positive supply for I/O and some logic.
33	GND	-	Power	Ground reference for logic and I/O pins.
34	PA6	I/O	TTL	GPIO port A bit 6
	I2C1SCL	I/O	OD	I2C module 1 clock
35	PA7	I/O	TTL	GPIO port A bit 7
	I2C1SDA	I/O	OD	I2C module 1 data
36	PG7	I/O	TTL	GPIO port G bit 7
37	PG6	I/O	TTL	GPIO port G bit 6
38	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
39	GND	-	Power	Ground reference for logic and I/O pins.
40	PG5	I/O	TTL	GPIO port G bit 5
41	PG4	I/O	TTL	GPIO port G bit 4
42	PF7	I/O	TTL	GPIO port F bit 7

Pin Number	Pin Name	Pin Type	Buffer Type	Description
43	PF6	I/O	TTL	GPIO port F bit 6
	CCP1	I/O	TTL	Capture/Compare/PWM 1
44	VDD	-	Power	Positive supply for I/O and some logic.
45	GND	-	Power	Ground reference for logic and I/O pins.
46	PF5	I/O	TTL	GPIO port F bit 5
	Clo	0	TTL	Analog comparator 1 output
47	PF0	I/O	TTL	GPIO port F bit 0
48	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
49	OSC1	0	Analog	Main oscillator crystal output.
50	WAKE	I	-	An external input that brings the processor out of hibernate mode when asserted.
51	HIB	0	TTL	An output that indicates the processor is in hibernate mode.
52	XOSC0	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
53	XOSC1	0	Analog	Hibernation Module oscillator crystal output.
54	GND	-	Power	Ground reference for logic and I/O pins.
55	VBAT	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
56	VDD	-	Power	Positive supply for I/O and some logic.
57	GND	-	Power	Ground reference for logic and I/O pins.
58	PF4	I/O	TTL	GPIO port F bit 4
	C00	0	TTL	Analog comparator 0 output
59	PF3	I/O	TTL	GPIO port F bit 3
60	PF2	I/O	TTL	GPIO port F bit 2
61	PF1	I/O	TTL	GPIO port F bit 1
62	VDD25	-	Power	Positive supply for most of the logic function including the processor core and most peripherals.
63	GND	-	Power	Ground reference for logic and I/O pins.
64	RST	I	TTL	System reset input.
65	CMODO	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
66	PB0	I/O	TTL	GPIO port B bit 0
	CCP0	I/O	TTL	Capture/Compare/PWM 0
67	PB1	I/O	TTL	GPIO port B bit 1
	CCP2	I/O	TTL	Capture/Compare/PWM 2
68	VDD	-	Power	Positive supply for I/O and some logic.
69	GND	-	Power	Ground reference for logic and I/O pins.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
70	PB2	I/O	TTL	GPIO port B bit 2
	I2C0SCL	I/O	OD	I2C module 0 clock
71	PB3	I/O	TTL	GPIO port B bit 3
	I2C0SDA	I/O	OD	I2C module 0 data
72	PE0	I/O	TTL	GPIO port E bit 0
	SSI1Clk	I/O	TTL	SSI module 1 clock
73	PE1	I/O	TTL	GPIO port E bit 1
	SSI1Fss	I/O	TTL	SSI module 1 frame
74	PE2	I/O	TTL	GPIO port E bit 2
	SSI1Rx	I	TTL	SSI module 1 receive
75	PE3	I/O	TTL	GPIO port E bit 3
	SSI1Tx	0	TTL	SSI module 1 transmit
76	CMOD1	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
77	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
78	PC2	I/O	TTL	GPIO port C bit 2
	TDI		TTL	JTAG TDI
79	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
80	PC0	I/O	TTL	GPIO port C bit 0
	TCK	I	TTL	JTAG/SWD CLK
	SWCLK	I	TTL	JTAG/SWD CLK
81	VDD	-	Power	Positive supply for I/O and some logic.
82	GND	-	Power	Ground reference for logic and I/O pins.
83	PH3	I/O	TTL	GPIO port H bit 3
84	PH2	I/O	TTL	GPIO port H bit 2
85	PH1	I/O	TTL	GPIO port H bit 1
	CCP7	I/O	TTL	Capture/Compare/PWM 7
86	PH0	I/O	TTL	GPIO port H bit 0
	CCP6	I/O	TTL	Capture/Compare/PWM 6
87	GND	-	Power	Ground reference for logic and I/O pins.
88	VDD25	-	Power	Positive supply for most of the logic function including the processor core and most peripherals.
89	PB7	I/O	TTL	GPIO port B bit 7
	TRST	I	TTL	JTAG TRSTn
90	PB6	I/O	TTL	GPIO port B bit 6
	C0+	I	Analog	Analog comparator 0 positive input
91	PB5	I/O	TTL	GPIO port B bit 5
	C1-	1	Analog	Analog comparator 1 negative input

Pin Number	Pin Name	Pin Type	Buffer Type	Description
92	PB4	I/O	TTL	GPIO port B bit 4
	C0-	I	Analog	Analog comparator 0 negative input
93	VDD	-	Power	Positive supply for I/O and some logic.
94	GND	-	Power	Ground reference for logic and I/O pins.
95	ADC7	I	Analog	Analog-to-digital converter input 7.
96	ADC6	I	Analog	Analog-to-digital converter input 6.
97	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
98	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
99	ADC5	I	Analog	Analog-to-digital converter input 5.
100	ADC4	I	Analog	Analog-to-digital converter input 4.

Table 18-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC0	1	I	Analog	Analog-to-digital converter input 0.
ADC1	2	I	Analog	Analog-to-digital converter input 1.
ADC2	5	I	Analog	Analog-to-digital converter input 2.
ADC3	6	I	Analog	Analog-to-digital converter input 3.
ADC4	100	I	Analog	Analog-to-digital converter input 4.
ADC5	99	I	Analog	Analog-to-digital converter input 5.
ADC6	96	I	Analog	Analog-to-digital converter input 6.
ADC7	95	I	Analog	Analog-to-digital converter input 7.
C0+	90	I	Analog	Analog comparator 0 positive input
C0-	92	I	Analog	Analog comparator 0 negative input
COo	58	0	TTL	Analog comparator 0 output
C1+	24	I	Analog	Analog comparator positive input
C1-	91	I	Analog	Analog comparator 1 negative input
Clo	46	0	TTL	Analog comparator 1 output
CCP0	66	I/O	TTL	Capture/Compare/PWM 0
CCP1	43	I/O	TTL	Capture/Compare/PWM 1
CCP2	67	I/O	TTL	Capture/Compare/PWM 2
CCP3	23	I/O	TTL	Capture/Compare/PWM 3
CCP4	22	I/O	TTL	Capture/Compare/PWM 4
CCP5	25	I/O	TTL	Capture/Compare/PWM 5
CCP6	86	I/O	TTL	Capture/Compare/PWM 6
CCP7	85	I/O	TTL	Capture/Compare/PWM 7
CMOD0	65	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
GND	9	-	Power	Ground reference for logic and I/O pins.
GND	15	-	Power	Ground reference for logic and I/O pins.
GND	21	-	Power	Ground reference for logic and I/O pins.
GND	33	-	Power	Ground reference for logic and I/O pins.
GND	39	-	Power	Ground reference for logic and I/O pins.
GND	45	-	Power	Ground reference for logic and I/O pins.
GND	54	-	Power	Ground reference for logic and I/O pins.
GND	57	-	Power	Ground reference for logic and I/O pins.
GND	63	-	Power	Ground reference for logic and I/O pins.
GND	69	-	Power	Ground reference for logic and I/O pins.
GND	82	-	Power	Ground reference for logic and I/O pins.
GND	87	-	Power	Ground reference for logic and I/O pins.
GND	94	-	Power	Ground reference for logic and I/O pins.
GNDA	4	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDA	97	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.
I2C0SCL	70	I/O	OD	I2C module 0 clock
I2C0SDA	71	I/O	OD	I2C module 0 data
I2C1SCL	34	I/O	OD	I2C module 1 clock
I2C1SDA	35	I/O	OD	I2C module 1 data
LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	49	0	Analog	Main oscillator crystal output.
PAO	26	I/O	TTL	GPIO port A bit 0
PA1	27	I/O	TTL	GPIO port A bit 1
PA2	28	I/O	TTL	GPIO port A bit 2
PA3	29	I/O	TTL	GPIO port A bit 3
PA4	30	I/O	TTL	GPIO port A bit 4
PA5	31	I/O	TTL	GPIO port A bit 5
PA6	34	I/O	TTL	GPIO port A bit 6
•	•			

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PA7	35	I/O	TTL	GPIO port A bit 7
PBO	66	I/O	TTL	GPIO port B bit 0
PB1	67	I/O	TTL	GPIO port B bit 1
PB2	70	I/O	TTL	GPIO port B bit 2
PB3	71	I/O	TTL	GPIO port B bit 3
PB4	92	I/O	TTL	GPIO port B bit 4
PB5	91	I/O	TTL	GPIO port B bit 5
PB6	90	I/O	TTL	GPIO port B bit 6
PB7	89	I/O	TTL	GPIO port B bit 7
PCO	80	I/O	TTL	GPIO port C bit 0
PC1	79	I/O	TTL	GPIO port C bit 1
PC2	78	I/O	TTL	GPIO port C bit 2
PC3	77	I/O	TTL	GPIO port C bit 3
PC4	25	I/O	TTL	GPIO port C bit 4
PC5	24	I/O	TTL	GPIO port C bit 5
PC6	23	I/O	TTL	GPIO port C bit 6
PC7	22	I/O	TTL	GPIO port C bit 7
PDO	10	I/O	TTL	GPIO port D bit 0
PD1	11	I/O	TTL	GPIO port D bit 1
PD2	12	I/O	TTL	GPIO port D bit 2
PD3	13	I/O	TTL	GPIO port D bit 3
PEO	72	I/O	TTL	GPIO port E bit 0
PE1	73	I/O	TTL	GPIO port E bit 1
PE2	74	I/O	TTL	GPIO port E bit 2
PE3	75	I/O	TTL	GPIO port E bit 3
PFO	47	I/O	TTL	GPIO port F bit 0
PF1	61	I/O	TTL	GPIO port F bit 1
PF2	60	I/O	TTL	GPIO port F bit 2
PF3	59	I/O	TTL	GPIO port F bit 3
PF4	58	I/O	TTL	GPIO port F bit 4
PF5	46	I/O	TTL	GPIO port F bit 5
PF6	43	I/O	TTL	GPIO port F bit 6
PF7	42	I/O	TTL	GPIO port F bit 7
PGO	19	I/O	TTL	GPIO port G bit 0
PG1	18	I/O	TTL	GPIO port G bit 1
PG2	17	I/O	TTL	GPIO port G bit 2
PG3	16	I/O	TTL	GPIO port G bit 3
PG4	41	I/O	TTL	GPIO port G bit 4
PG5	40	I/O	TTL	GPIO port G bit 5
PG6	37	I/O	TTL	GPIO port G bit 6
PG7	36	I/O	TTL	GPIO port G bit 7
PHO	86	I/O	TTL	GPIO port H bit 0

Pin Name	Pin Number	Pin Type	Buffer Type	Description
PH1	85	I/O	TTL	GPIO port H bit 1
PH2	84	I/O	TTL	GPIO port H bit 2
РНЗ	83	I/O	TTL	GPIO port H bit 3
RST	64	I	TTL	System reset input.
SSIOClk	28	I/O	TTL	SSI module 0 clock
SSIOFss	29	I/O	TTL	SSI module 0 frame
SSIORx	30	I	TTL	SSI module 0 receive
SSIOTx	31	0	TTL	SSI module 0 transmit
SSI1Clk	72	I/O	TTL	SSI module 1 clock
SSI1Fss	73	I/O	TTL	SSI module 1 frame
SSI1Rx	74	I	TTL	SSI module 1 receive
SSI1Tx	75	0	TTL	SSI module 1 transmit
SWCLK	80	Ι	TTL	JTAG/SWD CLK
SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
SWO	77	0	TTL	JTAG TDO and SWO
TCK	80	Ι	TTL	JTAG/SWD CLK
TDI	78	Ι	TTL	JTAG TDI
TDO	77	0	TTL	JTAG TDO and SWO
TMS	79	I/O	TTL	JTAG TMS and SWDIO
TRST	89	Ι	TTL	JTAG TRSTn
UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
UlRx	12	Ι	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
VDD	8	-	Power	Positive supply for I/O and some logic.
VDD	20	-	Power	Positive supply for I/O and some logic.
VDD	32	-	Power	Positive supply for I/O and some logic.
VDD	44	-	Power	Positive supply for I/O and some logic.
VDD	56	-	Power	Positive supply for I/O and some logic.
VDD	68	-	Power	Positive supply for I/O and some logic.
VDD	81	-	Power	Positive supply for I/O and some logic.
VDD	93	-	Power	Positive supply for I/O and some logic.
VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
WAKE	50	I	-	An external input that brings the processor out of hibernate mode when asserted.
XOSC0	52	Ι	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.

Table 18-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC	ADC0	1	I	Analog	Analog-to-digital converter input 0.
	ADC1	2	I	Analog	Analog-to-digital converter input 1.
	ADC2	5	I	Analog	Analog-to-digital converter input 2.
	ADC3	6	I	Analog	Analog-to-digital converter input 3.
	ADC4	100	I	Analog	Analog-to-digital converter input 4.
	ADC5	99	I	Analog	Analog-to-digital converter input 5.
	ADC6	96	I	Analog	Analog-to-digital converter input 6.
	ADC7	95	I	Analog	Analog-to-digital converter input 7.
Analog	C0+	90	I	Analog	Analog comparator 0 positive input
Comparators	C0-	92	I	Analog	Analog comparator 0 negative input
	C0o	58	0	TTL	Analog comparator 0 output
	C1+	24	I	Analog	Analog comparator positive input
	C1-	91	I	Analog	Analog comparator 1 negative input
	C10	46	0	TTL	Analog comparator 1 output
General-Purpose	CCP0	66	I/O	TTL	Capture/Compare/PWM 0
Timers	CCP1	43	I/O	TTL	Capture/Compare/PWM 1
	CCP2	67	I/O	TTL	Capture/Compare/PWM 2

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	CCP3	23	I/O	TTL	Capture/Compare/PWM 3
	CCP4	22	I/O	TTL	Capture/Compare/PWM 4
	CCP5	25	I/O	TTL	Capture/Compare/PWM 5
	CCP6	86	I/O	TTL	Capture/Compare/PWM 6
	CCP7	85	I/O	TTL	Capture/Compare/PWM 7
I2C	I2C0SCL	70	I/O	OD	I2C module 0 clock
	I2C0SDA	71	I/O	OD	I2C module 0 data
	I2C1SCL	34	I/O	OD	I2C module 1 clock
	I2C1SDA	35	I/O	OD	I2C module 1 data
JTAG/SWD/SWO	SWCLK	80	I	TTL	JTAG/SWD CLK
	SWDIO	79	I/O	TTL	JTAG TMS and SWDIO
	SWO	77	0	TTL	JTAG TDO and SWO
	тск	80	I	TTL	JTAG/SWD CLK
	TDI	78	1	TTL	JTAG TDI
	TDO	77	0	TTL	JTAG TDO and SWO
	TMS	79	I/O	TTL	JTAG TMS and SWDIO
Power	GND	9	-	Power	Ground reference for logic and I/O pins.
	GND	15	-	Power	Ground reference for logic and I/O pins.
	GND	21	-	Power	Ground reference for logic and I/O pins.
	GND	33	-	Power	Ground reference for logic and I/O pins.
	GND	39	-	Power	Ground reference for logic and I/O pins.
	GND	45	-	Power	Ground reference for logic and I/O pins.
	GND	54	-	Power	Ground reference for logic and I/O pins.
	GND	57	-	Power	Ground reference for logic and I/O pins.
	GND	63	-	Power	Ground reference for logic and I/O pins.
	GND	69	-	Power	Ground reference for logic and I/O pins.
	GND	82	-	Power	Ground reference for logic and I/O pins.
	GND	87	-	Power	Ground reference for logic and I/O pins.
	GND	94	-	Power	Ground reference for logic and I/O pins.
	GNDA	4	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	GNDA	97	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	HIB	51	0	TTL	An output that indicates the processor is in hibernate mode.
	LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	VBAT	55	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
	VDD	8	-	Power	Positive supply for I/O and some logic.
	VDD	20	-	Power	Positive supply for I/O and some logic.
	VDD	32	-	Power	Positive supply for I/O and some logic.
	VDD	44	-	Power	Positive supply for I/O and some logic.
	VDD	56	-	Power	Positive supply for I/O and some logic.
	VDD	68	-	Power	Positive supply for I/O and some logic.
	VDD	81	-	Power	Positive supply for I/O and some logic.
	VDD	93	-	Power	Positive supply for I/O and some logic.
	VDD25	14	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	38	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	62	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDDA	3	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	VDDA	98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	WAKE	50	I	-	An external input that brings the processor out of hibernate mode when asserted.
SSI	SSI0Clk	28	I/O	TTL	SSI module 0 clock
	SSIOFss	29	I/O	TTL	SSI module 0 frame
	SSIORx	30	I	TTL	SSI module 0 receive
	SSIOTx	31	0	TTL	SSI module 0 transmit
	SSI1Clk	72	I/O	TTL	SSI module 1 clock
	SSI1Fss	73	I/O	TTL	SSI module 1 frame
	SSI1Rx	74	I	TTL	SSI module 1 receive
	SSI1Tx	75	0	TTL	SSI module 1 transmit
System Control & Clocks	CMOD0	65	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	76	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	49	0	Analog	Main oscillator crystal output.
	RST	64	I	TTL	System reset input.

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	TRST	89	I	TTL	JTAG TRSTn
	XOSC0	52	Ι	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
	XOSC1	53	0	Analog	Hibernation Module oscillator crystal output.
UART	UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
	UlRx	12	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
	UlTx	13	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 18-4. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	26	UORx	
PA1	27	UOTx	
PA2	28	SSIOClk	
PA3	29	SSIOFss	
PA4	30	SSIORx	
PA5	31	SSIOTx	
РАб	34	I2C1SCL	
PA7	35	I2C1SDA	
PBO	66	CCP0	
PB1	67	CCP2	
PB2	70	I2C0SCL	
PB3	71	I2C0SDA	
PB4	92	C0-	
PB5	91	C1-	
PB6	90	C0+	
PB7	89	TRST	
PCO	80	TCK	SWCLK
PC1	79	TMS	SWDIO
PC2	78	TDI	
PC3	77	TDO	SWO
PC4	25	CCP5	
PC5	24	C1+	
PC6	23	CCP3	
PC7	22	CCP4	
PDO	10		
PD1	11		

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PD2	12	UlRx	
PD3	13	UlTx	
PEO	72	SSI1Clk	
PE1	73	SSI1Fss	
PE2	74	SSI1Rx	
PE3	75	SSI1Tx	
PF0	47		
PF1	61		
PF2	60		
PF3	59		
PF4	58	COo	
PF5	46	Clo	
PF6	43	CCP1	
PF7	42		
PGO	19		
PG1	18		
PG2	17		
PG3	16		
PG4	41		
PG5	40		
PG6	37		
PG7	36		
PHO	86	CCP6	
PH1	85	CCP7	
PH2	84		
PH3	83		

18.2 108-Pin BGA Package Pin Tables

Table 18-5. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type	Description
A1	ADC1	I	Analog	Analog-to-digital converter input 1.
A2	ADC4	I	Analog	Analog-to-digital converter input 4.
A3	ADC5	I	Analog	Analog-to-digital converter input 5.
A4	ADC7	I	Analog	Analog-to-digital converter input 7.
A5	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
A6	PB4	I/O	TTL	GPIO port B bit 4
	C0-	I	Analog	Analog comparator 0 negative input
A7	PB6	I/O	TTL	GPIO port B bit 6
	C0+	I	Analog	Analog comparator 0 positive input

Pin Number	Pin Name	Pin Type	Buffer Type	Description
A8	PB7	I/O	TTL	GPIO port B bit 7
	TRST	I	TTL	JTAG TRSTn
A9	PC0	I/O	TTL	GPIO port C bit 0
	TCK	I	TTL	JTAG/SWD CLK
	SWCLK	I	TTL	JTAG/SWD CLK
A10	PC3	I/O	TTL	GPIO port C bit 3
	TDO	0	TTL	JTAG TDO and SWO
	SWO	0	TTL	JTAG TDO and SWO
A11	PEO	I/O	TTL	GPIO port E bit 0
	SSIIClk	I/O	TTL	SSI module 1 clock
A12	PE3	I/O	TTL	GPIO port E bit 3
	SSI1Tx	0	TTL	SSI module 1 transmit
B1	ADC0	I	Analog	Analog-to-digital converter input 0.
B2	ADC3	I	Analog	Analog-to-digital converter input 3.
B3	ADC2	I	Analog	Analog-to-digital converter input 2.
B4	ADC6	I	Analog	Analog-to-digital converter input 6.
B5	GNDA	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
B6	GND	-	Power	Ground reference for logic and I/O pins.
B7	PB5	I/O	TTL	GPIO port B bit 5
	C1-	1	Analog	Analog comparator 1 negative input
B8	PC2	I/O	TTL	GPIO port C bit 2
	TDI	1	TTL	JTAG TDI
В9	PC1	I/O	TTL	GPIO port C bit 1
	TMS	I/O	TTL	JTAG TMS and SWDIO
	SWDIO	I/O	TTL	JTAG TMS and SWDIO
B10	CMOD1	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
B11	PE2	I/O	TTL	GPIO port E bit 2
	SSI1Rx	I	TTL	SSI module 1 receive
B12	PE1	I/O	TTL	GPIO port E bit 1
	SSI1Fss	I/O	TTL	SSI module 1 frame
C1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
C2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
C3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
C4	GND	-	Power	Ground reference for logic and I/O pins.
C5	GND	-	Power	Ground reference for logic and I/O pins.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
C6	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
C7	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
C8	PH1	I/O	TTL	GPIO port H bit 1
	CCP7	I/O	TTL	Capture/Compare/PWM 7
C9	PHO	I/O	TTL	GPIO port H bit 0
	CCP6	I/O	TTL	Capture/Compare/PWM 6
C10	PG7	I/O	TTL	GPIO port G bit 7
C11	PB2	I/O	TTL	GPIO port B bit 2
	I2C0SCL	I/O	OD	I2C module 0 clock
C12	PB3	I/O	TTL	GPIO port B bit 3
	I2C0SDA	I/O	OD	I2C module 0 data
D1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
D2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
D3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
D10	PH3	I/O	TTL	GPIO port H bit 3
D11	PH2	I/O	TTL	GPIO port H bit 2
D12	PB1	I/O	TTL	GPIO port B bit 1
	CCP2	I/O	TTL	Capture/Compare/PWM 2
E1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
E2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
E3	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
E10	VDD33	-	Power	Positive supply for I/O and some logic.
E11	CMOD0	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
E12	PBO	I/O	TTL	GPIO port B bit 0
	CCP0	I/O	TTL	Capture/Compare/PWM 0
F1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
F2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
F3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
F10	GND	-	Power	Ground reference for logic and I/O pins.
F11	GND	-	Power	Ground reference for logic and I/O pins.
F12	GND	-	Power	Ground reference for logic and I/O pins.
G1	PD0	I/O	TTL	GPIO port D bit 0
G2	PD1	I/O	TTL	GPIO port D bit 1
G3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
G10	VDD33	-	Power	Positive supply for I/O and some logic.
G11	VDD33	-	Power	Positive supply for I/O and some logic.
G12	VDD33	-	Power	Positive supply for I/O and some logic.
H1	PD3	I/O	TTL	GPIO port D bit 3
	UlTx	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.
H2	PD2	I/O	TTL	GPIO port D bit 2
	UlRx	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.
H3	GND	-	Power	Ground reference for logic and I/O pins.
H10	VDD33	-	Power	Positive supply for I/O and some logic.
H11	RST	I	TTL	System reset input.
H12	PF1	I/O	TTL	GPIO port F bit 1
J1	PG2	I/O	TTL	GPIO port G bit 2
J2	PG3	I/O	TTL	GPIO port G bit 3
J3	GND	-	Power	Ground reference for logic and I/O pins.
J10	GND	-	Power	Ground reference for logic and I/O pins.
J11	PF2	I/O	TTL	GPIO port F bit 2
J12	PF3	I/O	TTL	GPIO port F bit 3
K1	PG0	I/O	TTL	GPIO port G bit 0
K2	PG1	I/O	TTL	GPIO port G bit 1
K3	PG4	I/O	TTL	GPIO port G bit 4
K4	PF7	I/O	TTL	GPIO port F bit 7
K5	GND	-	Power	Ground reference for logic and I/O pins.
K6	GND	-	Power	Ground reference for logic and I/O pins.
K7	VDD33	-	Power	Positive supply for I/O and some logic.
K8	VDD33	-	Power	Positive supply for I/O and some logic.
K9	VDD33	-	Power	Positive supply for I/O and some logic.
K10	GND	-	Power	Ground reference for logic and I/O pins.
K11	XOSC0	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.

Pin Number	Pin Name	Pin Type	Buffer Type	Description
K12	XOSC1	0	Analog	Hibernation Module oscillator crystal output.
L1	PC4	I/O	TTL	GPIO port C bit 4
	CCP5	I/O	TTL	Capture/Compare/PWM 5
L2	PC7	I/O	TTL	GPIO port C bit 7
	CCP4	I/O	TTL	Capture/Compare/PWM 4
L3	PAO	I/O	TTL	GPIO port A bit 0
	UORx	I	TTL	UART module 0 receive. When in IrDA mode. this signal has IrDA modulation.
L4	PA3	I/O	TTL	GPIO port A bit 3
	SSI0Fss	I/O	TTL	SSI module 0 frame
L5	PA4	I/O	TTL	GPIO port A bit 4
	SSIORx	I	TTL	SSI module 0 receive
L6	PA6	I/O	TTL	GPIO port A bit 6
	I2C1SCL	I/O	OD	I2C module 1 clock
L7	PG6	I/O	TTL	GPIO port G bit 6
L8	PF5	I/O	TTL	GPIO port F bit 5
	Clo	0	TTL	Analog comparator 1 output
L9	PF4	I/O	TTL	GPIO port F bit 4
	COo	0	TTL	Analog comparator 0 output
L10	GND	-	Power	Ground reference for logic and I/O pins.
L11	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
L12	VBAT	-	Power	Power source for the Hibernation Module. It is normally connected to the positive termina of a battery and serves as the battery backup/Hibernation Module power-source supply.
M1	PC5	I/O	TTL	GPIO port C bit 5
	C1+	I	Analog	Analog comparator positive input
M2	PC6	I/O	TTL	GPIO port C bit 6
	CCP3	I/O	TTL	Capture/Compare/PWM 3
M3	PA1	I/O	TTL	GPIO port A bit 1
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode this signal has IrDA modulation.
M4	PA2	I/O	TTL	GPIO port A bit 2
	SSIOClk	I/O	TTL	SSI module 0 clock
M5	PA5	I/O	TTL	GPIO port A bit 5
	SSIOTx	0	TTL	SSI module 0 transmit
M6	PA7	I/O	TTL	GPIO port A bit 7
	I2C1SDA	I/O	OD	I2C module 1 data
M7	PG5	I/O	TTL	GPIO port G bit 5
M8	PF6	I/O	TTL	GPIO port F bit 6
	CCP1	I/O	TTL	Capture/Compare/PWM 1
M9	PF0	I/O	TTL	GPIO port F bit 0

Pin Number	Pin Name	Pin Type	Buffer Type	Description
M10	WAKE	I	-	An external input that brings the processor out of hibernate mode when asserted.
M11	OSC1	0	Analog	Main oscillator crystal output.
M12	HIB	0	TTL	An output that indicates the processor is in hibernate mode.

Table 18-6. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC0	B1	I	Analog	Analog-to-digital converter input 0.
ADC1	A1	I	Analog	Analog-to-digital converter input 1.
ADC2	B3	I	Analog	Analog-to-digital converter input 2.
ADC3	B2	I	Analog	Analog-to-digital converter input 3.
ADC4	A2	I	Analog	Analog-to-digital converter input 4.
ADC5	A3	I	Analog	Analog-to-digital converter input 5.
ADC6	B4	I	Analog	Analog-to-digital converter input 6.
ADC7	A4	I	Analog	Analog-to-digital converter input 7.
C0+	A7	I	Analog	Analog comparator 0 positive input
C0-	A6	I	Analog	Analog comparator 0 negative input
COo	L9	0	TTL	Analog comparator 0 output
C1+	M1	I	Analog	Analog comparator positive input
C1-	B7	I	Analog	Analog comparator 1 negative input
Clo	L8	0	TTL	Analog comparator 1 output
CCP0	E12	I/O	TTL	Capture/Compare/PWM 0
CCP1	M8	I/O	TTL	Capture/Compare/PWM 1
CCP2	D12	I/O	TTL	Capture/Compare/PWM 2
CCP3	M2	I/O	TTL	Capture/Compare/PWM 3
CCP4	L2	I/O	TTL	Capture/Compare/PWM 4
CCP5	L1	I/O	TTL	Capture/Compare/PWM 5
CCP6	C9	I/O	TTL	Capture/Compare/PWM 6
CCP7	C8	I/O	TTL	Capture/Compare/PWM 7
CMOD0	E11	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
CMOD1	B10	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
GND	C4	-	Power	Ground reference for logic and I/O pins.
GND	C5	-	Power	Ground reference for logic and I/O pins.
GND	H3	-	Power	Ground reference for logic and I/O pins.
GND	J3	-	Power	Ground reference for logic and I/O pins.
GND	K5	-	Power	Ground reference for logic and I/O pins.
GND	K6	-	Power	Ground reference for logic and I/O pins.
GND	L10	-	Power	Ground reference for logic and I/O pins.
GND	K10	-	Power	Ground reference for logic and I/O pins.
GND	J10	-	Power	Ground reference for logic and I/O pins.
GND	F10	-	Power	Ground reference for logic and I/O pins.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
GND	F11	-	Power	Ground reference for logic and I/O pins.
GND	B6	-	Power	Ground reference for logic and I/O pins.
GND	F12	-	Power	Ground reference for logic and I/O pins.
GNDA	B5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDA	A5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
HIB	M12	0	TTL	An output that indicates the processor is in hibernate mode.
I2C0SCL	C11	I/O	OD	I2C module 0 clock
I2C0SDA	C12	I/O	OD	I2C module 0 data
I2C1SCL	L6	I/O	OD	I2C module 1 clock
I2C1SDA	M6	I/O	OD	I2C module 1 data
LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
NC	E1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	E2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	F2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	F1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	D1	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	D2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	C2	-	-	No connect. Leave the pin electrically unconnected/isolated.
NC	C1	-	-	No connect. Leave the pin electrically unconnected/isolated.
OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	M11	0	Analog	Main oscillator crystal output.
PAO	L3	I/O	TTL	GPIO port A bit 0
PA1	M3	I/O	TTL	GPIO port A bit 1
PA2	M4	I/O	TTL	GPIO port A bit 2
PA3	L4	I/O	TTL	GPIO port A bit 3
PA4	L5	I/O	TTL	GPIO port A bit 4
PA5	M5	I/O	TTL	GPIO port A bit 5

Pin Name	Pin Number	Pin Type	Buffer Type	Description
РАб	L6	I/O	TTL	GPIO port A bit 6
PA7	M6	I/O	TTL	GPIO port A bit 7
PBO	E12	I/O	TTL	GPIO port B bit 0
PB1	D12	I/O	TTL	GPIO port B bit 1
PB2	C11	I/O	TTL	GPIO port B bit 2
PB3	C12	I/O	TTL	GPIO port B bit 3
PB4	A6	I/O	TTL	GPIO port B bit 4
PB5	B7	I/O	TTL	GPIO port B bit 5
PB6	A7	I/O	TTL	GPIO port B bit 6
PB7	A8	I/O	TTL	GPIO port B bit 7
PCO	A9	I/O	TTL	GPIO port C bit 0
PC1	B9	I/O	TTL	GPIO port C bit 1
PC2	B8	I/O	TTL	GPIO port C bit 2
PC3	A10	I/O	TTL	GPIO port C bit 3
PC4	L1	I/O	TTL	GPIO port C bit 4
PC5	M1	I/O	TTL	GPIO port C bit 5
PC6	M2	I/O	TTL	GPIO port C bit 6
PC7	L2	I/O	TTL	GPIO port C bit 7
PDO	G1	I/O	TTL	GPIO port D bit 0
PD1	G2	I/O	TTL	GPIO port D bit 1
PD2	H2	I/O	TTL	GPIO port D bit 2
PD3	H1	I/O	TTL	GPIO port D bit 3
PEO	A11	I/O	TTL	GPIO port E bit 0
PE1	B12	I/O	TTL	GPIO port E bit 1
PE2	B11	I/O	TTL	GPIO port E bit 2
PE3	A12	I/O	TTL	GPIO port E bit 3
PFO	M9	I/O	TTL	GPIO port F bit 0
PF1	H12	I/O	TTL	GPIO port F bit 1
PF2	J11	I/O	TTL	GPIO port F bit 2
PF3	J12	I/O	TTL	GPIO port F bit 3
PF4	L9	I/O	TTL	GPIO port F bit 4
PF5	L8	I/O	TTL	GPIO port F bit 5
PF6	M8	I/O	TTL	GPIO port F bit 6
PF7	K4	I/O	TTL	GPIO port F bit 7
PGO	K1	I/O	TTL	GPIO port G bit 0
PG1	K2	I/O	TTL	GPIO port G bit 1
PG2	J1	I/O	TTL	GPIO port G bit 2
PG3	J2	I/O	TTL	GPIO port G bit 3
PG4	K3	I/O	TTL	GPIO port G bit 4
PG5	M7	I/O	TTL	GPIO port G bit 5
PG6	L7	I/O	TTL	GPIO port G bit 6
PG7	C10	I/O	TTL	GPIO port G bit 7

Pin Name	Pin Number	Pin Type	Buffer Type	Description	
PHO	C9	I/O	TTL	GPIO port H bit 0	
PH1	C8	I/O	TTL	GPIO port H bit 1	
PH2	D11	I/O	TTL	GPIO port H bit 2	
PH3	D10	I/O	TTL	GPIO port H bit 3	
RST	H11	I	TTL	System reset input.	
SSIOClk	M4	I/O	TTL	SSI module 0 clock	
SSIOFss	L4	I/O	TTL	SSI module 0 frame	
SSIORx	L5	I	TTL	SSI module 0 receive	
SSIOTx	M5	0	TTL	SSI module 0 transmit	
SSI1Clk	A11	I/O	TTL	SSI module 1 clock	
SSI1Fss	B12	I/O	TTL	SSI module 1 frame	
SSI1Rx	B11	I	TTL	SSI module 1 receive	
SSI1Tx	A12	0	TTL	SSI module 1 transmit	
SWCLK	A9	I	TTL	JTAG/SWD CLK	
SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO	
SWO	A10	0	TTL	JTAG TDO and SWO	
TCK	A9	I	TTL	JTAG/SWD CLK	
TDI	B8	I	TTL	JTAG TDI	
TDO	A10	0	TTL	JTAG TDO and SWO	
TMS	B9	I/O	TTL	JTAG TMS and SWDIO	
TRST	A8	I	TTL	JTAG TRSTn	
UORx	L3	Ι	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.	
UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.	
UlRx	H2	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.	
UlTx	H1	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.	
VBAT	L12	-	Power	Power source for the Hibernation Module. It is normally connected to the positive termina of a battery and serves as the battery backup/Hibernation Module power-source supply.	
VDD25	C3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.	
VDD25	D3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.	
VDD25	F3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.	
VDD25	G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.	
VDD33	K7	-	Power	Positive supply for I/O and some logic.	

Pin Name	Pin Number	Pin Type	Buffer Type	Description
VDD33	G12	-	Power	Positive supply for I/O and some logic.
VDD33	K8	-	Power	Positive supply for I/O and some logic.
VDD33	K9	-	Power	Positive supply for I/O and some logic.
VDD33	H10	-	Power	Positive supply for I/O and some logic.
VDD33	G10	-	Power	Positive supply for I/O and some logic.
VDD33	E10	-	Power	Positive supply for I/O and some logic.
VDD33	G11	-	Power	Positive supply for I/O and some logic.
VDDA	C6	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
VDDA	C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
WAKE	M10	I	-	An external input that brings the processor out of hibernate mode when asserted.
XOSC0	К11	I	Analog	Hibernation Module oscillator crystal input or an external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscillator for the Hibernation Module RTC. See the CLKSEL bit in the HIBCTL register.
XOSC1	K12	0	Analog	Hibernation Module oscillator crystal output.

Table 18-7. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
ADC	ADC0	B1	I	Analog	Analog-to-digital converter input 0.
	ADC1	A1	I	Analog	Analog-to-digital converter input 1.
	ADC2	B3	I	Analog	Analog-to-digital converter input 2.
	ADC3	B2	I	Analog	Analog-to-digital converter input 3.
	ADC4	A2	I	Analog	Analog-to-digital converter input 4.
	ADC5	A3	I	Analog	Analog-to-digital converter input 5.
	ADC6	B4	I	Analog	Analog-to-digital converter input 6.
	ADC7	A4	I	Analog	Analog-to-digital converter input 7.
Analog	C0+	A7	I	Analog	Analog comparator 0 positive input
Comparators	C0-	A6	I	Analog	Analog comparator 0 negative input
	C0o	L9	0	TTL	Analog comparator 0 output
	C1+	M1	I	Analog	Analog comparator positive input
	C1-	B7	I	Analog	Analog comparator 1 negative input
	C10	L8	0	TTL	Analog comparator 1 output
General-Purpose	CCP0	E12	I/O	TTL	Capture/Compare/PWM 0
Timers	CCP1	M8	I/O	TTL	Capture/Compare/PWM 1
	CCP2	D12	I/O	TTL	Capture/Compare/PWM 2

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	CCP3	M2	I/O	TTL	Capture/Compare/PWM 3
	CCP4	L2	I/O	TTL	Capture/Compare/PWM 4
	CCP5	L1	I/O	TTL	Capture/Compare/PWM 5
	CCP6	C9	I/O	TTL	Capture/Compare/PWM 6
	CCP7	C8	I/O	TTL	Capture/Compare/PWM 7
12C	I2C0SCL	C11	I/O	OD	I2C module 0 clock
	I2C0SDA	C12	I/O	OD	I2C module 0 data
	I2C1SCL	L6	I/O	OD	I2C module 1 clock
	I2C1SDA	M6	I/O	OD	I2C module 1 data
JTAG/SWD/SWO	SWCLK	A9	I	TTL	JTAG/SWD CLK
	SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO
	SWO	A10	0	TTL	JTAG TDO and SWO
	TCK	A9	I	TTL	JTAG/SWD CLK
	TDI	B8	1	TTL	JTAG TDI
	TDO	A10	0	TTL	JTAG TDO and SWO
	TMS	B9	I/O	TTL	JTAG TMS and SWDIO
Power	GND	C4	-	Power	Ground reference for logic and I/O pins.
	GND	C5	-	Power	Ground reference for logic and I/O pins.
	GND	H3	-	Power	Ground reference for logic and I/O pins.
	GND	J3	-	Power	Ground reference for logic and I/O pins.
	GND	K5	-	Power	Ground reference for logic and I/O pins.
	GND	K6	-	Power	Ground reference for logic and I/O pins.
	GND	L10	-	Power	Ground reference for logic and I/O pins.
	GND	K10	-	Power	Ground reference for logic and I/O pins.
	GND	J10	-	Power	Ground reference for logic and I/O pins.
	GND	F10	-	Power	Ground reference for logic and I/O pins.
	GND	F11	-	Power	Ground reference for logic and I/O pins.
	GND	B6	-	Power	Ground reference for logic and I/O pins.
	GND	F12	-	Power	Ground reference for logic and I/O pins.
	GNDA	В5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	GNDA	A5	-	Power	The ground reference for the analog circuits (ADC, Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	HIB	M12	0	TTL	An output that indicates the processor is in hibernate mode.
	LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. The LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description
	VBAT	L12	-	Power	Power source for the Hibernation Module. It is normally connected to the positive terminal of a battery and serves as the battery backup/Hibernation Module power-source supply.
	VDD25	C3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	D3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	F3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD25	G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD33	K7	-	Power	Positive supply for I/O and some logic.
	VDD33	G12	-	Power	Positive supply for I/O and some logic.
	VDD33	K8	-	Power	Positive supply for I/O and some logic.
	VDD33	K9	-	Power	Positive supply for I/O and some logic.
	VDD33	H10	-	Power	Positive supply for I/O and some logic.
	VDD33	G10	-	Power	Positive supply for I/O and some logic.
	VDD33	E10	-	Power	Positive supply for I/O and some logic.
	VDD33	G11	-	Power	Positive supply for I/O and some logic.
	VDDA	C6	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	VDDA	C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions.
	WAKE	M10	I	-	An external input that brings the processor out of hibernate mode when asserted.
SSI	SSI0Clk	M4	I/O	TTL	SSI module 0 clock
	SSIOFss	L4	I/O	TTL	SSI module 0 frame
	SSIORx	L5	1	TTL	SSI module 0 receive
	SSIOTx	M5	0	TTL	SSI module 0 transmit
	SSI1Clk	A11	I/O	TTL	SSI module 1 clock
	SSI1Fss	B12	I/O	TTL	SSI module 1 frame
	SSI1Rx	B11	I	TTL	SSI module 1 receive
	SSI1Tx	A12	0	TTL	SSI module 1 transmit
System Control & Clocks	CMOD0	E11	I/O	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	B10	I/O	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	M11	0	Analog	Main oscillator crystal output.
	RST	H11	I	TTL	System reset input.

Function	Pin Name	Pin Number	Pin Type	Buffer Type	Description	
	TRST	A8	I	TTL	JTAG TRSTn	
	XOSC0	K11	Ι	Analog	Hibernation Module oscillator crystal input or ar external clock reference input. Note that this is either a 4.19-MHz crystal or a 32.768-kHz oscilla for the Hibernation Module RTC. See the CLKS bit in the HIBCTL register.	
	XOSC1	K12	0	Analog	Hibernation Module oscillator crystal output.	
UART	UORx	L3	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.	
	UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.	
	UlRx	H2	I	TTL	UART module 1 receive. When in IrDA mode, this signal has IrDA modulation.	
	UlTx	H1	0	TTL	UART module 1 transmit. When in IrDA mode, this signal has IrDA modulation.	

Table 18-8. GPIO Pins and Alternate Functions

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PAO	L3	UORx	
PA1	M3	UOTx	
PA2	M4	SSIOClk	
PA3	L4	SSIOFss	
PA4	L5	SSIORx	
PA5	M5	SSIOTx	
PA6	L6	I2C1SCL	
PA7	M6	I2C1SDA	
PBO	E12	CCP0	
PB1	D12	CCP2	
PB2	C11	I2C0SCL	
PB3	C12	I2C0SDA	
PB4	A6	C0-	
PB5	B7	C1-	
PB6	A7	C0+	
PB7	A8	TRST	
PCO	A9	TCK	SWCLK
PC1	B9	TMS	SWDIO
PC2	B8	TDI	
PC3	A10	TDO	SWO
PC4	L1	CCP5	
PC5	M1	C1+	
PC6	M2	CCP3	
PC7	L2	CCP4	
PDO	G1		
PD1	G2		

GPIO Pin	Pin Number	Multiplexed Function	Multiplexed Function
PD2	H2	UlRx	
PD3	H1	UlTx	
PEO	A11	SSI1Clk	
PE1	B12	SSI1Fss	
PE2	B11	SSI1Rx	
PE3	A12	SSI1Tx	
PF0	M9		
PF1	H12		
PF2	J11		
PF3	J12		
PF4	L9	COo	
PF5	L8	Clo	
PF6	M8	CCP1	
PF7	K4		
PGO	K1		
PG1	K2		
PG2	J1		
PG3	J2		
PG4	K3		
PG5	M7		
PG6	L7		
PG7	C10		
PH0	C9	CCP6	
PH1	C8	CCP7	
PH2	D11		
PH3	D10		

19 Operating Characteristics

Table 19-1. Temperature Characteristics

Characteristic ^a	Symbol	Value	Unit
Industrial operating temperature range	T _A	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C

a. Maximum storage temperature is 150°C.

Table 19-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ _{JA}	34	°C/W
Average junction temperature ^b	TJ	$T_A + (P_{AVG} \cdot \Theta_{JA})$	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

20 Electrical Characteristics

20.1 DC Characteristics

20.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Characteristic	Symbol	Va	Value	
٥		Min	Мах	
I/O supply voltage (V _{DD})	V _{DD}	0	4	V
Core supply voltage (V _{DD25})	V _{DD25}	0	3	V
Analog supply voltage (V _{DDA})	V _{DDA}	0	4	V
Battery supply voltage (V _{BAT})	V _{BAT}	0	4	V
Input voltage	V _{IN}	-0.3	5.5	V
Maximum current per output pins	I	-	25	mA

 Table 20-1. Maximum Ratings

a. Voltages are measured with respect to GND.

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

20.1.2 Recommended DC Operating Conditions

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	I/O supply voltage		3.3	3.6	V
V _{DD25}	Core supply voltage	2.25	2.5	2.75	V
V _{DDA}	Analog supply voltage	3.0	3.3	3.6	V
V _{BAT}	Battery supply voltage	2.3	3.0	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{SIH}	High-level input voltage for Schmitt trigger inputs	0.8 * V _{DD}	-	V _{DD}	V
V _{SIL}	Low-level input voltage for Schmitt trigger inputs	0	-	0.2 * V _{DD}	V

Table 20-2. Recommended DC Operating Conditions

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{OH} ^a	High-level output voltage	2.4	-	-	V
V _{OL} a	Low-level output voltage	-	-	0.4	V
I _{ОН}	High-level source current, V _{OH} =2.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA
I _{OL}	Low-level sink current, V_{OL} =0.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA

a. V_{OL} and V_{OH} shift to 1.2 V when using high-current GPIOs.

20.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value 2		2.5	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

Table 20-3. LDO Regulator	Characteristics
---------------------------	-----------------

20.1.4 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- V_{DD25} = 2.50 V
- V_{BAT} = 3.0 V
- V_{DDA} = 3.3 V
- Temperature = 25°C
- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

Parameter	Parameter Name	Conditions		V _{DD} , V _{DDA} , ddphy	2.5	2.5 V V _{DD25}		V V _{BAT}	Unit
			Nom	Max	Nom	Max	Nom	Max	
I _{DD_RUN}	Run mode 1	V _{DD25} = 2.50 V	3	pending ^a	108	pending ^a	0	pending ^a	mA
	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All ON							
		System Clock = 50 MHz (with PLL)							
	Run mode 2	V _{DD25} = 2.50 V	0	pending ^a	53	pending ^a	0	pending ^a	mA
	(Flash loop)	Code= while(1){} executed in Flash							
		Peripherals = All OFF							
		System Clock = 50 MHz (with PLL)							
	Run mode 1 (SRAM loop)	V _{DD25} = 2.50 V	3	pending ^a	102	pending ^a	0	pending ^a	mA
		Code= while(1){} executed in SRAM							
		Peripherals = All ON							
		System Clock = 50 MHz (with PLL)							
	Run mode 2 (SRAM loop)	V _{DD25} = 2.50 V	0	pending ^a	47	pending ^a	0	pending ^a	mA
		Code= while(1){} executed in SRAM							
		Peripherals = All OFF							
		System Clock = 50 MHz (with PLL)							
I _{DD_SLEEP}	Sleep mode	V _{DD25} = 2.50 V	0	pending ^a	17	pending ^a	0	pending ^a	mA
		Peripherals = All OFF							
		System Clock = 50 MHz (with PLL)							
IDD_DEEPSLEEP	Deep-Sleep mode	LDO = 2.25 V	0.14	pending ^a	0.18	pending ^a	0	pending ^a	mA
	mode	Peripherals = All OFF							
		System Clock = IOSC30KHZ/64							
IDD_HIBERNATE	Hibernate mode	V _{BAT} = 3.0 V	0	0	0	0	16	pending ^a	μA
		V _{DD} = 0 V							
		V _{DD25} = 0 V							
		V _{DDA} = 0 V							
		V _{DDPHY} = 0 V							
		Peripherals = All OFF							
		System Clock = OFF							
		Hibernate Module = 32 kHz							

Table 20-4	. Detailed F	Power S	pecifications
------------	--------------	---------	---------------

a. Pending characterization completion.

20.1.5 Flash Memory Characteristics

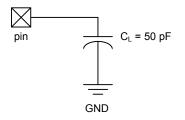
Table 20-5. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms
T _{ME}	Mass erase time	200	-	-	ms

a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

20.1.6 Hibernation

Table 20-6. Hibernation Module DC Characteristics


Parameter Param		Parameter Name	Value	Unit
	V _{LOWBAT}	Low battery detect voltage	2.35	V

20.2 AC Characteristics

20.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 20-1. Load Conditions

20.2.2 Clocks

Table 20-7. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	400	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Parameter	Parameter Name	Min	Nom	Мах	Unit
f _{IOSC}	Internal 12 MHz oscillator frequency	8.4	12	15.6	MHz
f _{IOSC30KHZ}	Internal 30 KHz oscillator frequency	21	30	39	KHz
f _{XOSC}	Hibernation module oscillator frequency	-	4.194304	-	MHz
f _{XOSC_XTAL}	Crystal reference for hibernation oscillator	-	4.194304	-	MHz
f _{XOSC_EXT}	External clock reference for hibernation module	-	32.768	-	KHz
f _{MOSC}	Main oscillator frequency	1	-	8	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode)	1	-	8	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode) ^a	0	-	50	MHz
f _{system_clock}	System clock	0	-	50	MHz

Table 20-8. Clock Characteristics

a. The ADC must be clocked from the PLL or directly from a 14-MHz to 18-MHz clock source to operate properly.

Table 20-9. Crystal Characteristics

Parameter Name		Va	lue		Units
Frequency	8	6	4	3.5	MHz
Frequency tolerance	±50	±50	±50	±50	ppm
Aging	±5	±5	±5	±5	ppm/yr
Oscillation mode	Parallel	Parallel	Parallel	Parallel	-
Temperature stability (-40°C to 85°C)	±25	±25	±25	±25	ppm
Temperature stability (-40°C to 105°C)	±25	±25	±25	±25	ppm
Motional capacitance (typ)	27.8	37.0	55.6	63.5	pF
Motional inductance (typ)	14.3	19.1	28.6	32.7	mH
Equivalent series resistance (max)	120	160	200	220	Ω
Shunt capacitance (max)	10	10	10	10	pF
Load capacitance (typ)	16	16	16	16	pF
Drive level (typ)	100	100	100	100	μW

20.2.3 Analog-to-Digital Converter

Table 20-10. ADC Characteristics^a

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{ADCIN}	Maximum single-ended, full-scale analog input voltage	-	-	3.0	V
	Minimum single-ended, full-scale analog input voltage	-	-	0	V
	Maximum differential, full-scale analog input voltage	-	-	1.5	V
	Minimum differential, full-scale analog input voltage	-	-	-1.5	V
C _{ADCIN}	Equivalent input capacitance	-	1	-	pF
Ν	Resolution	-	10	-	bits
f _{ADC}	ADC internal clock frequency	7	8	9	MHz
t _{ADCCONV}	Conversion time	-	-	16	t _{ADC} cycles ^b
f _{ADCCONV}	Conversion rate	438	500	563	k samples/s
INL	Integral nonlinearity	-	-	±1	LSB

Parameter	Parameter Name	Min	Nom	Max	Unit
DNL	Differential nonlinearity	-	-	±1	LSB
OFF	Offset	-	-	±1	LSB
GAIN	Gain	-	-	±1	LSB

a. The ADC reference voltage is 3.0 V. This reference voltage is internally generated from the 3.3 VDDA supply by a band gap circuit.

b. t_{ADC} = 1/ $f_{ADC \ clock}$

20.2.4 Analog Comparator

Table 20-11. Analog Comparator Characteristics

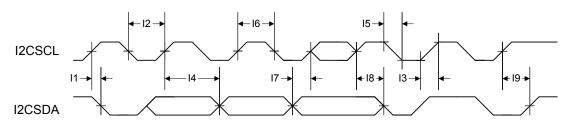
Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 20-12. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /32	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /24	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

20.2.5 I²C

Table 20-13. I²C Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
l1 ^a	t _{SCH}	Start condition hold time	36	-	-	system clocks
l2 ^a	t _{LP}	Clock Low period	36	-	-	system clocks
I3 ^b	t _{SRT}	<code>I2CSCL/I2CSDA</code> rise time (V _{IL} =0.5 V to V $_{\rm IH}$ =2.4 V)	-	-	(see note b)	ns
l4 ^a	t _{DH}	Data hold time	2	-	-	system clocks
I5 ^c	t _{SFT}	I2CSCL/I2CSDA fall time (V _{IH} =2.4 V to V _{IL} =0.5 V)	-	9	10	ns
I6 ^a	t _{HT}	Clock High time	24	-	-	system clocks
I7 ^a	t _{DS}	Data setup time	18	-	-	system clocks
I8 ^a	t _{SCSR}	Start condition setup time (for repeated start condition only)	36	-	-	system clocks
l9 ^a	t _{scs}	Stop condition setup time	24	-	-	system clocks

a. Values depend on the value programmed into the TPR bit in the I²C Master Timer Period (I2CMTPR) register; a TPR programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table above. The I²C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above values are minimum values.

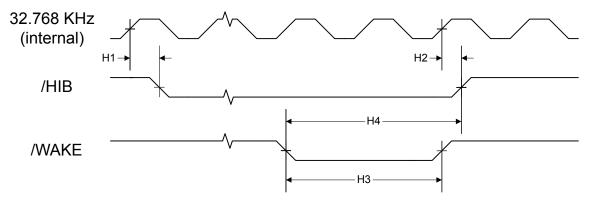
b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

c. Specified at a nominal 50 pF load.

Figure 20-2. I²C Timing

20.2.6 Hibernation Module

The Hibernation Module requires special system implementation considerations since it is intended to power-down all other sections of its host device. The system power-supply distribution and interfaces to the device must be driven to 0 V_{DC} or powered down with the same external voltage regulator controlled by $\overline{\text{HIB}}$.


The external voltage regulators controlled by $\overline{\text{HIB}}$ must have a settling time of 250 µs or less.

Parameter No	Parameter	Parameter Name	Min	Nom	Max	Unit
H1	t _{HIB_LOW}	Internal 32.768 KHz clock reference rising edge to /HIB asserted	-	200	-	μs
H2	t _{HIB_HIGH}	Internal 32.768 KHz clock reference rising edge to /HIB deasserted	-	30	-	μs
H3	t _{WAKE_ASSERT}	/WAKE assertion time	62	-	-	μs
H4	t _{WAKETOHIB}	/WAKE assert to /HIB desassert	62	-	124	μs
H5	t _{XOSC_SETTLE}	XOSC settling time ^a	20	-	-	ms
H6	t _{HIB_REG_WRITE}	Time for a write to non-volatile registers in HIB module to complete	92	-	-	μs
H7	t _{HIB_TO_VDD}	$\overline{\mathtt{HIB}}$ deassert to VDD and VDD25 at minimum operational level	-	-	250	μs

Table 20-14. Hibernation Module AC Characteristics

a. This parameter is highly sensitive to PCB layout and trace lengths, which may make this parameter time longer. Care must be taken in PCB design to minimize trace lengths and RLC (resistance, inductance, capacitance).

Figure 20-3. Hibernation Module Timing

20.2.7 Synchronous Serial Interface (SSI)

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	1/2	-	t clk_per
S3	t _{clk_low}	SSIC1k low time	-	1/2	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMd}	Data from master valid delay time	0	-	20	ns
S6	t _{DMs}	Data from master setup time	20	-	-	ns
S7	t _{DMh}	Data from master hold time	40	-	-	ns
S8	t _{DSs}	Data from slave setup time	20	-	-	ns
S9	t _{DSh}	Data from slave hold time	40	-	-	ns

Table 20-15. SSI Characteristics

Figure 20-4. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

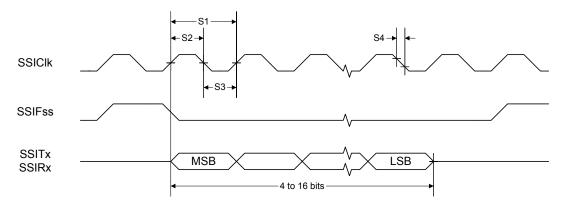
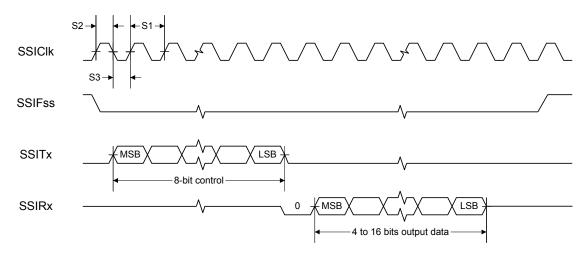
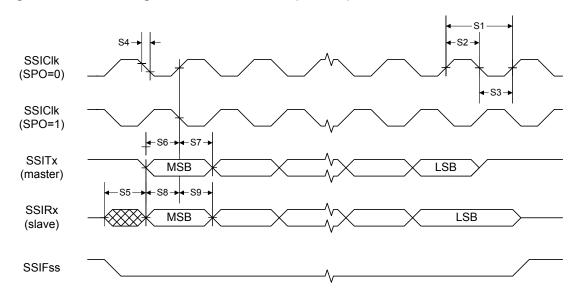




Figure 20-5. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer

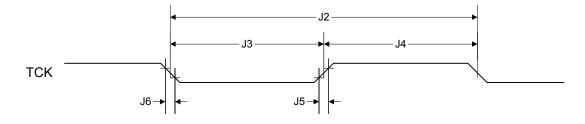
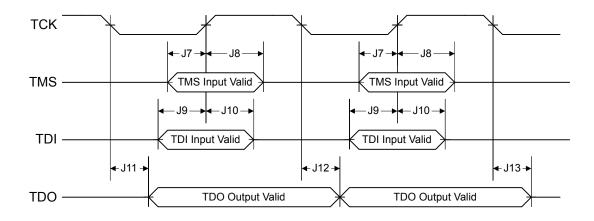

20.2.8 JTAG and Boundary Scan

Table 20-16. JTAG Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J1	f _{тск}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	тск clock Low time	-	t _{TCK}	-	ns
J4	t _{тск_нідн}	тск clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	TCK fall to Data Valid from High-Z	2-mA drive	-	23	35	ns
t _{TDO_ZDV}		4-mA drive		15	26	ns
_		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	TCK fall to Data Valid from Data Valid	2-mA drive	-	21	35	ns
t _{TDO_DV}		4-mA drive		14	25	ns
_		8-mA drive		13	24	ns
		8-mA drive with slew rate control		18	28	ns

Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
J13	TCK fall to High-Z from Data Valid	2-mA drive	-	9	11	ns
t _{TDO DVZ}		4-mA drive		7	9	ns
_		8-mA drive		6	8	ns
		8-mA drive with slew rate control		7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

Figure 20-7. JTAG Test Clock Input Timing

Figure 20-8. JTAG Test Access Port (TAP) Timing

Figure 20-9. JTAG TRST Timing

20.2.9 General-Purpose I/O

Note: All GPIOs are 5 V-tolerant.

Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
t _{GPIOR}	GPIO Rise Time (from 20% to 80% of $\mathrm{V}_\mathrm{DD})$	2-mA drive	-	17	26	ns
		4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	GPIO Fall Time (from 80% to 20% of V_{DD})	2-mA drive	-	17	25	ns
		4-mA drive		8	12	ns
		8-mA drive		6	10	ns
		8-mA drive with slew rate control		11	13	ns

Table 20-17. GPIO Characteristics

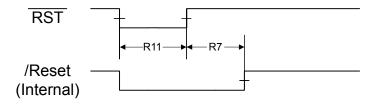
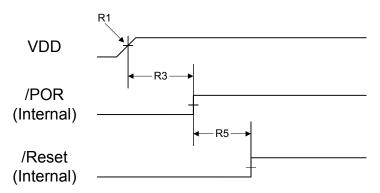
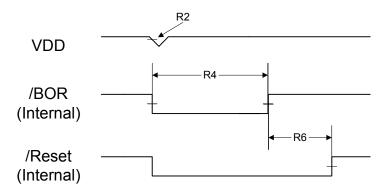
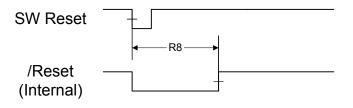

20.2.10 Reset

Table 20-18. Reset Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Max	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	6	-	11	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	0	-	1	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset ($\overline{\mathtt{RST}}$ pin)	0	-	1	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0V-3.3V)	-	-	250	ms
R11	T _{MIN}	Minimum RST pulse width	2	-	-	μs

a. 20 * t _{MOSC_per}


Figure 20-10. External Reset Timing (RST)



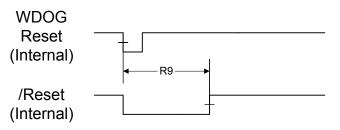

Figure 20-12. Brown-Out Reset Timing

Figure 20-13. Software Reset Timing

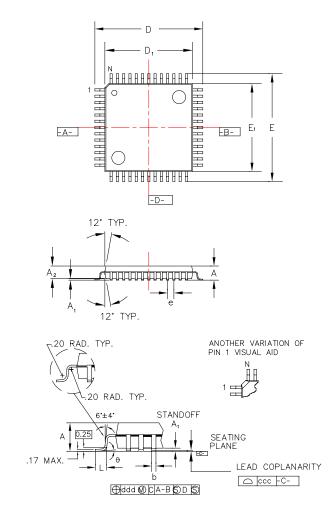
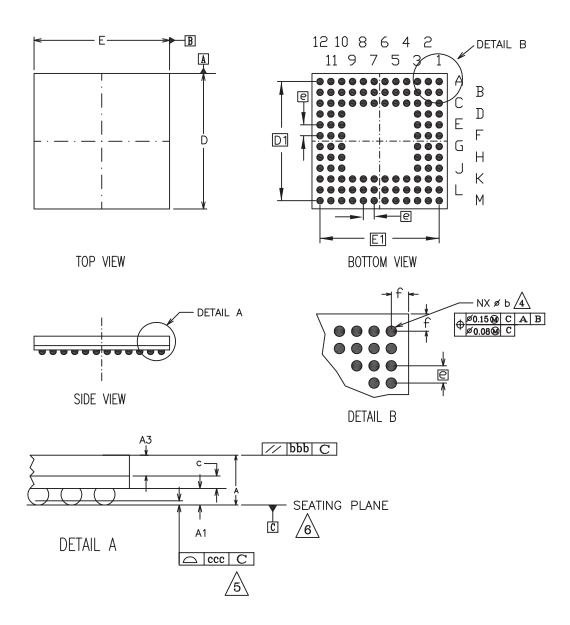


Figure 20-14. Watchdog Reset Timing

21 Package Information

Figure 21-1. 100-Pin LQFP Package



Note: The following notes apply to the package drawing.

- 1. All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

Body +2.00 mm Footprint, 1.4 mm package thickness					
Symbols	Leads	100L			
A	Max.	1.60			
A ₁	-	0.05 Min./0.15 Max.			
A ₂	±0.05	1.40			
D	±0.20	16.00			
D ₁	±0.05	14.00			
E	±0.20	16.00			
E ₁	±0.05	14.00			
L	+0.15/-0.10	0.60			
е	Basic	0.50			
b	+0.05	0.22			
θ	-	0°-7°			
ddd	Max.	0.08			
CCC	Max.	0.08			
JEDEC Refer	MS-026				
Variation [BED				

Figure 21-2. 108-Ball BGA Package

Note: The following notes apply to the package drawing.

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.
- 3. 'M' REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE. AND SYMBOL 'N' IS THE NUMBER OF BALLS AFTER DEPOPULATING.
- (b' IS MEASURABLE AT THE MAXIMUM SOLDER BALL DIAMETER AFTER REFLOW PARALLEL TO PRIMARY DAIUM C.
- ⚠ DIMENSION 'ccc' IS MEASURED PARALLEL TO PRIMARY DATUM C.
- A PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 7. PACKAGE SURFACE SHALL BE MATTE FINISH CHARMILLES 24 TO 27.
- 8. SUBSTRATE MATERIAL BASE IS BT RESIN.
- 9. THE OVERALL PACKAGE THICKNESS "A" ALREADY CONSIDERS COLLAPSE BALLS
- 10. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.

 $\widehat{\mathbf{M}}$ except dimension b.

Symbols	MIN	NOM	MAX		
A	1.22	1.36	1.50		
A1	0.29	0.34	0.39		
A3	0.65	0.70	0.75		
С	0.28	0.32	0.36		
D	9.85	10.00	10.15		
D1	8.80 BSC				
E	9.85	10.00	10.15		
E1	8.80 BSC				
b	0.43	0.48	0.53		
bbb	.20				
ddd	.12				
е	0.80 BSC				
f	-	0.60	-		
М	12				
n	108				
REF: JEDEC MO-219F					

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris[®] device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 341 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
                               This is the raw data intended for the device, which is formatted in
Data
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 471).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet were valid, just that the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

```
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
```

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

```
Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS
```

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

		00		67	60	65	<u> </u>	60		0.1		40	40	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17 1	16 0
			12	<u> </u>	10	3	0	,	0	5	4		2	'	0
-	1 Control 400F.E000														
DID0, type	e RO, offset	t 0x000, res	set -												
		VER									CL	ASS			
			MA	JOR							MI	NOR			
PBORCTL	, type R/W,	offset 0x0	30, reset 0	x0000.7FF	D										
														BORIOR	
LDOPCTL	., type R/W,	offset 0x0	34, reset 0:	x0000.0000)										
												VA	/DJ		
RIS, type	RO, offset	0x050, rese	et 0x0000.0	000											
									PLLLRIS					BORRIS	
IMC, type	R/W, offset	0x054, res	set 0x0000.	0000											
									DUUM					DODIN	
MISC to-	DAMAC -	ffeat Avara	rocot Ore	000.0000					PLLLIM					BORIM	
мізс, тур	e R/W1C, o	11561 0X058	, reset uxu	000.0000											
									PLLLMIS					BORMIS	
RESC tvr	pe R/W, offs	et 0x05C	reset -						TELEWIO					DORMIO	
RE00, typ	56 10 10, 0113	et 0x050, 1													
										LDO	SW	WDT	BOR	POR	EXT
RCC, type	e R/W, offse	t 0x060, re	set 0x0780	.3AD1								1			
, ,,,,				ACG		SYS	SDIV		USESYSDIV						
		PWRDN		BYPASS				TAL		OSC	SRC			IOSCDIS	MOSCDIS
PLLCFG,	type RO, of	fset 0x064	, reset -	1											
						F		1				1	R		
RCC2, typ	pe R/W, offs	et 0x070, r	eset 0x078	0.2810											
USERCC2					SYS	SDIV2									
		PWRDN2		BYPASS2						OSCSRC2					
DSLPCLK	CFG, type	R/W, offset	t 0x144, res	set 0x0780.	0000							_			
					DSDI	/ORIDE									
										DSOSCSRC					
DID1, type	e RO, offset		set -					1							
	VE				E	AM						RTNO			
	PINCOUNT								TEMP		P	KG	ROHS	QL	JAL
DC0, type	RO, offset	ux008, res	et 0x007F.(JU3F			05	107							
								AMSZ SHSZ							
DC1 4/2-	RO, offset	0x010 ****	of 0x0004 1	2255			FLA	31732							
вот, туре	RO, onset	UXU IU, res	er 0x0001.)											ADC
	MINS	(SDIV				MAYA	DCSPD	MPU	HIB	TEMPSNS	PLL	WDT	SWO	SWD	JTAG
DC2. type	RO, offset		et 0x030F	5033			20010					1	0.10	000	UIAO
_ , .ype	, 011001					COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER0
	I2C1		12C0				001111 0			SSI1	SSI0			UART1	UART0
DC3, type	RO, offset	0x018, res		0FC0				1							
32KHZ		CCP5	CCP4	CCP3	CCP2	CCP1	CCP0	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0
				C10		C1MINUS			COMINUS						
						-			-						

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DC4, type	RO, offset	0x01C, res	set 0x0000.	.C0FF								1			
CCP7	CCP6							GPIOH	GPIOG	CDIOF	CDIOE	CDIOD	GPIOC	CDIOD	CDIOA
		fa a 4 0 v 4 0 0	react OvO	0000040				GPION	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
KUGUU, 1	ype R/W, of	iset ux 100	, reset uxu	0000040											ADC
						ΜΑΧΑ	DCSPD		HIB			WDT			ADC
SCGC0 t	ype R/W, of	feat Ny110	reset 0x00	000040		MAXA			THE						
00000, 1	ype 10 11 , 01	ISEL UXITU	, 16361 0700												ADC
						MAXA	DCSPD		HIB			WDT			1.00
DCGC0. t	ype R/W, of	fset 0x120	. reset 0x0	0000040											
,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,												ADC
						MAXA	DCSPD		HIB			WDT			
RCGC1, t	ype R/W, of	fset 0x104	, reset 0x0	0000000								1			
						COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMERO
	I2C1		12C0							SSI1	SSI0			UART1	UART0
SCGC1, t	ype R/W, of	fset 0x114	, reset 0x00	000000							1			1	
						COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMERO
	I2C1		I2C0							SSI1	SSI0			UART1	UART0
DCGC1, t	ype R/W, of	fset 0x124	, reset 0x0	0000000											
						COMP1	COMP0					TIMER3	TIMER2	TIMER1	TIMER0
	I2C1		12C0							SSI1	SSI0			UART1	UART0
RCGC2, t	ype R/W, of	fset 0x108	, reset 0x0	0000000											
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SCGC2, t	ype R/W, of	fset 0x118	, reset 0x00	000000											
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2, t	ype R/W, of	fset 0x128	, reset 0x0	0000000											
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0, ty	ype R/W, of	fset 0x040	, reset 0x00	000000											
												WDT			ADC
				<u> </u>					HIB			WDT			
SRCR1, ty	ype R/W, of	rset 0x044	, reset 0x00	000000		001101	001/00					-			
	I2C1		I2C0			COMP1	COMP0			SSI1	SSI0	TIMER3	TIMER2	TIMER1 UART1	TIMER0 UART0
SBCB2 6		Fact 0x049		000000						3311	3310			UARTI	UARTU
SRCK2, I	ype R/W, of	1501 02040	, reset uxu												
								GPIOH	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
		ماريام						011011	01100	01101	GLIGE		01100	GLIOD	OFICA
	ation Mo 400F.C000														
	, type RO, o		0 reset 0v	0000 0000											
	, type ne, t		, 10001 0x				RT	СС							
								сс							
HIBRTCM	I0, type R/W	l, offset 0x	004, reset	0xFFFF.FF	FF										
							RT	CM0							
								CMO							
HIBRTCM	I1, type R/W	l, offset 0x	008, reset	0xFFFF.FFI	FF										
							RT	CM1							
							RTO								
HIBRTCL	D, type R/W	, offset 0x	00C, reset	0xFFFF.FF	FF										
							RT	CLD							
							RT	CLD							

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ype R/W, of	-					-		-		-		_		-
	. ,														
								VABORT	CLK32EN	LOWBATEN	PINWEN	RTCWEN	CLKSEL	HIBREQ	RTCEN
HIBIM, typ	e R/W, offs	et 0x014, r	eset 0x000	0.0000											
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBRIS, ty	pe RO, offs	et 0x018, r	reset 0x000	00.0000											
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBMIS, ty	/pe RO, offs	set 0x01C,	reset 0x00	00.000				1							
								_				EVEN	LOWDAT	DTOALTA	DTOALT
	- D/M/1C -	ffa at 0×020	and the	000.0000								EXTW	LOWBAI	RTCALT1	RICALI
пыс, тур	e R/W1C, o	nset 0x02l	, reset uxu												
												EXTW	LOWBAT	RTCALT1	RTCALT
HIBRTCT	type R/W, c	offset 0x02	4. reset 0×1	0000.7FFF											
			,												
							Т	RIM							
HIBDATA,	type R/W, o	offset 0x03	0-0x12C, re	eset 0x0000	.0000										
							F	RTD							
							F	RTD							
Internal	Memory	,													
	egisters		Control	Offset)											
	00F.D000	•													
FMA, type	R/W, offse	t 0x000, re:	set 0x0000	.0000											
															OFFSE
							OF	FSET							
FMD, type	R/W, offse	t 0x004, re:	set 0x0000	.0000											
								ATA							
							D	ATA							
FMC, type	R/W, offse	t 0x008, re:	set 0x0000	.0000											
							VVI	RKEY				СОМТ	MERASE	FDACE	WRITE
ECBIS tur	no BO, offer	+ 0×00C #	0001 0×000	0.0000								CONT	MERAJE	ERAJE	WRITE
гскіз, тур	be RO, offs		eset 0x000	0.0000											
														PRIS	ARIS
FCIM. type	e R/W, offse	et 0x010. re	set 0x0000	0.0000											
, . , ,															
														PMASK	AMASH
FCMISC, t	ype R/W1C	, offset 0x0)14, reset 0	x0000.0000				1						1	
														PMISC	AMISC
Internal	Memory	/													
Flash R			n Contro	ol Offset)											
USECRL, 1	type R/W, o	ffset 0x140), reset 0x3	81											
,															
											US	EC			
FMPRE0, t	type R/W, o	ffset 0x130) and 0x200	0, reset 0xF	FFF.FFFF			1							
							READ	ENABLE							

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MPPE0,	type R/W,	offset 0x134	4 and 0x400), reset 0xF	FFF.FFFF										
							PROG_	ENABLE							
							PROG_	ENABLE							
JSER_DE	BG, type R	/W, offset 0x	dD0, reset	0xFFFF.FF	FE										
NW								DATA							
						DA	ATA							DBG1	DBG
JSER_RE	G0, type I	R/W, offset 0	x1E0, reset	t 0xFFFF.F	FFF										
NW								DATA							
							DA	TA							
	G1, type I	R/W, offset 0	x1E4, reset	t 0xFFFF.F	FFF										
NW								DATA							
							DA	TA							
FMPRE1,	type R/W,	offset 0x204	4, reset 0xF	FFF.FFFF											
MDDCO	tuno D/4/	offeet Auges	P #00ct 0-0	000 0000			READ_	ENABLE							
WIPRE2,	type k/w,	offset 0x20	o, reset uxu	000.0000			DEAD								
								ENABLE ENABLE							
MPRE3	type R/W	offset 0x20	C. reset 0v0	000.0000											
MI 1120,	type rem,	onset exite	0, 10001 040				RFAD	ENABLE							
								ENABLE							
FMPPE1,	type R/W,	offset 0x404	4, reset 0xF	FFF.FFFF											
							PROG	ENABLE							
								ENABLE							
FMPPE2,	type R/W,	offset 0x408	8, reset 0x0	000.000											
							PROG_	ENABLE							
							PROG	ENABLE							
FMPPE3,	type R/W,	offset 0x400	C, reset 0x0	000.0000											
							PROG_	ENABLE							
							PROG_	ENABLE							
Genera	I-Purpo	se Input/	Outputs	(GPIOs))										
GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po	ort B base ort C base ort D base ort E base ort F base ort G base	: 0x4000.4 : 0x4000.5 : 0x4000.6 : 0x4000.7 : 0x4002.4 : 0x4002.5 : 0x4002.6 : 0x4002.7	000 000 000 000 000 000												
GPIODAT	A, type R/	N, offset 0x(000, reset 0	x0000.000	0										
												DATA			
GPIODIR,	type R/W,	offset 0x40	0, reset 0x0	0000.0000											
0.01010												DIR			
GPIOIS, ty	ype R/W, c	offset 0x404,	reset 0x00	00.000											
												16			
												IS			
CRIOIRE	tupe DAti	offerst Dur40	g roant A.	000 0000											
GPIOIBE,	type R/W,	offset 0x40	8, reset 0x0	000.0000											
3PIOIBE,	type R/W,	offset 0x40	8, reset 0x0	0000.0000								IRE			
												IBE			
		offset 0x40										IBE			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOIM, ty	vpe R/W, of	fset 0x410), reset 0x0	000.0000											
											11	ME			
GPIORIS, t	type RO, o	ffset 0x41	4, reset 0x0	000.0000											
											_				
		E	0								۲- 	RIS			
GPIOIVIIS, I	туре ко, о	nset ux41	8, reset 0x0	0000.0000											
											N	l /IS			
GPIOICR, t	type W1C,	offset 0x4	1C, reset 0	x0000.0000				1				-			
												IC			
GPIOAFSE	EL, type R/	W, offset 0	x420, reset	t -											
											AF	SEL			
GPIODR2R	R, type R/W	l, offset 0x	500, reset (0x0000.00F	F										
	tune DA	l offerst A	E04 man 1		•						DI	RV2			
GPIODK4R	, type R/W	, onset 0x	504, reset (0x0000.000											
											DI	l RV4			
GPIODR8R	R, type R/M	/, offset 0×	508, reset (0x0000.000	D			1							
		-	-												
											DI	RV8			
GPIOODR,	type R/W,	offset 0x5	50C, reset 0	x0000.0000											
											0	DE			
GPIOPUR,	type R/W,	offset 0x5	10, reset -	1											
CDIODDD		offe of OvF	44								P	UE			
GPIOPDR,	type R/w,	onset uxa	14, reset of	x0000.0000											
											P	DE			
GPIOSLR,	type R/W,	offset 0x5	18, reset 0x	<0000.0000				1							
											S	RL			
GPIODEN,	type R/W,	offset 0x5	1C, reset -												
											D	EN			
GPIOLOCK	K, type R/V	/, offset 0)	(520, reset	0x0000.000	1										
								OCK							
GPIOCP +	ype -, offse	at 0x524 =	eset -				10								
er 1991, tj	, po -, onse														
											(l CR			
GPIOPerip	hID4, type	RO, offse	t 0xFD0, re	set 0x0000.	0000										
											Р	ID4			
GPIOPerip	hID5, type	RO, offse	t 0xFD4, re	set 0x0000.	0000										
											P	ID5			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	23 9	8	7	6	5	4	3	2	1	0
			t 0xFD8, res			Ū	Ū		Ū	Ū			-		
	., .,	-,													
											PI	D6			
GPIOPerip	ohID7, type	RO, offset	t 0xFDC, re	set 0x0000	.0000										
											PI	D7			
GPIOPerip	ohID0, type	RO, offse	t 0xFE0, res	set 0x0000.	.0061										
											PI	D0			
GPIOPerip	ohID1, type	RO, offset	t 0xFE4, res	set 0x0000.	.0000										
											PI	D1			
GPIOPerip	ohlD2, type	RO, offset	t 0xFE8, res	set 0x0000.	.0018										
												 D2			
GPIOPorin	hID3 type	RO offer	t 0xFEC, re:	set Ov0000	0001							D2			
GrioPerip	ларо, туре	ito, onse	COALEC, res												
											PI	 D3			
GPIOPCel	IID0, type R	O, offset	0xFF0, rese	t 0x0000.0	00D			I							
	., .,														
											CI	D0			
GPIOPCel	IID1, type R	O, offset	0xFF4, rese	t 0x0000.0	0F0										
											CI	D1			
GPIOPCel	IID2, type R	O, offset	0xFF8, rese	t 0x0000.0	005		-				-			-	_
											CI	D2			
GPIOPCel	IID3, type R	O, offset	0xFFC, rese	et 0x0000.0	00B1										
											0				
-											CI	D3			
Timer0 ba Timer1 ba	I-Purpos ase: 0x400 ase: 0x400 ase: 0x400)3.0000)3.1000	5												
	ase: 0x400														
GPTMCFG	, type R/W,	offset 0x	000, reset 0	x0000.000	0										
0.0.7.1.				0.0000										GPTMCFG	i
GPIMTAN	ik, type R/V	v, onset 0	x004, reset	UXUU00.00	00										
												TAAMS	TACMR	TA	MR
GPTMTRM	IR. type R/	N. offset A	x008, reset	0x0000 00	00								INCIVIR	IA	IVILX
	, ເງpe เง	., 01301 0													
												TBAMS	TBCMR	TB	MR
GPTMCTL	, type R/W.	offset 0x0)0C, reset 0	x0000.000	0							-			
	. ,														
	TBPWML	TBOTE		TBE	VENT	TBSTALL	TBEN		TAPWML	TAOTE	RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMR	, type R/W,	offset 0x0	18, reset 0	x0000.0000)										
					CBEIM	CBMIM	TBTOIM					RTCIM	CAEIM	CAMIM	TATOIM
GPTMRIS,	type RO, o	ffset 0x01	C, reset 0x	0000.0000											
					CBERIS	CBMRIS	TBTORIS					RTCRIS	CAERIS	CAMRIS	TATORIS

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPTMMIS	, type RO, o	offset 0x02	0. reset 0x	0000.0000								1			
-	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											1			
					CBEMIS	CBMMIS	TBTOMIS					RTCMIS	CAEMIS	CAMMIS	TATOMIS
GPTMICR	, type W1C	offset 0x0	124 reset 0	×0000 0000								_ · · · • · · •			
	, ()pe 1110	, 011001 040	.24, 10001 0												
					CBECINT	CBMCINT	TRTOCINT					RTCCINT	CAECINT	CAMCINT	TATOCINT
GPTMTAI	R type R/	W offeet 0	v028 reset	0x0000 FE			0xFFFF.FFI	E (32-bit r	node)			1	0/1201111	0, 11101111	
		, 011001 0				noue, unu	TAIL		noue,						
							TAI								
GPTMTBI	LR, type R/	W. offset 0	x02C, rese	t 0x0000.FF	FF										
		.,													
				1			TBI	_RL				1			
GPTMTAN	ATCHR. tv	pe R/W. of	fset 0x030.	reset 0x00	00.FFFF (1	6-bit mode) and 0xFFI		2-bit mode)					
			,				TAN			,					
							TAN								
GPTMTB	ATCHR, ty	pe R/W. of	fset 0x034	reset 0x00	00.FFFF										
-	, ,														
							TBN	IRL							
GPTMTAP	R, type R/V	V, offset 0x	038, reset	0x0000.000	00										
											TA	PSR			
GPTMTBF	PR, type R/\	N, offset 0>	(03C, reset	0x0000.00	00										
											TB	PSR			
GPTMTAP	MR, type R	/W, offset	0x040, rese) et 0x0000.0	000										
											TAF	PSMR			
GPTMTBF	PMR, type F	k/W, offset	0x044, res	et 0x0000.0	000										
											TBF	PSMR			
GPTMTAF	R, type RO,	offset 0x04	18, reset 0x	0000.FFFF	(16-bit mo	de) and 0x	FFFF.FFFF	(32-bit mo	de)						
							TA	RH							
							TA	RL							
GPTMTBF	R, type RO,	offset 0x04	4C, reset 0	x0000.FFFF											
				1			ТВ	RL				1			
Watchd	log Time	r													
Base 0x4	0000.0000														
WDTLOAI	D, type R/W	, offset 0x(000, reset (xFFFF.FFF	F										
							WDT	Load							
							WDT	Load							
WDTVALU	JE, type RC	, offset 0x	004, reset (xFFFF.FFF	F										
							WDT	Value							
							WDT	Value							
WDTCTL,	type R/W, o	offset 0x00	8, reset 0x	0000.0000											
														RESEN	INTEN
WDTICR,	type WO, o	ffset 0x000	C, reset -												
							WDT	IntClr							
							WDT	IntClr							
WDTRIS,	type RO, of	fset 0x010,	, reset 0x0	000.000											
															WDTRIS

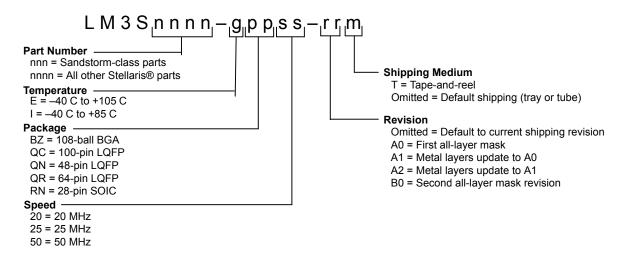
31 30 29 28 27 26 25 24 23 22 21 20 19 15 14 13 12 11 10 9 8 7 6 5 4 3 WDTMIS, type RO, offset 0x014, reset 0x000.0000 Image: constraint of the set 0x000.0000 Image: constraint of t			16 0
WDTMIS, type RO, offset 0x014, reset 0x0000.0000 Image: Constraint of the			
WDTLOCK, type RW, offset 0xC00, reset 0x0000.0000 STALL I			
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 STALL O O WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 PID4 VDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID4 PID5			WDTMI:
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 STALL O O WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 PID4 VDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID4 PID5			
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 WDTLock WDTLock WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 PID4 VDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID4 VDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID5			
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 WDTLock WDTLock WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 Image: Comparison of the type RO offset 0xFD4, reset 0x0000.0000 MDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 Image: Comparison of the type RO offset 0xFD4, reset 0x0000.0000 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 Image: Comparison of type RO offset 0xFD4, reset 0x0000.0000 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 Image: Comparison of type RO offset 0xFD4, reset 0x0000.0000			
WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 Image: State			
WDTLock WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 Image: I			
WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID4 WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 PID5			
Image: Section of the section of t			
WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000			
WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000			
Image: Constraint of the state of			
PID6			
WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000			
PID7			
NDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005			
PIDO			
WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018			
PID1			
WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018			
PID2			
WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001			
PID3			_
WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D			
CIDO			
WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0			
CID1			
WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005			
WDTECallID3 tupe PO offect (VEEC, reset 0x0000 00P1	-		
WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1			
Analog-to-Digital Converter (ADC)			
Analog-to-Digital Converter (ADC) Base 0x4003.8000			
ADCACTSS, type R/W, offset 0x000, reset 0x0000.0000			
ASEN3	ASEN2	ASEN1	ASEN0
ADCRIS, type RO, offset 0x004, reset 0x0000.0000		1	
	INR2	INR1	INR0

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	pe R/W, off		reset 0x00		_										
	. ,	,													
												MASK3	MASK2	MASK1	MASK0
ADCISC, t	ype R/W1C	, offset 0x	00C, reset	ux0000.000	0										1
		-													
												IN3	IN2	IN1	IN0
ADCOSTA	T, type R/W	/1C, offset	0x010, res	et 0x0000.0	0000										
												OV3	OV2	OV1	OV0
ADCEMU	K, type R/W	, offset 0x	014, reset 0	,)x0000.000	D										
	EN	13			E	M2			E	M1			EN	VI0	
ADCUSTA	T, type R/W	1C, offset	0x018, res	et 0x0000.0	000										
												UV3	UV2	UV1	UV0
ADCSSPR	RI, type R/W	, offset 0x	020, reset (0x0000.321	0										
		S	S3			S	S2			SS	61			S	S0
ADCPSSI,	type WO, o	offset 0x02	28, reset -												
												SS3	SS2	SS1	SS0
ADCSAC,	type R/W, o	offset 0x03	30, reset 0x	0000.0000											
														AVG	
ADCSSMI	JX0, type R	/W, offset	0x040, rese	et 0x0000.0	000										
		MUX7				MUX6				MUX5				MUX4	
		MUX3				MUX2				MUX1				MUX0	
ADCSSCT	L0, type R/	W, offset (0x044, rese	t 0x0000.00	00							-			
TS7	IE7	END7	D7	TS6	IE6	END6	D6	TS5	IE5	END5	D5	TS4	IE4	END4	D4
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
ADCSSFI	O0, type R	O, offset 0)x048, reset	t 0x0000.00	00										
										DA	TA				
ADCSSFI	-O1, type R	O, offset ()x068, reset	t 0x0000.00	00										
										DA	TA				
ADCSSFI	O2, type R	O, offset ()x088, reset	t 0x0000.00	00										
										DA	TA				
ADCSSFI	-O3, type R	O, offset 0)x0A8, rese	t 0x0000.00	000										
										DA	TA				
ADCSSFS	TAT0, type	RO, offset	t 0x04C, res	set 0x0000.	0100										
													_		
			FULL				EMPTY		HF	PTR			TP	TR	
ADCSSFS	TAT1, type	RO, offset	t 0x06C, res	set 0x0000.	0100							1			
			FULL				EMPTY		HF	PTR			TP	TR	
ADCSSFS	TAT2, type	RO, offset	t 0x08C, res	set 0x0000.	0100										
													_		
			FULL				EMPTY		HF	PTR			TP	TR	

				1				1							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ADCSSF	STAT3, type	RO, onse	UXUAC, re:		.0100										
			FULL				EMPTY		HE	TR			TP	۲R	
ADCSSM	IUX1, type R	/W. offset		t 0x0000.0	000										
		,													
		MUX3				MUX2				MUX1				MUX0	
ADCSSM	IUX2, type R	/W, offset	0x080, rese	et 0x0000.0	000										
		MUX3				MUX2				MUX1				MUX0	
ADCSSC	TL1, type R	/W, offset ()x064, rese	t 0x0000.00	00										
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
ADCSSC	TL2, type R	/W, offset ()x084, rese	t 0x0000.00	000			1							
TS3	IE3	END3	D3	TS2	IE2	END2	D2	TS1	IE1	END1	D1	TS0	IE0	END0	D0
	IUX3, type R					LINDZ	DZ	101	12.1	LNDT		100		LINDO	00
	.c., ype n	, 011001													
														MUX0	
ADCSSC	TL3, type R	/W, offset ()x0A4, rese	t 0x0000.00	002							1			
												TS0	IE0	END0	D0
ADCTML	B, type R/W	, offset 0x [,]	100, reset 0	x0000.0000)										
															LB
UART1	base: 0x40 base: 0x40 , type R/W, o	00.D000	10, reset 0x1	0000.0000											
				OE	BE	PE	FE				DA	TA			
UARTRS	R/UARTECF	R, type RO,	offset 0x0	04, reset 0>	0000.0000	1									
												OE	BE	PE	FE
UARTRS	R/UARTECF	R, type WO	, offset 0x0	04, reset 0:	x0000.000)									
												TA			
UARTER	, type RO, o	ffset 0x018	. reset 0x0	000.0090							DF				
_,N	, .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,												
								TXFE	RXFF	TXFF	RXFE	BUSY			
UARTILP	R, type R/W	l, offset 0x	020, reset 0	x0000.000)			1	1	1	1	1			
											ILPC	VSR			
	D. type R/M	V, offset 0x	024, reset (0x0000.000	0										
UARTIDE															
UARTIDE															
							DIV	/INT							
	RD, type R/	N, offset 0	x028, reset	0x0000.000	00		DIV	/INT							
		N, offset 0	x028, reset	0x0000.000	00		DIV								
UARTFB	RD, type R/						DIV					DIVF	RAC		
UARTFB							DIV					DIVF	RAC		
UARTFB	RD, type R/							/INT	1.0	EN	FEN	DIVF	RAC	PEN	BRK

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
UARTCTL	, type R/W,	offset 0x0)30, reset 0)	x0000.0300)										
						RXE	TXE	LBE					SIRLP	SIREN	UARTEN
UARTIFLS	6, type R/W	, offset 0x(034, reset 0	x0000.001	2	-		-		-		_		-	-
											RXIFLSEL			TXIFLSEL	
UARTIM, t	ype R/W, o	ffset 0x03	8, reset 0x0	000.0000								1			
					OEIM	BEIM	PEIM	FEIM	RTIM	TXIM	RXIM				
	tuno PO c	ffeat 0x03	C, reset 0x0	0000 0005	OEIM	BEIM	PEIM	FEIN	RIIM	I AIIVI	RAIN				
UARTRIS,	туре ко, с	inset 0x03	C, Teset UX	J000.000F											
					OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS				
UARTMIS.	type RO. c	offset 0x04	IO, reset 0x(0000.0000											
,															
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
UARTICR,	type W1C,	offset 0x0	044, reset 0:	x0000.0000)		1		1		1		1		
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
UARTPeri	phID4, type	e RO, offse	et 0xFD0, re	set 0x0000	0.0000										
											PI	D4			
UARTPeri	phID5, type	e RO, offse	et 0xFD4, re	set 0x0000	0.0000										
											PI	D5			
UARTPeri	phID6, type	e RO, offse	et 0xFD8, re	set 0x0000	0.0000										
												D6			
LIAPTPori	nhID7 type	PO offer	et 0xFDC, re		0,000						FI	00			
UARTPen	ршол, туре	RO, Olise	St UXFDC, IE	Sel 0x000	0.0000										
											PI	 D7			
UARTPeri	phID0, type	e RO. offse	et 0xFE0, re	set 0x0000	0.0011										
											PI	D0			
UARTPeri	phID1, type	e RO, offse	et 0xFE4, re	set 0x0000	0.0000										
											PI	D1			
UARTPeri	phID2, type	e RO, offse	et 0xFE8, re	set 0x0000	0.0018										
											PI	D2			
UARTPeri	phID3, type	e RO, offse	et 0xFEC, re	set 0x0000	0.0001										
											PI	D3			
UARTPCe	IIID0, type	KO, offset	0xFF0, res	et 0x0000.(DOD										
											0	D0			
		RO offect	0xFF4, res	et 0x0000 (0050							00			
JAKIPUR	nio i, type	NO, UNSET	VALE4, TES		551.0										
											CI	D1			
UARTPCe	IIID2, type	RO, offset	0xFF8, res	et 0x0000.0	0005			I							
		, 511031													
											C	D2			
UARTPCe	IIID2, type	кO, offset	UXFF8, reso	et 0x0000.(005						CI	D2			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
JARTPCe	IIID3, type	RO, offset	0xFFC, res	et 0x0000.	00B1										
											CI	D3			
			erface (S	SSI)											
	e: 0x4000 e: 0x4000														
), reset 0x0(000 0000											
0010110,1	, po 1011, o		, 10001 0.0												
			S	I CR				SPH	SPO	FF	٦F		D	SS	
SSICR1, t	ype R/W, of	ffset 0x004	4, reset 0x00	000.000				1				1			
												SOD	MS	SSE	LBM
SSIDR, ty	pe R/W, off	set 0x008,	reset 0x00	00.0000				•							
							D	ATA							
SSISR, ty	pe RO, offs	et 0x00C,	reset 0x000	0.0003											
											BSY	RFF	RNE	TNF	TFE
SSICPSR,	type R/W,	offset 0x0	10, reset 0x	0000.0000											
											CPS	DVSR			
SSIIM, typ	e R/W, offs	et 0x014,	reset 0x000	0.0000											
												TXIM	RXIM	RTIM	RORIM
	no BO offi	act 0x019	reset 0x000	0.0008									RAIIVI	RTIW	RORIN
55INI5, 19	pe KO, on	Set UXU10,	Teset 0x000	0.0000											
												TXRIS	RXRIS	RTRIS	RORRIS
SSIMIS. tv	/pe RO. off	set 0x01C.	, reset 0x00	00.0000									route		
												TXMIS	RXMIS	RTMIS	RORMIS
SSIICR, ty	vpe W1C, o	ffset 0x020	0, reset 0x0	000.0000											
														RTIC	RORIC
SSIPeriph	ID4, type R	O, offset (0xFD0, rese	t 0x0000.0	000							•			
											PI	D4			
SSIPeriph	ID5, type R	O, offset (0xFD4, rese	t 0x0000.0	000			_				_			
											PI	D5			
SSIPeriph	ID6, type R	O, offset (0xFD8, rese	t 0x0000.0	000										
											PI	D6			
SiPeriph	וטז, type R	U, offset (0xFDC, rese	et UXOOOO.O	000										
												D7			
SSIParint	ID0 turns D	0 646-44	0xFE0, rese	t 0x0000 01	122						PI	D7			
sorreriph	illov, type R	o, onset (UAF EU, FESE		UZZ										
												D0			
SSIPAria	D1 type 7	0 offect	0xFE4, rese	t 0x0000 0	000						PI	50			
soreripf	, type R	o, onset (UNI L'4, rese												
												 D1			
											FI.				


31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SSIPeriph	ID2, type R	O, offset 0	xFE8, rese	t 0x0000.00)18			1				1			
									1		PI	D2			
SSIPeriph	ID3, type R	O, offset 0	xFEC, rese	et 0x0000.00	001										
											PI	D3			
SSIPCellIE	D0, type RO	, offset 0x	FF0, reset	0x0000.000	D										
											CI	D0			
SSIPCellIE	D1, type RO	, offset 0x	FF4, reset	0x0000.00F	-0										
												 D1			
SSIRCALI	D2, type RO	offect Ox	EE8 rosot	0~000 000	5						CI				
SSIFCellic	Dz, type KO	, onset ux	FF0, Teset	0x0000.000	5										
											CI	 D2			
SSIPCellIC	D3, type RO	, offset 0x	FFC, reset	0x0000.00E	31			1							
											CI	D3			
Inter-Inf	tegrated	Circuit	(I ² C) Inte	erface											
I ² C Mas			(,												
	er 0 base:	0x4002.0	0000												
	er 1 base:														
I2CMSA, t	ype R/W, of	fset 0x000), reset 0x0	000.0000											
											SA				R/S
I2CMCS, t	ype RO, off	set 0x004,	reset 0x00	000.0000											
									BUSBSY	IDLE	ARBLST	DATACK	ADRACK	ERROR	BUSY
	ype WO, of	rset uxuu4	, reset uxu	000.0000											
												ACK	STOP	START	RUN
	type R/W, of	ffeet 0x008	reset OvO										0101	UIAN	Ron
	iype raw, or	1361 02000	, 16361 070												
											DA	I ATA			
I2CMTPR.	type R/W, o	offset 0x00)C, reset 0>	x0000.0001				1			2.				
	,,,,		,												
											TF	PR			
I2CMIMR,	type R/W, c	offset 0x01	0, reset 0x	0000.0000				1							
															IM
I2CMRIS, 1	type RO, of	fset 0x014	, reset 0x0	000.000											
															RIS
	type RO, of	fset 0x018	8, reset 0x0	000.0000											
I2CMMIS,															
I2CMMIS,															MIS
	type WO, o	ffset 0x01	C, reset 0x(0000.0000											
	type WO, or	ffset 0x010	C, reset 0xi	0000.0000											
I2CMICR, 1															IC
I2CMICR, 1	type WO, of														IC
I2CMICR, 1										SFE	MFE				IC

04	20		00	07	00	05	04	00	00	04	00	10	40	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17	16 0
-			(I ² C) Int		10	0	U	· ·		Ŭ	-		-		
I ² C Slav		Circuit	(1 C) III	enace											
	e 0 base: (0v4002.0	800												
	e 1 base:														
I2CSOAR,	type R/W,	offset 0x0	00, reset 0	x0000.0000											
												OAR			
I2CSCSR,	type RO, c	offset 0x00	14, reset 0x	0000.0000				•							
													FBR	TREQ	RREQ
I2CSCSR,	type WO, o	offset 0x00	04, reset 0×	0000.0000											
															DA
I2CSDR, ty	ype R/W, o	ffset 0x00	8, reset 0x0	0000.0000											
											D	ATA			
I2CSIMR,	type R/W, o	offset 0x00)C, reset 0>	c0000.0000											
															DATAIM
I2CSRIS, t	ype RO, of	fset 0x010), reset 0x0	000.0000											
															DATARIS
I2CSMIS, 1	type RO, of	ffset 0x014	4, reset 0x0	0000.0000											
															DATAMIS
I2CSICR, t	type WO, o	ffset 0x01	8, reset 0x(0000.0000		_	-				-		-	-	-
															DATAIC
Analog	Compa	rators													
Base 0x4	003.C000)													
ACMIS, ty	pe R/W1C,	offset 0x0	00, reset 0x	0000.0000			-		-		-		-	-	-
														IN1	IN0
ACRIS, ty	pe RO, offs	et 0x04, r	eset 0x000	0.0000			-		-				-	-	
														IN1	IN0
ACINTEN,	type R/W,	offset 0x0	8, reset 0x	0000.0000											
														IN1	IN0
ACREFCT	L, type R/V	V, offset 0	x10, reset (0x0000.0000											
						EN	RNG						VF	REF	
ACSTAT0,	type RO, o	offset 0x20), reset 0x0	000.0000			-		-				-	-	
														OVAL	
ACSTAT1,	type RO, o	offset 0x40), reset 0x0	000.0000											
														OVAL	
ACCTL0, t	type R/W, o	offset 0x24	l, reset 0x0	000.0000											
				TOEN	AS	RCP		TSLVAL	т	SEN	ISLVAL	IS	EN	CINV	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ACCTL1, type R/W, offset 0x44, reset 0x0000.0000															
				TOEN	ASF	RCP		TSLVAL	TS	EN	ISLVAL	IS	EN	CINV	

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S1608-IBZ50	Stellaris [®] LM3S1608 Microcontroller
LM3S1608-IBZ50 (T)	Stellaris [®] LM3S1608 Microcontroller
LM3S1608-EQC50	Stellaris [®] LM3S1608 Microcontroller
LM3S1608-EQC50 (T)	Stellaris [®] LM3S1608 Microcontroller
LM3S1608-IQC50	Stellaris [®] LM3S1608 Microcontroller
LM3S1608-IQC50 (T)	Stellaris [®] LM3S1608 Microcontroller

C.2 Kits

The Luminary Micro Stellaris[®] Family provides the hardware and software tools that engineers need to begin development quickly.

 Reference Design Kits accelerate product development by providing ready-to-run hardware, and comprehensive documentation including hardware design files:

http://www.luminarymicro.com/products/reference_design_kits/

 Evaluation Kits provide a low-cost and effective means of evaluating Stellaris[®] microcontrollers before purchase:

http://www.luminarymicro.com/products/kits.html

 Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box:

http://www.luminarymicro.com/products/development_kits.html

See the Luminary Micro website for the latest tools available, or ask your Luminary Micro distributor.

C.3 Company Information

Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs). Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit microcontroller designs. With entry-level pricing at \$1.00 for an ARM technology-based MCU, Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural upgrades or software tool changes.

Luminary Micro, Inc. 108 Wild Basin, Suite 350 Austin, TX 78746 Main: +1-512-279-8800 Fax: +1-512-279-8879 http://www.luminarymicro.com sales@luminarymicro.com

C.4 Support Information

For support on Luminary Micro products, contact:

support@luminarymicro.com +1-512-279-8800, ext. 3