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REFERENCES

Universal Serial Bus Specification Revision 1.1 September 23, 1998 as well as various Device Class
Specifications and White Papers are all available at http://www.usb.org.  This site also has links to many other
useful sites.

SMSC USB97C102 and FDC37C67x Data sheets, both available at http://www.smsc.com.  The 67x is the SIO
device on the EVB97C102.

8051 Data Sheet, available from numerous manufacturers, including Intel Corporation, the originator.  This is the
MCU inside the USB97C102.

8237 Data Sheet, Intel Corporation.  This is the DMAC inside the USB97C102.

SMSC LAN91C94/5/6 Data Sheets, available at http://www.smsc.com.  These devices have a very similar MMU to
the USB97C102, with explanation.

The C Programming Language, Brian W. Kernighan and Dennis M. Ritchie, Prentice Hall; can be useful for those
having little experience with the language.

ACRONYMS

BER   --  Bit Error Rate
CFES   -- CLEAR_FEATURE (ENDPOINT_STALL), a USB command
COM   -- For the purposes of this document, an RS-232 serial COMunications port
DMA   -- Direct Memory Access
DMAC   -- Direct Memory Access Controller
EP   -- EndPoint, as in a USB EP
EP0   -- Endpoint zero, the default pipe for a USB device
GPIO   -- General Purpose Input/Out, as in a device pin
IRQ   -- Interrupt Request
ISO   -- For the purposes of this document, ISOchronous, as in a USB ISO transfer, not

International Standards Organization
ISR   -- Interrupt Service Routine
LPT   -- For the purposes of this document, a PC legacy parallel Line Printer port
MCU   -- Microcontroller Unit
MIPs   -- Million Instructions per second
MMP   -- Memory Management Policy
MMU   -- Memory Management Unit
MPU   -- MicroProcessor Unit
POR   -- Power-On Reset
RTL   -- Run Time Library
RxEP   -- Receive EndPoint, as in a USB RxEP
SFES   -- SET_FEATURE (ENDPOINT_STALL), a USB command
SGDMA  -- Scatter-Gather DMA
SIE   -- Serial Interface Engine, as in a USB SIE
SIO   -- Super Input/Output
SOF   -- Start Of Frame, as in a USB frame
TxEP   -- Transmit EndPoint, as in a USB TxEP
USB   -- Universal Serial Bus
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CHAPTER 1 - INTRODUCTION

The basic architectural concept of the USB97C102 device is that all high bandwidth data flow be handled entirely in
hardware, with an integrated MCU (MicroController Unit, an 8051 derivative) acting only to manage the flow of data
through the various hardware engines.  At the center of the device is a multi-ported MMU (Memory Management
Unit) that dynamically allocates and frees memory pages grouped into virtual packets both automatically in
response to USB traffic, and also under software control by the MCU.  On one port of the MMU is the SIE (Serial
Interface Engine) that provides a fully hardware-driven interface to the USB, while another port on the MMU is
connected to a partial ISA bus interface containing a DMAC (Direct Memory Access Controller, an enhanced 8237
type) that provides a fully hardware-driven interface to external peripheral devices.  All three (3) hardware engines
(SIE/MMU/DMAC) are capable of operating concurrently with each other and with the MCU, while the DMAC is also
capable of interleaving transfers to/from multiple devices concurrently.

As part of its function, the firmware must establish flow control in order to prevent overrun from either the USB or
the DMAC in the event that the target of the transfer is not as fast as the data source.  Also, while the SIE takes care
of all bit and packet level USB protocol issues in hardware, the higher levels of the USB device protocol (e.g.,
Default Pipe traffic) are the responsibility of the firmware.  Note that since this traffic is not bandwidth intensive, the
firmware implementation results in absolute flexibility combined with reduced cost, without adversely affecting
performance.

This document, along with the companion code which can be downloaded from SMSC’s website (Download Code
Now), describes detailed register level programming considerations, along with working examples, of the device
architecture in general, and USB applications in specific.

INTENDED AUDIENCE
The intended audience of this document is primarily software engineers, and perhaps their managers, involved
with writing firmware for the USB97C102 device.  Hardware and systems engineers can also benefit from at least
skimming this document in order to better understand the effect of their design decisions on the firmware
component of the system.

The reader is assumed to be experienced in register level hardware programming, either in an embedded or
Device Driver context.  A basic knowledge of the C programming language is required, since all of the example
code is written in C, as is an understanding of basic USB operation.  Prior knowledge of the 8051 MCU and 8237
DMAC is desirable, but is not a prerequisite.

http://www.smsc.com/usb/usb102.html
http://www.smsc.com/usb/usb102.html
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CHAPTER 2 – BACKGROUND INFORMATION

This chapter is a potpourri, covering a range of topics including:

§ A primer about writing C code for the MCU, including a discussion and example program illustrating the
performance impact of coding style and address space usage, as well as a variety of Interrupt handler
considerations.

§ A description of the development and build environments, including how to set them up and use them to
execute and rebuild the example programs.

§ A description of the example programs, including coding conventions and common files

An understanding of these topics is assumed in the remainder of this document.

Why C?
The examples in this document use the C language, as opposed to either ASM or C++ for a variety of reasons.
The examples are more clear because they are less cluttered with detail than they would be if they were written in
ASM.  The quality of C compilers for the MCU has improved to the point that there is now less of a size and
performance penalty for using C, rather than ASM, than there once was.  When combined with increased time to
market pressure, this makes C a reasonable choice for implementing an actual product.  As a result of this, most
MCU programmers at least have some familiarity with the language, again making it a reasonable choice for a
document of this type.  For embedded developers with an aversion to C, it might help to think of the compiler as an
automated (if sometimes not very smart) ASM generator (just turn on the ASM listing option), which actually is not a
bad way to think of the compiler anyway when the target is a small-embedded MCU.

Without getting into a debate over the use of C++ in embedded applications, the language does not seem to have
had as much penetration as C at the present time, especially for low-end MCUs.  Maybe some day C++ will be the
language of choice for a document of this type, but not today.

One non-reason for picking C is portability.  The nature of C on the MCU virtually requires the extensive use of non-
standard, and hence non-portable, extensions to the ANSI specification of the language.  This makes writing C
code that is even portable to different compilers for the same MCU an exhaustive exercise in header files.  Also, the
very purpose of this document is to illustrate coding techniques that are specific to a particular hardware
architecture so, even if the source code could be recompiled for a different target MCU, the code still would not do
anything useful without the rest of the device hardware being present.  Having said this, the example programs are
written in such a way as to reduce the porting burden to the extent possible (e.g., non-ANSI typedef's are in header
files, no "//" in-line comments are used, etc.).

C on the 8051
This section makes extensive reference to the detailed operation of the 8051; readers unfamiliar with this
architecture are referred to the data sheet for a complete description.  Developers with substantial experience
writing C for embedded MCUs will likely be familiar with this material, and so this section is targeted at that portion
of readers who come from a PC device driver background.  But do not worry -- later sections will discuss the 8237
DMAC in detail, at which point the tables will be turned.  For the developers with a PC background, the closest PC
equivalent to programming this MCU is the old MS-DOS COM programs in which all code and data fit in a single 64
KB block (i.e., the TINY memory model) with fixed offsets to the beginning, etc.  If you wanted to touch or change
any memory or I/O port, you could have your way with it without having to ask any O/S for any approval or
assistance.  You were writing for maybe a 1 MIPs machine, and not a modern PC with hundred of MIPs and nearly
as many MB of RAM, and a big fat OS between you and the hardware.  If you are old enough to remember those
days, then welcome home.  If you are young enough that you cannot believe that people used to really do that for a
living, then read on...

When C is compiled for MPUs, arguments are usually passed on the stack, and automatic variables are allocated
on the stack.  For MPUs with a stack of substantial size, and with the capability to efficiently address the stack
memory, this makes a good deal of sense.  However, the MCU has neither of these capabilities.  As a result,
parameter passing is usually done through registers, or in fixed memory locations, or on a "simulated" stack if the
arguments cannot fit in registers.  Use of a simulated stack is very slow, so it is suggested that any functions for
which speed is a consideration limit their arguments to the types and numbers that can be passed in registers.
Even then every extra argument passed increases the overhead of the call, so "less is more" when it comes to
performance.  One way of satisfying this suggestion would be to pass a single pointer to a structure, but that is not
a good solution for the MCU because it does not have the flexible addressing modes (e.g., based indexed
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displaced addressing) that CISC MPUs usually have.  The MCU is also not very efficient at doing the address
calculation necessary to access a complex data structure.  Although it is generally frowned upon (and for good
reasons), the use of global variables is the best solution from the perspective of performance.

In addition, short functions are good candidates for implementation as macros;  as macros, there is no call and
return overhead, which can be a substantial portion of the total execution time when functions are short.  Also, the
final code size might not even be larger because all of the code related to parameter passing and register
saving/restoring is eliminated.  Using macros instead of small functions is a good thing for the MCU.  Another
benefit of macro functions is that they avoid the issue of reentrancy, which is discussed next.

Automatic variables are usually not placed on the MCU stack both because the MCU would not be able to efficiently
access them if they were, and because the stack tends to be small.  Instead, automatic variables are usually
allocated in one of the data address spaces of the MCU, which are described in more detail in a later section.  In
order to avoid wasting valuable data memory for automatic variables that are not presently being used, a good
Linker/Locator will use data overlays within the procedures of a given thread.  Since different threads (e.g.,
foreground and ISR) can execute concurrently, their data cannot be overlaid.  This brings up the issue of recursive
and reentrant code.  While it is possible to compile code for the MCU so that it is reentrant (i.e., executed by more
than one thread at a time), such code cannot have its data overlaid with the data from any other thread, so it
consumes more memory.  Also, its data must be relocatable because it might be necessary to have multiple
instances at the same time.  Due to a lack of efficient addressing mechanisms for this type of allocation in the
MCU, such code will execute much more slowly than standard functions.  The situation is essentially the same for
recursive functions, which call themselves within the same thread, because of the need for multiple simultaneous
data instances.  In general, both are undesirable from a performance point of view.  Avoiding recursion mostly
involves algorithm design, so there is not much that can be presented here with respect to universal techniques.
However, there are two easy ways to avoid reentrancy: one is to use macros, as was described above, and the
other is to cut-and-paste the function and to give each copy a slightly different name.  This can work very well if the
reentrancy is between two different threads, for example the foreground thread and a single ISR.  Having duplicate
functions may increase code size somewhat, but each copy is smaller and executes much faster than a reentrant
version of the same function, so the increase in code size, if any, is often worth it.

In order for data overlays to work properly, the Linker/Locator must be able to unambiguously determine the
execution context for every code section, which can be difficult if the code calls through function pointers.  The
easiest solution to this is not to use function pointers, but if they must be used, then the compiler should be set to
produce an ASM listing, and this file and the Linker output files should be carefully inspected to be sure that the
tools are correctly implementing the software design as intended.

Note that the Linker/Locator will often mistake uncalled functions for separate threads and will not overlay their
data with any of the actual threads.  This behavior can be somewhat annoying during initial coding, in which case it
is common to write a number of functions before actually using any of them.  One solution, albeit not a pretty one,
is to create a dummy function that calls each of the uncalled functions with dummy arguments conditional on an
argument to the function being TRUE; this dummy function is then called from e.g., main() with a binary flag that is
FALSE, so the code never actually executes, but it gives the Linker enough information to know how to overlay the
data;  see Chapter 3 and Chapter 6 for an example of this.  Some compilers also permit defining the thread each
function is supposed to execute in, which achieves the same result.  The only problem with this approach is that
each function's source code needs to be changed in order to move it from one thread to another.

Considering the combination of the above issues, it is usually a good idea to develop a function hierarchy that is
relatively flat (i.e., not too deeply nested) and orderly, without a lot of cross calling.  This combination reduces the
impact of call/return/parameter passing overhead and gives the linker good opportunity for achieving RAM savings
through the data overlay mechanism.

The MCU does not contain a barrel shifter; as a result of this, shifts are implemented one bit at a time in a loop, so
they are best avoided where possible.  However, a good compiler will recognize shifts by a multiple of 8 as being a
change in address, and this can be handled quite efficiently, especially if the argument is in DATA space.
Examples of this would include macro's for HIBYTE(a), LOBYTE(a) and MAKEWORD(a,b) (see Type.H for the
definitions of these macro's).

Another efficient sequence involves a conditional jump based on a single bit in a byte being either set or cleared --
the MCU has JB (Jump if bit set) and JNB (jump if bit clear) instructions, and a good compiler will use these
whenever it gets a chance.  For example,
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if (myVar & 0x08) { } .

Most compilers offer the option of producing an ASM listing in addition to the C listing, and it is often useful to
enable this feature and at least glance at what the compiler is doing, especially when working in a new
environment.  Sometimes small changes in the source code can make big changes in the resulting object code.
The linker output file should also be inspected, especially to make sure that the linker is correctly understanding
the memory map (e.g., 256 bytes of internal RAM, as opposed to some other size), that the stack is of sufficient
size, and that any external data RAM or firmware ROM is properly located.  It is also the author's personal
preference to set all warning levels to maximum and to take any warnings seriously, but it is recognized that this is
a matter of individual taste.

Speaking of ASM, if it happens that there is some function for which execution speed is absolutely critical, it is
always possible to write some of the code in ASM and call these ASM functions from C.  Since the quality of the
code produced by compilers has improved much in recent years, this should not be necessary, and the
performance gain will likely be small if it is done, but it is always an option.

MCU Address Spaces
The MCU contains 256 bytes of internal RAM.  The low 128 bytes of this address space can be accessed using
either direct or register indirect (e.g., @R0, @R1) addressing, while the high 128 bytes can only be accessed
using indirect addressing.  Since direct addressing is somewhat faster than indirect addressing, it is desirable to
locate variables whose access speed is important in the low 128 bytes.  A portion (16 bytes) of the low 128 bytes
can also be addressed as individual bits and, unlike most MPUs, the MCU contains a special Boolean Processor
and so is quite efficient at manipulating these.  The MCU also has an external data memory address space of 64
KB.  However, access to this address space is substantially slower than either direct or indirect addressing
modes because it involves the use of the 16-bit DPTR register.

[For completeness, the upper 128 bytes of internal memory, when used with direct addressing, accesses yet
another address space:  the Special Function Register, SFR, and there is also an external address space
mechanism that only uses an 8-bit address with paging.  However, neither of these is salient to the discussion,
which follows.]

C compilers for the MCU are quite flexible in their ability to enable the programmer to define where variables are
stored and how they are accessed based on how they are declared in the source code.  Since ANSI C has no
provision for this, compilers implement extensions to the ANSI language, which limits portability between different
compilers, even for the same MCU.  For the Keil compiler, variables located in the low 128 bytes of internal RAM
are referred to as type "data" and direct addressing is used to access them.  Variables located anywhere in the
256 byte internal RAM are referred to as type "idata" and indirect addressing is required to access them, even if
they are ultimately located in the low 128 bytes, since their actual location is not known at compile time.  Variables
located in the external data address space are referred to as type "xdata", and the DPTR register is always used to
access them.  Bit addressable variables are referred to as type "bit" for obvious reasons.

If all of this seems a little bit bizarre, well it is.  If all of this seems a little confusing, do not worry about it.  The C
language makes all of this easy to hide in header files (for the most part), which are included in the example
programs.

The on-chip peripherals in the USCB97C102 (e.g., the SIE and MMU) are mapped into the xdata address space.
In addition, there are 4 addressing windows, all of which are mapped into the xdata address space of the MCU,
that permit access to the address spaces of the external buses.  There is a window for the ISA I/O address space,
one for the ISA Memory address space and two for the "Flash" Bus address space.  [As an aside, note that the
name "Flash" Bus is something of a misnomer, in that the bus can be used to interface to any combination of
memory devices (ROM/EPROM/EEPROM/FLASH/RAM, etc.) and/or memory-mapped peripheral devices; a more
descriptive name would be the MCU Bus, since it is a generic bus that is owned full time by the MCU.]  Each
memory window has its own bank select register associated with it, which is also mapped into xdata space that
permits moving the window anywhere in the entire address space of the corresponding bus.  The following table
summarizes the xdata address windows:
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ADDRESS SPACE
(BUS & TYPE) TOTAL SIZE WINDOW SIZE

WINDOW
LOCATION
(XDATA)

BANK SELECT
REGISTER
(XDATA)

ISA I/O 64 KB 256 bytes 0x4000-0x40ff IOBASE [0x7F71]

ISA Memory 1 MB 4 KB 0x5000-0x5fff MEMBASE
[0x7F72]

16 KB
0xc000-0xffff MEM_BANK

[0x7F29]

Flash Memory 1 MB

16 KB 0x8000-0xBfff
MEM_BANK2

[0x7F28]

The MEM_BANK and MEM_BANK2 registers also control paging in the code address space of the MCU, and this
must be considered if the entire firmware is larger than 16 KB.

In particular, the bottom 16KB of code address space (0x0000-0x3FFF) always maps straight through to the Flash
Bus (i.e., 0x00000-0x03FFF).  The next 16 KB of code space (0x4000-0x7FFF) is a movable 16 KB window whose 6
MSB's are controlled by the MEM_BANK register.  Out of the upper 32 KB of both the code and xdata spaces, the
bottom 16KB (0x8000-0xBFFF) is a movable 16KB window whose 6 MSB’s are controlled by MEM_BANK2 register
and the upper 16KB (0xC000-0xFFFF) is a duplicate (i.e., an alias) of the lower -upper 16KB (0x4000-0x7FFF) of
code space, which is controlled by MEM_BANK register.  The following table summarizes Flash Bus mapping into
the MCU address spaces:

ADDRESS (SIZE) CODE XDATA
0xC000-0xFFFF (16 KB) Set by MEM_BANK Set by MEM_BANK
0x8000-0xBFFF (16 KB) Set by MEM_BANK2 Set by MEM_BANK2
0x4000-0x7FFF (16 KB) Set by MEM_BANK (On-chip peripherals & ISA)
0x0000-0x3FFF (16 KB) 0x0000-0x3FFF (On-chip SFR's, etc)

Unlike the other on-chip peripherals, the on-chip DMAC is mapped into the ISA I/O address space, so its registers
are accessed in the MCU xdata address space, just like the SIE and MMU, once the IOBASE register is set.

From the discussion above, it might seem undesirable that the on-chip peripherals are all mapped into the xdata
address space, and it is when considering the performance penalty involved.  However, the other address spaces
are very limited in size, and it would be even worse to lose a substantial portion of one of those address spaces
instead (especially data or idata).  It is important for the device programmer to recognize this situation because it
has an impact on firmware performance.  Firmware should be written so as to access device registers as little as
possible.  For example, if the value contained in a register is needed multiple times, then it should be read once
and saved in a variable, and then this variable can be read multiple times with far greater speed.

The existence of all of these different address spaces raises an interesting question:  what happens with
pointers?  The answer is :  it depends.  Each address space (data, idata, xdata and code) needs either a 1 or 2 byte
pointer to span it.  As a result, if the particular address space that a pointer references is known or implied by
usage (e.g., perhaps it is explicitly typed when it is defined), then a straight pointer is all that is needed.  However, if
a pointer is to be "generic" in that the same pointer can be used to reference any address space, then an extra byte
must be added to it in order to identify the address space to which the pointer is currently assigned -- hence, the 3-
byte pointer.  Some compilers provide support for 3-byte pointers, some only support 3-byte pointers, and some do
not support 3-byte pointers at all, comprising yet another portability issue.  It is the author's opinion that generic
pointers are a mixed blessing:  they are terrible from a performance point of view, but they do permit writing code
with fewer non-ANSI directives in it, and they make it trivial to move data items from one address space to another
because none of the pointers to the data need to be changed when the data is moved (by re-typedef'ing it).
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Interrupt Service Routines (ISRs)
One very nice feature of the MCU is that it contains multiple Register banks.  The current register bank can be
changed quickly by setting 2 bits in the PSW.  This can be used to substantially reduce the interrupt latency time by
avoiding having to save the entire register bank on entry to the ISR (and restoring it on RETI).  Compilers for the
MCU support this feature by (surprise) using extensions to ANSI C.  For the Keil compiler, the "using" function
attribute causes the compiler to insert code in the function that will save the existing register bank and switch at
entry, and will restore the previous register bank at return.

In the USB97C102 architecture, the most important ISR is for IRQ 0, which is the one that handles USB traffic.  It is
desirable to keep the latency for servicing this IRQ as short as possible, and the use of Register Bank switching is
strongly encouraged.  Note that each additional register bank used is located in the "data" address space, so
some RAM is lost this way, but the alternative would be to push the registers on the Stack (usually in "idata"
space), so the total RAM consumed is the same, and the bank switch is much faster.

One nice feature about the USB97C102 when it comes to  the handling of the ISR registers, which contain the
Interrupt Status bit(s), is that -- these registers are cleared by writing a “1” to the corresponding bit(s)!  This
feature eliminates the problem of having IRQs cleared by accident (bits cleared on read), which existed in the older
version of this part. In the past, it was not possible to read the registers without clearing the IRQs. The ISR bit(s)
where automatically cleared each time the associated register was read. As a result, each time the register was
read, all pending interrupts had to be serviced before continuing normal operation. Adding this feature to the
USB97C102 allows the designer to individually clear the associated bit(s) in the associated “Interrupt Source”
registers as the corresponding interrupts are handled.

As in any interrupt-driven system, care must be exercised if any hardware or software resources are shared
between the foreground and background.  The classic situation to avoid is the one in which, while the foreground
code is in the middle of a read-modify-write, the ISR executes and changes the value, and then the foreground
over-writes the value from the ISR. An example of such a case in this device is the GPIOA_OUT register in the
situation when both the foreground and ISR threads are manipulating GPIO pins, but the same class of situation
can result as a matter of sharing software resources (e.g., RAM variables) rather than hardware registers.  One
way to avoid this problem is for the foreground thread to disable IRQs while accessing the shared resource, but
other mechanisms are possible as well.  If IRQs are disabled by the foreground thread, then it should be for the
shortest amount of time possible (ideally just a couple of microseconds) in order to avoid a significant negative
impact on the IRQ latency time.

In other situations, a portion of the hardware is shared between the foreground and ISR threads, but there is no
read-modify-write issue; a common example of this is a numeric coprocessor in an MPU system.  In these cases,
the ISR can simply save/restore the register set so that the foreground thread does not even know the ISR had
used the hardware.  An example of such a situation in the USB97C102 is the MMU, with the PNR, PRL and PRH
registers.

Also as usual, any variables used by the ISR need to be global in one way or another and, in order to avoid
problems with reentrancy, do not call any of the ISR code from the foreground.  Of course, the ISR itself can never
be called from any foreground thread because it uses a RETI, rather than a RET.

Performance Perspective and Strategy
Although much of the previous discussion was concerned with the impact of specific coding techniques on
performance, it is useful to realize that much of the code in any given application for this component is not related
to performance in any way.  For example, when a USB device is first attached to the Bus, it is enumerated, reset,
configured, etc.  Required execution times for these operations (per the USB Specification) is measured in units of
milliseconds, so performance is not a concern here.  There are also occasional Control Transfers to the Default
Pipe (EP0), but these are also not performance sensitive since they do not occur with high frequency.  When
writing code of this type, it is permissible to use any and all of the techniques (e.g., complex data structures, etc.)
that might have an adverse effect on performance if using those techniques is appropriate.  For example, the USB
descriptors are essentially a complex data structure, so writing them that way is a natural expression of the coding
solution.

As far as the remaining code is concerned, it is helpful to quantify just what performance level is required or
desired.  For example, Isochronous applications are essentially hard real time -- it is an absolute requirement that
the software be fast enough to handle the stream, but any further speed improvement serves no useful purpose.
In the case of Bulk data applications, once the software is fast enough to saturate either the USB or the peripheral
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device, the same situation results.  From the software perspective, performance in this component architecture is
really an issue of how many packets are handled in each USB frame.  Note that this is different from the situation
in many other USB components in which the actual data bytes must flow through the MCU.  Based on this
definition, a USB camera that delivers 1,000 byte Isochronous packets is a low-performance application with
respect to software since only a single packet needs to be handled each USB frame.

Once specific performance numbers are established, the data flow needs to be planned:

Generally, USB OUT packets will arrive in an Isr0() function, which is the ISR that handles interrupts from USB
traffic flow (any RX, any TX, etc.).  At arrival, the Rx packets need to be validated and saved for consumption by the
foreground device handlers, either in software or hardware queues (the component has both).  This is also the
time to update the current packet count for each BULK EP and, if an EP has reached its limit, to make that EP
"busy" so that further OUT packets to that EP will be NAKd.  In the foreground, each device handler checks the state
of its peripheral device.  If the peripheral device has just completed transferring a packet, then the handler must
free the packet in the MMU so that the packet memory can be used for receiving additional packets.  If the EP is
Bulk, then the handler must update the packet count and, if it is low enough, make the EP "not busy" so that future
OUT packets sent to that EP will be received and ACKd.  Finally, if the peripheral device is ready for another packet
and one is available in its packet queue, the handler must start sending the next packet to the peripheral device.
For high performance peripheral devices, a DMA hardware interface should be used (rather than PIO), so starting
the next packet involves setting up a new DMA session.

The data flow for Tx is similar to Rx, but backwards.  If the peripheral device is below its limit on the number of
packets it is permitted, and the peripheral device is ready to fill a new packet, then the handler must allocate a
packet and start the peripheral device filling it.  If the peripheral device has finished filling a packet and is below its
limit on how many it is allowed to queue for transmission on the USB, then the handler must queue the full packet.
In both cases, the count of packets owned and packets queued must be adjusted.  After the Host reads the packet
on the USB, the packet will appear in the Tx Completion queue.  It is a matter of choice by the programmer whether
to handle this in Isr0() or in the foreground but, regardless of wherever it is done, the packet must be removed from
the completion fifo, and the count of packets owned and packets queued must be updated.

[To be truthful, the word "must" in the paragraphs above is a little bit strong, since simplifications are often
possible, but the description represents the most general case.]

From the above, it can be seen that the MMU acts in a managerial role supervising the traffic flow and ownership of
shared finite resources such as packet memories and Tx queues.  There are at least two obvious ways that code
like this can be implemented:  either centralized or distributed.  In the centralized case, there is a set of functions
that encapsulate data structure(s) that maintain the present state of the system, and decide when to busy/un-busy
RX EPs and when to grant or refuse requests for packet allocations and tx packet queuing.  In the distributed case,
each individual EP handler function maintains its own state and decides when to allocate, free and queue packets,
etc.  As usual with software, still other approaches are possible, and any approach that yields a correct solution is
equally valid.

Since all of the above code executes for every packet that is transferred on the USB, the execution speed of this
code is critical if high performance, defined in terms of the number of packets per USB frame handled, is to be
achieved.  From the previous discussion, a number of techniques can be applied in order to obtain best
performance:

§ locate all variables in data or idata address space
§ implement any short functions as macros
§ bank switch the registers in the ISR
§ keep the function hierachy shallow
§ consider global variables -- they are necessary for the ISR anyway
§ if any arguments are passed to functions, pass them in registers
§ avoid complex data structures -- use simple arrays or scalars
§ avoid 3-byte pointers if possible

Using all of these techniques in combination will make a big difference in the execution speed of the code, and
can still result in very legible and maintainable code if thoughtfully applied.  If at that point the performance is still
less than desired, it becomes important to understand clearly where the MCU is spending its time.  An easy way to
determine this is by pulsing GPIO pins at the entry/exit of the major functions.  Pulsing GPIO pins in this fashion
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does add a couple of microseconds to the execution time, but that is relatively small, and the information it
provides is critical to understanding where the MCU is spending its time.  The functions that are consuming the
most time can then be inspected in the ASM listing of the compiler in order to understand why they are taking so
long, and to see what, if anything, can be done to reduce their execution times.  Sometimes recoding a function in
ASM can help, but modern compilers generate reasonably efficient code, so the improvement is usually not much.
Any substantial improvement usually comes from changes in algorithms, data structures, or the address space in
which variables are located, which is the reason why it is so important to think all of this through carefully before
writing the code in the first place.

Example Program
The example program Chpt2.Hex illustrates the effects of address spaces and coding style on performance.
Unlike the other examples in this document, this program is *NOT* meant to be executed.  Instead, the ASM listing
should be inspected.

The program consists of a set of 4 functions that each pushes an entry onto the head of a software queue.  The
functions differ in the address space and organization of the queue.  By inspecting the ASM listing, quantitative
performance differences can be determined.  The following analysis is for the typical case in which the queue is
neither full, nor does the head pointer wrap around.

PushDqueHead() uses simple scalers and an array in data space.  The function executes 15 instructions that
consume 20 processor cycles.

PushIqueHead() is the same, except that the variables are located in idata space.  The function executes 17
instructions in 22 processor cycles.  By inspecting the ASM code, it can be seen that the extra instructions and
cycles are a result of the head pointer being located in idata space, not the array.  If the head pointer were in data
space, then the instruction and cycle count would be the same as the previous example.  From this it can be
concluded that:

1. idata access is only a little slower than data access.
2. idata access for array elements is identical in speed to data access, so arrays should usually be located

in idata space.

PushISqueHead() uses a data structure located in idata space.  The function executes 24 instructions in 31
processor cycles.  From this it can be concluded that there is a major performance impact involved in the use of
data structures (in this case 50%), even fairly simple ones.  Inspection of the ASM code reveals that the extra time
is spent doing the address arithmetic to access the structure elements.

PushIXqueHead() uses the same data structure as above, but it is located in xdata space.  The function executes
39 instructions in 64 processor cycles, making it about twice as slow as the same example in idata space, and 3
times slower than the first 2 examples.  From this it can be concluded that there is a major performance penalty
associated with xdata access.  Inspection of all of the DPTR manipulation in the ASM listing shows why this is the
case.

Development Equipment
It is not the purpose of this document to specifically recommend or endorse any particular  product(s) of any
particular manufacturer(s).  For each of the items described below, a variety of manufacturers offers a range of
products that appear to be suitable.  However, in order to provide concrete examples with explicit instructions, it is
necessary to do so in the context of a particular hardware and software environment.  Following is a list of the
environment used to develop the example programs in this document:

1. USB Host System
A standard PC running Windows 98SE and/or Win2000.  The extra Host software consists of RW2.Exe and
UsbSmsc.Sys , both supplied on the companion code disk.  Since this system will often be used for the purpose of
Driver and/or Application software testing, it is the author's preference to treat this as a test machine -- it is
assumed that it could crash at a moment's notice, losing everything on its hard disk and disrupting any LAN that it
might be connected to.  As a result, no development work should be done on it, no important data should be stored
on it, and it should not be connected to any network.  In addition, nothing but Host test software should be executed
on it in order to avoid corrupting any test results due to interactions with other hardware and/or software, except as
an explicit part of the testing.
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2.  MCU Development System
A standard PC running Windows 98SE, Win2000, or any other OS capable of hosting all of the development tools
used.  This system hosts the MCU Compiler, USB Protocol Analyzer, and ROM Emulator, each of which is
described below.  Ideally, everything on this system should be full production quality, with no Beta or pre-Release
anything.  Connection to a network for backup and/or printing services is encouraged.  Any Host software
development (either drivers and/or applications) can be performed on this machine, provided that all tools used
are of suitable production status.  Of course, any such Host software should never be executed on this
[development] system.

Because one of the particular Analyzers and the Emulator used each requires a parallel port, a board containing a
second parallel port (set as ECP with Legacy LPT2 assignments) was added to the system.  The Emulator can
also make use of a serial port for various purposes, and it was connected to COM1, but this connection is not used
in the context of this document.

Since a number of the programs make use of the COM2 port on the 67x SIO device on the EVB97C102 for console
I/O, a null modem was used to connect the COM2 port on the EVB to the COM2 port on the MCU Development
System.  HyperTerminal was used to establish the communications link, with settings of 115.2 Kbaud, 8 data, 1
stop, no parity, no flow control, TTY emulation.  Because no hardware flow control is used, the null modem can be
of the simple 3-wire type, with the TxD and RxD crossed, and the grounds connected together.  For this to function
properly, the jumpers on the EVB must be set to connect the COM2 transceivers to the SIO, rather than the
USB97C102, device.  For Assy 6126 Rev. B, JP9 and JP10 must have jumpers between pins 1 and 2.  

3.  MCU Development Tools
The Keil 8051 C Compiler V5.0 (www.keil.com).  For installation, just use the default settings.

4.  USB Protocol Analyzer
When executing the programs in this document, access to an Analyzer is not required, since the software has
already been developed and tested.  However, when developing new software, at least part time access to an
Analyzer is a practical necessity, at least in the author's opinion.  An external trigger input is desirable in order to
permit triggering the Analyzer from software-controlled pulses on either the Host or the Target system.  A trigger
output is desirable to permit triggering an oscilloscope or Logic Analyzer.

Representative manufacturers of Analyzers include Genoa Technology [www.gentech.com] and CATC
[www.catc.com].  When using the CATC USB Inspector, the companion software searches the LPT ports for the
Analyzer, so it is best to install the device on LPT1 so that the software does not touch the Emulator while
searching for the Analyzer.

5.  ROM Emulator
The TechTools UniROM UR08-1M-90 ROM Emulator (www.tech-tools.com).  This device was connected to LPT2
during the code development for this document.

Connecting UniROM to the EVB97C102 consists of plugging the 32-pin target cable into the Flash Dip Socket
(U14) on the EVB97C102. Plug the 34-pin header end of the cable into the UniROM. This connector is polarized,
making it nearly impossible to plug in backwards.

If the ROM Emulator has a suitable Reset output with which to drive the Target, it is most convenient to connect it.
Otherwise, it will be necessary to hold the Target reset (using the manual push button on the EVB97C102) during
firmware downloads.  For the Emulator used here, the Reset output if fully programmable, with a setting of LOW
TRISTATE being correct for interfacing with the EVB97C102 reset circuitry.  The EVB97C102 connection is at TP7,
and the Emulator connection is at the Feature Connector pin 5; micro-hook cables suitable for making this
connection are supplied with the Emulator.

A workable alternative to a ROM Emulator is a Monitor ROM, but that is not the approach used in this document for
a variety of reasons:  Monitor ROMs are extremely compiler-specific, require that an external RAM device be
available, and often consume hardware resources beyond just their memory footprint (e.g., a Bank Select register
when executing the application from RAM, a COM port for download, etc.).  As a result of these characteristics, it is
often not possible to use a Monitor ROM on final target hardware because the necessary resources might not be
present.  In addition, the target hardware might not contain even a single COM port for a debugging console, much
less an additional one for code download.  For situations like this, the ROM Emulator used here contains a COM
port that the firmware can use as a debugging console even in situations where the target hardware has no COM
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port of its own.  Also, since ROM Emulators usually interface to the development system using a parallel port,
rather than a COM port, code downloads are much faster than with a ROM Monitor; this is especially true if the
MCU's serial port is used instead of a 550A type.

6.  Oscilloscope or Logic Analyzer
An HP54645D Mixed Signal Oscilloscope (http://www.hp.com).

When executing the programs in this document, access to a scope is not required, since the software has already
been developed and tested.  However, when developing new software, at least part time access to a scope is a
practical necessity, at least in the author's opinion.

Key features to look for are digital storage, numerous channels (8 or more is desirable), and deep memory (at
least 100 K points/channel is desirable).  Assuming that the scope is only being used for software development, it
is not necessary to have analog channels or to sample at high speeds (10 Msps is about enough).  It is also not
necessary to have the elaborate trigger capabilities that are standard in Logic Analyzers these days, since it is a
simple matter to have the software pulse a GPIO pin and provide a direct trigger when the desired event occurs,
etc.

Executing and/or re-Building the Examples
The following procedures are based on the use of the hardware and software just described.  If different
equipment is used, then other means will need to be used to achieve a port, which is beyond the scope of this
document.

The Code Disk contains project files, listings, and final HEX files (in Intel Hex Format) for all of the example
programs for the EVB97C102 Assy 6126.  As a result, building the programs is not necessary in order to download
and execute them.

In order to download the HEX files to the ROM Emulator, a set of CHPTxx.BAT files is provided.  Each of these BAT
files in turn executes the Download.Bat file, which produces a Download.Cfg file, which is finally passed to the
UrLoad.Exe program to do the actual download to the ROM Emulator.  The reason for all of this indirection is to
ease the task of porting to different Host/Target/Emulator environments.

The DownLoad.Bat file should be modified in order to change:

1. The Host drive/path/name of the download program (e.g., c:\unirom\UrLoad.Exe)

2. The Host port to which the Emulator is attached (e.g., LPT2)

3. The Target memory type, size and base address being emulated (e.g., 128K Flash @ 0)

4. The Target reset circuit type (e.g., LOW TRISTATE)

Of course, if a different ROM Emulator, or a Monitor ROM, is used then other means will need to be used to achieve
a port, which is beyond the scope of this document.

Rebuilding the example programs can be done from the Keil compiler by opening the desired project (e.g.,
ChptXX.PRJ, from the Project--Open Project dialog), and building it (from the Project -- Make: Build Project dialog).
Of course, if a different compiler, etc. is used, then other means will need to be used to achieve a port, which is
beyond the scope of this document.

If it is desired to make new projects using the Keil compiler, then it is important to adjust several settings:

1. Set the compiler to produce an assembly listing (if desired) (using Options -- C51 Compiler... -- Listing --
Include Assembly Code checkbox).

2. Define the symbols: _KEILC_DBG (using the Options -- C51 Compiler... -- Misc. -- Symbols for DEFINE
command).

3. Set the internal RAM size to 256 bytes (using Options -- BL51 Code Banking Linker ... -- Size/Location).

4. Set the xdata RAM location (if used) to 0xC000 (using the same tabbed dialog sheet as above).
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It is also possible to compile the example programs in Microsoft Visual C/C++, although the resulting binary
cannot be executed.  Version 4.0 was used in the development of the code examples.  Even though the binary
cannot be executed, it can still be useful to author code in MSVC as a check of the portability of the code, and in
situations where the developer is more comfortable with that environment.  The companion code disk contains a
single MSVC project file ProgRef.MDP that contains subprojects for each of the example programs in this
document.  Since MSVC embeds absolute paths in the project file, it is best to copy everything to
C:\USB\PROGREF\V1_1 and build from there.  Under this directory should be additional subdirectories called
CHx\Release, where "x" is 2, 3, 5, and 6; this is where the binaries for each subproject are placed.

If it is desired to make a new project in MSVC, do the following:

1. Create a new project using File -- New -- Project Workspace -- Console Application, and give it a name
(e.g., ChptXX).

 
2. Use Insert -- Files into Project... to add the desired source (*.C) files.
 
3. Define _MSVC_DBG using Build -- Settings -- C/C++ -- Category General -- Preprocessor Definitions.

Optionally, set the Warning Level to 4 (maximum) on the same sheet.
 
4. Optionally, on the C/C++ Customize sheet, select the Disable Language Extensions checkbox in order to

obtain the best assurance that the source code is generic ANSI C.

Note that because of the way the Keil compiler handles SFRs and SBITs, it was necessary to add some special
code to USB97C102.H for non-Keil compilers like MSVC.  This code only defines the subset of the SFRs and SBITs
used by the example programs, so it might be necessary to add more if any new code makes use of additional
SFRs and/or SBITs.

The Example Programs

Chpt2.Hex:
Described earlier, provides an example of different ways of implementing a software queue.  Unlike the other
examples, this code is not meant to be executed, but the ASM listing should be inspected to see and understand
the impact of address spaces and coding style on performance.

Chpt3.Hex:
This program illustrates basic programming techniques for the USB97C102 device and EVB.  Topics covered are
initialization, RAM access and testing (to qualify the hardware setup), DBGPRINT(), console I/O, use of GPIOs,
software generated time delays, etc.

Chpt5.Hex:
This program illustrates a variety of DMA programming techniques using the LPT port as an example.

Chpt6.Hex:
This program illustrates an actual (albeit simple) USB application that is fully Chapter 9 compliant.  While the
primary emphasis is on coding techniques, the code is intentionally structured in a way that completely separates
the core USB software from the actual application, with the intent that the application code can be easily replaced
while leaving the core USB code intact.

Coding Style:
Significant effort was expended to make the code examples as fully ANSI C as possible.  All non-ANSI typedef's,
etc. are declared in Types.H (with the exception of SFRs and SBITs, as was already discussed).  There are a few
places where some pragma's were needed in the code, but these are only used where needed.  Obviously, no "//"
in-line comments are used.

All variable names begin with a lower-case letter, while all function names begin with an upper case letter.

All function names begin with an upper case letter and contain no embedded underscores (e.g., MyFunction(a,b)).
Macro functions that are called in the same way as an actual function use the same naming convention.  However,
macro's that use a calling convention that is different from what an equivalent function would use (e.g., if a variable
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would be passed by reference to an actual function, but the variable name is passed to the macro) are named with
all upper case letters and underscores separating words.  In order to avoid confusion with register definitions,
parentheses () are ALWAYS used with macro's, even when no arguments are passed (e.g., MY_MACRO(a,b),
YOUR_MACRO()).

All variable names begin with a lower case letter, and type BYTE is assumed, unless one of the following prefixes
is encountered:

§ wFoo -- WORD
§ bFOO -- bit
§ cFOO -- code const
§ szFOO -- ascii-Z string
§ wzFOO -- unicode-Z string
§ pFOO -- pointer

Also, structures have no prefix, since their identity as structures, rather than BYTEs, can easily be discerned by
context.  No attempt was made to prefix variables more fully (e.g., with their memory space, etc.) for fear that having
too long a prefix on every variable would do more harm than good.

Register names follow the same convention as macro's, using all upper case letters and underscores; they can
be differentiated from macro's because no parentheses are used (e.g., BUS_REQ).  Bit fields within registers are
identified by a trailing underscore and a name that is indicative of the register to which it corresponds (e.g.,
BUS_REQ_HREQ_ is the HREQ bit field in the BUS_REQ register).

Manifest constants (i.e., #define's) use all upper case letters and underscores as well, but are prefaced with a
lower case c (e.g., cUSB_EP0_MAX_SIZE) so they can be differentiated from register names.

Common Files
A number of files are common to many of the example programs, and will likely be useful in other applications:

Types.H contains definitions for all non-ANSI data types.
USB97102.H contains register and bit definitions for the device.
USB97102.C contains some useful misc. device-specific functions (e.g., HwReset).
SIO.C/H configures the SIO device and provides low-level console I/O functions.
Debug.C/H provides DBGPRINT and high-level console I/O redirected to SIO.C/H.
Usb.H provides definitions for USB related data types, etc.
UsbCore.C/H provides core code for handling connection and transfers on the USB.
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CHAPTER 3 - FIRMWARE BASICS

All of the examples in this document make use of the Types.H file, which encapsulates all of the non-ANSI data
type declarations, as well as defining a number of useful macro's, etc.  All of the executable examples (i.e.,
everything except Chpt2.Hex) also make use of the USB97102.H file, which contains defines for every register and
bit field in the USB97C102 device; all references to data types, registers and bits make use of the nomenclature in
these two files.  Experienced C programmers will recognize the use of the "volatile" keyword, which must be used
with all memory-mapped I/O devices in order to prevent the compiler's optimizer from removing [what it thinks are]
redundant memory accesses.

Several additional files are used in every example in this document, and every function contained in them is
described in this section:

Debug.C/H - provides debug console I/O
SIO.C/H - provides code to initialize the SIO device and operate the COM port
USB97102.C - provides initialization code, etc.

Initialization

At the end of POR (Power-On Reset), each core in the USB97C102 device is initialized, every register (except for
the DMAC) is filled with defined values, and the MCU begins executing code at address zero using the Ring
Oscillator.

Each of the example programs calls the USB97C102HwInit() function in USB97102.C early in the execution of
main() in order to complete the reset process.  Since many of the values used by this function are application
dependent, the code makes use of several global variables in code space, whose values are set by the
application, in order to determine which values to place in the various device registers.

Even though this function configures the SIE and resets the MMU, it is important that it does *NOT* enable any USB
Endpoints, even EP0, since this must wait until a USB Reset is received.  This, and many other USB related
issues, is discussed in detail in a later chapter.

Since the DMAC registers do not have defined values after POR, the function DmacReset() in USB97102.C, which
is called by USB97C102HwInit(), places valid entries in every DMAC register.

CLOCK_SEL Register
One of the first things to do is to select the desired clocks for the MCU and the DMAC and to disable the Ring
Oscillator.  Note that it is important to select the new MCU clock source BEFORE disabling the Ring Oscillator;
doing otherwise can shut off the clock to the MCU, which would halt execution.

Usually it is desired to use the highest speed clocks for the MCU and the DMAC in order to obtain best
performance, but there are situations in which this is not the case.  One example is any application in which power
consumption is more important than performance.  Since power consumption increases approximately linearly
with clock frequency for CMOS devices like the USB97C102, lower clock frequencies translate directly into lower
power consumption.  Another consideration is the speed capabilities of the various hardware devices connected to
the USB97C102, some of which might not be capable of operation with the fastest clocks.  For the MCU, it is
possible to slow the clock frequency before accessing a slow external peripheral device and then to restore the
higher speed clock after the access.  Since the DMAC operates asynchronously with respect to the software, the
same technique cannot be used, and the DMAC should usually be set at a clock frequency, based on the
capabilities of the slowest attached device that remains constant.
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UTIL_CONFIG Register
The four lowest GPIO pins are multi-function, and this register provides control of the function of each of the
individual pins.  Although this register can be manipulated dynamically at run-time, it is most common to "set it and
forget it" at initialization time.

In applications that use the MCU's internal Serial Port, this register is used to enable the Tx and Rx signals onto
the GPIO0 and GPIO1 pins.  This Serial Port is not nearly as capable as the 550A UARTs found in contemporary
SIO devices, but it can be useful in some applications.

This register also permits input trigger selection for the MCU timers either from the USB SOF or from a GPIO pin.
The ability to hardware trigger a timer from the SOF has a variety of uses, including (i) detection of a USB suspend,
(ii) detection and reconstruction of missing SOFs, and (iii) intra-frame time measurement for Isochronous rate
feedback.  The ability to trigger a timer from a GPIO pin, combined with the fact that the timers can create interrupts,
can be used to provide additional GPIRQs.  However, the standard GPIRQs are more than sufficient for most
intended applications of the device.

Since the desired setting of this register is application dependent, the sample code again makes use of a global
BYTE in code space whose value is defined in the application code.

GPIOA_DIR Register
All GPIO pins are bi-directional, and this register controls the direction of each individual pin.  Note that a pin's
direction must be explicitly set in this register, regardless of the pin's function having been set in the UTIL_CONFIG
register.  For example, setting the GPIO1/TXD pin function to TXD in the UTIL_CONFIG register does *NOT*
automatically make the pin direction an output pin; the corresponding bit in GPIOA_DIR register must be set in
order to do this.  Note that at POR, all pins are defined as inputs, so it is necessary to use a resistor (or other
mechanism) in order to pull each signal high or low if a defined logic level is needed prior to the time when the
software can set the appropriate registers.

GPIOA_OUT Register
This register defines the logic level applied to GPIO pins whose direction is set as output.  Note that if this register
is manipulated in an ISR(s) in addition to the foreground, then the foreground code should disable interrupts
before access to this register and then restore the IRQ enable when finished; see Chapt3.C for an example of this.

MEM_BANK Register
This register controls a movable 16 KB window that appears identically in both the CODE and XDATA address
spaces (i.e., Von Neuman model) of the MCU at address 0xC000.  The memory accesses are to the FLASH Bus,
and this register controls the high 6 bits of the 20 bit physical address.  Among other things, this register can be
used for bank selecting code pages, which is described later in this section.

For applications that need to store more data than what will fit in the internal RAM, this address space can be used
to access external RAM.  ROM Monitors often require this (Von Neuman) style of memory as well.  On the
EVB97C102, there is a 128 KB RAM located at physical address 0x40000 (i.e., 256K above address zero);  to map
the start of this RAM, fill the MEM_BANK register with 0x10 (the high 6 bits of the address, right-aligned in this
register), which is what Chpt3.Hex does.

There are a number of considerations if this address space is used for RAM that contains variables declared as
BYTE_X, etc.  First of all, the compiler's start up code will execute before the application has an opportunity to set
the MEM_BANK register contents.  This means that either any variables allocated there must not be initialized by
the startup code, or that the start up code must be modified to set this register before doing the initialization.  Of
course, the Linker also needs to be informed of the location of the 0xC000 window in order to generate the proper
code.
Do not be misled by the name "FLASH Bus" since nothing about this bus restricts its usage to only Flash Memory
devices.  With its 8-bit Data, 20-bit Address and ISA-style nRD and nWR signals, it can be used for any
combination of RAM, ROM, EPROM, EEPROM, FLASH, and peripheral I/O devices.  The two primary differences
between this bus and the ISA bus are (1) the ISA bus has DMA, while this bus does not, and (2) the ISA bus must
be shared with the DMAC while this bus is owned full time by the MCU.  As a result of this last fact, it is preferable
to interface all non-DMA peripherals to this bus.

In addition to the movable window described above, there is also a single fixed 16 KB window mapped to address
zero both on the Flash Bus and in the MCU code address space.  For applications that can fit in 16 KB of code
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space, this window is sufficient to contain the program code and the movable window can be used for external
data access as was previously described.  For applications that require more code space, the movable window is
also mapped into 0x4000-0x7FFF in the MCU code space, and can be used for program storage.  If the
MEM_BANK register is set to 0x01 (the POR default value), then this second window will map straight through to
the Flash Bus, which provides a contiguous 32 KB code space starting at address zero on the Flash Bus; this is
what Chpt6.Hex does (V1.1 and later).  Treating the low 16 KB window as the “root” segment, placing the overlaid
code in the upper 16 KB movable window, and using the MEM_BANK register to select the desired overlay can
support code overlays .  For applications that require both large code space (with or without overlays) as well as
external RAM or I/O access, a simple decoder (e.g., a PAL, CPLD, FPGA, etc.) can be placed on the Flash Bus that
maps the top (e.g., 1 KB) portion of each 16 KB page (except probably for the bottom page) to the RAM or I/O
device(s), with the lower portion (e.g., 15 KB) of each page selecting the desired ROM page.

MEM_BANK2 Register
This register controls a movable 16 KB window that appears identically in both the CODE and XDATA address
spaces (i.e., Von Neuman model) of the MCU at address 0x8000-BFFF.  The memory accesses are to the FLASH
Bus. MEM_BANK2 register controls the most significant 6 bits of the 20-bit Flash address bus. These 6 bits are
used for bank-selecting one of the 64 16K byte Banks/Pages in the external flash bus.

Note: MEM_BANK2 register resets to a default value 0x00, mapping directly to BANK/PAGE 0.

IOBASE Register
This register is used to access the 64k bytes of ISA I/O that is available on the ISA bus. The ISA bus is accessed
through a 256 byte movable window that appears at XBYTE [0x4000]; the most significant 8 bits of the 16-bit ISA I/O
address are contained in the IOBASE register.  Since it is common to have peripheral devices spread throughout
the ISA address space, it is common for this register to be re-written extensively at run-time.

It is common for foreground code to perform this type of manipulation, so if this register is manipulated in an ISR
as well, it is important that it be saved and restored in the ISR in order to avoid disrupting the foreground code.

In order to address an I/O port located (e.g. at 0x0577h) on the ISA bus, load IOBASE register with 0x05h and
access the I/O port through 0x4077h in the Xdata space. If wanting to access the registers of the 8237A DMA
controller, which is internal to the USB97C102, load IOBASE register with 0x00h and R/W to 0x4000 in the Xdata
space. IOBASE register is loaded with 0x00h, since the registers of the DMA controller are located in the ISA I/O
space at base address 0x0000h. Only the DMA controller can access the MMU’s packet buffers via the ISA bus.

MEMBASE Register
This register performs a similar function to the IOBASE register, except that it controls a 4 KB movable window into
the ISA memory address space that appears at XBYTE [0x5000]; the high 8 bits of the 20-bit ISA memory address
are contained in the MEMBASE register.  All of the comments about the IOBASE register above apply to this
register as well.

Shared Bus Architecture Basics:
Note that the ISA bus is shared between the MCU and the DMAC, so the MCU must acquire ownership of the ISA
bus before it can access it.  A variety of issues related to this is discussed in detail in a later chapter.  For the
moment, it is sufficient to mention that the functions  IsaAcquire() and IsaRelease() in USB97102.H provide the
mechanism by which the MCU can acquire ISA bus ownership and release it back to the DMAC respectively.  Since
ownership of the ISA bus by the MCU suspends all DMA traffic, it is usually desirable to disable interrupts for the
duration of the ownership in order to prevent DMA suspension for an extended period of time while the ISR
executes;  the functions InterruptDisable() and InterruptEnable(), also in USB97102.H, provide the means for
doing this.  Note that, like any 8051 derrivative, the EA bit provides a global interrupt enable (when TRUE), and it is
usually desirable to save/restore this bit when manipulating it.

SioInit()
This function, which is contained in Sio.C, initializes the FDC37C672 SIO device on the EVB.  Since the examples
in this document only make use of a single COM port and the LPT port, these are the only functions that are
initialized.  For other applications, the device contains an additional COM port (with a full set of handshake lines on
the EVB), an FDC (Floppy Disk Controller), P/S Keyboard/Mouse controller, and the COM2 port used in these
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applications can be reconfigured as an IrCC (InfraRed Communications Controller) that supports IrDA FIR (Fast
InfraRed), as well as a variety of Consumer IR protocols.  For detailed information about the SIO device, the
interested reader is referred to the device Data Sheet.

Briefly, the SIO device is intended for use on a PC motherboard controlled by a PnP/APM and/or ACPI BIOS.  As a
result of this, all hardware resource assignments are fully configurable and each device can be disabled as well.
The SioInit() function simply configures the COM2 and LPT devices to use the resource assignments defined in
SIO.H.  SIO.H then defines various registers and bit fields based on these values.  It is instructive to look carefully at
the manner in which SIO.H performs the register definition -- each register is defined in such a way that the final
xdata address is calculated at compile time, and not at run time, which results in optimum performance; a
comment to this effect appears in the source code.

Note that this function saves and restores the state of the EA bit and disables interrupts before acquiring the ISA
bus in order to access the SIO.  On return, the BUS_REQ and IOBASE registers are restored to their previous
settings, along with the EA bit.  Although this register save/restore is not necessary for a function that executes only
at initialization time, the technique is useful in many other places, and this basic code sequence will be seen often
in the examples.

Since the examples use the COM2 port for debug console I/O, SioInit() calls the function Com2Init() to initialize the
COM port before it returns.  The COM port is set for 115.2 Kbps, 8 data, 1 stop, and no parity.  Note that the COM2
port on the EVB has no handshake lines, so there can be no hardware flow control.

Platform_Display()
One EVB (ASSY 6126 Rev. B) contains a HP 8-Character LED display that is connected to ispLSI 1032 I/O lines.
This function, which is contained in Debug.C, will display the first 8 characters from the string to the display .  For
the examples in this document, the corresponding string  “ChapterX” of the corresponding program will be
displayed .  In practice, this function is used as a debugging tool if the software appears to get hung at some
unknown location; A “failed” string will be displayed. Also, by placing calls to this function at various points in the
code, it becomes possible to determine what section of code executed last before the system hung.  Execution
time is relatively short, on the order of about 10 microseconds, so even relatively frequent calls will not have a
significant impact on execution timing.

DBGPRINT()
This is a macro function defined in Debug.H that is conditionally compiled based on a "DBG" command-line switch
to the compiler.  When this switch is defined, the function simply passes its argument to printf() in the RTL (Run-
Time Library);  when this switch is not defined, DBGPRINT() compiles to nothing.  This permits keeping extensive
debugging information in the source code, while being able to make a compact production release by simply
undefining DBG.  It also permits disabling DBGPRINT in various sections of the source code by using preprocessor
directives (#ifndef DBG / #define DBG, #ifdef DBG/ #undef DBG).

There is also a DBGTRACE macro function that behaves in a similar way, except that it is also gated by TRACE_ON.
Changing the value of this symbol in the source code permits disabling TRACE messages while leaving PRINT
messages enabled.  One use for this capability is to use TRACE messages to show the code execution sequence
for "normal" conditions, and to use PRINT messages to display any error conditions.  Once the code seems to be
functional, the TRACE messages can be disabled, resulting in smaller code size and MUCH better performance
(since printing through a COM port is really S--L--O--W), but any errors are still displayed.  If the cause of an error is
not obvious, then the TRACE  messages can be enabled again simply by uncommenting a single line in Debug.H.
The author found all of this very useful when developing the example programs.

printf()
This RTL function eventually calls the putchar() function, which appears in Debug.C.  In the example code, this
function just redirects to Com2SendByte() from Sio.C.  For other target hardware platforms this code could instead
make use of the MCU Serial Port, a COM port contained in a ROM Emulator, or any other output device that
happens to be available.

Unfortunately, this function is usually not reentrant, even in RTL's intended for embedded applications, so none of
this can be used in an ISR.  However, the execution time of a printf(), especially through a COM port, is so long that
you would not want to do it in an ISR anyway.  If it is necessary to display information from an ISR, it is suggested
that a circular buffer be used in which the ISR places very short messages, perhaps a single DWORD or so, and
the foreground polling loop can then send them to the terminal.  By keeping ISR's as short and as simple as
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possible, it should not usually be necessary to do this, so none of the sample code illustrates the technique; as
the text books say, "It is left as an exercise for the interested reader.”

Com2SendByte()
This function, from Sio.C, does the usual dance with EA, BUS_REQ and IOBASE.  The hardware resource
assignments, register access, etc. are all from Sio.H.

The one interesting twist is that, while it is waiting for the UART to be ready for Tx, it restores the registers and the
EA bit in order to permit DMA and IRQs to proceed.  This is critical if DBGPRINT's are to be used successfully in an
actual USB application, since not doing so would suspend IRQs and DMA for up to 100 uS (@ 115.2 Kbps, and
much longer at slower speeds) every time this function was called, which would not be a good thing.

kbhit()
This function, from Debug.C, simply redirects to Com2IsRxRdy() in Sio.C, similar to the arrangement with putchar()
above.  Once again, redirection could be to any other available input device for other target hardware platforms.
Com2IsRxRdy(), as usual, gets its hardware assignments from Sio.H, does the usual EA, etc. dance as before,
and simply returns the appropriate bit from the UART's LSR.  Note that this function is fairly fast since it never has
to wait for anything, unlike Com2SendByte().

_getkey()
This function, also in Debug.C, simply redirects to a function in Sio.C, this time Com2GetByte().  The same
methods are used here as for the other functions previously described.

HINT:  Note that this function will wait for a keystroke, so it can be useful to check kbhit() first before calling this
function in order to avoid waiting for an indefinite period of time.

Delay1uS():
From USB97102.C, this function implements an accurate software time delay based on an MCU clock of 24 MHZ.
Note that the function does not change the IRQ enable, so it is up to the caller to do so if that is what is really
desired; it is not often desired to disable IRQ's while waiting in a time delay function, but in very special
circumstances (e.g., doing precise timing interfaces to a hardware device) it has its uses.

Code Example: Chpt3.Hex
This program initializes the hardware, prints a message on the debugging terminal, waits for a keystroke,
performs a RAM test on both the ISA and FLASH busses, and pulses a GPIO pin in an infinite loop.

In order to execute this program, the COM2 jumpers on the EVB must be set to select the SIO, as opposed to the
MCU COM port. On Assy 6126 Rev. B, JP9 and JP10 must have jumpers between pins 1 and 2.   See Chapter 2 for
a general description of the equipment setup.

The use of "goto" statements in C code is something of a religious issue.  Many C purists feel that it was a mistake
to even include it in the language, but many of these same people have no problem using setjmp/longjmp; go
figure...  It is the author's style to use goto's in lieu of C++ or Win32 Structured Exception Handling (e.g.,
try/throw/catch or try/leave/finally), especially in situations in which there is some non-trivial exit processing to do.
Consistent with this philosophy, there are a total of 3 places in the entire sample code for this document in which
goto's are used; readers who are offended by this style are welcome to modify the code to eliminate them.

The RamTest() function performs a test of the RAM devices on each bus;  it is based on a simple traveling-
zero's/traveling-one's algorithm.  Note that it does the dance with EA and BUS_REQ even though it is not needed in
this particular application since no IRQs or DMA are enabled; the same can be said for disabling/enabling IRQs
around the GPIO pulsing in the final loop.  However, that exact sequence is required in real applications in which
IRQs are being processed and the ISR will often be accessing the same GPIOA_OUT register.  It was the author's
judgment that the reader would be better served by illustrating these techniques right from the beginning, rather
than showing coding techniques at this point that would need to be unlearned in a later chapter in order to create
code that could be used in a real application.

The reader is strongly encouraged to execute this program as part of validating the equipment setup.  In
particular, failures on either of the RAM tests can be caused by an improper interface to the ROM Emulator, as was
described in Chapter 2.
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CHAPTER 4 - THE MMU

The MMU (Memory Management Unit) is responsible for managing the 4 KB Data Buffer RAM that is used for all
USB communications.  The memory is organized as 32 pages of 128 bytes each.  Since each USB packet has an
8-byte packet header associated with it, this means that a maximum size (64 bytes) USB BULK packet can fit in a
single MMU page.  Larger packets are handled by the MMU concatenating multiple (up to 10) pages together.  Even
when packets are physically comprised of multiple pages, the MMU creates the illusion of a single large virtually
contiguous packet for all 3 ports:  the SIE (interface to USB), the MCU (for PIO), and the DMAC.

The MMU in this device is extremely similar to the MMU in the SMSC LAN91C94/5/6 devices, and the interested
reader is referred to those data sheets for a more complete discussion of the architecture; the focus of this chapter
is on the register-level programming instead.

Allocating and Freeing Packet Memories with the MCU

The MCU can instruct the MMU to allocate a packet of a desired number of pages, or to free a specific packet, by
using the MMUCR (MMU Command) register.  The MCU can tell when an allocation has completed by checking the
ARR (Allocation Result) register.  Assuming that the MMU has enough free memory pages to satisfy the request,
the allocation is very fast (a couple of microseconds or so), so the firmware should just wait for the allocation to
complete (as opposed to leaving the procedure and doing other work).    

The following block of code will allocate a packet:

MMUCR = (MMUCR_ALLOCATE_ | (numPages-1));
while (ARR & ARR_FAILED_); /* wait for MMU to finish */
pkt = ARR & PN_MASK_; /* save result */

The following block of code will free a packet:

PNR = pkt;
MMUCR = MMUCR_RELEASE_;

Note that the packet number, saved in the variable "pkt" in the above code examples, is analogous to a handle -- it
tells the MMU which packet is being referred to, but has no particular relationship to any physical memory address,
etc. The detail of what to do with these packet numbers is discussed in the following sections.

The MakePkt() function in Chpt5.c shows an example of allocating a packet, and also of filling it with data, which is
discussed in the USB Transmission section below.  The FreePkt() function in Chpt5.C shows how to free a packet
using these methods.

USB Reception
As each Rx packet arrives from the USB and the MMU allocates a packet memory for it, it pushes the packet
number onto a queue that the MCU can access by reading the RXFIFO register.  The MCU can then inspect the
packet header (the first 8 bytes of each packet) in order to decide what to do with it, based on things like the Data
Toggle PID, Endpoint Address, etc.  The MCU then has a choice of dropping the packet and freeing the memory, or
of just removing the packet from the RXFIFO queue but leaving the memory allocated.

Normally, handling USB Rx packets is done in Isr0(), which is the ISR that handles IRQ0 interrupts;  an example of
unmasking this interrupt is shown in main() in Chpt6.C.  To do this, the corresponding bit in the IMR_0 register
must be cleared, and IRQ0 must be enabled in the MCU's EX0 SBIT:

EX0 = 1
IMR_0 = ~INT0_RX_PKT_;
InterruptEnable();
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Having done this, the ISR for IRQ0 will be executed each time a USB Rx packet arrives.  In the ISR, the MCU can tell
if the IRQ is from a USB Rx by inspecting the RXFIFO_EMPTY_ bit in the RXFIFO register.  Assuming that there is
one or more packets in the RXFIFO, the MCU can access the packet at the head of the RXFIFO by doing the
following:

PRL = 0;/* packet header begins at offset zero */
PRH = PRH_RCV_ | PRH_READ_ | PRH_AUTO_INCR_;
pktHdr0 = MMU_DATA;

/* TODO:  read any other bytes of interest */

Setting the PRH_RCV_ field in the PRH register tells the MCU to access the packet at the head of the RXFIFO, rather
than the one in the PNR, for subsequent transfers through the MMU_DATA register.  The other fields in the PRH
setting tell the MMU to read from the packet, as opposed to writing to the packet, and to increment addresses after
each access.  If it is desired to read from a packet that is not at the head of the RXFIFO, this can be done by placing
the packet number in the PNR, and then setting the PRH for PRH_PNR_.  For example:

PNR = pkt;
bOldEA = EA; /* see next section in Reference Guide text */
InterruptDisable();
PRL = 6;/* byte count is at offset 6 */
PRH = PRH_PNR_ | PRH_READ_ | PRH_AUTO_INCR_;
EA = bOldEA;
cntLo = MMU_DATA;
cntHi = MMU_DATA;

Note that, in the code samples above, the PRL register is ALWAYS written before the PRH register;  this is a device
requirement and is not optional.  As a result of this fact, it is critical that interrupts be disabled in any foreground
thread that uses these registers if they are also shared by an ISR.  Failing to do so can result in the ISR writing the
PRL register after the foreground has done so, but before the foreground has written the PRH register, which
violates the device requirement for accessing these registers.  The code sample above illustrates this technique,
which is used often in the example programs (see Chpt5.C and UsbCore.C).

A careful reading of the USB97C102 Data Sheet reveals that the MMU can take up to 1.218 uS after the PNR is
written to present valid READ data.  One might think that it is necessary to insert extra delay after setting PRH
before reading MMU_DATA, but this is not the case.  The reason for this is the way the MMU is interfaced to the
MCU in its XDATA address space.  Recall that XDATA access must use the DPTR register, and that the PRH and
MMU_DATA are at different addresses in the XDATA address space.  As a result of this, the most efficient code
possible for reading the MMU_DATA register after writing the PRH register is as follows:

MOV DPTR, #6000H
MOV A, @DPTR

Each of these is a 2-cycle instruction, with the actual XDATA access happening in the 2nd cycle of the MOV A,
@DPTR instruction.  As a result, an absolute minimum of 3 instruction cycles is guaranteed, which is more than
the time that the MMU needs.

The Data Sheet says that the MMU sequential access time is 588 nS.  Since access to the MMU_DATA register
requires a MOV A, @DPTR instruction, which takes 2 instruction cycles, this access time is satisfied, even when
the MCU operates at its maximum clock frequency of 24 MHz, so no additional delay is required.

Getting back to the received packet, Byte0 in the packet header is the most interesting when handling a USB Rx
packet.  First of all, there is the PKT_HDR_BAD_CRC_ bit that will be set if the packet arrived with a bad CRC; such
packets should always be dropped:

if (pktHdr0 & PKT_HDR_BAD_CRC_) {
MMUCR = MMUCR_REMOVE_RELEASE_;
goto _next_pkt;

}
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Note that the REMOVE_RELEASE_ command applies to the packet at the head of the RXFIFO, and not to the packet
number in the PNR; the command both removes the packet from the RXFIFO and releases the memory that had
been backing the packet number.

Since in practice the USB has a very low BER, it should not be often that a packet will arrive with a bad CRC, but
properly written software will check for it nonetheless.  The fact that the occasional bad CRC packet is received is
useful for ISO applications in which it is necessary to know in which specific USB frame the packet arrived, even
though the data is unusable.  As an aside, the packet header also contains the USB frame number in which the
packet arrived, which is also useful in ISO applications.

The pktHdr0 byte also contains the EP address in the low nibble:

ep = pktHdr0 & EP_MASK_;

The target EP is significant in order to determine how to handle the reception.  For example, the Data Toggle PID
should be ignored for ISO, but it must be checked for BULK packets, and Control Write packets on EP0, in order to
detect duplicate packets, which should be dropped.  The pktHdr0 byte contains 2 bits for this purpose:
PKT_HDR_LAST_TOG_  contains the Data Toggle value of the previous packet received on the same RxEP, while
the PKT_HDR_SAME_TOG_  bit indicates if the current packet's Data Toggle is the same as the previous packet.
One might assume that simply checking the PKT_HDR_SAME_TOG_  bit would be sufficient for BULK packets, but
it is not because a Control Transfer (e.g., CFES, etc.) might have executed between the receptions.  The solution is
to maintain a bit variable in software for each RxEP that keeps track of the expected Data Toggle.  As each packet
arrives, the Data Toggle for that packet is calculated and compared with the expected value;  packets with the
incorrect Data Toggle value are discarded.

switch (ep) {
case 1:

if (pktHdr0 & PKT_HDR_LAST_TOG_) /* expect opposite toggle from last time */
bThisTog = 0;

else
bThisTog = 1;

if (pktHdr0 & PKT_HDR_SAME_TOG_) /* unless it turns out to be the same */
bThisTog = ~bThisTog;

if (bThisTog != bEp1RxToggle) { /* mismatch, so drop pkt as a duplicate */
MMUCR = MMUCR_REMOVE_RELEASE_;
goto _next_pkt;

}

bEp1RxToggle = ~Ep1RxToggle; /* invert toggle for next time */

/* TODO:  whatever you do with packets for this EP */
MMUCR = MMUCR_REMOVE_; /* remove from RXFIFO, but keep memory */

break;

case xxx:

The situation for duplicate packets is anlogous to that for bad CRC -- it should not be expected to happen often, but
it can happen, and properly written software will handle it as described.

As can be seen from the above code samples, it is necessary to use at least the PRH and PRL registers, and
sometimes also the PNR, in order to handle a USB reception.  However, these registers are also used by the
foreground thread whenever it has to access a packet memory.  Assuming that the receptions are handled in an
ISR, it is necessary for the firmware to save these registers on entry and to restore them on return.  It is also
necessary for the foreground thread to disable interrupts while accessing the PRL/PRH register pair, as was
previously described.

void UsbRxIsr(void)
{
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if (!(RXFIFO & RXFIFO_EMPTY_)) {
/* Save MMU registers */
oldPNR = PNR;
oldPRL = PRL;
oldPRH = PRH;

do {
/* TODO:  Handle all receive packets */

while { (!(RXFIFO & RXFIFO_EMPTY_)));

/* Restore MMU Registers */
PNR = oldPNR;
PRL = oldPRL;
PRH = oldPRH;

}

A careful reading of the USB97C102 Data Sheet reveals that the PNR, PRH, and PRL registers should not be
modified for at least 2.5 uS after the previous write to MMU_DATA when writing to a packet, which the foreground
thread might have been doing when the IRQ happened.  However, just saving the MMU registers takes much more
than 2.5 uS, so the required time is more than satisfied without adding any extra delay.

An alternative strategy for ISO applicatons is to use the INT1_SOF_  IRQ instead of the INT0_RX_PKT_ IRQ; doing
so will cause the ISR to execute exactly once for each USB frame, which is a desirable characteristic in some ISO
applications.  In addition, if the code is carefully structured, it might be possible to never disable IRQs in the
foreground.  If this can be achieved, and if the ISR code is written with minimal branching and branch balancing,
then the execution of every part of the ISR will exhibit low jitter from one USB frame to the next, which is a desirable
characteristic in most ISO applicatons.

Another strategy issue is where to check for bad CRC and Data Toggle -- in the ISR or in the foreground.  It is the
author's preference to do it in the ISR so that the corresponding packet memories can be freed as quickly as
possible, and it also keeps all of this code in a single place, instead of distributing it among the foreground device
handlers.  In addition, it avoids any consideration of synchronizing with EP0 transfers like CFES.  However, either
approach is valid, provided that the checks are performed someplace in the code.

In applications that use 64-byte BULK packets, a fast Host can deliver a packet roughly every 50 uS.  In most
cases, it is desirable to have an RXFIFO loop that is at least as fast as the packet arrival time in order to avoid an
overrun situation.  This suggests that the minimum necessary processing should occur in the RXFIFO loop, and
the code should be written for the best possible execution speed.  This in turn affects the style with which the code
should be written, as was previously discussed in Chapter 2.  It is this concern for speed that makes it reasonable
to even consider deferring the CRC and Data Toggle validation.

Regardless of how the receive handling code is designed, it is essential that it be implemented in such a way that
the RXFIFO never overflows and the MMU never runs out of free pages.  The reason for this is that it is a
requirement that every USB device must always be capable of receiving a SETUP packet on EP0;  if either of the
above conditions occurs, the device will not be capable of receiving anything, including a Setup packet, rendering it
out of compliance with the USB Specification.  The details of both Rx and Tx Memory Management Policy (MMP)
code are discussed in later sections of this chapter.

USB Transmission
In order for the MCU to request that the MMU queue a packet for transmission on the USB, the first thing the MCU
needs is a packet.  This can either be a packet that the MCU allocated, or it can be one that was allocated by the
MMU as a result of a USB reception.  In fact, taking a packet number that arrived in the RXFIFO and retransmitting it
is the most basic form of Loopback test with this device.

Once a packet has been obtained, the next thing to do is to write the desired byte count to the header portion of the
packet; this is how the SIE knows how many bytes to send on the USB.  Finally, the data portion of the packet can
be filled, starting at a byte offset of 8, since the first 8 bytes are considered to be the header by the SIE.

The byte count is usually written to the packet by the MCU using PIO (Programmed I/O) through the MMU_DATA
register.  The data portion of the packet is usually filled by the DMAC (which is discussed in a later chapter) for high
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performance devices, but can also be filled by the MCU for slower non-DMA devices, and is almost always filled by
the MCU when handling EP0 traffic.  When writing to a packet using the MCU, the sequence is as follows:

PNR = pkt;
bOldEA = EA;
InterruptDisable();
PRL = 6; /* offset of count low byte in packet header */
PRH = PRH_PNR_ | PRH_WRITE_ | PRH_AUTO_INCR_;
EA = bOldEA;
MMU_DATA = LOBYTE(wSize);
MMU_DATA = HIBYTE(wSize);

while(bytesToSend--)
MMU_DATA = *pBuf++;

/*
 * TODO:  be sure to wait at least 2.52 uS before changing PRH or PNR,
 * which is not hard to do on this MCU
 */

Setting the PRH_PNR_ field (actually, it clears a bit) in the PRH register causes the MMU to use the packet number
in the PNR register, rather than the head of the RXFIFO, for the subsequent access through the MMU_DATA
register.  For an example using this technique, refer again to the MakePkt() function in Chpt5.c.

Each of the 16 USB TxEPs has a 5-deep TxFIFO associated with it.  Each enpoint has a three bit up/dn counter,
TX_FIFOx, which will maintain the number of packets queued for transmit at that endpoint. The counter is
incremented when there is a push on the TxFIFO of the corresponding enpoint, and it is decremented when there
is a pop on the Tx FIFO of the corresponding enpoint.

The empty/full status of each TxFIFO is available to the MCU in the TXSTAT_A - TXSTAT_D registers.  When the
MCU wants to transmit a packet on a given TxEP, it must first check to make sure the corresponding TxFIFO is not
already full, and then the MCU must push the packet onto the TxFIFO.  Once the packet is filled with data, its packet
size is set (the order is not important, just as long as they both get done), and it is known that there is room in the
desired TxFIFO, then it is time to queue the packet for transmission.  To do this, the packet number must be written
to the PNR, the desired USB Endpoint Address must be written to the TX_SEL register, and the MMUCR must be
written with the command:  MMUCR = MMUCR_ENQUEUE_.  The following code sequence illustrates these
techniques by queuing a packet for transmission on txEP2:

if (!(TXSTAT_A & TXSTAT_A_ EP2TX_FULL_)) {
PNR = pkt;
TX_SEL = 2;
MMUCR = MMUCR_ENQUEUE_;

}

When IN tokens arrive from the Host, the SIE will transmit the packets in the order they were pushed on the
corresponding TxFIFO.  As each packet transmission is completed, the packet number is pushed onto the Tx
Completion Queue, which the MCU can access in the TX_MGT2 register.  Note that the MCU is not required to
inspect this queue, it is simply available if the firmware author wishes to use it; there is no problem with letting the
queue overflow.  One use for this queue is the situation in which the firmware is implementing Memory
Management Policy code, and as a part of that code, it is keeping track of how many packets are presently owned
by each TxEP.  By inspecting the Tx Completion Queue, the code can correctly decrement the count for the
corresponding TxEP as each packet is actually sent.  For example:

while (! ((temp=TX_MGMT2) & CTX_EMPTY_) ) {
pkt = temp & PN_MASK_;
/* TODO:  whatever you want to do with the packets */

}

When a packet is transmitted, the default case for the MMU is to free the corresponding packet memory
automatically.  However, this feature can be disabled using the TX_MGT_MEM_DALL_ bit in the TX_MGT register.
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One possible reason for not having the packets freed automatically is to permit the packet memories to be
recycled after transmission without having to go through a new allocation.  However, the MMU can allocate packets
quickly, so there is usually no obvious benefit to this approach.

Flushing a TxFIFO:
There are situations in which it is necessary to flush the packets that have already been queued for transmission
on a particular EP;  an example of this is when handling a CFES command.  There is a RESET_TX_ command in
the MMUCR, but this will ONLY reset the specified TxFIFO -- it will NOT free the associated packet memories.  In
order to release the packets, the MCU must remove the packets from the TxFIFO and free them one at a time;  the
POP_TX register provides the mechanism for doing this.  The following code sequence illustrates the correct way
to flush a TxFIFO:

MMUTX_SEL = 2;
while (! (TXSTAT_A & TXSTAT_A_EP2TX_EMPTY)) {

PNR = POP_TX & PN_MASK_;
MMUCR = MMUCR_RELEASE_;

}
MMUCR = MMUCR_RESET_TX_;

Although the methods used to control the state of each EP are described in a later chapter, it is important to note
here that the EP corresponding to a TxFIFO that is being flushed must *NOT* be enabled during the flushing
operation due to the possibility of the Host issuing an IN token during the flush.  Note that when handling a CFES
command, the EP is already STALL'd, so this requirement is automatically satisfied.

Memory Management Policy (MMP)
The Memory Management Policy feature permits limiting the number of received packets in memory per endpoint.
It allows the USB97C102 to dynamically utilize the memory buffer; supporting 32 endpoints with finite buffer
memory.

MMPCMD Register:
This register allows the MCU to access and control the up/down counters for each endpoint. A five-bit up/down
counter will be implemented for each endpoint. Each counter will be incremented by the MCU to initialize the limit,
then decremented by the hardware as packets arrive at its corresponding endpoint, and incremented by the MCU
after it releases the packet. If the count reaches 0, and the MMP feature is enabled, then the hardware will not
receive the packet and will NAK non-isochronous OUT tokens. If the count is zero, it will not decrement further; if the
count is 31 it will not increment further. The MCU can enable or disable this feature independently for each
endpoint. The default condition is disabled.

If MMP feature is disabled before counter reaches zero, the endpoint counters will still count, but there will be no
MMP action taken when the counter reaches zero.

Setting the MMP method support:
:
:

{

#if 0

endpoint_rx_busy(0);

/* Resetting the counter to zero and disabling the MMP */
  

MMPCMD = MMP_RST_DSB_ | 0;

/* Increment the count */

 MMPCMD = MMP_INCREMENT_ | 0;

/*Enabling the MMP */

MMPCMD = MMP_ENABLE_ | 0;
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/* This will cause the count and the enable / disable state to be latched into the MMPSTAT reg */

MMPCMD = MMP_GETSTATE_ | 0;

#endif
:
:

}

IN / OUT Nak Registers:
During a well-implemented token decode, a function upon receiving a data packet, may return any one of the three
handshakes types. If data is corrupted, the function returns no handshake. If the data packet was received error-
free and the function’s receiving endpoint is halted, the function returns STALL. If the transaction is maintaining
sequence bit synchronization and a mismatch is detected then the function returns ACK and discards the data. If
the function can accept the data and has received the data error-free, it returns ACK. If the function cannot accept
the data packet due to flow control reasons, it returns NAK.

NAK can only be return by functions in the data phase of IN transactions or handshake phase of OUT
Transactions. The host can never issue NAK. NAK is used mostly for flow control purpose to indicate that a
function is temporarily unable to transmit or receive data, but will eventually be able to do so without need of host
intervention.

Knowing this, the IN_NAK register’s bit(s) are set every time the SIE responds with a NAK to IN tokens on the
corresponding endpoint. It is reset when the MCU writes a one to the corresponding bit. OUT_NAK register works
the same way as IN_NAK register except that the corresponding bit(s) are set when SIE responds with a NAK to
OUT tokens. For example:

/* host is not retreiving the data fast enough */

if (!recovery_shunt_remainder)
    {
      recovery_shunt_remainder = 1;

/* if tx is in progress we can't purge, wait until we see an innak, so we know that no xmit is in progress. */

      INNAK_LO = 0xFF;
      endpoint_tx_busy(2);
      while (!(INNAK_LO & 0x04));

      txfifo_purge(2);

/* value of last pkt sent out */

      recovery_start_pkt = npkts_this_cyl;

      endpoint_tx_enable(2);

PAGS_FREE Register:
The MCU can determine the current number of free memory pages by inspecting the PAGS_FREE register, but this
is of limited use in a USB application while pages are constantly being allocating and freed.  There is a
PAGS_FREE_NAK_ALLRX_ bit in the PAGS_FREE register that can be used to reduce the traffic, but this should not
be used often, if at all, due to performance considerations.  Potentially this combination could be used to
implement a stochastic MMP algorithm.

It is the author's preference to use a deterministic MMP approach in which the peak memory usage of each EP is
planned in advance, and the run-time code consists of making sure that no EP ever goes over its limit.  An
example of such an approach appears in a later chapter.
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GP_FIFO's:
In the Data Sheet, these are lumped in with the ISA Bus Control Registers.  In this document, they appear here in
with the MMU Registers.  In the actual device, they do not have anything to do with either of these, but they are so
similar to the FIFO's that are part of the MMU, that this seems like the best place to put them.

Each of these FIFO's is byte-wide and 8 deep, with its own status register that indicates the empty/full status, just
like the TxFIFO's.  At POR, they are cleared empty.  Software should never read from them when empty, or write to
them when full, because the result is not defined.  Use of these FIFO's is as follows:

/* push a packet onto GP_FIFO1 */
if (!(GPFIFO1_STS & GPFIFO_FULL_))

GP_FIFO1 = pkt;

/* pop a packet from GP_FIFO1 */
if (!(GPFIFO1_STS & GPFIFO_EMPTY_))

pkt = GP_FIFO1;

There is an example of using these FIFO's in Ep0RxIsr() in UsbCore.C, which is discussed in a later chapter.
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CHAPTER 5 - DMA

Shared Bus Architecture Details:
The USB97C102 contains an 8237 DMAC, which is the same device used in the PC.  However, the interface to the
MCU in this device is different than the MPU interface in the PC because, unlike an MPU, the MCU does not have
any HRQ (Hold ReQuest) or HLDA (HoLD Acknowledge) signals with which to accomplish the traditional interface.
Although this section summarizes the DMAC operation, the interested reader is referred to the 8237 Data Sheet for
a complete description of the device.

In order to understand the operation of this interface, it is useful to first understand how the DMAC normally
interfaces to an MPU.  In this situation, when the DMAC wants to perform a transfer on the bus, it issues an HRQ to
the MPU.  The MPU will complete whatever instruction it is currently executing, it will then release the bus, and it will
indicate this release to the DMAC by activating its HLDA signal.  Once the DMAC sees the HLDA, it proceeds to
drive the bus, and signals this by activating its AEN signal.  Devices attached to the bus can then differentiate
between MPU and DMAC transfers by inspection of the AEN signal.  When the DMAC has finished with its transfer,
it will release the bus and the AEN and HRQ signals.  When the MPU sees the HRQ signal release, it will release
its HLDA and will then drive the bus again.  Because of this hardware handshaking between the MPU and the
DMAC, the DMA transfers can occur in between the MPU instruction executions; this technique is sometimes
called "cycle stealing" because the DMAC is effectively stealing bus cycles from the MPU.

Since the MCU has no HRQ or HLDA signals, the handshaking described above needs to be accomplished in
software on this device, which is why it is important for the programmer to fully understand the operation of the
traditional hardware approach.  The key to the software approach is the BUS_REQ register.  Setting the
BUS_REQ_HLDA_ bit in this register enables a hardware gate that issues an HLDA signal to the DMAC whenever
the DMAC issues an HRQ; in this state, the DMAC will obtain ownership of the bus "immediately" whenever it asks
for it.  If the MCU clears the BUS_REQ_HLDA_ bit, then the DMAC will complete its current transfer, after which it will
release the bus and deactivate AEN.  Since the MCU can read the state of AEN in the BUS_REQ_AEN_bit, it can
use this bit to tell when the DMAC has actually released the bus and the MCU then owns it.

There are IsaAcquire() and IsaRelease() macro functions defined in Usb97102.H that illustrate this process;
fortunately the macro's themselves are much shorter than the explanation of how they work:

#define IsaRelease() BUS_REQ = BUS_REQ_HLDA_

#define IsaAcquire() BUS_REQ = 0x00;  while (BUS_REQ & BUS_REQ_AEN_)

[Aside:  note that the trailing semicolons are intentionally omitted from the #defines so that these macros are used
exactly like functions in the source code that calls them.  Also note that, since they are macro's, there is no issue of
reentrancy should it be desired to use them in multiple threads e.g., foreground and an ISR.]

Note that the IsaRelease() macro always executes "immediately" because all it has to do is set the HLDA bit.
However, the IsaAcquire() macro is another story.  In the same way that an MPU cannot release a bus in the
middle of an instruction, a DMAC cannot release a bus in the middle of a transfer.  As a result, the IsaAcquire()
macro can take an appreciable amount of time to execute, depending on what the DMAC is doing at the time;  this
is described in detail in the following sections.

It is important to realize that all DMA transfers are suspended for the duration of the time that the MCU owns the ISA
bus.  This is unlike the cycle-stealing approach in the PC in which, while the MPU is setting up one DMA channel
for a future session, the other channels can continue to transfer concurrently.  As a result of this, it is important for
the MCU to acquire the bus as infrequently as possible, and to retain ownership for the shortest amount of time
possible.  As part of this, it is usually a good idea to disable IRQ's before acquiring ownership and to not reenable
them until the bus has been released; failure to do so can cause the MCU to retain ownership for an extended
period of time if substantial time is spent executing ISR code during the ownership interval.  For example:

oldEA = EA;
InterruptDisable();
IsaAcquire();

/* set up the next DMA session as quickly as possible */
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IsaRelease();
EA = oldEA;

This type of code sequence was seen extensively in Chapter 3, and this is the reason for it.

DMA Channels
The DMAC contains 4 independent DMA channels.  Each DMA channel can be individually programmed for Mode
and transfer Type, as described in the following sections, and can be individually enabled.  The exception to this is
for Memory-To-Memory DMA, which always uses both DMA channels 0 and 1, as described below.

DMA Transfer Modes
The DMAC supports three (3) different transfer modes: Single, Demand, and Block.  As part of discussing these, it
is important to differentiate between a DMA cycle, a DMA transfer and a DMA session:  a "session" is the
movement of the entire block of data programmed on a given DMA channel, and is composed of transfer(s); a
transfer is an indivisible unit of data movement within which the DMAC cannot release the HRQ signal (analogous
to an MPU not being able to release the bus within a single instruction) and is composed of DMA cycle(s); a DMA
cycle is an individual bus cycle, which is also indivisible.

In Single Transfer Mode, a single data byte is transferred for each DRQ issued by the attached device.  The DMAC
is able to release HRQ after each individual byte transfer in response to the MCU deactivating HLDA.  As a result,
IsaAcquire() executes rapidly if all of the attached devices use this mode.  However, this mode offers low
performance because of the hardware overhead involved, so most high bandwidth peripherals do not use it.

In Demand Transfer Mode, bytes are transferred for the duration of the time that the attached device holds DRQ
active.  Most devices that use Demand Transfer Mode (e.g., LPT in ECP mode, audio codec, etc.) contain a counter
that limits the maximum size of each burst in order to prevent the device from holding the bus so long that other
devices are starved for data.  Note that the DMAC cannot release the bus in the middle of a transfer, only in
between transfers, so the execution time of IsaAquire() becomes bounded by the largest burst size of the attached
devices;  this is usually on the order of 10 uS or so, which is not too bad. Examples of this type of transfer are
included in the example code for this chapter.

In Block Transfer Mode the entire DMA session is executed in response to a single DRQ from the attached device
(i.e., the entire session is treated as a single transfer), and the DMAC cannot release the bus for the duration of the
transfer.  In this mode, the only limit on the amount of time that the bus will be owned is the size of the session
programmed by the MCU.  For the USB97C102 device, the primary application for Block Transfers is when
performing Memory-To-Memory DMA (discussed below) to move a packet between the MMU and external ISA RAM;
since this is most common with BULK packets, whose size is limited to 64 bytes maximum, the transfer time is 64
uS at 8 MHZ.  It is desirable that IsaAcquire() not be called with IRQ's disabled while such a transfer in progress,
especially if the session size is large, and techniques for avoiding this are discussed in a later section of this
chapter.

DMA Transfer Types
Although the DMAC offers others, the three (3) transfer types of greatest relevance are Memory Read, Memory Write
and Memory-To-Memory.

In Memory Read and Memory Write, the transfer is between the memory and the attached device.  For these
transfers, the attached device in hardware generates the DRQ, and usually either Single Transfer or Demand
Transfer mode is employed.  As a result of this, IsaAcquire() executes fairly rapidly when all enabled channels are
used in this way.  Examples of this type of transfer are included in the example code for this chapter.  If the target
memory is the ISA RAM, then only channels 2 or 3 can be used, while all 4 channels are capable of device DMA
with the MMU.

For Memory-To-Memory transfers, channels 0 and 1 are both used.  In addition, a bit in the DMA_CMD register
must be set in order to establish this mode of operation.  Unlike device DMA, Memory-To-Memory transfers must
always use Block Transfer Mode, which means that IsaAcquire() can take a long time to execute.  In addition, the
channels should remain masked to hardware DRQ's, and a software DRQ is used instead. Examples of this type
of transfer are included in the example code for this chapter.
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It should be noted that Memory-To-Memory transfers have an adverse effect on performance since each individual
data movement involves two back-to-back DMA cycles:  the first cycle reads from the source memory into a
temporary register inside the DMAC, and the second cycle writes to the destination memory from the temporary
register.  In addition, there is usually a transfer either to or from a Device as the ultimate source or sink of the data,
so there is a total of 3 DMA bus cycles involved in each byte movement.  As a result of this, Memory-To-Memory
DMA as a method of performing scatter/gather should not be done for very high bandwidth devices.  However, it
can be extremely useful for certain types of devices, a prime example of which is an FDC, in which it is desired to
be able to read or write an entire track of the media in order to obtain the best performance from the physical (i.e.,
mechanical) device;  since the sustained throughput is fairly low, the relative inefficiency of the Memory-To-Memory
DMA is not an issue, and the overall performance is increased due to the improved utilization of the mechanical
device.

BUS_REQ_INH_TCx:
Normally, the DMAC activates the TC (Terminal Count) signal during the final transfer of a DMA session; this
informs the attached device that this is the final transfer.  In the USB97C102 device, firmware can control the gating
of the TC signal for each individual DMA channel in order to prevent a device from seeing the TC signal.  This
provides a mechanism for doing Scatter-Gather DMA in software.  Since disabling the TC to a device will normally
prevent that device from issuing an IRQ, the DMAC has the ability to issue an IRQ as a result of a channel TC
and/or DRQ, which is globally enabled and disabled using the INT0_ISADMA_ bit in the IMR_0 register; individual
DMA channel DRQ and/or TC IRQ's are enabled and disabled using the bits in the BUS_MASK register.  Of course,
TC can be polled, as previously described, instead of interrupt driven, if desired.

As an example, suppose that a number of small individual packets (e.g., 64 byte BULK packets) arrives on the
USB, and that it is desired to create the illusion of a single large contiguous DMA buffer and session when
transferring the packet contents to a device.  Due to the way the MMU allocates packet numbers, the organization of
the DMAC address space for the packets, and the 8-byte packet headers prepended by the SIE, it is never possible
for the payload data of the packets to be physically contiguous.  However, by setting up multiple DMA sessions,
one for each packet, and masking the TC to the device for all but the final session, from the perspective of the
device, the multiple small DMA sessions appear to be one large DMA session.

DMA_STS and BUS_STAT_CHxTC:
The DMAC contains a DMA_STS register that, among other things, contains a bit indicating the TC status of each
channel.  These bits can be useful in order to determine whether a given channel has completed the programmed
DMA session or not.  It is important to note that these bits CLEAR ON READ, so if this technique is used for multiple
channels, then it will be necessary to shadow these bits in software.  A suggested technique is to make a function
e.g., BYTE DmaGetSts() which reads from the physical DMA_STS register and OR's the contents into a shadow
byte, and returns the final shadow byte.  A companion function e.g., DmaClearTC() can do the same, but will also
clear the corresponding bit in the shadow copy;  this same functionality also needs to occur each time a DMA
session is setup on a channel.  Of course, every experienced firmware author has developed a favorite set of
techniques for dealing with such hardware, and any solution is valid that provides a properly working result.

However, since the DMAC is mapped in the ISA address space, accessing the DMA_STS register requires that the
MCU must first acquire ISA bus ownership, which defeats one of its best possible uses -- to determine if a DMA
session is done BEFORE acquiring the ISA bus, not afterwards.  However, the DMA_STS register is shadowed in
the BUS_STAT register, which is mapped directly in the XDATA space, so the MCU can read this shadow register
without acquiring the ISA bus.  In addition, since this is a shadow register, and not the physical DMA_STS register,
reads of this register are non-destructive i.e., reading the shadow copy clears no bits .  This permits firmware to
rapidly determine if the DMA session on any combination of channels has completed or not without having to
acquire the ISA bus in order to do it.  It is important to note that the physical DMA_STS register must be read during
session setup in order for the shadow register to be useful and that, since the shadow register is backing the
physical DMA_STS register with the clear-on-read characteristic, the BUS_STAT register must be shadowed in
software as well if the TC from multiple DMA channels is to be checked.

DMAC Address Space:
The DMAC is capable of addressing a 64 KB address space.  As is shown in the USB97C102 Data Sheet, the low
32 KB of this address space maps straight-through to the bottom 32 KB of the ISA Memory address space.  This
permits the DMAC to access an external RAM on the ISA bus, assuming that one is placed in this region.  This can
be useful if it is desired to transfer more data to or from a peripheral than will fit in the MMU buffers (e.g.,
reading/writing an entire track on an FDC, handling multiple max. size IrDA frames, etc.).
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The DMAC can directly address each of the 32 packet memories in the high 32 KB of its address space.  Each 1
KB block of this region corresponds directly to each of the 32 packets.  Note that this tacitly places a limit of 1016
bytes on the payload data, since each packet has an 8-byte header.

Sample Code:  Chpt5.Hex
This program sends a short test page to an HP-PCL printer (e.g., HP DeskJet, HP LaserJet, or compatible)
attached to the EVB using 2 different DMA techniques.  If a physical printer is not available, it is possible to create a
"NULL Printer" by jumping pins 11 (BUSY) and 24 (GND) on a male DB25 connector, or making the equivalent
connection on the EVB.  The program makes use of DMA channel 3 for the LPT DMA, so the DMA3 jumpers for the
SIO device must be installed on the EVB; for Model 6126 Rev. B, these are at JP23 and JP24.  The program
displays its progress on the COM2 port, with the same arrangement as Chpt3.Hex.

There is a set of 3 BYTE_C strings that contain a Prolog to be sent to the printer before the actual message text, an
actual message, and an Epilog to be sent after the message to tell the printer to render the page.  These are
contained in cProlog[], cMsg[] and cEpilog[] respectively.  The MakePkt() function allocates 3 packet memories
and copies these strings into them, using techniques discussed in Chapter 4.  Although it is not necessary for this
example, the packets are treated as having an 8-byte header in the same way as they would if they were to be
transmitted or received on the USB.  The companion function FreePkt() is used to free the packet memories at the
end of the program.

Although the details of ECP operation are beyond the scope of this document, suffice it to say that there is a mode
called "Parallel Port Fifo Mode" (mode 010) in which data is sent using DMA with standard Centronics
handshakes; flow control uses the BUSY signal only.  SioInit() in Sio.C configures the LPT device for ECP
operation.  Setting the ECR for 0x40 sets mode 010 with DMA disabled, and setting the ECR to 0x48 sets the same
mode with DMA enabled.  The interested reader is referred to the SIO Data Sheet for a more complete discussion.

The purpose of this code example is to focus on the issues related to DMA in general, rather than ECP in
particular.  In order to reduce ECP related clutter, things like manipulations of the ECR occur in functions that are
separated from the DMA related functions, which would hardly be considered best practice for an actual ECP
application.  There are numerous comments in the code suggesting changes to be made in order to improve
performance for an actual ECP application.

DMA Direct From MMU to LPT:
In the first DMA method, the function LptSendPkt() is used to send each packet directly from the MMU to the LPT.
The function begins by calling LptStopDma() to disable DMA in the ECP device while a new DMA session is being
set up.  This function sets the ECR to 0x40, with the usual IRQ disable/restore, IsaAcquire(), etc.
DmaPktWithDev() (discussed below) is then called to setup and start the DMA session.  LptStartDma() is then
called to enable DMA in the ECP device by setting the ECR to 0x48, and the function then waits for the TC in the
BUS_STAT register before returning, which indicates that the DMA session has completed.  Note that the ECR
must be re-written to 0x48 each time it sees a TC, which happens on every DMA session in this example.  If the TC
were masked in the BUS_REQ register, then the device would never see any TC's, so the code to write the ECR
each session could be removed, which would reduce the execution time of the software.  In this example, the TC
mask for BUS_STAT is the manifest constant cLPT_TC_MASK, which is derrived from the LPT_DMA constant in
SIO.H. The use of constants in this way is good for execution speed, since everything is calculated at compile time,
rather than at run time.  The MCU is also quite efficient at testing for a single bit set using a JB instruction, as was
discussed in Chapter 2.

DmaPktWithDev() is a general purpose function that will perform a DMA transfer between any packet memory on
any DMA channel using any Mode and Transfer Type in either direction (i.e., memory read or write).  As such, it
should prove to be a useful point of departure for any particular DMA application.

The function begins by reading the packet size from the packet header;  it then validates the size by making sure
that there is at least 1 payload data byte;  it does not check for a maximum of 1016 bytes.  Note that in many
applications the packet size is limited to 64 payload data bytes (e.g., USB BULK packets), and in many cases the
packet size is already known to be valid before being passed to a DMA setup function, so this code could be made
more efficient by doing the size check on a BYTE basis, or skipping it altogether.  The size is next adjusted for the
DMAC by subtracting 9, which accounts for the 8 byte header and the fact that the DMAC requires that the session
size be the number of bytes MINUS 1.
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The key to the flexibility about the arbitrary channel, mode, transfer type etc. is the dmaChMode argument that is
passed -- this is the value that will ultimately be placed in the DMA_MODE register, which contains all of this
information.  In order to be able to determine which address and count registers to use, the dmaCh portion of the
byte is masked off, and a (volatile) pointer (pDmaReg) is initialized to point to the address register of the specified
channel.  Looking at Usb97102.H, it can be seen that the DMA_ADDRx and DMA_CNTx registers are arranged in
consecutive order starting at 0x4000, which is why pDmaReg is initialized the way that it is.  In the example code,
the dmaChMode value is obtained from cLPT_DMA_CH_MODE, which is based on manifest constants in
Usb97102.H and SIO.H.

The IRQ state is then saved and disabled, and the ISA bus acquired as usual.  In order to be able to access any of
the DMAC registers, the IOBASE register is set to DMA_IOBASE.  Since DMA channels 0 and 1 can be used for
both Memory-To-Memory and device DMA in the same application, a check is made to see if the current channel is
either of these and, if it is, then the DMA_CMD register is written to clear Memory-To-Memory mode.  Note that this
could be skipped in an application if this is not relevant.

In general, it is a good idea to mask any channel while programming it, and then to unmask it when finished.  This
is accomplished by writing the DMA_MASK register, which is done next.  Next, the DmaClearByteFF() macro
function is called in order to clear the byte pointer flip-flop.  This flip-flop controls the reading/writing of WORD
registers in the DMAC -- the first access after clearing the flip-flop is the low byte, followed by the high byte.  For this
reason, if DMA is ever done in an ISR as well as in the foreground, the foreground thread MUST disable IRQ's, at
least while programming any WORD registers in order to avoid having the ISR upset the state of this flip-flop.  The
byte flip-flop toggles after each byte write so, if consecutive word registers are programmed, it is not necessary to
re-clear the flip-flop before each word.

The starting address of the session is then written to the appropriate DMA_ADDRx through pDmaReg.  Of course,
this pointer could have been dereferenced as an array, but that results in slower code execution, so the pointer
notation was used.  Note that the address value is 8 in the low byte to skip past the packet header.  The high byte
of the address has the MSB set to 1 in order to select the upper 32 KB of the DMAC address space, which is where
the packet memories are mapped, and the packet number is shifted right by 2 bits in order to take into account the
1 KB packet locations.  The pDmaReg pointer is post-incremented after writing the high address byte so that it
points to the appropriate DMA_CNTx register, and the 2 bytes of count are written.

Next, the DMA_MODE register is written to set the transfer mode, direction, etc.  Next, the  DMA_STS register is
read in order to clear any old TC's that might be left over from a previous session, since this code will detect the
end of the session by polling for the TC in the BUS_STAT shadow register.  Finally, the DMA channel is unmasked
to enable it, the ISA bus is released to the DMAC, and the IRQ enable state is restored.

In USB DMA applications that use BULK packets, a DMA session must be set up for each packet, so the efficiency
of the code that does this is usually of great concern.  As a result, it is suggested that every reasonable effort be
made to streamline this code as much as possible .  For example, do not waste time checking the packet size if it
is already known to be valid; do not use a WORD if a BYTE will do.  Do not waste time setting the DMA_MODE each
session if it is the same every time; do it at initialization instead.  Do not pass the dmaChMode at all, but have a
separate dedicated function for each DMA device; doing so also eliminates the need to use a pointer for register
access, which also improves performance.  Consider masking TC's in order to avoid having to set e.g., the ECR
each time a session is set up.  If it is necessary to set a register like ECR, do it right in the dedicated DMA function
just before releasing the ISA bus, rather than in a separate function where the entire EA/BUS_REQ dance has to be
done again.

DMA From ISA RAM to LPT:
Although this is out of order with respect to the example code, the DmaIsaWithDev() function is so similar to the
previous function that it naturally follows here in the discussion.  The primary difference is that the address and
count of a buffer in ISA RAM are passed, instead of a packet number with the size contained in its header.  On
entry, the address and size are validated, with the criterion being that the entire session must be contained in the
low 32 KB.  In an actual application, this should be streamlined or removed, as was previously discussed.  The
only other difference is that the count is only adjusted by 1 for the DMAC, instead of 9, since there is no packet
header to skip.  As was previously mentioned, only DMA channels 2 and 3 are capable of using an ISA memory
target for device DMA.
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DMA From MMU to ISA RAM:
In order to have data in ISA RAM suitable to DMA to the LPT, the function DmaPktToIsa() is called for each of the 3
packets to create a single DMA buffer, which is then sent to the LPT using DmaIsaWithDev().

As was previously mentioned, Memory-To-Memory Transfers must always make use of DMA channels 0 and 1,
and must always use Block Mode.  The DMA_CMD_MEM2MEM_ bit in the DMA_CMD register must be set.
Channel 0 address must be set for the source memory block, and Channel 1 address must be set for the
destination.  Channel 1 Count must be set for the session size, and it is Channel 1 that will TC when the session
is completed.  Both channels must be set for Block mode.  Both channels should be masked before programming
the session, and remain masked when complete.  The session is actually started by issuing a "Software DRQ", as
opposed to the hardware DRQ used with peripheral devices, on Channel 0 using the DMA_REQ register.  As
usual, the IRQ enable state is saved/restored, the ISA bus acquired/released, and the IOBASE set to DMA_IOBASE
to make the DMAC addressable.

SCATTER / GATHER DMA
The SGDMA performs scattering / gathering operations from the MMU to or from the external memory, as well as
ISA device transfers to or from MMU. The SGDMA has four DMA channels with each channel having its own set of
registers. Each of the four- independent DMA channels may set up to 16 transfers, which can be programmed to
occur consecutively. The SGDMA will run the internal 8237-DMA controller alone, once the MCU indicates which
packet to transfer. This allows the MCU to handle other operations, thus increasing overall performance.  The
SGDMA also contains a single PIO engine that permits the MCU to access the ISA bus on a cycle stealing basis
with the DMA transfers.

SGDMA memory-to-memory transfer is a special case since both channel 0 and 1 must always be used. The
source must be channel 0; the destination must be channel 1. SGDMA only supports memory-to-memory transfers
between MMU memory and ISA memory, in either direction (MEM_OP bit in the SGDMA command register
indicates whether is MMU or ISA memory operation).

MMU Memory to ISA Memory Transfers
To perform a memory transfer between MMU memory to ISA memory, there are two critical functions that the MCU
must perform in order for the transfer to take place. The MCU must clear channel 0 in the SGDMA transfer size high
and low registers, as well as to set channel one in the SGDMA ISA Address High and Low Byte registers to the ISA
address to be used. Just remember that to write to these registers the corresponding channel must be disabled
(CHANNEL_ENABLED=0 in register SGDMA_CMDx) as well as no SGDMA transfer operation in progress while
trying to attempt a transfer. In addition, the SGDMA will add the size of the completed transfer to channel one in the
SGDMA ISA Address High and Low Byte registers after each terminal count (TC).  If PKT_HDR bit in channel 0 of
the SGDMA Command Register is set to one, the transfer size comes from the MMU packet header. If PKT_HDR
bit is cleared, the transfer size is the value in channel one of SGDMA transfer size high and low registers. This only
applies if MEM_OP bit in SGDMA Command register is set.

ISA Memory to MMU Memory Transfers
To perform a memory transfer between ISA memory to MMU memory, there are three critical functions that the MCU
must perform in order for the transfer to take place. The MCU must set channel one in the SGDMA ISA Address
High and Low Byte registers to the ISA address to be used. Next, it must set channel 0 in the SGDMA Transfer Size
High and Low Registers to the ISA buffer size, and finally it must set channel 1 in the SGDMA Transfer Size High
and Low Registers to the session transfer size. Unlike the MMU to ISA memory transfer, after each TC, the SGDMA
will add the session transfer size to channel 0 of the SGDMA ISA Address High and Low Byte registers and
subtract the session transfer size from channel 0 of the SGDMA Transfer Size High and Low Registers. The actual
transfer size is the lesser of the values in channel 0 and 1 of the SGDMA Transfer Size High and Low Registers.  If
PKT_HDR bit in channel 1 of the SGDMA Command Register is set to one, then the actual transfer size plus 8 will
be written to the packet memory at an offset of 6. M2M_INCOMPLETE bit in channel 0 of the SGDMA Status
Register will indicate whether a complete ISA to MMU memory transfer has performed. M2M_INCOMPLETE bit in
channel 0 of the SGDMA Status Register will only be set when channel 0 of the SGDMA Transfer Size High and
Low Registers reach a value of 0, indicating the ISA buffer has been completely transferred, and channel 1 of the
SGDMA Packet Number Start FIFO Register is empty.

In addition, the SGDMA will add the size of the completed transfer to channel one in the SGDMA ISA Address High
and Low Byte registers after each terminal count (TC).  If PKT_HDR bit in channel 0 of the SGDMA Command
Register is set to one, the transfer size comes from the MMU packet header. If PKT_HDR bit is cleared, the transfer
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size is the value in channel one of SGDMA transfer size high and low registers. This only applies if MEM_OP bit in
SGDMA Command register is set.  

The following is an example on how to program the DMA registers and preload the SGDMA Start FIFO so that when
the time comes to receive data, all the function needs to do is release the ISA bus, and the DMA will commence.

Argument:  DataIn

If TRUE, program for DMA from DEVICE to HOST (DataIn)
If FALSE, program for DMA from HOST to DEVICE (DataOut)

static void ProgramSgDma(uint8 DataIn) reentrant
{
   uint8 PacketNumber;
   uint8 x;
   uint8 TmpIoBase = IOBASE ;

/* --------------------------------------------- Load up the SGDMA FIFO ---------------------------------------------*/

/* Acquire the ISA bus and DMA transfer will be held off until the bus is released */

   intrpt_disable() ;
   BUS_REQ &= ~BUS_REQ_HLDA_ ;
   while (BUS_REQ & BUS_REQ_AEN_) ;
   intrpt_enable() ;

   if ( DataIn )
   {

/* Lock & Load SGDMA FIFO */

        for (x=0;x<MAX_DMA_PACKETS;x++)
       {

/* Allocate a packet */

          MMUCR = MMUCR_ALLOCATE_ ;
           while (ARR&ARR_FAILED_) ;
           PacketNumber = ARR&ARR_PN_MASK_ ;

/* Load packet into the SGDMA FIFO */

           SGDMA_START_FIFO3 = PacketNumber ;

/* Put the endpoint number in the first byte of the header */

           PNR = PacketNumber;
           PRL = 0;
           PRH = PRH_PNR_ | PRH_WRITE_ | PRH_AUTO_INCR_;
           MMU_DATA = BULK_IN_ENDPOINT;

/* Put the length in the sixth byte of the header */

           PRL = 6;
           PRH = PRH_PNR_ | PRH_WRITE_ | PRH_AUTO_INCR_;
           MMU_DATA = PKTHDRSZ + MAXPKTSZ;
           MMU_DATA = 0;
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       }

   }

/* -------------------------------------------- Program the 8237 DMA controller --------------------------------------- */

   IOBASE = DMA_IOBASE ;
   DMA_MSTR_CLR = 0xFF ;

/* Read the DMA_STS Register to clear any exiting TC's */

   DMA_CMD = DMA_STS ;

/* Set the command register to go as fast as possible */

   DMA_CMD = DMA_CMD_COMP_TIME_ ;

/* Set the DMA Mode:
   DMA_DEMAND_MODE_ -> DREQ is used by device to regulate the transfer
   if DataIn, DMA_WRITE_XFER_ -> Source = I/O, Destination = Memory
   if DataOut, DMA_READ_XFER_ -> Source = Memory, Destination = I/O
   DMA_CH3_ -> Use DMA channel 3 */

   if ( DataIn )
       DMA_MODE = DMA_DEMAND_MODE_ | DMA_WRITE_XFER_ | DMA_CH3_ ;
   else
       DMA_MODE = DMA_DEMAND_MODE_ | DMA_READ_XFER_ | DMA_CH3_ ;

/* --------------------------------------------- Program the SGDMA controller ------------------------------------------- */

/* Disable the SGDMA channel before programming it */

   SGDMA_CMD3 = ~SGDMA_ENABLE_ ;

/* Program the SGDMA Command register
/* SGDMA_PKT_HDR_ -> Destination is a packet in the MMU with a packet header
/* SGDMA_MEMOP_ -> Starting address & length per packet is determined by the packet & its header */

   SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ ;

/* Set the SGDMA size registers.  According to the 102 spec, these are not used when the channel is set with
SGDMA_PKT_HDR_ */

   SGDMA_SZLO3 = 0x40 ;
   SGDMA_SZHI3 = 0x00 ;

/* Enable the SGDMA channel, the first packet in the SGDMA Start FIFO is loaded into the SGDMA "chamber"
ready to go as soon as the bus is released and the device starts robbing DREQ */

   SGDMA_CMD3 = SGDMA_ENABLE_ | SGDMA_PKT_HDR_ | SGDMA_MEMOP_ ;

/* ----------------------------------------- Set up end-of-transfer conditions -------------------------------------------- */

/* Gate Channel3 TC off the isa bus for scattering */
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   intrpt_disable() ;
   IMR_0 &= ~(INT0_ISADMA_) ;
   BUS_MASK = BUS_STAT_CH3RQ_ ;
   BUS_REQ |= BUS_REQ_INH_TC3_ ;

   intrpt_enable() ;

/* don't release the isa bus ... DMA is now armed.  When ready to start DMA, release the bus*/

/*restore the callers IOBASE */

   IOBASE = TmpIoBase ;
}

The following example will demonstrate a SGDMA flush after end of a data transfer. After the device has interrupted
us, indicating it is done with the DMA transfer, the flush process begins.

/* flush the SGDMA done fifo to get all packets out to the host*/

    while (!(SGDMA_STS3 & SGDMA_DONE_FIFO_EMPTY_))
    {

/* RX Book keeping */

        pnr = SGDMA_DONE_FIFO3 ;
        Wrapper.CSW.DataResidue -= GetPacketSize(pnr) ;
        mmu_deallocate(pnr) ;

    }

/* flush SGDMA START by manually starting/stopping xfers */

    while (!(SGDMA_STS3 & SGDMA_START_FIFO_EMPTY_))
    {
       SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ ;
       SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ | SGDMA_ENABLE_ ;
    }

/* jog the last one over onto the done fifo */

    SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ ;
    SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ | SGDMA_ENABLE_ ;
    SGDMA_CMD3 = SGDMA_PKT_HDR_ | SGDMA_MEMOP_ ;

/* all packets still in play are now in the SGDMA done fifo... flush it */

    RequestLength = Wrapper.CSW.DataResidue ;
    AvailableLength = 0 ;

    while (!(SGDMA_STS3&SGDMA_DONE_FIFO_EMPTY_))
    {
        pnr = SGDMA_DONE_FIFO3 ;
        RequestLength -= GetPacketSize(pnr) ;
        mmu_deallocate(pnr) ;
    }
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    intrpt_disable() ;

/* Clear out the pending DMA & USB TX interrupts */

    flg = ISR_0;
    flg &= ~(INT0_ISADMA_ | INT0_RX_PKT_) ;
    ISR_0 = flg;

/* Read to disable any pending ISADMA irqs */

    flg = BUS_STAT ;

/* Re-enable the interrupts */

    msk = IMR_0 ;
    msk &= ~(INT0_ISADMA_ | INT0_RX_PKT_) ;
    IMR_0 = msk;

/* Reacquire the ISABUS */

    BUS_REQ &= ~BUS_REQ_HLDA_ ;
    while (BUS_REQ & BUS_REQ_AEN_) ;
    intrpt_enable() ;
}
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CHAPTER 6 - GETTING ON THE BUS

This chapter describes everything that is needed to implement a fully Chapter 9 compliant USB Device using the
USB97C102.  In addition to the USB Specification, this text makes frequent reference to the example code, which is
contained in the following files:

Chpt6.C -- application code
Chpt6.H -- application data structures, especially USB descriptors
UsbCore.C -- core USB code
UsbCore.H -- interface between Core code and application code
Usb.H -- USB related data structures (descriptors, Setup packets, etc.)

The example code implements a complete USB device, which passes UsbCheck V2.6 for Chapter 9 compliance.
The device is limited to a single USB Configuration, but supports an arbitrary number of Interfaces, as defined by
cUSB_NUM_IFs  in Chpt6.H.  Each Interface supports an arbitrary number of alternate settings, as defined by
cUsbNumAltIFs [] in Chpt6.c.  Each alternate setting contains an arbitrary combination of endpoints, as defined by
usbTotalCfgDesc in Chpt6.h. The basic architecture is that all application dependent code is contained in Chpt6.C
and Chpt6.H, while all USB related code is contained in the other files, which act as a Kernel or Core to which new
applications can be linked.  In the case of most EP0 Transfers, application dependent information is obtained by
having the Core code perform a function call into the Application code in order to retrieve the information;  a
description of each individual Transfer is included in a following section.

A number of other application dependent values are defined in Chpt6.X:
§ The choice of MCU and DMA clocks; GPIO function, direction and value; MEM_BANK setting, etc. (using our old

friend Usb97C102HwInit())
§ All USB String Descriptors
§ USB VID, PID, Class, Subclass, Protocol, etc.
§ EP0 max. packet size

In order to execute this code on the EVB hardware, the jumpers must be set as follows.  On Assy 6126 Rev. B, set
JP29 3-5 and 4-6, JP19 2-3, J27 inserted.

Device States:
For a more complete description of USB Device States, see section 9.1.1 in the USB Specification.

When a device is first attached to the USB after POR, it must be dormant to all bus activity, including Address0/EP0.
In UsbCore.H, this is the DEVICE_DEFAULT State.

After it receives its first UsbReset, it must respond at Address0/EP0 only.  UsbCore.H does not assign a new value
to the Software State at this point because it is not needed for anything.  In this State, the Host can query the device
for its USB Descriptors, etc. and will eventually send it a SET_ADDRESS command, at which point the device must
move from Address0 to whichever USB Address the Host assigns; this is the DEVICE_ADDRESS State.

Eventually, the Host will send a SET_CONFIGURATION command;  a Configuration of zero is the Unconfigured
State, which means that only EP0 remains active.  A non-zero Configuration is a Running State; this is the
DEVICE_CONFIGURED State.  For the most part, device software is really only concerned with whether the device is
in CFG1 or not, since software behavior is mostly the same for all of the other States.

From any State it is possible for the Host to suspend the device if it is bus powered; this is the
DEVICE_SUSPENDED State.  While in Suspend, it is possible for the Host to Resume the device and, for devices
that support the feature, it is possible for the device to Remote Wakeup the Host.  Although the example code does
not implement these features, the following sections describe the techniques involved.

USB Suspend/Resume:
The Host can instruct a USB device to Suspend by stopping all traffic (i.e., establishing a J state) to the device for a
period of at least 3 mS. The Host can then Resume the device through a variety of mechanisms, each of which
involves a transition out of the J state.  The SIE provides the ability for the software to detect when SOF's arrive,
either by triggering an MCU timer from the SOF (using the UTIL_CONFIG register bits), or by issuing an IRQ when
the SOF arrives (using the INT1_SOF_  bit in IMR_1), or by issuing an IRQ when bus is idle for 3ms (using the
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SUSPEND_ bit in the WU_SRC_1), and either triggering a timer or reading a free running timer, etc.  From any of
these techniques, the software can determine when the device is supposed to enter a Suspend State.

Entering the Suspend State consists of first suspending the SIE, which places it into a low power state by stopping
its clock; this is set in the SIE_CONFIG register.  The next step is to suspend the DMAC by stopping it's clock,
switching the MCU to its ring oscillator and stopping the MCU clock, and enabling the ring oscillator to be stopped
with the PCON register LSB; all of these are accomplished in the CLOCK_SEL register.  Finally, setting the LSB in
the PCON register high stops the MCU ring oscillator.  The following code sequence illustrates the technique of
Suspending:

SIE_CONFIG |= SIE_CONFIG_SIE_SUSPEND_;
CLOCK_SEL = CLKSEL_SLEEP_ | CLKSEL_ROSC_EN_;
PCON |= 0X01;

When the Resume signaling arrives, the MCU will begin executing its Isr2() function.  In that function, the
WK1_RESUME_ bit in the WU_SRC_1 register must be cleared by writing a “1” to the corresponding bit in
WU_SRC_1 register (otherwise the ISR will keep getting re-entered, since the IRQ condition has not been cleared).
It is also the author's preference to restore the CLOCK_SEL register in the ISR, but that could be done in the
foreground instead if preferred.  After returning from the ISR, execution will continue in the foreground thread at the
instruction immediately after the PCON register LSB was set to 1.  Following is some example Isr2() code:

isr = ISR_1;
ISR_1 = 0xFF; /* clear bits in read */

if (isr & INT1_PWR_MNG_) {
src = WU_SRC_1;
WU_SRC_1 = 0xFF;  /* clear bits in read */

if (src & WK1_RESUME_) { /* just like in Usb97c102HwInit() */
CLOCK_SEL = (BYTE)(CLKSEL_ROSC_EN_ | cClocks);
CLOCK_SEL |= CLKSEL_MCUCLK_SRC_;
CLOCK_SEL &= ~CLKSEL_ROSC_EN_;

}
}

In order to enable the wake from Resume event, it is necessary to unmask the corresponding bit in the
WU_MSK_1 register; it is convenient to do this early in _main() when the other interrupt related masks are
configured.  Note that if this is not done, then the device will get stuck in the Suspend State!

EX1 = 1;
IMR_1 = (BYTE)~(INT1_PWR_MNG_);
WU_MSK_1 = (BYTE)(~(WK1_RESUME_ | WK1_USB_RESET_));

USB Remote Wakeup
Implementing this feature involves doing the Suspend/Resume activity above but, in addition to enabling wakeup
from USB Resume or USB Reset, a wakeup is also enabled from one or more GIRQ signals using the bits in the
WU_SRC_2 register.  When the external device asserts the corresponding GIRQ signal, the MCU wakes up with
the same type of PWR_MNG IRQ as for a USB Resume;  of course, the software can determine the source of the
wakeup event by reading the WU_SRC_X registers.  The Resume code sequence is similar, except that the
software must also cause the SIE to issue Resume signaling to the Host by setting the
SIE_CONFIG_USB_RESUME_ bit in the SIE_CONFIG register.

It is common that the same peripheral device and GIRQ used for Remote Wakeup is also used for normal
operation.  When this happens, the WU_SRC_2 register should be unmasked to enable the wakeup just before
Suspending, and it should be masked again as part of the Resume.  The opposite procedure should be done with
the corresponding bit in the IMR_0 register if the peripheral is interrupt driven while the device is not Suspended.
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EPCTRL Registers
The USB97C102 contains a separate EPCTRL Register for each USB Endpoint.  This set of registers permits
software to define the state of each RxEP and TxEP as being either Disabled, Enabled, Busy or Stalled.  In
addition, each EP can be defined as being Isochronous or not.  The behavior of an EP in each of these modes is
dependent upon the state of the EP and the type of USB traffic addressed to it.  The following discussion of
behavior is for the case in which the MMU and RXFIFO are both not full.  Note that allowing either of them to fill
should not be permitted in any USB application, since every USB device must be capable of receiving a Setup
Packet at any time (discussed in a later section), which is not possible if either the MMU or RXFIFO is full.

Non-ISO OUT EP's

RX_ENABLE_:  Both SETUP and OUT packets are received, regardless of CRC or Data Toggle.  For bad CRC,
there is no handshake, otherwise the handshake is ACK.  It is the responsibility of firmware to discard packets with
bad CRC or Data Toggle.  In addition, the EPCTRL_RX_TOGGLE_ bit is read-only, so it is the responsibility of
software to maintain a data toggle bit to be used for rejecting duplicate packets on Bulk, IRQ and Control EP's.  The
requirements for initializing the toggle bit vary with the EP type and are discussed in the following sections.

RX_STALL_:  For OUT packets, same as RX_ENABLE_ except that STALL handshake is sent instead of ACK.  It is
the responsibility of firmware to discard the packet.  For SETUP packets, the packet is received and NO handshake
is sent;  it is the responsibility of firmware to discard the packet and clear the RX_STALL_ condition so that the
retransmitted Setup packet will subsequently be received and ACK'd.

RX_BUSY_:  For OUT packets, the packet is not received and the handshake is NAK.  For SETUP packets, the
same situation as RX_STALL_ above.

RX_DISABLE_:  The EP is completely disabled; no packets are received and no handshakes are sent.

Non-ISO IN EP's:

TX_ENABLE_:  when the TxFIFO for the EP is empty, IN tokens are responded to with a NAK handshake;  if the
TxFIFO is not empty, the packet is sent.  The transmission is only considered complete when the ACK handshake
from the Host is received, so a Host no handshake (from a bad CRC at the Host end) or a dropped ACK
handshake will result in automatic retransmission in response to subsequent IN tokens from the Host.  The
EPCTRL_TX_TOGGLE_ bits are writable, and define the DATAx PID to be used on the next transmission from the
corresponding EP.  The DATA PID toggles automatically with subsequent transmissions in response to ACK
handshakes from the Host.  It is the repsonsibility of software to initialize the EPCTRL_TX_TOGGLE_ bit
appropriately for the EP type (Bulk, IRQ or Control) and state, which is described in a following section.  Note that,
since RX flow control bits are in the same register as the writable Tx data toggle bit, Tx EP's cannot be used at the
same EP address as an RxEP that will require concurrent flow control (i.e., BULK;  IRQ, ISO, and Control EPs are
OK) because doing so would overwrite the TxToggle in the course of doing the read-modify-write for Rx flow
control.  However, this restriction still provides a minimum of 15 (typically more) unidirectional pipes in addition to
the Default Pipe, which should be plenty considering that there are only 32 pages of Packet Memory to share
between all of the pipes anyway.

TX_STALL_:  IN tokens get a STALL handshake; no packet is sent even if the TxFIFO is not empty.

TX_BUSY_:  IN tokens get a NAK handshake; no packet is sent even if the TxFIFO is not empty.

TX_DISABLE:  the EP is completely disabled; no packets are transmitted and no handshakes are sent.

ISO EP's
Software should only set the xx_ENABLE_ and xx_DISABLE_ values.  Disabled EP's do not send or receive any
packets.  ISO EP's never send any handshakes.

Rx packets are received regardless of CRC errors, DATA PID or EP STALL condition.  It is the responsibility of
software to discard packets for CRC or STALL, but to mark their time.  According to the USB Specification, DATA
PID should be ignored on ISO Rx packets.
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Endpoint Command Register:
The endpoint command register allows the dynamic modification and configuration of specific endpoints. This
register allows the MCU to write to each individual bit field within the existing register endpoint set without having to
read, modify, and write operations.

The TX/RX bit on Endpoint Command Register will allow the command specified in bits 6-4 of same register to
control the TX endpoint when set to one. When this bit is cleared, the command will control the RX endpoint. In
other words, if bit is set to one, the command will control all TX signals described above on EPCTRL register.
When bit is cleared the command will control all RX signals described above on EPCTRL register. The lower four
bits 3-0 of the eight bit Endpoint command register are used to select desired the endpoint 0 thru 15 (0000
endpoint 0, 0001 endpoint 2, etc).

The following is an example on how to define endpoints using the Endpoint Command Register as described
above.

#define _endpoint_set_tx_toggle(_mcr_ndp);
{
  _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_settog |(_mcr_ndp);
  _intrpt_restore();

}

#define _endpoint_clr_tx_toggle(_mcr_ndp);
{
   _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_clrtog |(_mcr_ndp);
  _intrpt_restore();

}

#define _endpoint_tx_enable(_mcr_ndp);
{
   _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_enable |(_mcr_ndp);
   _intrpt_restore();

}

#define _endpoint_tx_disable(_mcr_ndp);
{
    _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_disable |(_mcr_ndp);
  _intrpt_restore();

}

#define _endpoint_tx_busy(_mcr_ndp);
{
    _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_busy |(_mcr_ndp);
 _intrpt_restore();
}

#define _endpoint_tx_stall(_mcr_ndp);
{
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    _intrpt_disable();
  x_epcmd = kbm_epcmd_tx |kbm_epcmd_stall |(_mcr_ndp);
  _intrpt_restore();
}

NonControl Endpoint Register:
NonControl Endpoint Register 1 and 2 allow the designer to setup each individual endpoint as a non-control
endpoint. This is needed since the USB Spec V1.1 sates that “If a non-control endpoint receives a Setup PID, it
must ignore the transaction and return no response”. Each bit of the NonControl Endpoint Registers will
correspond to the associated endpoint. Bits 0-7 of the NonControl Endpoint 1 register will correspond to Endpoint
7-15. Bits 0-7 of the NonControl Endpoint 2 will correspond to Endpoint 0-7. The MCU will write to these registers.
When setting a bit to one, the endpoint will not respond to a Setup PID meaning is a non-control endpoint. When
clearing a bit, the endpoint will respond to a Setup PID meaning is a control endpoint. The following code
sequence illustrates how to utilize the NonControl Endpoint Register:

The control endpoints are EP0, EP4, EP8 and EP12

{
:
:

  #define sie_init_ex();

{
NONCTRLEP_HI = 0xEE;

 NONCTRLEP_LO = 0xEE;
}

           #else
 

 #define sie_init_ex();

      
         #endif

:
:

}

RESETS

POR
At POR time, the Core code begins execution in _main(), which calls Usb97102HwInit() which was described in a
previous chapter.  After this, ApHwInit() in Chpt6.C is called to allow the application to initialize its hardware state;
this consists of calling SioInit(), which was described in a previous chapter.  At this point, DBGPRINT's are
operational.  The core code then calls ApSwInit() in Chpt6.C, which causes the application to initialize its software
state;  this consists of calling Ep1RxQueInit() and Ep3RxQueInit() to initialize the receive queues, in addition to
marking the ISA queues empty, the DMAC as unowned, and no ISR errors are pending.  It should be noticed at this
point that most of the data and functions in Chpt6.C are marked as static, since they are private to the application
and should not be referenced from outside the file;  by marking these items as static, the compiler's scoping rules
will guarantee that no external references occur.

At this point, the core code sets up the IRQ masks, and enables the SIE and IRQ's.  Finally, ApUsbAttach() in
Chpt6.C is called to cause the application to attach the device to the USB;  this is provided for application hardware
that supports electronic attachment to the bus.  For the EVB hardware, attaching to the bus is accomplished by
setting the GPIO7 pin high.  Since the GPIOA_OUT register is often shared with ISR's, the usual dance with EA is
done.

Core execution continues with an infinite loop that handles USB Reset, EP0 activity, etc. as described below.
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USB Reset
When the SIE detects a USB Reset, it signifies this by activating the SIE_STAT_USB_RESET_ bit in the SIE_STAT
register.  This event can also issue an IRQ using the WK1_USB_RESET_ bit in the WU_SRC_1 register, which in
turn is enabled by the INT1_PWR_MNG_  bit in IMR_1;  if both of these conditions are simultaneously enabled, then
a USB Reset will cause an IRQ_2.  The sample code enables this condition and calls back to the Application with
ApUsbIsrReset(), but the sample code does not have any work to do at interrupt time, so it just sets a
bUsbResetPending flag and returns.  The foreground code then uses this flag to call UsbReset() in UsbCore.C,
which actually performs the reset activity.

UsbReset() sets USB Address0 and disables all EPs, before calling ApUsbReset() in Chpt6.C.  ApUsbReset()
then calls ApSwInit() to initialize its software state, DmacReset() to initialize the DMAC, and then it resets the MMU.
When the application code returns to UsbReset(), this function waits for the USB Reset to finish before resetting
the SIE and enabling EP0.  The reason for this wait is that resetting the SIE also resets the counter that it uses to
detect USB Reset events;  if this is done while the USB Reset is still active, the SIE will detect another USB Reset
event, which will then cause a new IRQ_2, etc. and the device will then get caught in a loop until the USB Reset is
finally over.  In order to avoid this condition, the code waits until the USB Reset is completed before resetting the
SIE;  this results in a single execution of the USB Reset software functions for each actual reset on the bus.  Note
that the USB Reset is required to last for a minimum of 10 mS, and the device must complete its reset processing
within 10 mS after that; in practice, these timing requirements are easily satisfied without taking any special
precautions, but the device programmer should certainly be aware of them anyway.

EP0 Control Transfers
There are three (3) basic types of Control Transfers that can occur, as described in the USB Specification, section
8.5.2; also, Chapter 9 describes the Standard Requests.

1)  Control Read:
The Host sends a Setup packet, followed by one or more IN tokens.  The wLength field in the Setup packet
contains the maximum number of bytes to return;  the device must limit the transfer to the specified size in the
event that the requested item is larger.  During the Data Stage, the Host sends IN tokens to read the packets from
the device;  the first data packet has a DATA1 PID, and subsequent data packets toggle the DATA PID.  The device
issues NAK handshakes during the Data Stage if it is busy.  After the last data packet, the Host sends a zero-byte
OUT packet during the Status Stage.  The device handshakes this packet with either an ACK to indicate success,
or a STALL for any error.  If the device wishes to Stall the transfer, the first (and only) data packet should be zero
length so that the Host will skip immediately to the Status Stage.

Standard Requests:
GET_STATUS, GET_DESCRIPTOR, GET_CONFIGURATION, GET_INTERFACE, SYNCH_FRAME (optional)

2)  Control Write:
The Host sends a Setup packet, followed by one or more OUT tokens.  The wLength field in the Setup packet
contains the total number of bytes that the Host will be sending.  During the Data Stage, the Host sends OUT
packets to the device, with the first packet having a  DATA1 PID, and subsequent packets toggle the DATA PID.  The
device issues NAK handshakes during the Data Stage if it is busy.  If the device wishes to Stall the transfer, the
Stall handshake is sent during the Data Stage in response to the first (and possibly only) OUT packet.  To accept
the Transfer, the device receives and ACKs the packets during the Data Stage and sends a zero-byte handshake
packet during the Status Stage with a DATA1 PID.

Standard Requests:
SET_DESCRIPTOR (optional)

3) No-Data Control:
The Host sends a Setup packet.  Since any required information is contained in the Setup packet, there is no Data
Stage; this Transfer type is similar to a Control Write with zero data bytes.  During the Status Stage, the Host sends
IN token(s).  The device sends a zero-byte packet with a DATA1 PID to indicate success, or a Stall handshake
otherwise (i.e., to Stall the transfer).

Standard Requests:
CLEAR_FEATURE, SET_FEATURE, SET_ADDRESS, SET_CONFIGURATION, SET_INTERFACE
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Note that when handling a SET_ADDRESS Transfer, it is necessary to not actually assign the new address until
AFTER the Status Stage has completed;  this is because the Host will try to read the handshake packet at the
original address.

As described in sections 8.5.2.2 and 5.5.5 of the USB Specification, there are situations in which, from the device's
perspective, the sequencing in a Control Transfer appears to be out of order;  this can happen especially as a
result of lost handshakes going back to the Host.

EP0 Stalls
Under a variety of circumstances, the device must Stall a Transfer to EP0.  The method for doing this varies with
the Transfer Type, as was described above.  The previous description of the EP_CTRL register defines the bit
fields that must be set in order to Stall each transfer type, but they are summarized here for convenience:

Control Read:  Stall the Rx and then queue a zero-length Tx packet with a DATA1 PID;  reading this packet causes
the Host to advance to the Status Stage.  Leave the Rx Stalled until the next Setup packet arrives, and then clear the
Rx Stall.

Control Write:  Stall the Rx and leave it Stalled until the next Setup packet arrives, then clear the Rx Stall.

No-Data Control:  Stall both the Rx and Tx and leave them Stalled until the next Setup packet arrives, then clear
both Stalls.

While it may not seem necessary to Stall the Rx in all cases, or to leave it Stalled until the next Setup packet, this
turns out to be true when every case of lost handshakes, etc. is considered.

EP0 FSM
Since the transfers described above can involve multiple packets spread out over an appreciable amount of time,
one suitable way to implement the software is as a Finite State Machine (FSM) that is called in a foreground-polling
loop, which is how the example code in this chapter does it.  States are defined as follows:

IDLE: The device is waiting for a Setup packet to start a transfer.
SETUP: The device has received a Setup packet, but has not yet processed it.
RD_DATA: The device is in the Data Stage of a Control Read Transfer
WR_DATA: The device is in the Data State of a Control Write Transfer
WR_STATUS: The device is in the Status Stage of either a Control Write or a No-Data Control transfer.

The State transitions for each Transfer type are as follows:
CTL-READ: IDLE -> SETUP -> RD_DATA -> IDLE
CTL-WRITE: IDLE -> SETUP -> WR_DATA -> WR_STATUS -> IDLE
NoData-CTL: IDLE -> SETUP -> WR_STATUS -> IDLE

The code is implemented in UsbCore.C, using a foreground polling function Ep0FSM() and an RxISR called
Ep0RxIsr().  Their interaction is described in the following sections. Together, these 2 functions comprise the
majority of UsbCore.C, and are the key to reuse of this code in other applications.

In all cases, Ep0RxIsr() takes care of cleaning up after the previous transfer in the event that a Setup packet
appears to arrive out of order from the perspective of the Device;  this same function also takes care of cleaning up
after any Stalls.  As a result, whenever a Setup packet arrives, the software is placed into an IDLE State so that it
can process the packet.  Note that under some circumstances a handshake was not sent to the Host for the Setup
packet;  when this happens, the packet is dropped and the Host will retransmit it.

For all Transfer types, the transition from IDLE -> SETUP is performed in Ep0RxIsr();  this involves copying the
packet into the usbSetupPkt structure, removing and releasing the packet, and setting the State.

Whenever Ep0FSM() needs to send any packets to the Host, it makes use of a companion function Ep0SendPkt(),
which is also contained in UsbCore.C.  This function takes a generic pointer to a data block to send which,
although it makes the code execution relatively slow, permits sending a data block located in any memory space of
the MCU.  The function also takes a bytesToSend argument indicating the packet size;  zero is a valid size for this
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function because zero-length packets are used as handshakes in some Transfer types.  The function allocates a
packet from the MMU and saves the packet number in ep0TxPkt, since this value is sometimes needed in order to
clean up after a transmission.  The function does not perform any manipulation of the Data Toggle, which is left to
the caller, since this varies depending upon the circumstance.

CTL-READ Transfers
The transition from SETUP -> RD_DATA is performed in Ep0FSM().  This consists of validating the Setup packet
contents, and determining whether to Stall the transfer or not.  In the sample code, a desire to Stall the transfer is
indicated by a wEp0BytesToSend size of zero;  the Stall is implemented as described in a previous section and
the State is set to IDLE.

Validating the Setup packet for Standard Requests is performed in a large switch statement that has cases for
each of the Standard Transfers;  each case in turn validates the remaining bytes in the Setup packet according to
the USB Specification.  In most cases, application specific information is obtained by calling ApUsbXXX() functions
defined in UsbCore.H and contained in Chpt6.C.  A discussion of each Transfer type is contained in a following
section.  For Vendor or Class Requests, the Setup packet is passed to ApUsbEp0Read(), which is defined in
UsbCore.H and contained in Chpt6.C, in order to validate the Transfer.

Assuming success, a data pointer and byte count is available for the data to be returned to the Host.  The byte
count is limited to the maximum size specified in the Setup Packet, and the State is set to RD_DATA.  The
TX_TOGGLE_ is set to DATA1 PID in preparation for the first packet to be returned.

In the RD_DATA State, packets are sent to the Host using cEP0_MAX_PKT_SIZE (defined in Chpt6.H) packets until
all of the data is sent.  If the data is an exact fit in the packets, then a zero-byte packet is sent last, which the Host
may or may not read.  In order to avoid having to service IRQ's each time a USB packet is sent or a TxFIFO goes
empty (the 2 choices for the device), EP0 transmits are cleaned up at the beginning of Ep0FSM() each time it is
called.  Eventually, the Host will send a handshake packet, which will be received in Ep0RxIsr();  this function will
clean up any left over Tx packet and set IDLE State.

No-Data Control Transfers
Everything is very similar to the previous section, except that the State transition is to WR_STATUS if the Transfer is
not Stalled, a bResult value of FALSE is used to request a Stall instead of wEp0BytesToSend being zero, and
Vendor or Class requests are passed to ApUsbEp0NoData() instead of ApUsbEp0Read().  As before, most
Transfers involve calls to ApUsbXXX() for application dependent data and validation.  Any Stall is implemented as
described in a previous section.  Success is indicated in WR_STATUS by queueing a zero-byte Tx packet with a
DATA1 PID;  this transmission is cleaned up at the beginning of Ep0FSM() the next time it executes after the Host
reads the packet.  In the event that the Host handshake to the packet is lost, or if the next Setup packet arrives
before the next Ep0FSM() execution, then the Tx is cleaned up when the next Setup packet arrives in Ep0RxIsr().

Control-Write Transfers
Although none are used by the sample code, the framework is in place in case an application should need them
for Vendor or Class transfers.  In Ep0FSM() in the SETUP State, the Setup packet is passed to ApUsbEp0Write() in
order to determine whether to Stall the Transfer or not.  Any Stall is implemented as described previously, the State
is set to IDLE, and the Stall is cleared in the Ep0RxIsr() when the next Setup packet arrives.

Assuming that the Application chooses to accept the Transfer, the State is advanced to WR_DATA, and
subsequent OUT packets are queued in GP_FIFO1 by Ep0RxIsr() and passed to ApUsbEp0WriteNextPkt() by
Ep0FSM().  The end of the Transfer is detected in Ep0FSM() by receiving a less than cEP0_MAX_PKT_SIZE packet,
at which time the State is advanced to WR_STATUS.  In this State, a zero-byte handshake packet is queued, and
the State is set to IDLE, as was previously described.  Note that in a real application, the software should also
keep track of the total bytes received from the Host during the transfer, and should Stall the transfer if it ever
exceeds wLength from the Setup packet.

Ep0RxIsr() takes care of Data Toggles by initializing bEp0RxTog when the Setup packet arrives, and then rejecting
packets and updating the toggle as each subsequent data packet arrives.  It also makes the Rx BUSY as each
packet arrives, and checks for overflows of GP_FIFO1.  In the foreground, Ep0FSM() removes the busy whenever
GP_FIFO1 is emptied of packets in order to permit more packets to arrive.
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EP0 Application Callbacks
As mentioned above, most Transfers involve application specific data, so callback functions are defined in
UsbCore.H and the code is contained in Chpt6.C.

TRANSFER TYPE APPLICATION FUNCTION
GET_DESCRIPTOR CTRL-READ ApUsbGetDesc()
GET_CONFIGURATION CTRL-READ usbCfg (shared var.)
GET_INTERFACE CTRL-READ ApUsbGetIF()
GET_STATUS(DEVICE) CTRL-READ usbDevStatus (shared var.)
GET_STATUS(INTERFACE) CTRL-READ None (reserved transfer)
GET_STATUS(ENDPOINT) CTRL-READ ApUsbIsEpValid()

SET_ADDRESS NO-DATA-CTRL None (Ap doesn't care)
SET_CONFIGURATION NO-DATA-CTRL ApUsbSetCfg()
SET_INTERFACE NO-DATA-CTRL ApUsbSetIF()
CLEAR_FEATURE(EP_STALL) NO-DATA-CTRL ApUsbIsEpValid/ApUsbCFES()
CLEAR_FEATURE(WAKEUP) NO-DATA-CTRL ApUsbRemoteWakeDisable()
SET_FEATURE(EP_STALL) NO-DATA-CTRL ApUsbIsEpValid/ApUsbSFES()
SET_FEATURE(WAKEUP) NO-DATA-CTRL ApUsbRemoteWakeEnable()

For all Standard Transfers, the Core code handles validating the Setup packet contents, as well as confirming that
the device is in a valid State for the Transfer (e.g., many Transfers are only valid when the device is in a
CONFIGURED State).  Following this, the Application callbacks are used to validate any application dependent
values (e.g., whether a specified Alternate Setting is valid for a given application).

For each of the GET_XXX Transfers, the information is entirely application specific, so the Core software just calls
the appropriate Application function, which then either provides the required information, or returns a zero or FALSE
to indicate that the Transfer is not supported and should be Stalled.

For any Transfer that involves an EP as a Target, the Core code calls ApUsbIsEpValid(), since it is application
specific which EP's are valid for the current combination of Alternate Interface Settings.

For SET_ADDRESS, the Core code handles setting the new USB Address after the Host has read the handshake
packet.  This can be seen when Tx packets are cleaned up near the entry to Ep0FSM().

For SET_CONFIGURATION(0), the Core code handles disabling all EP's;  the Application code is responsible for
setting up any EP's for a non-zero configuration.  The Application code is also responsible for configuring EP's for
SET_INTERFACE, since any such settings are application dependent.

For CFES, the Core code handles flushing any TxFIFO's that the application does not flush, and it handles the
EP_CTRL register for all EP's (including TxToggles), but the application is responsible for handling Rx Data
Toggle initialization and flushing any Rx Queues, since these are application dependent.  For SFES, the Core code
handles the EP_CTRL register.  For any Transfer with an EP target, the Core code validates the EP using
ApUsbIsEpValid(), as was previously described.

For both WAKEUP Requests, all processing is handled by the application, which is also responsible for indicating
the Feature state in the usbDevStatus shared variable.

As was previously described in the section on Control-Read Transfers, the Core code handles limiting the size
(i.e., byte count) of the Data Stage, splitting it into multiple USB packets, handshakes, Stalls, etc.

Because of the amount of support provided by the Core functions, most of the Application Functions do absolutely
nothing, with the possible exception of returning a pointer and/or a byte count, and the remainder does only a small
amount of processing.  It is by customizing these functions that new applications can be easily ported to this
architecture.
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APPLICATION POLLING
There are 2 polled callbacks to the application.  As the name would imply, ApCfg1Poll() is called whenever the
device State is CONFIGURED, and the Configuration is 1 (i.e., the Configured State).  For this application, a total of
4 Endpoints is used, and the polling handler just calls each individual EP handler in turn.  The function
implemented by each EP handler is described in a later section.

ApPoll() is called any time the device is not SUSPENDED;  its primary use is for debugging.  The example code
calls a slow polling function ApSlowPoll() either every USB frame while the device is receiving SOF's, or based on
a timeout of 6 mS in the Configured State (CFG1), or 2 mS otherwise.  ApSlowPoll() in turn displays and resets any
ISR0 errors, and checks for any keystrokes from the debugging terminal, to which it responds by sending a
DBGPRINT message.  This code could be expanded to aid in debugging any other application by returning various
data and/or register values, or by initiating programmer defined sequences in response to specific keystrokes.
This function is instrumented by pulsing GPIO5 high for the duration of its execution.  Since the GPIOA_OUT
register is shared with the ISR, IRQ's are disabled during the access to this register.

DATA TRANSFER

Data Transfer Overview
The application code treats the low 32 KB ISA RAM as a pair of 16 KB circular buffers.  It treats the 4 USB EP's as 2
pairs -- 1 Rx and 1 Tx in each pair.  Within each pair, packets arriving on the RxEP are written to the ISA RAM, while
packets already in the ISA RAM are queued for Tx back to the Host.  In this way, each pair of EP's loops back data,
with up to 127 USB packets (1 packet less than 8 KB) in each transfer.  EP1 and EP3 are the 2 Rx EP's, and are
identical except for using separate variables, while EP2 and EP4 are the Tx partners.

ep1RxQueue[] and ep3RxQueue[] are the Rx packet queues;  packets are pushed on the head of each queue
using ep1RxHead and ep3RxHead, and are popped from the tail of each queue using ep1RxTail and ep3RxTail,
as pointers.  Empty queue entries are marked with INVALID_PN.  Each of these queues is initialized by ApSwInit(),
which is called by the Core code during initialization and is also called by ApUsbReset() for a USB Reset, using
Ep1RxQueInit() and Ep3RxQueInit().  The corresponding queue is flushed by ApUsbCFES() using
Ep1RxQueFlush() and Ep3RxQueFlush().

Since both RxEP's are for BULK packets, data toggles are maintained in bEp1RxToggle and bEp3RxToggle, as
was described in Chapter 4.  The data toggles are reset in ApUsbSetCfg() and ApUsbCFES().

The memory management is based on what was described in Chapter 4.  Each RxEP is allowed to use a peak of
9 MMU pages, and the Threshold is set for 6 (both numerical values are in #define's), which is enforced by making
the corresponding RxEP busy in the RxISR, and unbusy in the foreground.  Each TxEP is allowed to use a peak of
5 MMU pages, and this is enforced by making sure that the corresponding TxFIFO is not full before attempting to
allocte a packet memory.  This policy leaves a minimum of 4 free MMU pages for EP0 under peak conditions.

Each pair of Rx and TxEP's share an ISA circular buffer;  packets are pushed on the head of each queue using
ep1IsaHead and ep3IsaHead, and packets are popped from the tail of each queue using ep1IsaTail and
ep3IsaTail as pointers.  When each queue is empty, its head and tail pointers are equal;  a queue is considered
full when its head pointer is 1 behind its tail pointer.  Each 16 KB buffer is treated as having 128 pages of 128
bytes each, so it can hold up to 127 USB packets.  Memory-To-Memory DMA is used to perform the actual transfers
to/from each ISA page, using DmaEntirePktToIsa() and DmaIsaToEntirePkt() respectively.  The session size is
always set to a full 72 bytes, which will handle a maximum size BULK packet, including its 8-byte header.  This
simplifies the task of handling variable size packets and, recognizing that most packets are maximum size anyway,
results in good throughput as well. The details of the DMA functions are as was described in Chapter 5.  The ISA
queues are marked empty by ApSwInit(),which is called by the Core code during initialization and is also called by
ApUsbReset() for a USB Reset.

Since all 4 EP's perform Memory-To-Memory DMA, they must all share DMA channels 0 and 1.  In order to support
this sharing, the dmaOwner variable is used;  it is set to the corresponding EP [1,4] that currently owns the DMAC,
or else it is cleared to zero if no EP is currently using the DMAC, signifying that the DMAC is available for use.

Data Transfer Details
When packets arrive from the USB, the Core code initially recieves the IRQ in its Isr0() function, and passes
execution to ApIsr0().  Note that Register Bank switching is used for speed, as was described in a previous
chapter.  ApIsr0() saves and restores the MMU state on entry and exit of the RxFIFO loop, since it needs to use
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some of the MMU registers in order to handle the packets.  If a packet is addressed to EP0, ApIsr0() calls back to
Ep0RxIsr() in the Core code in order to handle the packet.  For application packets, ApIsr0() validates the packet
and discards it for Bad CRC, Stall, or Data Toggle (since these are Bulk packets).  Assuming the packet is
accepted, it is pushed on the corresponding software queue;  if a queue overflows, which should never happen
because of the MMP code, it is considered a Fatal Error, and the corresponding EP is Stalled, and the error code is
logged in apIsr0Error, which will be displayed by the foreground the next time ApSlowPoll() is called.  As each
packet is queued, the packet count for the EP is incremented, and the EP is made BUSY if its count exceeds the
defined threshold.  For instrumentation, Isr0() pulses GPIO2 (see the comment in the GPIO section later in this
chapter) high for the duration of its execution, ApIsr0() pulses GPIO1 high each time around the RxFIFO loop, and it
also pulses GPIO0 high whenever it discards an EP1 or EP3 packet for bad Data Toggle.

Eventually, the corresponding RxEP handler (1 or 3) will execute in the foreground and will find that its Rx queue is
not empty, its ISA queue is not full, and that the DMAC is available.  At this point, it will claim ownership of the DMAC
by setting the dmaOwner to its EP number, and will start a DMA session using DmaEntirePktToIsa().  Eventually, it
will see that it is the dmaOwner and that the session has completed, at which point it will update its queue
pointers and mark the dmaOwner=0 to signify that another EP may use it.  Once the DMA is complete, the packet
is freed in the MMU, the packet count is decremented, and the EP is made unbusy if the total number of packets
has dropped below threshold.  Note that the packet count and EPCTRL register are shared with the ISR, so IRQ's
are disabled/enabled around these accesses.  Also, EP1 raises GPIO3 high when starting a DMA session, and
brings it back low when the DMA completes.  Similarly, since GPIOA_OUT is shared with the ISR, IRQ's are
disabled around accesses to this register.

Eventually, the corresponding TxEP handler (2 or 4) will execute in the foreground and will find that its Tx queue is
not full, its ISA queue is not empty, and that the DMAC is available.  At this point, it will claim ownership of the DMAC
by setting the dmaOwner to its EP number, and will start a DMA session using DmaIsaToEntirePkt().  Eventually, it
will see that it is the dmaOwner and that the session has completed, at which point it will update its queue
pointers and mark the dmaOwner=0 to signify that another EP may use it.  Before starting the DMA session, it will
allocate a packet from the MMU and save the packet number in a local static variable, which it will queue for Tx
when the DMA session is complete.  For the EP2 handler, GPIO4 is raised high when the DMA session is started,
and brought back low when it completes;  for EP4, no GPIO's are pulsed.  Since GPIOA_OUT is shared with the
ISR, IRQ's are disabled around accesses to this register.

GPIO Summary
The sample code is instrumented as follows:
GPIO7:  set high in Ap to connect to USB at full speed (12 Mbps)
GPIO5:  pulses high for the duration of ApSlowPoll().
GPIO4:  pulses high for the duration of EP2 DMA from ISA to MMU
GPIO3:  pulses high for the duration of EP1 DMA from MMU to ISA
GPIO2:  pulses high for the duration of Isr0() [see comment below about GPIO2]
GPIO1:  pulses high each time around the USB RxFIFO loop
GPIO0:  pulses high for a USB Rx pkt on EP1 or 3 bad toggles

All GPIO's are manipulated in the Application code, with the exception of GPIO2.  To be faithful to the architecture
description in which all GPIO's are owned by the application, this should be removed from the Core code and
either placed in the Application or discarded.

USB HUB BLOCK
The USB Hub Block consists of a Hub Serial Interface Engine, Hub Repeater, Hub Command Sequencer, and a
Hub Control. Hub configuration, Status, Port power control, selective reset on a port-by-port basis, fault recovery
frame time logic, are just some of the functions performed by the Hub Block.

The Hub Block consists of 8 registers that are memory mapped into the 8051 MCU memory space. The IdVendor,
IdProduct, BcdDevice Low and High Byte registers, HubControl1 register, and reserved register.
As the register name calls it the registers define the particular Vendor ID, Product ID, Device release number Id,
except for HubControl1 register which is used to set the Hub in five different modes. One important mode is one,
which allows the USB97C102 to be pin and function compatible to the USB97C100, making porting of code very
simple. Initialization of the internal USB Hub is a requirement in all modes and conditions relative to a hardware
and/or software reset. The requirements for USB Hub initialization are discussed below.
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HUB Initialization
HUB Initialization takes place when the MCU resets the Hub by asserting NhubReset bit in the Hubcontrol1
register. The hub will not respond to any enumeration or device request. This will allow the Hub registers to be
initialized prior to enumeration. Initialization of Hub control registers must accomplished within two (2) ms after
reset is de-asserted.  After de-assertion of NhubReset bit Hub controller is ready to receive packets from the USB
Root Host Controller. Each port will then be enabled and initialized via a control packet from the host.

HUB Control Register1
HUB Control Register1 allows designer to disconnect / connect ports from Hub by setting one of the 4 HubBypass
bits in Hub Control Register1. A total of 5 Hub Bypass modes can be selected. Just remember that when setting
the USB97C102 in any HubBypass mode, its recommended that only one HubBypass bit be set.

Mode 1: “Native Mode / Normal Mode” when HubBypass (2-5) bits in Hub Control Register1 are cleared (0). In this
mode no hub bypass is done. Utilizing all up and down stream ports

Mode 2: “USB97C100 Compatibility Mode” when HubBypass2 bit in Hub Control Register1 is set to one, Port 1 and
2 are no longer connected to the Hub. Port 1, which is connected to the rest of the USB97C102, is connected to
Port 2. Port 2 becomes the upstream of Port 1.

Mode 3:  When HubBypass3 bit in Hub Control Register1 is set to one, Port 1 and 3 are no longer connected to the
Hub. Port 1, which is connected to the rest of the USB97C102, is connected to Port 3. Port 3 becomes the
upstream of Port 1.

Mode 4:  When HubBypass4 bit in Hub Control Register1 is set to one, Port 1 and 4 are no longer connected to the
Hub. Port 1, which is connected to the rest of the USB97C102, is connected to Port 4. Port 4 becomes the
upstream of Port 1.

Mode 5:  When HubBypass5 bit in Hub Control Register1 is set to one, Port 1 and 5 are no longer connected to the
Hub. Port 1, which is connected to the rest of the USB97C102, is connected to Port 5. Port 5 becomes the
upstream of Port 1.

Example on how to initialize the HUB:

{ :

/* Initializing Vendor ID */

  ID_VENDOR_L = 0x24;
  ID_VENDOR_H = 0x04;

/* Initializing Product ID; must always be initialized before power up and prior to enumeration */

  ID_PRODUCT_L = 0x01;
  ID_PRODUCT_H = 0x00;

/* Initializing USB device release number */

  BCD_DEVICE_L = 0x00;
  BCD_DEVICE_H = 0x02;

  #if MKF_SELF_POWERED
     SIE_CTRL2 = HUB_SELF_POWERED_;
  #endif
  #if MKF_HUB_BYPASS

/ *setting device to HubBypass2 mode in order to use device as a USB97C100 pin compatible device */

     HUB_CTRL_1 = HUBCTL1_NhubReset_ | HUBCTL1_HubBypass2_;
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  #else

/* setting hub controller ready to receive packets from root host controller */
     

HUB_CTRL_1 = HUBCTL1_NhubReset_;
  #endif

:
        #endif

:
:

}

USB97C100 Compatibility  (HUB BYPASS 2) Mode
As mentioned above the USB97C102 can be placed in a mode to emulate the USB97C100 in terms of pin and
function compatibility. “HubBypass 2” only needs to be implemented if and only if the designer is using the
USB97C102 as a USB97C100 pin compatible device. In other words if USB97C102 is to be used in a design
currently utilizing the USB97C100 device, since this change will allow the USB97C102 to be pin replaceable in an
existing USB97C100 design.

Porting of firmware from the USB97C100 to the USB97C102 is fairly easy to port if the following two steps are
taken into account. First: Designer must initialized Hub (refer to HUB Initialization) before any mode or condition
take place. Second: Designer must clear the associated bit(s) of any of the following registers if used: ISR_0,
ISR_1, WU_SRC_1, WU_SRC_2. These registers are cleared by writing a “1” to the associated bit(s) in the
register. This is essential since bit(s) are automatically cleared each time these registers are read when using
USB97C100 device. If writing new firmware for the USB97C102, then one should individually clear the associated
bit(s) in the associated “Interrupt Source” registers as the corresponding interrupts are handled. Refer to
Application note 8.12 for more information on how to port code.


