
ST10F166 FAMILY
16-BIT MCU

USER MANUAL

2ND EDITION

FEBRUARY 1996

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

SGS-THOMSON PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVALOF SGS-THOMSON Microelectronics.

As used herein :

1. Life support devices or systems are those which
(a) are intended for surgical implant into the body,
or (b) support or sustain life, and whose failure to
perform, when properly used in accordance with
instructions for use provided with the product, can
be reasonably expected to result in significant in-
jury to the user.

2. A critical component is any component of a life
support device or system whose failure to perform
can reasonably be expected to cause the failure of
the life support device or system, or to affect its
safety or effectiveness.

INTRODUCTION

FEATURES

1 ARCHITECTURAL OVERVIEW

1.1 BASIC CPU CONCEPTS AND OPTIMIZATIONS . 1-1

1.1.1 High Instruction Bandwidth/Fast Execution . 1-1

1.1.2 High Function 8-bit and 16-bit Arithmetic and Logic Unit 1-2

1.1.3 Extended Bit Processingand Peripheral Control 1-2

1.1.4 High Performance Branch-, Call-, and Loop Processing 1-2

1.1.5 Consistent and Optimized Instruction Formats 1-3

1.1.6 Programmable Multiple Priority Interrupt Structure 1-3

1.2 FUNCTIONAL BLOCKS . 1-4

1.2.1 16-Bit CPU . 1-4
1.2.1.1 INSTRUCTION DECODING . 1-4
1.2.1.2 ARITHMETIC AND LOGIC UNIT . 1-4
1.2.1.3 BARREL SHIFTER . 1-4

1.2.2 Peripheral Event Controller (PEC) and Interrupt Control 1-4

1.2.3 Internal RAM . 1-4

1.2.4 Internal Program Memory . 1-4

1.2.5 Clock Generator . 1-6

1.2.6 Peripherals and Ports . 1-6

2 SYSTEM DESCRIPTION

2.1 MEMORY ORGANIZATION . 2-2

2.2 EXTERNAL BUS CONTROLLER . 2-2

2.3 CENTRAL PROCESSING UNIT (CPU) . 2-2

2.4 INTERRUPT SYSTEM . 2-4

2.5 CAPTURE/COMPARE (CAPCOM) UNIT . 2-4

2.6 GENERAL PURPOSE TIMER (GPT) UNIT . 2-5

2.7 A/D CONVERTER . 2-5

2.8 SERIAL CHANNELS . 2-6

2.9 WATCHDOG TIMER . 2-6

2.10 PARALLEL PORTS . 2-6

GENERAL INDEX

4

3 MEMORY ORGANIZATION

3.1 INTERNAL PROGRAM MEMORY . 3-5

3.2 EXTERNAL MEMORY . 3-5

3.3 INTERNAL RAM . 3-6

3.3.1 System Stack . 3-6

3.3.2 General Purpose Registers . 3-7

3.3.3 Pec Source and Destination Pointers . 3-9

3.4 INTERNAL SPECIAL FUNCTION REGISTERS . 3-10

4 ON-CHIP FLASH MEMORY

5 CENTRAL PROCSSING UNIT

5.1 INSTRUCTION PIPELINING . 5-2

5.1.1 Sequential Instruction Processing . 5-2

5.1.2 Standard Branch Instruction Processing . 5-3

5.1.3 Cache Jump Instruction Processing . 5-3

5.1.4 Particular Pipeline Effects . 5-4

5.2 INSTRUCTION STATE TIMES . 5-5

5.2.1 Time Unit Definitions . 5-5

5.2.2 Minimum State Times . 5-5

5.2.3 Additional State Times . 5-6

5.3 CPU SPECIAL FUNCTION REGISTERS . 5-8

5.3.1 SYSCON: System Configuration Register . 5-9
5.3.1.1 INTERNAL ROM OR FLASH MEMORY/EXTERNAL MEMORY ACCESS MODE SELECTION . . . 5-9
5.3.1.2 EXTERNAL BUS TIMING CONTROL (VIA MCTC, MTTC, RWDC) 5-9
5.3.1.3 BYTE HIGH ENABLE PIN CONTROL (VIA BYTDIS) . 5-9
5.3.1.4 READY PIN CONTROL (VIA RDYEN) . 5-10
5.3.1.5 CLOCK OUTPUT PIN CONTROL (VIA CLKEN) . 5-11
5.3.1.6 NON-SEGMENTED MEMORY MODE SELECTION (VIA SGTDIS) 5-11
5.3.1.7 MAXIMUM SYSTEM STACK SIZE SELECTION (VIA STKSZ) . 5-11

5.3.2 BUSCON1: Bus Configuration Register . 5-13

5.3.3 ADDRSEL1: ADDRESS SELECT REGISTER . 5-13

5.3.4 PSW: Processor Status Word . 5-14
5.3.4.1 ALU STATUS (N, C, V, Z, E, MULIP) . 5-14
5.3.4.2 CPU INTERRUPT STATUS (IEN, ILVL) . 5-16
5.3.4.3 HOLD/HLDA/BREQ BUS ARBITRATION . 5-16

GENERAL INDEX

5

5.3.5 IP: Instruction Pointer . 5-16

5.3.6 CSP: Code Segment Pointer . 5-17

5.3.7 DPP0, DPP1, DPP2, DPP3: Data Page Pointers . 5-18

5.3.8 CP: Context Pointer . 5-20
5.3.8.1 IMPLICIT CP USE WITH SHORT 4-BIT GPR ADDRESSES . 5-20
5.3.8.2 IMPLICIT CP USE WITH SHORT 8-BIT REGISTER ADDRESSES 5-20

5.3.9 SP: Stack Pointer . 5-22

5.3.10 STKUN: Stack Underflow Pointer . 5-24

5.3.11 STKOV: Stack Overflow Pointer . 5-24

5.3.12 MDH: Multiply/Divide Register High Portion . 5-25

5.3.13 MDL: Multiply/Divide Register Low Portion . 5-25

5.3.14 MDC: Multiply/Divide Control Register . 5-26

5.3.15 ONES: Constant Ones Register . 5-26

5.3.16 ZEROS: Constant Zeros Register . 5-26

6 INSTRUCTIONSET OVERVIEW

6.1 SUMMARY OF INSTRUCTION CLASSES . 6-1

6.1.1 Arithmetic Instructions . 6-1

6.1.2 Logical Instructions . 6-1

6.1.3 Boolean Bit Manipulation Instructions . 6-1

6.1.4 Compare and Loop Control Instructions . 6-1

6.1.5 Shift and Rotate Instructions . 6-2

6.1.6 Prioritize Instruction . 6-2

6.1.7 Data Movement Instructions . 6-2

6.1.8 System Stack Instructions . 6-2

6.1.9 Jump and Call Instructions . 6-2

6.1.10 Return Instruction . 6-2

6.1.11 System Control Instructions . 6-2

6.1.12 Miscellaneous . 6-3

6.1.13 Software Instruction Set . 6-3

6.2 ADDRESSING MODES . 6-3

6.2.1 Constants . 6-3

6.2.2 Short Addressing Modes . 6-4

6.2.3 Long Addressing Mode . 6-5

6.2.4 Indirect Addressing Modes . 6-6

6.2.5 Branch Target Addressing Modes . 6-7

6.3 CONDITION CODE SPECIFICATION . 6-8

GENERAL INDEX

6

7 INTERRUPT AND TRAP FUNCTION

7.1 INTERRUPT SYSTEM STRUCTURE . 7-2

7.2 NORMAL INTERRUPT PROCESSING AND PEC SERVICE 7-4

7.2.1 Interrupt System Register Description . 7-5
7.2.1.1 INTERRUPT CONTROL REGISTERS . 7-5
7.2.1.2 INTERRUPT CONTROL FUNCTIONS IN THE PSW . 7-8

7.2.2 PEC Service Channels Register Description . 7-9
7.2.2.1 PEC CHANNEL COUNTER/CONTROL REGISTERS . 7-9
7.2.2.2 PEC SOURCE AND DESTINATION POINTERS . 7-10

7.2.3 Prioritization of Interrupt and PEC Service Requests 7-12
7.2.3.1 ENABLING AND DISABLING OF INTERRUPT SOURCES . 7-12
7.2.3.2 PRIORITY LEVEL STRUCTURE . 7-12
7.2.3.3 EXAMPLE FOR THE USE OF THE CPU PRIORITY . 7-12

7.2.4 Interrupt Procedure . 7-14
7.2.4.1 INTERRUPT PROCEDURE WITH SEGMENTATION DISABLED 7-14
7.2.4.2 INTERRUPT PROCEDURE WITH SEGMENTATION ENABLED 7-14
7.2.4.3 CONTEXT SWITCHING FOR INTERRUPT SERVICE ROUTINES 7-15

7.2.5 Interrupt Processing via the Peripheral Event Controller PEC 7-15

7.2.6 Interrupt and PEC Response Times . 7-17

7.2.7 External Interrupts . 7-19

7.3 TRAP FUNCTIONS . 7-21

7.3.1 Software Traps . 7-21

7.3.2 Hardware Traps . 7-21
7.3.2.1 EXTERNAL NMI TRAP . 7-22
7.3.2.2 STACK OVERFLOW TRAP . 7-22
7.3.2.3 STACK UNDERFLOW TRAP . 7-23
7.3.2.4 UNDEFINED OPCODE TRAP . 7-23
7.3.2.5 PROTECTION FAULT TRAP . 7-23
7.3.2.6 ILLEGAL WORD OPERAND ACCESS TRAP . 7-23
7.3.2.7 ILLEGAL INSTRUCTION ACCESS TRAP . 7-23
7.3.2.8 ILLEGAL EXTERNAL BUS ACCESS TRAP . 7-23

8 PERIPHERALS

8.1 CAPTURE/COMPARE (CAPCOM) UNIT . 8-2

8.1.1 Timers T0 and T1 . 8-5
8.1.1.1 TIMER MODE . 8-5
8.1.1.2 COUNTER MODE . 8-6
8.1.1.3 RELOAD . 8-7
8.1.1.4 TIMER T0 AND T1 INTERRUPTS . 8-7
8.1.1.5 BLOCK DIAGRAM . 8-8

GENERAL INDEX

7

8.1.2 Capture/Compare Registers . 8-9
8.1.2.1 CAPTURE MODE . 8-11
8.1.2.2 COMPARE MODES . 8-12
8.1.2.3 CAPTURE/COMPARE INTERRUPTS . 8-19

8.2 GENERAL PURPOSE TIMERS (GPT) . 8-19

8.2.1 GPT1 Block . 8-22
8.2.1.1 GPT1 CORE TIMER T3 . 8-23
8.2.1.2 GPT1 AUXILIARY TIMERS T2 AND T4 . 8-27

8.2.2 GPT2 Block . 8-36
8.2.2.1 GPT2 CORE TIMER T6 . 8-37
8.2.2.2 GPT2 AUXILIARY TIMER T5 . 8-38
8.2.2.3 GPT2 CAPTURE/RELOAD REGISTER CAPREL . 8-41

8.3 A/D Converter (ADC) . 8-45

8.3.1 Conversion Modes and Operation . 8-45
8.3.1.1 SINGLE CHANNEL CONVERSION MODE . 8-48
8.3.1.2 SINGLE CHANNEL CONTINUOUS CONVERSION . 8-48
8.3.1.3 AUTO SCAN CONVERSION MODE . 8-49
8.3.1.4 AUTO SCAN CONTINUOUS CONVERSION . 8-49

8.3.2 A/D Converter Interupt Control . 8-49

8.4 SERIAL CHANNELS . 8-49

8.4.1 Modes of Operation . 8-51
8.4.1.1 ASYNCHRONOUS OPERATION . 8-52
8.4.1.2 SYNCHRONOUS OPERATION . 8-56

8.4.2 Baud Rates . 8-58
8.4.2.1 ASYNCHRONOUS MODE BAUD RATES . 8-58
8.4.2.2 SYNCHRONOUS MODE BAUD RATES . 8-59

8.4.3 Serial Channels Interrupt Control . 8-60

8.5 WATCHDOG TIMER (WDT) . 8-61

9 EXTERNAL BUS INTERFACE

9.1 EXTERNAL BUS CONFIGURATION DURING RESET . 9-2

9.2 SINGLE CHIP MODE . 9-4

9.3 16/18-BIT ADDRESS, 8-BIT DATA, NON-MULTIPLEXED BUS 9-4

9.4 16/18-BIT ADDRESS, 8-BIT DATA, MULTIPLEXED BUS 9-5

9.5 16/18-BIT ADDRESS, 16-BIT DATA, MULTIPLEXED BUS 9-6

9.6 16/18-BIT ADDRESS, 16-BIT DATA, NON-MULTIPLEXED BUS 9-8

GENERAL INDEX

8

9.7 EXTERNAL BUS TRANSFER CHARACTERISTICS . 9-9

9.7.1 Multiplexed Bus Transfer Characteristics . 9-9
9.7.1.1 MULTIPLEXED BUS MEMORY READS . 9-10
9.7.1.2 MULTIPLEXED BUS MEMORY WRITES . 9-10

9.7.2 Non-Multiplexed Bus Transfer Characteristics . 9-10
9.7.2.1 NON-MULTIPLEXED BUS MEMORY READS . 9-11
9.7.2.2 NON-MULTIPLEXED BUS MEMORY WRITES . 9-11

9.8 USER SELECTABLE BUS CHARACTERISTICS . 9-12

9.8.1 Programmable Memory Cycle Time . 9-12

9.8.2 Programmable Memory Tri-State Time . 9-14

9.8.3 Read/Write Signal Delay . 9-16

9.8.4 ALE signal delay . 9-17

9.8.5 Switching between the Bus Modes. 9-18

9.9 EXTERNAL MEMORY ACCESS VIA THE DATA READY SIGNAL 9-19

10 PARALLEL PORT

10.1 PORTS 0 THROUGH 4 . 10-1

10.1.1 Port 0 and Port 1 . 10-4

10.1.2 Port 2 . 10-6

10.1.3 Port 3 . 10-10
10.1.3.1 PORT 3 PINS T0IN, T2IN, T3IN, T4IN, T3EUD, CAPIN, AND READY 10-11
10.1.3.2 PORT 3 PINS T3OUT, T6OUT, TXD0, TXD1, WR, CLKOUT . 10-12
10.1.3.3 PORT 3 PIN BHE . 10-13
10.1.3.4 PORT 3 PINS RXD0 AND RXD1 . 10-14

10.1.4 Port 4 . 10-15

10.2 PORT 5 . 10-16

11 SYSTEM RESET

11.1 RSTIN and RSTOUT Pins . 11-1

11.2 RESET VALUES FOR ST10x166 REGISTERS . 11-2

11.3 WATCHDOG TIMER OPERATION AFTER RESET . 11-3

11.4 PORTS AND EXTERNAL BUS CONFIGURATION DURING RESET 11-3

11.5 INITIALIZATION SOFTWARE ROUTINE . 11-4

11.6 THE BOOT-STRAP MODE . 11-4

GENERAL INDEX

9

12 POWER REDUCTION MODE

12.1 POWER DOWN MODE . 12-1

12.2 IDLE MODE . 12-1

12.3 STATUS OF OUTPUT PINS DURING IDLE AND POWER DOWN MODE 12-2

13 SYSTEM PROGRAMMING

13.1 INSTRUCTIONS PROVIDED AS SUBSETS OF INSTRUCTIONS 13-1

13.1.1 Directly Substitutable Instructions . 13-1

13.1.2 Modification of System Flags . 13-1

13.1.3 External Memory Data Access . 13-1

13.2 MULTIPLICATION AND DIVISION . 13-2

13.3 BCD CALCULATIONS . 13-3

13.4 STACK OPERATIONS . 13-3

13.4.1 Internal System Stack . 13-3
13.4.1.1 USE OF STACK UNDERFLOW/OVERFLOW REGISTERS . 13-4

13.4.2 User Stacks . 13-5

13.5 REGISTER BANKING . 13-5

13.6 PROCEDURE CALL ENTRY AND EXIT . 13-5

13.6.1 Passing Parameters on the System Stack . 13-5

13.6.2 Cross Segment Subroutine Calls . 13-5

13.6.3 Providing Local Registers for Subroutines . 13-6

13.7 TABLE SEARCHING . 13-7

13.8 PERIPHERAL CONTROL AND INTERFACE . 13-7

13.9 FLOATING POINT SUPPORT . 13-7

13.10 TRAP/INTERRUPT ENTRY AND EXIT . 13-7

GENERAL INDEX

10

APPENDICES

A REGISTERS

A1 CPU GENERAL PURPOSE REGISTERS . A-1

A2 SPECIAL FUNCTION REGISTERS . A-3

B APPLICATION NOTE, PROGRAMMING FLASH MEMORY

C APPLICATION EXAMPLE

EXTERNAL BUS AND MEMORY CONFIGURATIONS . C-1

CALCULATION OF THE USER SELECTABLE BUS TIMING PARAMETERS C-6

D EXAMPLE BOOT-STRAP LOADER

GENERAL INDEX

11

The rapidly growing area of real-time, embedded control applications represents one of the most exacting
operating environments for today’s microcontrollers. Processors are required to execute complex control
algorithms using a large number of digital and analog input and output signals, within a defined minimum
response time. With the increasing complexity of embedded control applications, a significant increase in
CPU performance and peripheral functionality over conventional 8-bit controllers is required.

The new ST10 family of 16-bit CMOS microcontrollers achieves this high performance goal. The ST10
family offers a 16 bit CPU core, FLASH memory, ROM and RAM capabilities, and advanced peripheral
functions for digital and analog IO.

The16-bit core of the ST10 family combines the advantagesof both RISC and CISC processors. It consists
ofa RISC-like architecturewith a 16-bitALU,4 stagesof instructionpipelineand dedicatedSpecialFunction
Registers (SFRs) and a CISC-like instruction set for the high performanceCPU (10 million instructions per
second).

Intelligent peripherals have been integrated to reduce the need for CPU intervention to a minimum. The
ST10 family includes a 10 channel Analog to Digital Converter with 10 bits of resolution and 9.75ms of
conversion time, Multifunction Timers, a Capture/Compare unit, 2 serial channels (USARTs) offering
625Kbaud in full duplex asynchronous communication and 2.5Mbaudin half duplex synchronouscommu-
nication, an 8 channel Peripheral Event Controller allowing data transfer in only 1 instruction cycle time
and 76 I/O lines with individual bit addressability.

Based on a von Neumann architecture,up to 256Kbytesof linear address space for code and data can be
accessedwith the External Bus Controller interface.

This high performance 16 bit microcontroller family with its different sets of on-chip peripherals and the
FLASH memory technology meet the requirements of real-time control applications such as automotive
engine control, industrial control and data communication.

In addition, many applications require program or data updating during the product life. In the same way it
can be very helpful to modify the program during the development or production phase in many control
applications.With the on-chip Flash memory of the ST10F166, flexibility and security are brought to these
applications.

Note: In this document, any reference to the ST10x166 can be applied to the different members of the
family unless otherwise noted. The ST10R166 is ROMless, and the ST10166 and ST10F166 are fully
compatible except for the program mode of the FLASH memory of the ST10F166. All time specifications
are referred to a CPU clock of 20MHz which means an oscillator frequency (fOSC) of 40MHz.

INTRODUCTION

12

Die photo of ST10F166 with 32K on-chip FLASH Memory

INTRODUCTION

13

High Performance 16-Bit CPU With Four Stage
Pipeline

100ns minimum instruction cycle time, with most
instructions executed in 1 cycle
500ns multiplication (16-bit x 16bit), 1µs division
(32-bit/16bit)
High bandwidth internal data buses
Registerbased designwith multiple variable reg-
ister banks
Single cycle context switching support
256Kbytes linear address space for code and
data (von Neumann architecture)
Systemstackcachesupportwithautomaticstack
overflow/underflow detection

Control Oriented Instruction Set with High Effi-
ciency

Bit, byte, and word data types
Flexible and efficient addressing modes for high
code density
Enhanced boolean bit manipulation with direct
addressabilityof 4Kbits for peripheralcontrol and
user defined flags
Hardware traps to identify exception conditions
during runtime

Integrated On-chip Memory
1Kbyte internal RAM,
32Kbytes internal ROM (ST10166)
32Kbytes internal FLASH memory (ST10F166)

External Memory Expansion Interface
Supports 3 different bus configurationsplus seg-
mentation capability

16 Priority Level Interrupt System
32 interrupt sources with separate interrupt vec-
tors
300/500ns typical/maximum interrupt latency in
case of internal program execution

8 Channel Peripheral Event Controller (PEC)
Interrupt driven single cycle data transfer
Transfer count option (CPU interrupt generation
after a programmablenumber of PEC transfers)
Eliminatesoverheadof savingand restoring sys-
tem state for interrupt requests

FEATURES

Intelligent Peripheral Subsystems
10-Channel 10-bit A/D Converter,
9.75µs conversion time, auto scan modes
16-Channel Capture/Compare Unit with 2 inde-
pendent time basesvery flexible PWM unit/event
recording unit with 5 different operating modes,
includestwo 16-bit timers/counters with 400ns
maximum resolution
2 Multifunctional General Purpose Timer Units
GPT1: three 16-bit timers/counters,400nsmaxi-
mum resolution
GPT2: two 16-bit timers/counters, 200ns maxi-
mum resolution
2 Serial Channels (USART) with independent
baud rategeneratorsprovideparity, framing,and
overrun error detection
Watchdog Timer with programmable time inter-
vals

76 I/O Lines With Individual Bit Addressability
Tri-stated in input mode, Schmitt-Trigger charac-
teristics

Different Temperature Ranges

-0 to 70°C, -40 to 85°C, -40 to 105°C

Micron Multifunctional Cmos Process
Low Power CMOS Technology, including power
saving Idle and Power Down modes

100-Pin Metric Plastic Quad Flat Pack (PQFP)
Package

JEDEC standard,0.65mm lead spacing,surface
mount technology

Complete Development Support
‘C’ Compiler
Macro Assembler, Linker, Locater, Library Man-
ager, Object-to-Hex-Converter
Simulator for the completesimulation of the CPU
and the on-chip peripherals
Real-Time In-Circuit Emulator
Flash programming board for ST10F166
Evaluation Board with monitor program

14

NOTES:

ARCHITECTURAL OVERVIEW

CHAPTER 1

This chapter contains an overview of the
ST10x166’s architecture with combines advan-
tages of both RISC and CISC processors in a very
well-balanced way. It introduces the features
which do in sum result in a high performance mi-
crocontroller which is the right choice not only for
today’s applications, but also for future engineer-
ing challenges.

1.1 BASIC CPU CONCEPTS AND
OPTIMIZATIONS

To meet the demand for greater performance and
flexibility, a number of areashas been optimized in
the processor core. These are summarized below,
and described in detail in the following sections:

High Instruction Bandwidth/Fast Execution
High Function 8-bit and 16-bit Arithmetic and
Logic Unit
ExtendedBit Processing and PeripheralControl
High Performance Branch-, Call-, and Loop
Processing
Consistent and Optimized Instruction Formats
Programmable Multiple Priority Interrupt Struc-
ture

1. ARCHITECTURAL OVERVIEW

1.1.1 High Instruction Bandwidth/Fast
Execution
To achieve the desired performance, a goal of ap-
proximately one instruction executed during each
machinecycle was set for the core CPU. Primarily,
this goal has been reached except for branch-,
multiply- or divide instructions. These instructions,
however, have also been optimized. For example,
branch instructions only require an additional ma-
chine cycle when a branch is taken, and most
branches taken in loops require no additional ma-
chine cycles.
The instruction cycle time has been dramatically
reduced through the use of instruction pipelining.
This technique allows the core CPU to process
portionsof multiple sequential instructionstages in
parallel. The following four stage pipeline provides
the optimum balancing for the ST10x166 family’s
CPU core:

FETCH: In this stage, an instruction is
fetched from the internal ROM or
RAM, or from the externalmemory
based on the current IP value.

DECODE: In this stage, the previously
fetched instruction is decoded
and the required operands are
fetched.

1/6

EXECUTE: In this stage, the specified operat-
ion is performed on the previously
fetched operands.

WRITE BACK: In this stage, the result is written
to the specified location.

If this technique were not used, each instruction
would require four machine cycles. This increased
performance allows a greater number of tasks and
interrupts to be processed.

1.1.2 High Function 8-bit and 16-bit
Arithmetic and Logic Unit
Most internal execution blocks have been opti-
mized to perform operations on either 8-bit or 16-
bit quantities. Once the pipeline has been filled,
one instruction is completed per machinecycle ex-
cept for multiply and divide. An advancedBooth al-
gorithm has been incorporated to allow four bits to
be multiplied and two bits to be divided per ma-
chine cycle. Thus, these operations require four
and nine machine cycles, respectively, to perform
a 16-bit by 16-bit (or 32-bit by 16-bit) calculation
plus one machine cycle to setup and adjust the op-
erands and the result. Even these longer multiply
and divide instructions can be interrupted during
their execution to allow for very fast interrupt re-
sponse.Instructionshave also been provided to al-
low byte packing in memory while providing sign
extension of bytes for word wide arithmetic opera-
tions. The internal bus structure also allows trans-
fers of bytes or words to or from peripherals based
on the peripheral requirements.

A set ofconsistent flags is automaticallyupdated in
the PSW after each arithmetic, logical, shift, or
movement operation. These flags allow branching
on specific conditions.Support for bothsigned and
unsigned arithmetic is provided through user-spe-
cifiable branch tests. These flags are also pre-
served automaticallyby the CPU upon entry to an
interrupt or trap routine.

1.1.3 Extended Bit Processingand Peripheral
Control
A large number of instructionshas been dedicated
to bit processing. These instructions provide effi-
cient control and testing of peripherals while en-
hancing data manipulation. Unlike many current
microcontrollers, these instructions provide direct
access to two operands in the bit-addressable
space without requiring movement into temporary
flags.
The same logical instructions available for words
and bytes are also supported for bits. This allows
the user to compare and modify a control bit for a
peripheral in one instruction. Multiple bit shift in-
structions have been included to avoid long in-
struction streams of single bit shift operations.
These are also performed in a single machine cy-
cle.
In addition, bit field instructions have been pro-
vided which allow the modification of multiple bits
from one operand in a single instruction.

1.1.4 High Performance Branch-, Call-, and
Loop Processing
Due to thehigh percentageof branchingin control-
ler applications,branch instructions have been op-
timized to require one extra machine cycle only
when a branch is taken. This is implemented by
precalculating the target address while decoding
the instruction. To decrease loop execution over-
head, three enhancements have been provided.
The first solution provides single cycle branch exe-
cution after the first iteration of a loop.
Thus, only one machine cycle is lost during the
execution of the entire loop.In loops which fall
through upon completion, no machine cycles are
lost when exiting the loop. No special instructions
are required to perform loops, and loops are auto-
matically detected during execution of branch in-
structions.

1 - Architectural Overview

2/6

The second loop enhancement allows the detec-
tion of the ends of tables and avoids the use of two
compare instructions embedded in loops. One
simply places the lowest negative number at the
end of the specific table, and specifies branching if
neither this value nor the compared value have
been found. Otherwise the loop is terminated if
either condition has been met. One can then test
which condition has occurred. This method is de-
scribed in detail in section 13.7.
The third loop enhancement provides a more flex-
ible solution than the Decrement and Skip on Zero
instruction which is found in many other microcon-
trollers. Through the use of Compare and Incre-
ment or Decrement instructions, the user can
make comparisons to any value. This allows loop
countersto cover any range. This is particularlyad-
vantageous in table searching.
Saving of system state is automatically performed
on the internal system stack avoiding the use of in-
structions to preserve state upon entry and exit of
interruptor traproutines. Call instructionspush the
value of theIP on the system stack, and require the
same execution time as branch instructions.
Instructionshavealsobeenprovidedto supportindi-
rect branch and call instructions. This supports im-
plementation of multiple CASE statement
branchingin assemblermacros and high level lan-
guages.

1.1.5 Consistent and Optimized Instruction
Formats
To obtain optimum performance in a pipelined de-
sign, an instruction set has been designed which
incorporates concepts from Reduced Instruction
Set Computers (RISC). These concepts primarily
allow fast decoding of the instructions and oper-
ands while reducing pipeline holds. These con-
cepts, however, do not preclude the use of
complex instructions which are required by micro-
controller users. The following goals were used to
design the instruction set:
1) Provide powerful instructions to perform op-

erations which currently require sequences of
instructions and are frequently used. Avoid
transfer into and out of temporary registers
such as accumulators and carry bits. Perform
tasks in parallel such as saving state upon en-
try to interrupt routines or subroutines.

2) Avoid complex encoding schemes by placing
operands in consistent fields for each instruc-
tion. Also avoid complex addressing modes
which are not frequently used. This decreases
the instruction decode time while also simplify-
ing the development of compilers and assem-
blers.

3) Provide most frequentlyused instructions with
one-word instruction formats. All other instruc-
tions are placed into two-word formats.This al-
lows all instructions to be placed on word
boundaries,which alleviates the need for com-
plex alignment hardware. It also has the bene-
fit of increasingthe range for relativebranching
instructions.

1.1.6 Programmable Multiple Priority Interrupt
Structure
A number of enhancementshave been included to
allow processing of a large number of interrupt
sources. These are presented below:
1) Peripheral Event Controller (PEC): This proc-

essor is used to off-load many interrupt re-
quests from the CPU. It avoidsthe overhead of
entering and exiting interrupt or trap routines
by performing single-cycle interrupt-driven
byte or word data transfers.

2) Multiple Priority Interrupt Controller: This con-
troller allows all interrupts to be placed at any
specified priority. Interrupts may also be
grouped, which provides the user with the abil-
ity to prevent similar priority tasks from inter-
rupting each other.

3) Multiple Register Banks: This feature allows
the user to specify up to sixteen general pur-
pose registers located anywherein the internal
RAM. A singleone machine cycle instruction is
used to switch register banks from one task to
another.

4) Interruptable Multiple Cycle Instructions: Re-
duced interrupt latency is providedby allowing
multiple cycle instructions (multiply, divide) to
be interruptable.

1 - Architectural Overview

3/6

1.2 FUNCTIONAL BLOCKS

The ST10x166 family clearly separates peripher-
als from the core.
This structurepermits the maximum number of op-
erations to be performed in parallel and allows pe-
ripherals to be added or deleted from family
members without modifications to the core. Each
functionalblock processes data independentlyand
communicates information over common buses.
Functional blocks in the CPU core are controlled
by signals from the instruction decode logic. Pe-
ripherals are controlled by data written to the Spe-
cial Function Registers (SFRs).
The following sections describe the functional
blocks of the ST10x166 and interactions between
these blocks.

1.2.1 16-Bit CPU

1.2.1.1 INSTRUCTION DECODING

Instruction decoding is primarily generated from
PLA outputs basedon the selected opcode.No mi-
crocode is used and each pipeline stage receives
control signals staged in control registers from the
decode stage PLAs. Pipeline holds are primarily
caused by wait states for external memory ac-
cesses and cause the holding of signals in the con-
trol registers. Multiple-cycle instructions are
performed through instruction injection and simple
internalstate machines whichmodify required con-
trol signals.

1.2.1.2 ARITHMETIC AND LOGIC UNIT

All standard arithmetic and logical operations are
performed in a 16-bit ALU. In addition, for byte op-
erations, signals are provided from bits six and
seven of the ALU result to correctly set the condi-
tion flags. Multiple precision arithmetic is provided
through a ‘CARRY-IN’ signal to the ALU from pre-
viously calculated portions of the desired opera-
tion. Booth multiplication and division are
supported by an extended ALU and a bit shifter
placed on two coupled 16-bit registers, MDL and
MDH. All targets for branch calculations are also
computed in the central ALU.

1.2.1.3 BARREL SHIFTER

A 16-bit barrel shifter provides multiple bit shifts in
a single cycle. Rotates and arithmetic shifts are
also supported.

1.2.2 Peripheral Event Controller (PEC) and
Interrupt Control
Each interrupt source is prioritized every machine
cycle in the interruptcontrol block. If PEC service is
selected,a PEC transfer is started. If CPU interrupt
service is requested,the current CPU priority level
stored in the PSW register is tested to determine
whether a higher priority interrupt is currentlybeing
serviced. When an interrupt is acknowledged, the
current state of the machine is saved on the inter-
nal system stack and the CPUbranchesto the sys-
tem specific vector for the peripheral.
The PEC contains a set of SFRs which store the
count value and control bits for eight data transfer
channels. In addition, the PEC uses a dedicated
area of RAM which contains the source and desti-
nation addresses. The PEC is controlled similar to
any other peripheral through SFRs containing the
desired configurationof each channel.

1.2.3 Internal RAM
A dual port 512 by 16-bit internal RAM provides
fast access to GeneralPurposeRegisters (GPRs),
user data, and system stack. A unique decoding
scheme provides flexible user register banks in the
internal memory while optimizing the remaining
RAM for user data.
Hardware detection of the selectedmemory space
is placed at the internal memory decoders and al-
lows the user to specify any address directly or in-
directly and obtain the desired data without using
temporary registers or special instructions.

1.2.4 Internal Program Memory
For both code and data storage, the ST10166 pro-
vides an internal ROM of 32 Kbytes and the
ST10F166 provides an internal FLASH memory of
32Kbytes.For both, this memoryarea is connected
to the CPU via a 32-bit bus. Thus, an entiredouble
word instructioncan be fetched in one machine cy-
cle. Program execution from the on-chip ROM or
FLASH memory is the fastest of all possible alter-
natives.

1 - Architectural Overview

4/6

16-Bit
Timer T0

16-Channel
Capture /

Compare
Unit

16-Bit
Timer T1

External Bus
Controller

Watchdog

Timer

General Purpose
Timer Unit

GPT1

16-Bit Timer T2

16-Bit Timer T3

16-Bit Timer T4

General Purpose
Timer Unit

GPT2

16-Bit Timer T5

16-Bit Timer T6

ROM or FLASH

32KBytes

RAM

1KByte

Clock
Generator

10-Channel

10-Bit A/D

Converter

Serial

Channel

ASC0

Serial

Channel

ASC1

16-Bit CPU

Interrupt & PEC Control

I/O Ports

VR001622

Figure 1-1. Functional Block Diagram

1 - Architectural Overview

5/6

1.2.5 Clock Generator
The on-chip clock generator contains a prescaler
which divides the external clock frequency by 2.
Thus, the internal clock frequency is half the exter-
nal clock frequency (i.e. fOSC = 40MHz at internal
clock frequency = 20MHz). Two separated clocks
are generated for the CPU and the peripheral part
of the chip. While the CPU clock is stoppedduring
wait states or during the idle mode, the peripheral
clock keeps running. Both clocks are switched off
when the power down mode is entered.

1.2.6 Peripherals and Ports
The ST10x166 also contains:

- two blocks of general purpose timers

- a capture/compareunit

- two serial interface channels

- an A/D converter

- a watchdog timer

- six I/O ports with a total of 76 I/O lines
Each peripheral also contains a set of SFRs which
control the functionality of the peripheral and tem-
porarily store intermediate data results. Each pe-
ripheral has an associated set of status flags.
Individually selected clock signals are generated
for each peripheral from binary multiples of the
system clock.

1 - Architectural Overview

6/6

SYSTEM DESCRIPTION

CHAPTER 2

In this chapter, a summary of the ST10x166 is pre-
sented.The followingblock diagram gives an over-
view of the differenton-chip componentsand of the

advanced,high bandwidth internal bus structure of
the ST10F166.

2. SYSTEM DESCRIPTION

...

...

Interrupt Controller
OSC

Watchdog

USART
ASC1

USART
ASC0

10-bit
ADC

Port 1

Port 0

Port 4

GPT2 CAPCOM

BRG BRG

T2

T3

T4

T5
T1 T0

Port 2

T6

GPT1

Port 5 Port 3

PEC

XTAL

...........

32

16

16

16

16

16

1 6

16 16 16

2

10

ST10F166

CPU - CORE

Ext.

Bus

Control

Internal
FLASH EPROM

32KBytes

Internal
RAM

1KBytes

VR001613

Figure 2-1. Block Diagram

1/6

2.1 MEMORY ORGANIZATION

The memory space of the ST10x166 is configured
in a Von Neumann architecture which means that
code memory, data memory, registers and I/O
portsare organizedwithin the same linear address
space which currently includes 256Kbytes. Ad-
dress space expansion to 16 Mbytes is provided
for future versions. The entire memory space can
be accessedby byte or by word.Particularportions
of the on-chip memory have additionally been
made directly bit addressable.
The ST10166 contains 32Kbytes of mask-pro-
grammable on-chip ROM for code or constant
data.
The ST10F166 contains 32Kbytes of reprogram-
mable on-chip FLASH memory for code or con-
stant data.
A large dual port RAM of 1Kbyte is containedon all
members of the ST10x166 family. This internal
RAM is provided as a storagefor user defined vari-
ables, for the system stack, generalpurpose regis-
ter banks and even for code. A register bank can
consistof up to 16wordwide(R0 to R15) and/orby-
tewide (RL0, RH0, ..., RL7, RH7) called General
PurposeRegisters (GPRs).

512 bytes of the address space are reserved for
the Special Function Register (SFR) area. SFRs
are wordwide registers which are used for control-
ling and monitoring functions of the different on-
chip units. 118 SFRs are currently implemented.
Unused SFR addresses are reserved for future
membersof the ST10x166family.
In order to meet the needs of designs where more
memory is required than is provided on chip, up to
256Kbytes of external RAM and/or ROM can be
connected to the microcontroller.

2.2 EXTERNAL BUS CONTROLLER

All of theexternal memoryaccesses are performed
by a particular on-chip External Bus Controller
(EBC). It can be programmed to either the Single
Chip Mode when no external memory is required,
or to one of four different external memory access
modes, which are as follows:

- 16-bit/18-bit Addresses, 16-bit Data, Non-Multi-
plexed

- 16-bit/18-bit Addresses, 16-bit Data, Multi-
plexed

- 16-bit/18-bit Addresses, 8-bit Data, Multiplexed

- 16-bit/18-bit Addresses, 8-bit data, Non-Multi-
plexed

In the non-multiplexedbus mode, Port 1 is used as
an output for addresses and Port 0 is used as an
input/output for data; the upper half of Port 0 can
not be used for general purpose I/O in the 8-bit
data bus mode. In the multiplexed bus modes, one
16-bit port, Port 0, is used as an input/output for
both addresses and data.

Important timing characteristicsof the external bus
interface (Memory Cycle Time, Memory Tri-State
Time and Read/Write Delay) have been made pro-
grammable to allow the user the adaptionof a wide
range of different types of memories. Access to
very slow memories is supported via a particular
‘Ready’ function.
For applications which require less than 64Kbytes
of memory space, a non-segmented memory
model can be selected. In this case, all memory lo-
cations can be addressedby 16 bits, and thus Port
4 is not needed as an output for the two most sig-
nificant address bits (A17 and A16), as is the case
when using the segmentedmemory model.

2.3 CENTRAL PROCESSING UNIT (CPU)

The main core of the CPU consists of a 4-stage in-
struction pipeline, a 16-bit arithmetic and logic unit
(ALU) and dedicated SFRs. Additional hardware
has been spent for a separate multiply and divide
unit, a bit-mask generator and a barrel shifter.
Based on these hardware provisions, most of the
ST10x166’s instructions can be executed in just
one machinecycle which requires 100nsat 20MHz
CPU clock. For example, shift and rotate instruc-
tions are always processed during one machine
cycle independent of the number of bits to be
shifted. All multiple-cycle instructions have been
optimizedso that they can be executedvery fast as
well: A 32-bit/16-bitdivision in 1µs, a 16-bit x 16-bit
multiplication in 0.5µs, and branches in 200ns. An-
other pipeline optimization, the ‘Jump Cache’, al-
lows reducing the execution time of repeatedly
performed jumps in a loop from 200ns to 100ns.

The CPU disposes of an actual register context
consisting of up to 16 wordwide GPRs which are
physically allocated within the on-chip RAM area.
A Context Pointer (CP) register determines the
base address of the active register bank to be ac-
cessed by the CPU at the time. Thenumber of reg-
ister banks is only restricted by the available
internal RAM space. For easy parameter passing,
register banks can also be organized to overlap.

2 - System Description

2/6

R0

CPU

R15

R15

R0

General

Purpose

Registers

MDH

MDL

Mul./Div.-HV

Bit-Mask Gen.

ALU
(16-bit)

Barrel-Shifter

Context Ptr.

Code Seg. Ptr.

SP

STKOV

STKUV

Exec. Unit

Instr. Ptr.

Instr. Reg.

PSW

SYSCON

Data Page Ptr.

4 - Stage
Pipeline

32

16

16

32K
Bytes

FLASH
EPROM

1K
Bytes
RAM

VR001614

Figure 2-2. CPU Block Diagram

A system stack of up to 512 bytes is provided as a
storage for temporary data. The system stack is al-
located in the on-chip RAM area, and it isaccessed
by the CPU via the stack pointer (SP) register. Two
separate SFRs, STKOV and STKUN, are implicitly
compared against the stack pointer value upon
each stackaccess for the detectionof a stack over-
flow or underflow.
The high performanceoffered by the hardware im-
plementation of the CPU can efficiently be utilized
by a programmer via the highly functional
ST10x166 instruction set which includes the fol-
lowing instruction classes:

- Arithmetic Instructions

- Logical Instructions

- Boolean Bit Manipulation Instructions

- Compare and Loop Control Instructions

- Shift and Rotate Instructions

- Prioritize Instruction

- Data Movement Instructions

- System Stack Instructions

- Jump and Call Instructions

- Return Instructions

- System Control Instructions

- Miscellaneous Instructions
The basic instruction length is either 2 or 4 bytes.
Possible operand types are bits, bytes and words.
A variety of direct, indirect or immediate address-
ing modes are provided to specify the required op-
erands.

2 - System Description

3/6

2.4 INTERRUPT SYSTEM

With an interrupt response timewithin a range from
just 250ns to 500ns (in case of internal program
execution), the ST10x166 is capable of reacting
very quickly to the occurrence of non-deterministic
events.

The architectureof theST10x166 supportsseveral
mechanisms for fast and flexible response to serv-
ice requests which can be generated from various
sources internal or external to the microcontroller.
Any of these interrupt requests can be pro-
grammed to be serviced by the Interrupt Controller
or by the PeripheralEvent Controller (PEC).
In contrast to a standard interrupt service where
the current program execution is suspended and a
branch to the interrupt vector table is performed,
just one cycle is ‘stolen’ from the current CPU ac-
tivity to perform a PEC service. A PEC service im-
plies a single byte or word data transfer between
any two memory locations with an additional incre-
ment of either the PEC source or the destination
pointer. An individual PEC transfer counter is im-
plicitly decremented for each PEC service except
when performing in the continuoustransfer mode.
When this counter reaches zero, a standard inter-
rupt is performed to the corresponding source re-
lated vector location. PEC services are very well
suited, for example, for supporting the transmis-
sion or reception of blocks of data, or for transfer-
ring A/D converted results to a memory table. The
ST10x166 has 8 PEC channels each of which of-
fers such fast interrupt-driven data transfer capa-
bilities.
A separatecontrol register which contains an inter-
rupt request flag, an interruptenable flag and an in-
terrupt priority bitfield, exists for each of the
possible interrupt sources. Via its related register,
each source can be programmed to one of sixteen
interrupt priority levels. Once having been ac-
cepted by the CPU, an interrupt service can only
be interrupted by a higher prioritized service re-
quest. For the standard interrupt processing, each
of the possible interrupt sources has a dedicated
vector location.
Software interrupts are supportedby meansof the
‘TRAP’ instruction in combinationwith an individual
trap (interrupt) number.

The ST10x166 also provides an excellent mecha-
nism to identify and to process exceptions or error
conditions that arise during run-time, called ‘Hard-
ware Traps’. Hardware traps cause immediate
non-maskable system reaction which is similiar to
a standard interrupt service (branching to a dedi-
cated vector table location). The occurrence of a
hardware trap is additionally signified bya individual

bit in the trap flag register (TFR). Except another
higher prioritized trap service being in progress, a
hardware trap will interrupt any actual program
execution. In turn, hardware trap services can nor-
mally not be interrupted by standard or PEC inter-
rupts.

2.5 CAPTURE/COMPARE (CAPCOM) UNIT

The CAPCOM unit supports generation and con-
trol of timing sequences on up to 16 channelswith
a maximum resolution of 400ns. The CAPCOM
unit is typicallyused to handlehigh speed I/O tasks
such as pulse and waveform generation, pulse
width modulation (PWM), Digital to Analog (D/A)
conversion,software timing, or time recording rela-
tive to external events.
Two 16-bit timers (T0/T1) with reload registers pro-
vide two independent time bases for the cap-
ture/compareregister array.
The input clock for the timers is programmable to
several prescaled values of the internal system
clock, or may be derived from an overflow/under-
flow of timer T6 in module GPT2.

This providesa wide rangeof variation for the timer
period and resolution and allows precise adjust-
ment to the application specific requirements. In
addition, an external count input for CAPCOM
timer T0 allows event scheduling for the cap-
ture/compareregisters relative to external events.
The capture/compare register array contains 16
dual purpose capture/compare registers, each of
which may be individually allocated to either CAP-
COM timer T0 or T1, and programmed for capture
or compare function. Each register has one port
pin associated with it which serves as an input pin
for triggering the capture function, or as an output
pin to indicate the occurrence of a compareevent.
When a capture/compare register has been se-
lectedfor capturemode, thecurrent contentsof the
allocated timer will be latched (‘captured’) into the
capture/compare register in response to an exter-
nal event at the port pin which is associated with
this register. In addition,a specific interrupt request
for this capture/compare register is generated.
Either a positive, a negative,or both a positiveand
a negative external signal transition at the pin can
be selected as the triggering event. The contents
of all registers which have been selected for one of
the five compare modes are continuously com-
pared with the contents of the allocated timers.
When a matchoccurs between the timervalue and
the value in a capture/compare register, specific
actions will be taken based on the selected com-
pare mode.

2 - System Description

4/6

2.6 GENERAL PURPOSE TIMER (GPT) UNIT

The GPT unit represents a very flexible multifunc-
tional timer/counterstructure which may be used for
many different time related tasks such as event tim-
ing and counting, pulse width and duty cycle meas-
urement,pulse generation,or pulsemultiplication.

The GPT unit incorporates five 16-bit timers which
are organized in two separate modules, GPT1 and
GPT2.Eachtimer ineachmodulemayoperateinde-
pendentlyin a numberofdifferentmodes,or may be
concatenatedwith another timer of the same mod-
ule.
Each of the three timers T2, T3, T4 of the GPT1
module can be configured individually for one of
three basic modes of operation, which are Timer,
GatedTimer, andCounterMode.InTimer Mode, the
inputclockfora timer isderivedfrom theinternalsys-
tem clock, divided by a programmable prescaler,
while Counter Mode allows a timer to be clocked in
referenceto externalevents.
Pulse widthor dutycycle measurement issupported
in GatedTimer Mode,where theoperationof a timer
is controlled by the ‘gate’ level on an external input
pin. For these purposes,eachtimer has oneassoci-
atedportpinwhich servesas gateor clockinput.The
maximum resolution of the timers in the GPT1mod-
ule is 400ns (@fOSC=40MHz).

The count direction (up/down) for each timer is pro-
grammable by software. For timer T3, the count di-
rectionmayadditionallybealtereddynamically byan
external signal on a port pin to facilitate e.g.position
tracking.
Timer T3 has an output toggle latch which changes
its state on eachtimer overflow/underflow.Thestate
of this latch may be output on a port pin e.g for time
out monitoring of externalhardware components,or
may be used internally to clock timers T2 and T4 for
measuring long time periodswith high resolution.

In additionto theirbasicoperatingmodes, timers T2
and T4 may be configuredas reload or capturereg-
isters for timer T3. When used as capture or reload
registers, timers T2 and T4 are stopped. The con-
tents of timer T3 are captured into T2 or T4 in re-
sponse to a signal at their associated input pins.
Timer T3 is reloaded with the contents of T2 or T4
either by an external signal or by a selectable state
transition of its toggle latch. When both T2 and T4
are configured to alternately reload T3 with the low
and high times of a PWM signal, this signal can be
constantlygeneratedwithout software intervention.
With its maximum resolution of 200ns
(@fOSC=40MHz), the GPT2 module provides pre-
cise event control and time measurement. It in-

cludes two timers (T5, T6) and a capture/reload
register (CAPREL). Both timers can independently
count up or down, clocked with an input clock
which is derived from a programmable prescaler.
Concatenation of the timers is supported via the
output toggle latch of timer T6, which changes its
state on each timer overflow/underflow.

The state of this latch may be used to clock timer
T5, or it may be output on a port pin. Overflows/un-
derflows of timer T6 can additionally be used to
clock the CAPCOM timers T0 or T1, and to cause
a reload from the CAPREL register. The CAPREL
register may capture the contents of timer T5
basedon an externalsignal transitionon the corre-
sponding port pin, and timer T5 will be cleared by
this external transition if the clear function is en-
abled. This allows absolute time differences to be
measured or pulse multiplication to be performed
without software overhead.

2.7 A/D CONVERTER

For analog signal measurement, a 10-bit A/D con-
verterwith 10multiplexed inputchannelsand asam-
ple and hold circuit has been integrated on-chip. It
usesthe methodof successive approximationwhich
returns the conversion result for an analog channel
within 9.75µs @ fOSC=40MHz.

Overrunerror detectioncapability is provided for the
conversionresult register:an interrupt requestwill be
generatedwhen the result of a previous conversion
has notbeenread fromthe result register at the time
thenext conversionis complete.
For applications which require less than 10 analog
inputchannels, the remainingchannelscanbe used
as digital input port pins.
The A/D converter of the ST10x166 supports four
different conversion modes. In the standard Single
Channel conversion mode, the analog level on a
specified channel is once sampled and converted
into a digital result. In the Single ChannelContinous
mode, the analog level is repeatedly sampled and
convertedwithout softwareintervention.
In the Auto Scan mode, the analog levels on a pre-
specified number of channelsare sequentiallysam-
pled and converted. In the Auto Scan Continuous
mode, the number of prespecified channels is re-
peatedlysampled and converted.
The PeripheralEventController (PEC) may be used
to automatically store the conversion results into a
table in memory for later evaluation, without requir-
ing the overhead of entering and exiting interrupt
routines for each data transfer.

2 - System Description

5/6

2.8 SERIAL CHANNELS

Serial communication with other microcontrollers,
processors, terminals, or external peripheral com-
ponents is provided by two serial interfaces with
identical functionality, Serial Channel 0 (ASC0)
and Serial Channel 1 (ASC1).

Both channels support full-duplex asynchronous
communication up to 625Kbaud and half-duplex
synchronouscommunication up to 2.5 Mbaud.
Two dedicated baud rate generators allow to set
up all standardbaudrates without oscillator tuning.
For transmission, reception, and erroneous recep-
tion 3 separate interrupt vectors are provided for
each serial channel.
In the synchronous mode, one data byte is trans-
mitted or received synchronously to a shift clock
which is generated by the ST10x166. In the asyn-
chronous mode, an 8- or 9bit data frame is trans-
mitted or received, preceded by a start bit and
terminated by one or two stop bits. For multiproc-
essor communication, a mechanism to distinguish
address from data bytes has been included (8-bit
data+wakeup bit mode), and a loop back option is
available for testing purposes.
A number of optional hardware error detection ca-
pabilitieshas been includedto increasethe reliabil-
ity of data transfers. A parity bit can automatically
be generatedon transmissionor be checkedon re-
ception. Framing error detection allows the recog-
nition of data frames with missing stop bits. An
overrun error will be generatedif the last character
received has not been read out of the receive buff-
er register at the time reception of a new character
is complete.

2.9 WATCHDOG TIMER

The Watchdog Timer of the ST10x166 represents
one of the fail-safe mechanisms which have been
implemented to prevent the controller from mal-
functioning for longer periods of time.
The Watchdog Timer of the ST10x166 is always
enabled after a reset of the chip, and can only be
disabled in the time interval until the EINIT (end of
initialization) instruction has been executed. Thus,
the chip’s start-up procedure is always monitored.

When the software has been designed to service
the Watchdog Timer before it overflows, the
Watchdog Timer times out if the program does not
progress properly due to hardware or software re-
lated failures. When the Watchdog Timer over-
flows, it generates an internal hardware reset and
pulls the RSTOUTpin low in order to allow external
hardware components to reset.

The Watchdog Timer of the ST10x166 is a 16-bit
timer which can either be clocked with fOSC/4 or
fOSC/256. The high byte of the Watchdog Timer
registercan be set to a prespecifiedreload value in
order to allow further variation of the monitored
time interval. Each time it is serviced by the appli-
cation software, the high byte of the Watchdog
Timer is reloaded. Thus, time intervals between
25µs and 420ms can be monitored (@fOSC=40MHz).
The default Watchdog Timer interval after reset is
6.55ms.

2.10 PARALLEL PORTS

The ST10x166 provides 76 I/O lines which are or-
ganized into four 16-bit I/O ports (Port0 through 3),
one 2-bit I/O port (Port 4), and one 10-bit input port
(Port 5). All port lines are bit addressable, and all
lines of Port 0 through 4 are individually bit-wise
programmable as inputs or outputs via direction
registers. The I/O ports are true bidirectional ports
which are switched to the high impedance state
when configured as inputs. During the internal re-
set, all port pins are configured as inputs.
Each port line has one programmable alternate in-
put or output function associated with it. Ports 0
and 1 may be usedas addressand data lineswhen
accessing external memory, while Port 4 outputs
the additional segment address bits A16 and A17
in systems where segmentation is enabled to ac-
cess more than 64Kbytes of memory. Port 2 is as-
sociated with the capture inputs/compare outputs
of the CAPCOM unit, and Port 3 includes alternate
functions of timers, serial interfaces, optional bus
controlsignals (WR,BHE,READY), andthe system
clock output (CLKOUT). Port 5 is used for the ana-
log input channelsto the A/D converter.When any-
one of these alternate functions is not used, the
respective port line may be used as general pur-
pose I/O line.

2 - System Description

6/6

MEMORY ORGANIZATION

CHAPTER 3

The ST10x166 family’s memory space is config-
ured in a von Neumann architecture. This means
that code and data are accessed within the same
linear address space. All of the physically sepa-
rated memory areas, including the internal ROM
(for the ST10166, internal FLASH memory for the
ST10F166), internal RAM, internal Special Func-
tion Registers (SFRs), and external memory are
mapped into a common address space.

The ST10x166 provides a total addressablemem-
ory space of 256Kbytes.
This address space is arranged in four segments
of 64Kbyteseach, and each segment is again sub-
divided in four pages of 16Kbytes each. The total
addressable memory space can be expanded up
to 16 Mbytes for future members of the ST10x166
family.

3. MEMORY ORGANIZATION

Address
Data
Page

Code
Segment

3FFFFh 15

3
14

13

30000h 12

2FFFFh 11

2
10

9

20000h 8

1FFFFh 7

1
6

5

10000h 4

0FFFFh 3

0
2

1

00000h 0

256KByte
Total Address

Space

Figure 3-1. Memory Segment And Page Arrangement

1/10

Bytes are stored at even or odd byte addresses.
Words are stored in ascending memory locations
with the low byte at an even byte addressbeing fol-
lowed by the high byte at the next odd byte ad-
dress. Double words (code only) are stored in
ascending memory locations as two subsequently

following words. Single bits are always stored in
the specified bit positionat a word address. Bit po-
sition 0 is the least significant bit of the byte at an
even byte address, and bit position 15 is the most
significant bit of the byte at the next odd byte ad-
dress.

. . . xxxx6h

15 14 . . . Bits . . . 8 xxxx5h

7 6 . . . Bits . . . 0 xxxx4h

Byte xxxx3h

Byte xxxx2h

Word (High Byte) xxxx1h

Word (Low Byte) xxxx0h

. . . xxxxFh

Figure 3-2. Word, Byte And Bit Storage In a Byte Organised Memory (Example)

Table 3.1 shows how the different memory areas
are mapped into the physical 256Kbyte address
space. Basically, all of the internal memory areas
(ROM or FLASH memory, RAM, SFRs) are
mapped into parts of memory segment 0. The ex-
ternal memory is mapped into the remaining parts

of memory segment 0 and into memory segments
1 through 3. Whenever the Program memory has
been disabled during reset, or remapped to seg-
ment 1 during initialisation, the lowest 32Kbytes of
segment0 also specify an external memory area.

3 - Memory Organization

2/10

Address Space Memory Range Size (Bytes)

00000h - 07FFFh
Internal Program Memory Segment 0
or External Memory

32K

08000h - 0F9FFh External Memory 30.5K

0FA00h - 0FDFFh Internal Memory (RAM) 1K

0FE00h - 0FFFFh Internal SFRs 512

10000h - 17FFFh
Internal Program Memory Segment 1
or External Memory

32K

18000h - 3FFFFh External Memory 160K

Table 3-1. Memory Address Space Mapping

The internal program memory, the internal RAM
and the external memory space can be used for
general code and data storage. The internal SFR
space is provided for control data, but not for code
storage.
Note that byte units forming a singleword or a dou-
ble word must always be stored within the same
physical and organizational memory area (page,
segment).
A particular use is provided for some memory ar-
eas, as follows. Addressesfrom 00000hto 000BFh
in code segment zero are reserved for the hard-
ware trap and interrupt vector jump table. The ac-
tive General Purpose Register Bank which is
selected by the Context Pointer (CP) Register can
be situatedanywhere in the internalRAM area (ad-
dresses from 0FA00h to 0FDFFh). Word ad-
dresses from 0FA00h to 0FBFEh in the internal

RAM can basically be used for the system stack
implementation. The highest 32 bytes of the inter-
nal RAM (addresses from 0FDE0h to 0FDFFh) are
provided for the PeripheralEvent Controller (PEC)
source and destination pointers. Three memory
spaces (from 0FF00h to 0FFDFh in the internal
SFR area, from 0FD00h to 0FDFFh in the internal
RAM area, and the address space occupied by the
currently selected register bank) are basically pro-
vided for single bit accesses.
Figure 3.3 gives an overview of the memory or-
ganization of the ST10x166. For more details
about the different memory areas see the corre-
sponding subsections in this chapter. The princi-
ples of the physical address generation are
described in section 6.2 (Addressing Modes).
Chapter9 is dedicatedto theExternal BusControl-
ler which is responsible for all of the memory ac-
cesses made externally.

3 - Memory Organization

3/10

In
te

rn
al

M
em

or
y

0F
F

E
0h

0F
F

D
F

h

0F
F

00
h

0F
E

00
h

0F
D

F
F

hh
D

es
tin

at
io

n
P

oi
nt

er
s

P
E

C
S

ou
rc

e
an

d

0F
D

E
0h

0F
D

00
h

0F
B

F
F

h

S
ys

te
m

S
ta

ck

0F
A

00
h

In
te

rn
al

R
A

M
1K

B
yt

e

P
oi

nt
er

C
on

te
xt

P
oi

nt
er

S
ta

ck
07

F
F

F
h

00
00

0h

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

F
LA

S
H

F
LA

S
H

M
em

or
y

E
xt

er
na

l

E
xt

er
na

l

E
xt

er
na

l

E
xt

er
na

l

E
xt

er
na

l

E
xt

er
na

l

or

C
od

e
S

eg
m

en
t

00F
F

F
F

h

or

C
od

e
S

eg
m

en
t

1

C
od

e
S

eg
m

en
t

2

10
00

0h

17
F

F
F

h

1F
F

F
F

h

2F
F

F
F

h

20
00

0h

30
00

0h

3F
F

F
F

h

C
od

e
S

eg
m

en
t

3

IN
T

E
R

N
A

L
M

E
M

O
R

Y
IN

T
E

R
N

A
L/

E
X

T
E

R
N

A
L

M
E

M
O

R
Y

B
it

A
dd

re
ss

ab
le

S
pa

ce

0F
F

F
F

h

51
2B

yt
es

In
te

rn
al

S
F

R
s

M
em

or
y

M
em

or
y

32
K

B
yt

es

30
.5

K
B

yt
es

32
K

B
yt

es

32
K

B
yt

es

In
te

rn
al

In
te

rn
al

64
K

B
yt

es

64
K

B
yt

es V
R

00
16

15

G
P

R
s

Figure 3-3. Memory Organization

3 - Memory Organization

4/10

3.1 INTERNAL PROGRAM MEMORY

The Program memory is an on-chip mask-pro-
grammable ROM for the ST10166,and on-chipre-
programmable FLASH memory for the ST10F166.
The memory is organized in 8Kx32bits and
mapped in the same segment memory: segment 0
during reset or segment 1 if remapped during in-
itialization. This program memory is enabled dur-
ing reset with the pin BUSACT high and the
external bus configuration pins EBC1 and EBC0
low. This mode is named the Single Chip Mode.
For further details about the external bus configu-
ration see chapter 9.
The internal Programmemorycan be usedfor both
code and data storage. The highest possible code
storage location in this memory is 07FFEh for 16-
bit instructions or 07FFCh for 32-bit instructions. A
branch instruction is neededto cross the boundary
between the internal Program memory to the ex-
ternalmemory, otherwise this would cause errone-
ous results.

No short addressing mode and bit addressable
mode are allowed for any accesses to the internal
Program memory. For PEC data transfers, these
accesses are independent of the contents of the
DPP registers via the PEC source and destination
pointers.

Whenever a reset, hardware trap or interrupt oc-
curs, or whenever a software TRAP instruction is
executed, and provided that the Program memory
accesses are enabled, program execution
branches to an implicit internal address inde-
pendent of the current Code Segment Pointer
(CSP) register contents, expecting a jump vector
being situated there. For detailed information
about the trap and interrupt jump vector table see
section 9.1 ”Interrupt System Structure”.
With the possibility to remap the internal Program
memory to segment 1 during initialization, how-
ever,the user can configure the device with com-
mon routines and constants programmed into the
Program memory to have a fast execution speed
and with the interrupt vector programmed into Ex-
ternal memory.
For the ST10F166, the special features of the
FLASH memoryare describedin theFLASH mem-
ory chapter 4.

3.2 EXTERNAL MEMORY

Basically, the ST10x166 provides for up to 4 x
64Kbytesof externalROM and/orRAM which may
be organized in either 8 or 16 bits. Since a part of
the first 64Kbytes address space is already occu-
pied by the on-chip memory areas, only 62.5Kby-
tes (30.5Kbytes for the ST10F166 and ST10166
with internal program memory enabled)of external
memory are really available in segment0.

Thebus mode for externalmemoryaccessesis se-
lected during reset by means of the external bus
configuration pins, BUSACT, EBC1 and EBC0.
According to there logic levels, external memory
accesses are either enabled or disabled during re-
set, as shown in chapter 9. Theselected external
bus configuration is saved in the BTYP bit field in
the SYSCON register. During the initialization rou-
tine, however, the user has the option to change
any configurationwhich was selected during reset.
After the EINIT instruction, only the external bus
configurationcan be changed at any time.
For further details about the external bus configu-
ration and control see chapter 9 ”External Bus In-
terface”.
The external memory can be used for both code
and data storage. If the ST10x166 segmentation
mode is disabled (SGTDIS bit in the SYSCONreg-
ister contains a ‘1’), all external memory accesses
are restricted to segment 0 only. Code accesses
are always made on even byte addresses. Thus,
the highest possible externalcode storage location
in segment 0 is either 0F9FEh for single word in-
structions or 0F9FCh for double word instructions.
If used for code storage, the corresponding loca-
tionmust contain a branch instruction, because se-
quential boundary crossing from the external
memory to the internal RAM space is not provided
and would cause erroneous results. In any seg-
ment other than 0, the highest code storage loca-
tion is either xFFFEh for single word instructionsor
xFFFCh for double word instructions (x=1, 2, 3). If
used for code storage, the corresponding location
must contain a branch instruction, because seg-
ment crossing for program execution is onlypossi-
ble by changing the CSP register contents by
means of the particular branch instructions JMPS
and CALLS.

3 - Memory Organization

5/10

External word and byte data can only be accessed
via indirect or long 16-bit addressingmodes in col-
laborationwith the DPP registers. Thereis no short
addressingmode for external operands.Any word
data access is made to an even byte address.
Thus, the highestpossible word data storage loca-
tions in the external memory are address 0F9FEh
in segment 0, and addresses xFFFEh in all other
segments (x=1, 2, 3). For PEC data transfers, the
externalmemory in segment0 canbe accessedin-
dependentof the contents of the DPP registers via
the PEC source and destinationpointers.

The external memory is not provided for single bit
storage,and thus it is not bit addressable.

Whenever a reset, a hardware trap or an interrupt
occurs, or whenever a software TRAP instruction
is executed, and provided that internal program
memory accesses are disabled, program execu-
tion branches to an implicit external memory ad-
dress independent of the current CSP register
contents, expecting a jump vector being situated
there. For detailed information about the trap and
interrupt jump vector table see section 7.1 ‘Inter-
rupt System Structure’.

3.3 INTERNAL RAM

The ST10x166 contains 1Kbyte of on-chip dual
port RAM which is organized in 512x16 bytes. In-
ternal RAM accesses are always enabled.
The system stack, the General Purpose Registers
(GPRs) and the PEC source and destinationpoint-
ers are situatedwithin the internal RAM space.Ad-
ditionally, the internal RAM can be used for both
code and data storage. The ST10x166 assembler
supports the reservation of the required internal
RAM areas according to the just mentioned par-
ticular uses.
Code accesses are always made on even byte ad-
dresses. Provided that the PEC source and desti-
nation pointers are not required, the highest
possible code storage location in the internal RAM

is either 0FDFEh for single word instructions or
0FDFCh for double word instructions. If used for
code storage, the corresponding location must
contain a branch instruction to a memory location
other than in the SFR space, because this space is
not provided for code execution.

Any word and byte data in the internal RAM can be
accessed via indirect or long 16 bit addressing
modes if the selected DPP register points to data
page 3. Any word data access is made on an even
byte address. Provided that the PEC source and
destination pointers are not required, the highest
possible word data storage location in the internal
RAM is address 0FDFEh. For PEC data transfers,
the internal RAM can be accessed independentof
the contents of the DPP registers via the PEC
source and destinationpointers.
All system stack operations are implicitly per-
formed by means of the Stack Pointer (SP) regis-
ter. The GPRs are accessedvia short 2-, 4- or 8-bit
addressingmodes in collaborationwith a particular
Context Pointer (CP) register. The channel num-
ber of a PEC data transfer to be performed deter-
mines which PEC source or destination pointers
will be implicitly accessed. All of the just mentioned
implicit internal RAM accesses are made inde-
pendentof the current DPP register contents.

The upper portion of the internal RAM (addresses
from 0FD00h to 0FDFFh) and the currently active
GPRs are provided for single bit storage, and thus
they are bit addressable.

The following subsections describe in more detail
the organization of the system stack, of the GPRs
and of the PEC source and destinationpointers.

3.3.1 System Stack
The internal RAM address space from 0FBFFh
downward to 0FA00h is basically provided for the
ST10x166’ssystem stack implementation.The de-
fault maximum stack size of 256 words can easily
be reduced by changing the stack size (STKSZ) bit
field in the SYSCON register, as shown in the fol-
lowing table.

3 - Memory Organization

6/10

STKSZ Stack Size (words) Internal RAM Addresses (in descending order)

00b 256 0FBFFh - 0FA00h (default)

01b 128 0FBFFh - OFB00h

10b 64 0FBFFh - OFB80h

11b 32 0FBFFh - 0FBC0h

Table 3-2. Maximum System Stack Size Selection

For all system stack operations, the on-chip RAM
is accessed via the Stack Pointer (SP) register.
The stack grows downward from higher towards
lower RAM address locations.Only word accesses
are permitted to the system stack. A stack overflow
(STKOV) and a stack underflow (STKUN) register
are provided to control when the selected stack
area is left. These two stack boundary registers
can be used not only for protection against data
destruction, but also to implement a circular stack
with hardware supported system stack flushing
and filling.
For further details about system stack addressing
via the SP register and the use of the STKOV and
STKUN registers see section 5.3 ‘CPU Special
FunctionRegisters’.

3.3.2 General Purpose Registers
The ST10x166’s GPRs can basically be situated
anywhere within the internal RAM address space
(addresses from 0FA00h to 0FDFFh). A particular
Context Pointer (CP) register determines the base
address of the currently active register bank. This
register bank may consist of up to 16 word GPRs
(R0, R1, ..., R15) and/or of up to 16 byte GPRs
(RL0, RH0, ..., RL7, RH7). The sixteen byte GPRs
are mapped onto the first eight word GPRs, as
shown in figure 3.4.
In contrast to the system stack, a register bank
grows fromlower towardshigher address locations
and occupies a maximum space of 32bytes. Short
4- and 8-bit addressingmodesin collaborationwith
the CP register support word or byte GPR ac-

3 - Memory Organization

7/10

WORD Register R15

WORD Register R14

WORD Register R13

WORD Register R12

WORD Register R11

WORD Register R10

WORD Register R9 WORD

WORD Register R8 Register

BYTE Register RH7 BYTE Register RL7 R7

BYTE Register RH6 BYTE Register RL6 R6

BYTE Register RH5 BYTE Register RL5 R5

BYTE Register RH4 BYTE Register RL4 R4

BYTE Register RH3 BYTE Register RL3 R3

BYTE Register RH2 BYTE Register RL2 R2

BYTE Register RH1 BYTE Register RL1 R1

BYTE Register RH0 BYTE Register RL0 R0 ← CP

Figure 3-4. Word and Byte GPR Organization

cesses regardless of the current DPP registercon-
tents. Additionally, each bit in the currently active
register bank can be accessed individually.
The ST10x166 supports fast register bank (con-
text) switching. Based on that, multiple register
banks can physically exist in the internal RAM at
the same time. However,only the register bank se-
lected by the CP register is active, and the remain-
ing register banks are inactive at that time.
Selectinga new active register bank is simplydone
by updating the CP register. A particular Switch
Context (SCXT) instruction performs register bank

switching and an automaticsaving of the previous
context. Any number of variously sized register
banks, only limited by the available internal RAM
size, can be implementedsimultaneously.
For more details about GPR addressingvia the CP
register, see the chapter 5. Advanced program-
ming methods for an optimum utilization of the
GPRs’ features such as Context Switching, Con-
text Packing, Overlapping Register Banks, Local
GPRs on the system stack and so on, are de-
scribed in chapter 13 ‘System Programming’.

3 - Memory Organization

8/10

3.3.3 Pec Source and Destination Pointers
The upper 16 word locations in the internal RAM
(addresses from 0FDE0hto 0FDFEh) are provided
as source and destination address pointers for
PEC data transfers.
As shown in figure below, a pair of sourceand des-
tination pointers is stored in two subsequently fol-
lowing word memory locations with the source
pointer (SRCPx) on the lower and with the destina-
tion pointer (DSTPx) on the higher word address
(x=0 to 7).

Whenever a PEC data transfer is performed, the
pair of source and destinationpointers which is se-
lected by the specified PEC channelnumber is ac-
cessed independent of the current DPP register
contents. If a PEC channel is not used, the corre-
sponding pointer locations can be used for word,
byte or single bit data storage.
For more details about the use of the source and
destinationpointers for PEC data transfers refer to
chapter 7.

SFRs
FDFEh DSTP7 FE00h

FDFCh SRCP7 FDFEh

FDE0h

FDDEh

PEC
Source

and
Destination

Pointers

Internal
RAM

FDE2h DSTP0 FA00h

FDE0h SRCP0 External
Memory

F9FEh

Figure 3-5. PEC Source And Destination Pointer Word Organization

3 - Memory Organization

9/10

3.4 INTERNAL SPECIAL FUNCTION
REGISTERS

The ST10x166 provides 512bytes of on-chip Spe-
cial Function Register (SFR) space. The SFRs are
mapped into the address space from 0FE00h to
0FFFFh.

The SFRs are not provided for general code or
datastorage, but fordata storagededicated to very
particularuses, mainly for controlling CPU, Periph-
eral and I/O functions.
According to the just mentioned control functions,
the SFRs are described in detail in oneof the chap-
ters 5 ‘CPU’, 8 ‘Peripherals’, or 10 ‘Parallel Ports’.

A table containinga shortdescription, symbolicad-
dresses, physical 18-bit and short 8-bit addresses
of the SFRs can be found in appendixB.
Most commonly, an SFR canbe accessedby word
via an implicit base address plus a short8-bit offset
address independent of the current DPP register
contents. The low byte portion of an SFR (but not
its high byte portion!) can be accessed via these
short 8 bit addressing modes. However, provided

that the selected DPP register points to data page
3, any high byte, low byte or any word in the SFR
memory space can be accessed via an indirect or
long 16-bit addressing mode.
The upper portion of the SFR memory space (ad-
dresses from 0FF00h to 0FFDFh) contains SFRs
with many single flag control functions. Thus, this
memory area is directly bit addressable.
Some bits in alreadyexisting SFRs and some word
locations in the SFR address space have been re-
served for a future implementationof additionalon-
chip peripherals. Any intended write access to
such a reserved SFR memory space would be ig-
nored by the machine, and any intended read will
supply a read result of ‘0’.
Note that any byte write to an existing SFR causes
the non-addressed complementary byte to be
cleared.
Some SFRs or parts of them have a restricted ac-
cess type suchas read-onlyor write only.For more
details, see the functional description of the corre-
spondingSFRs.

3 - Memory Organization

10/10

ON-CHIP FLASH MEMORY

CHAPTER 4

The ST10F166 provides, in addition to the on-chip
RAM, 32K bytes of Electrically Erasable and Re-
programmablenon-volatile (FLASH) memory. This
memory is organised as 8Kx32 bits, allowing a
complete instruction to be read during one instruc-
tion fetch cycle. Data values stored can be readas
16 bit operands using all addressing modes of the
ST10x166 instruction set.
The FLASH memory is located in segment 0 (0 to
07FFFh) during reset, and thus contains the
power-on reset and interrupt vectors. To provide
full flexibility in the use of the ST10F166, the
FLASH memory may be remapped to segment 1
(10000 to 17FFFh) during initialization. This allows
the interrupt vectors to be programmedfrom exter-
nal memory, while retaining the common routines
and constants programmed into the FLASH mem-
ory.

For erase or program updating, the FLASH mem-
ory is organised into 4 banks (12K, 12K, 6K and
2K) each of which may be independentlyerased.

4. ON-CHIP FLASH MEMORY

Optionally the FLASH Memory may be protected
against read and write accesses performed by
fetch instructions from programs running in the in-
ternal RAM or in external memory.
All control of programming and erasing the FLASH
memory is made from one Register, the FLASH
Control Register (FCR), which is virtually mapped
into the FLASH memory space.

The Presto F algorithm is used for reliability. The
typical programming time is 100µs and erase time
is 1s. The FLASH memory features a typical en-
duranceof 100 erase/write cycles.
WARNING: Access to or code execution from the
FLASH memory can not be performed during an
erase or programming operation on the FLASH
memory. Therefore the appropriate routines must
be executed from internal RAM or external mem-
ory outside of the FLASH memory address range.

HIGH VOLTAGE
MANAGEMENT

ADDRESS
DECODER

+
READ/WRITE

CIRCUIT

MATRIX

32Bits
BIDIRECTIONAL

INTERFACE
+

FLASH
TIMER

+
PROTECTION

Figure 4-1. Flash Memory Architecture

1/8

FLASH MODES
This section describes the differents modes used
with the FLASH memory and is detailed in the fol-
lowing sections.
Normal mode:
This mode is the standard mode of the FLASH
memory. In this operation mode, the FLASH mem-
ory works exactly as the 32K bytes ROM of the
ST10166 with the same timing and functionality.
Therefore only instruction fetches or data operand
reads are performed in this mode with all the ad-
dressing modes of the ST10x166 instruction set.

No read or write operations on the FCR register
are possible in this mode, except the protection bit
(RPROT) which can be modified in this mode but
only from a program instruction within the FLASH
memory.

Write mode:
As it is not possible to fetch instructions from and
write to the FLASH memory at the same time, a
Writemode hasbeen defined. In this mode FLASH
memory accesses can be made only with indirect
addressing modes and FCR register is accessed
with direct access modes.
In Write mode, all programming and erase opera-
tions on the FLASH memory are controlledby soft-
ware with the Flash Control Register (FCR).
Thereforeto write the FLASHmemory, the FWEbit
of FCR register has to be set to ”1”.
To enter the Write Program mode, the FEE bit of
FCR register has to be cleared. If FEEand FWE of
FCR register are set to ”1”, the Erase mode is en-
tered.
In thesetwo modes,a Verify mode is automatically
enteredwhen the programming or erase operation
is ended, respectivly Program Verify Mode (PVM)
and Erase Verify Mode (EVM).

Figure 4-2. Flash Modes Description

4 - Flash Memory

2/8

FLASH CONTROL REGISTER
During the normal operation mode, the FLASH
memory is read as normal ROM memory with all
addressingmodes of the ST10x166.
All programming(1) or erase operations of the
FLASH memory are controlled via the Flash Con-
trol Register (FCR).
To prevent inadvertent writing of the FLASH mem-
ory, FCR is locked and inactive during the normal
operationmodes. The FLASHmemorymust be set
into the Writemode to provide a validaccess to the
FCR. A key code sequence is used to enter the
Writemode.
The FCR is virtually located within the address
space of the FLASH memory (it does not occupy
an absolute address) and is only accessed with a
direct addressingmode.
When the segmented memory mode is enabled,
the data page pointer must be considered for all
FCR accesses.
Note1: Accordingto the IEEE Standardon floating
gate arrays, the following terminology is used: writ-
ing means a state change of the floating gate, pro-
gramming means the loading of electronsonto the
floating gate, erase means the removal of elec-
trons from the floating gate.

FCR
Flash Control Register
Reset Condition: 0000h

15 14 13 12 11 10 9 8

FWMSET R BE1 BE0

7 6 5 4 3 2 1 0

WDWW CKCTL1 CKCTL0 VPPRIV FCVPP
FBUSY
RPROT FEE FWE

b15 = FWMSET: will be set at a logical ”1”, once
the Write mode has been entered.This bit must be
set to ”1” at each writing of the FCR for an erase or
programming operation. It will stay set at ”1” when
the operation has ended. The user must reset
FWMSET to exit from the FLASH memory Write
mode. At ”0” during reset.

b14 to b10 = R : reserved for future development,
must be written to ”0”.
b8,9 = BE0,1 : select the differentBanks for Erase
as shown in the following Table:

In state ”0” during reset.

BE1 BE0 Bank Addresses (segment0)

0
0
1
1

0
1
0
1

0
1
2
3

00000h to 02FFFh
03000h to 05FFFh
06000h to 077FFh
07800h to 07FFFh

b7= WDWW : if set at a logical ”1”, enablesa 32 bit
operation, otherwise it will be a 16 bit operation.At
”0” during reset.

b5,6= CKCTL0,1 : select the FLASHinternal timer
as shown in Table below:
In state ”0” during reset.

The maximum programming pulse (PT) allowed is
200µs with a maximum programming time of
2.5ms. Therefore the value ’00b’ covers all the fre-
quency range.
The maximum erasing pulse (ET) allowed is 10ms
with a maximumerasing time of 30s.
At 20MHz CPU clock, ’11b’ is the recommended
value. At 1MHz CPU clock, ’01b’ is the recom-
mended value.For all other frequencies, ’10b’ is
recommended
b4 = VPPRIV: READ ONLY bit reflects the status
of VPP in thewritemode. If VPP is not high enough
for reliable programming, it will be at a logical ”0”.
The reset valuedepends on thestatus of the exter-
nal Vpp on the EBC1/Vpppin.
b3 = FCVPP: READONLY bit, if set at a logical”1”,
will indicate to the user that VPP voltage has gone
below the programming threshold during a pro-
gramming or erase operation. At ”0” during reset.

b2 = FBUSY: READ ONLY bit is set at a logical ”1”
during a program/eraseoperation.At ”0” during re-
set.
b2 = RPROT: WRITE ONLY bit is used when the
protected FLASH option is chosen. This bit, set at
a logical ”1” and with the option selected, will en-
able protection.At ”1” during reset.
b1= FEE : if set at a logical ”1”, will enable the
erase operation; otherwise ”0” for the program-
ming operation.At ”0” during reset.
b0= FWE: if set at a logical ”1”, will enable the writ-
ing operation; the programming or erase operation
is selected depending on the state of FEE bit; oth-
erwise ”0” for reading mode. At ”0” during reset.

CKCTL1 CKCTL0 TPRG
1/TCL = 2 to 40MHz

0
0
1
1

0
1
0
1

4.102 TCL
4.103 TCL
4.104 TCL
4.105 TCL

4 - Flash Memory

3/8

FLASH MEMORY PROTECTION
A programmable option, set by the FLASH Pro-
gramming Board, prevents any access to the
FLASH memory from the internal RAM or External
memory.
When this option is enabled, the configuration of
the FLASH memory depends on the RPROT bit of
FCR.

This bit is set at ”1” during reset, so any access to
the FLASH memory from the internal RAM or Ex-
ternalmemory is disabledand access to FCR is al-
lowed only from the FLASH memory.
To disable the protection, the following instruction
has to be performed in the normal mode and from
the FLASH memory ONLY:

MOV MEM,Rn

where MEM is any even absolute address in the
FLASH memoryspace. The RPROTbit of FCR (bit
2 of Rn) must be reset, the other bits of FCR are
protectedin the normal mode and arenot affected.
When the protection is disabled, reading of the
FLASH memory can be performed from all in-
ternal or external memory. Access to FCR reg-
ister and the FLASH programming or erase
operations is available only after having en-
tered the Write mode.

Protection Option
Enabled

RPROT
bit

Protection
Active

Yes
Yes
No
No

1
0
1
0

Yes
No
No
No

THE WRITE MODE
To enter the Write mode a key code sequence of
two dummy write instructionshas to be performed:

MOV MEM,Rn

MOV [Rn],Rn

where MEM is any even absolute address in the
FLASH memory space and Rn a GeneralPurpose
Register loadedwith the evenaddressof anyvalue
within the FLASH memory address space (seg-
ment 0 or segment 1).
The FWMSET bit of FCR is automatically set by
the unlock sequence.
Once in Writemode, all read and write accesses to
FCR are enabled. However, before performing the
FIRST programming or eraseoperation, a delay of
10µs must be executed. The device requires this
time to set up the internal high voltage.

When the FLASH memory is mapped in segment
0, it is recommendedto disablethe interruptswhen
in write mode, as they would not be served if the
programcode is the FLASH memory.
When the FLASH memory is mapped in seg-
ment 1, some care must be taken for the manage-
ment of interruptsduring the write mode.
The unlock sequence and the 32-bit program-
ming sequencemust not be interrupted.
All erase or programmingoperations and verify se-
quencescan be interrupted,if no FLASHreading is
performedfrom an externalprogram (internalRAM
or external memory) during the interrupt.
To exit from the Write mode to the normal mode,
the following instruction has to be performed:

MOV MEM,Rn

where bit 15 of Rn must be ”0” to disable the Write
mode (FWMSET) and MEM is any even absolute
address in the FLASH memory space.
Note: When the segmented memory mode is en-
abled, the data page pointer must be considered
for all FLASH memory accesses.

4 - Flash Memory

4/8

FLASH PROGRAMMING OPERATION
Afterthe Writemodehas beenentered, the FLASH
memory is accessed for programming with indirect
addressing mode instructions. One or two words
(word = 16 bits) can be programmed at once, de-
pendingon the WDWW bit value of FCR.
A programming operation is realized with the fol-
lowing sequence:

- Test VPPRIV bit of FCR to verify the correct
voltage on VPP.

- Load the desired value in FCR.

As FCR is a virtual register, all bits previously writ-
ten must be confirmed in the same state at each
FCR writing (especially FWMSET).
- Write the FLASH memory
e.g. for one word

MOV [Rm],R1
for two words

MOV [Rm],R1

MOV [Rm],R2

The address used for a long word write (32 bits)
Rm must be an aligned even address (xxx0h,
xxx4h, xxx8h, xxxCh...) and is used as a base
pointer for the FLASH memory writing. The two
words to write must be contiguous, aligned at an
even address.
R1 contains the data to write at the first address
and R2 contains the data to write at the following
even word address.

15 14 13 12 11 10 9 8

FWMSET R BE1 BE0

1 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

WDWW CKCTL1 CKCTL0 VPPRIV FCVPP FBUSY FEE FWE

0/1 0/1 0/1 0 0 0 0 1

- FLASH programming will automatically start.
The programming time depends on CKCTL0,1
bits of FCR. End of programming is detected
by polling on the FBUSY bit of FCR.

- Test FCVPP bit of FCR to verify that VPP had
the correct voltage during programming.

- After programming, the FWE bit remains at a
logical ”1”. The Program Verify Mode (PVM), is
then entered automatically. An internally gener-
ated margin voltage is applied to the FLASH,
and reading valid data indicates the word has
been programmed successfully.

PVM needs a double read instruction with the
same operand and time to stabilize the internal cir-
cuitry.
e.g.

MOV R1,[R2]
; Time out of 4 µs

MOV R1,[R2]

- To perform normal reading of the FLASH mem-
ory, the FWE bit must be reset.

A programming operation of the FLASH memory
can not be performed with a routine in the FLASH
memory itself.

FLASH ERASE OPERATION
As for the programming operation, FLASH mem-
ory erase can be performed only inside the Write
mode, with indirect addressing mode instruction.
One of the four Banks is erased performingthisop-
eration, dependingon the BE0,1 bits of FCR.
An erase operation is realized with the following
sequence:

- Program all the words of the relevant bank
to 0000h.

- Test VPPRIV bit of FCR to verify the correct
voltage on VPP.

- Load the desired value in FCR.

4 - Flash Memory

5/8

As FCR is a virtual register, all bits previously writ-
ten must be confirmed in the same state at each
FCR writing (especially FWMSET).

- Perform the erase command
e.g. MOV [R0],R0

This special instruction for erase, guarantees us-
ers against inadvertentoperation.

- FLASH erase will automatically start. The
erase time depends on CKCTL0,1 bits of FCR.
End of erase is detected by polling on the
FBUSY bit of FCR.

- Test FCVPP bit of FCR to verify that VPP had
the correct voltage during erase.

- Then all the FLASH memory must be read to
verify the completely correct erasure. After era-
sure, bits FWE and FEE remain at a logical ”1”.
The Erase Verify Mode (EVM), is then entered
automatically.
An internally generated margin voltage is ap-
plied to the FLASH memory. If the memory lo-
cation is erased, the Erase Verify is repeated
for the next location. This process continues for
each word of the array until the last address is
accessed or a word does not return FFFFh. In
this case where the word is not erased, an-
other erase operation must be performed.

EVM needs a double reading instruction with the
same operand, and time for stabilizing the internal
circuitry.
e.g.

MOV R1,[R2]
Time out of 4ms
MOV R1,[R2]

- To perform a normal FLASH reading, the
FWE,FEE bits must be reset.

The erase of one bank can not be performed from
anotherbank of the FLASH memory.

PRESTO F PROGRAM WRITE ALGORITHM
Programming with Presto F algorithm consists of
applying a sequence of program pulses to each
word until correct verify occurs. A maximum of
programming operations are allowed for each
word. Each program operation consists of a pro-
gramcommand; the programmingis then automat-
ically performed. After a timeout of 4µs a Program
Verify is then performed which compares data out-
put with data expected. This sequence guarantees
that each cell is programmed reliably.
Figure 4.3 illustrates the Presto F Program Write
Algorithm.
As the program pulse varies in inverse ratio to the
frequency,PT=400 TCL, the number of operations
allwed varies also:
N=6250/TCL with I/TCL= 2 to 40MHz.

PRESTO F ERASE ALGORITHM

Erasing with Presto F algorithm allows the electri-
cally erasingof theselected Bank in a reliableway.
The algorithm starts by first programming all the
words to 0000h in order to perform an uniform era-
sure. This step is performed by using the Presto F
ProgramWrite Algorithm.
The erase command (see erase operation) is writ-
ten and erase is performed. An EraseVerify begins
at the first address and continues until the last ad-
dress is accessedor until the comparisonof data to
FFFFh fails. The addressof the last word verified is
stored and a new erase operation is performed.
Then the Erase Verify restarts from the stored ad-
dress.
Figure 4.4 illustrates the Presto F EraseAlgorithm.
As the erasing pulse (ET) varies in inverse ratio to
the frequency, the number of erasing operation
varies also:
at 1MHzCPU clock ET = 2ms, N = 15000
at 40 MHz CPU clock ET = 10ms, N = 3000
for other frequenciesET = 4.104 TCL,
N = 75.104/TCL

15 14 13 12 11 10 9 8

FWMSET R BE1 BE0

1 0 0 0 0 0 0/1 0/1

7 6 5 4 3 2 1 0

WDWW CKCTL1 CKCTL0 VPPRIV FCVPP FBUSY FEE FWE

0 0/1 0/1 0 0 0 1 1

4 - Flash Memory

6/8

Figure 4-3. Presto F Program Write Algorithm

4 - Flash Memory

7/8

Figure 4-4. Presto F Erase Algorithm

4 - Flash Memory

8/8

CENTRAL PROCESSING UNIT (CPU)

CHAPTER 5

Basic tasks of the CPU are to fetch and decode in-
structions, to supply operands for the arithmetic
and logic unit (ALU), to perform operations on
these operands in the ALU, and to store the pre-
viously calculated results. Since a four stage pipe-
line is implemented in the ST10x166, up to four
instructions can be processed in parallel. Section
5.1 describeshow the pipelineworks for sequential
and branch instructions in general, and which
hardwareprovisions have been made to speed the
executionof jump instructions in particular.
With reference to instruction pipelining, most
ST10x166 instructions can be regarded as being
executed during one machine cycle (=100ns at
40MHz oscillator frequency). Section 5.2 de-
scribes the general instruction timing including
standard and exceptional timing.
While internal memory accesses are normally per-
formed by the CPU itself, all of the external mem-
ory accesses are performedby a particularon-chip
External Bus Controller (EBC) which is automat-
ically invoked by the CPU whenevera code or data
address belongs to the external memory space. If
possible, the CPU continuesoperatingwhile an ex-
ternal memory access is in progress. If external
data are required but are not yet available, or if a
new external memory access is requested by the
CPU before a previous access has been com-
pleted, the CPUwill be held by the EBC until the re-
quest can be satisfied. Chapter 9 is dedicated to a
description of the external bus interface being
serviced by the EBC.

The ST10x166 peripherals work nearly inde-
pendent of the CPU with a separate clock gener-
ator. An interchange of data and control
information between the CPU and the peripherals
is done via Special Function Registers (SFRs).
Whenever peripherals non-deterministically need
a CPU action, an on-chip Interrupt Controller com-
pares all pending peripheral service requests
against each other and prioritizes one of them. If

5. CENTRAL PROCESSING UNIT

the priority of the current CPU operation is less
than the priority of the selectedperipheral request,
an interrupt will occur.

Basically, there are two types of interrupt process-
ing: One type, the standard interrupt processing,
forces the CPU to save the current program status
and the returnaddress on the stack beforebranch-
ing to the interrupt vector jump table. The second
type, the PEC interrupt processing,steals just one
machinecycle from the currentCPU activity to per-
form a single data transfer via the on-chip Periph-
eral Event Controller (PEC). System errors
detected during program execution (so called
hardware traps), or an external non-maskable in-
terrupt are also processed as standard interrupts
with a very high priority. For more information
about interrupts,PEC data transfers and hardware
traps see chapter 7.

In contrast to other on-chip peripherals, there is a
closer conjunction between the Watchdog Timer
and the CPU. If enabled, the Watchdog Timer ex-
pects to be serviced by the CPU within a program-
mable period of time, otherwise it will reset the
chip. Thus, the Watchdog Timer is able to prevent
the CPU from going totally astray when executing
erroneous code. After reset, the Watchdog Timer
starts countingautomatically,but it canbe disabled
via software if desired.
By any reset, the CPU is forced into a predefined
active state. FurtherparticularCPU states are: The
IDLEstate where the CPUclock is switchedoff and
the peripheral clocks keep running, and the
POWER DOWN state where all of the on-chip
clocks are switched off. A transition into an active
CPUstate is forced by an interrupt if being IDLE, or
by a reset if being in POWER DOWN mode, re-
spectively. The IDLE, POWERDOWN and RESET
states can be entered by particular ST10x166sys-
tem control instructions. For more information on
these states see chapter 12.

1/26

Section5.3 describes the Special Function Regis-
ters situated within the CPU core which are all
dedicated to particularuses, as follows:

General System Configuration: SYSCON
Bus Configuration:BUSCON1
Address Select: ADDRSEL1
CPU Status Indication and Control: PSW
Code Access Control: IP, CSP
Data Paging Control: DPP0, DPP1, DPP2,
DPP3
GPRs Access Control: CP
SystemStackAccessControl:SP,STKUN,STKOV
Multiply and Divide Support: MDL, MDH, MDC
ALU Constant Support:ZEROS, ONES

5.1 INSTRUCTION PIPELINING

As mentioned in the introductional part of this
chapter, a four stage instruction pipeline is imple-
mented in the ST10x166. This means that instruc-
tion processing is partitioned in four stages of
which each one has its individual task as follows:
1st -> FETCH: In this stage, the instruction se-
lectedby the InstructionPointerand theCode Seg-
ment Pointer is fetched from either the internal
ROMor FLASH memory, internal RAM,or external
memory.
2nd -> DECODE: In thisstage, the instructions are
decoded, and if required,the operand addresses
are calculated and the resulting operands are
fetched. For all instructions which implicitly access
the system stack, the SP register is either decre-
mentedor incrementedas specified.For branch in-
structions, the Instruction Pointer and the Code
Segment Pointer are updated with the desired
branch target addresses (provided that the branch
is taken).
3rd -> EXECUTE: In this stage, an operation is
performed on the previously fetched operands in
the ALU. Additionally, the condition flags in the
PSW register are updated as specified by an in-

struction. All explicit writes to the SFR memory
space and all auto-increment or auto-decrement
writes to GPRs used as indirect address pointers
are performed during the execute stage of an in-
struction, too.
4th -> WRITEBACK: In this stage, all externalop-
erands and the remaining operands within the in-
ternal RAM space are written back.
A particularity of the ST10x166are the so called in-
jected instructions. These injected instructions are
internally generated by the machine to provide the
time needed to process instructions which cannot
be processed within one machine cycle.They are
automatically injected into the decode stage of the
pipeline,and then they pass through the remaining
stages as every standard instruction. Program in-
terrupts are performed by means of injected in-
structions, too. Although one will not notice these
internally injected instructionsin reality, they are in-
troduced here to ease the explanationof the pipe-
line in the following.

5.1.1 Sequential Instruction Processing
Eachsingle instruction has to pass througheach of
the four pipeline stages regardless of whether all
possible stage operations are really performed or
not. Since passing through one pipeline stage
takes at least one machine cycle, any single in-
struction takes at least four machine cycles to be
completed. Pipelining, however, allows parallel
(this means simultaneous)processingof up to four
instructions.Thus,most of the instructionsseem to
be processed during one machine cycle as soon
as the pipeline has been filled once after reset (see
figure 5.1).
Instruction pipelining increases the average in-
struction throughput considered over a certain pe-
riod of time. In the following, any execution time
specification of an instruction always refers to the
averageexecution timedue to pipelinedparallel in-
struction processing.

→ 1 Machine
Cycle

← time →
FETCH I1 I2 I3 I4 I5 I6

DECODE I1 I2 I3 I4 I5

EXECUTE I1 I2 I3 I4

WRITE BACK I1 I2 I3

Figure 5-1. Sequential Instruction Pipelining

5 - Central Processing Unit

2/26

→ 1 Machine
Cycle

←
time →

FETCH BRANCH In + 2 ITARGET ITARGET + 1 ITARGET + 2 ITARGET + 3

DECODE In BRANCH (IINJECT) ITARGET ITARGET + 1 ITARGET + 2

EXECUTE . . . In BRANCH (IINJECT) ITARGET ITARGET + 1

WRITE BACK In BRANCH (IINJECT) ITARGET

injection

Figure 5-2. Standard Branch Instruction Processing

5.1.2 Standard Branch Instruction Processing
Instruction pipelining helps to speed sequential
program processing. In the case that a branch is
taken, the instruction which has already been
fetched providently is mostly not the instruction
which must be decoded next. Thus, at least one
additional machine cycle is normally required to
fetch the branch target instruction. This extra ma-
chine cycle is provided by means of an injected in-

→ 1 Machine
Cycle

←
FETCH In + 2 ITARGET ITARGET+ 1 In+2 ITARGET+ 1 ITARGET + 2

DECODE Cache Jump (IINJECT) ITARGET Cache Jump ITARGET ITARGET + 1

EXECUTE In Cache Jump (IINJECT) In Cache Jump ITARGET

WRITE BACK . . . In Cache Jump . . . In Cache Jump

1st loop iteration→ Repeated loop iteration →

Injection of Cached
Target Instruction

Injection

Figure 5-3. Cache Jump Instruction Pipelining

struction as shown in figure 5.2.
If a conditionalbranch is not taken, there is no de-
viation from the sequential program flow, and thus
no extra time is required. In this case, the instruc-
tion after the branch instruction will enter the de-
code stage of the pipeline at the beginning of the
next machine cycle after decode of the conditional
branch instruction.

5.1.3 Cache Jump Instruction Processing
A jump cache has been incorporated in the
ST10x166 as an optimization of conditional jumps
which are processed repeatedly within a loop.
Whenevera jump on cache is taken, the extratime
to fetch the branch target instruction can be saved,
and thus the correspondingcache jump instruction
in most cases takes only one machine cycle to be
performed.
This performance is achieved by the following
mechanism. Whenever a cache jump instruction
passes through the decode stage of the pipeline
for the first time (and provided that the jump condi-
tion is met), the jump target instruction is fetched
as usual causing a time delay of one machine cy-
cle. In contrast to standard branch instructions,
however, the target instruction of a cache jump in-

struction (JMPA, JMPR,JB, JBC, JNB,JNBS)isad-
ditionally stored in a cache after having been
fetched.

After each repeatedly following execution of the
same cache jump instruction, the jump target in-
struction is not fetched but taken from the cache
and immediatly injected into the decode stage of
the pipeline (see figure 5.3).
A time saving jump on cache is always taken after
the second and any further occurence of the same
cache jump instruction,unless an instructionwhich
has the fundamental capability of changing the
CSP register contents (JMPS, CALLS, RETS,
TRAP, RETI) or any standard interrupt has been
processed during the period of time between two
following occurences of the same cache jump in-
struction.

5 - Central Processing Unit

3/26

5.1.4 Particular Pipeline Effects
Since up to four different instructions are processed
simultaneously,additionalhardwarehas beenspent
intheST10x166toconsiderall causaldependencies
which may exist on instructions in different pipeline
stages without a loss of performance. This extra
hardware (i.e. for ‘forwarding’ operand read and
write values) avoids that the pipeline becomes no-
ticeablefor theuser in most of the cases.
However, therearesomeveryrarecases whereone
must pay attention to the circumstance that the
ST10x166 is a pipelined machine. Intelligent
ST10x166 tools like the simulator and the emulator
support the user by easing the association with the
following particular pipelineeffects.

ContextPointerUpdating
An instructionwhichcalculatesa physicalGPRoper-
and address via the CP register is mostly not capa-
ble of using a new CP value which is to be updated
byan immediatelyprecedinginstruction.Thus, if one
surely wants thenew CP value to be used,one must
put at least one instruction between a CP-changing
and a subsequentGPR-using instruction, as shown
in the followingexample:
In SCXT CP, #0FC00h

; select a new context
In+1

; must not be an instruction using a GPR
In+2 MOV R0, #dataX

; write to GPR 0 in the new context

Data PagePointerUpdating
An instruction which calculates a physical operand
addressvia a particular DPPn (n = 0 to 3) register is
mostly not capable of using a new DPPn register
value which is to be updatedby an immediately pre-
ceding instruction.Thus, if one surely wants the new
DPPn register value to be used, one must put at
least one instruction between a DPPn-changing in-
struction and a subsequentinstruction which implic-
itly uses DPPn via a long or indirect addressing
mode,as shown in the following example:
In MOV DPP0, #4

; select data page 4 via DPP0
In+1

; must not be an instruction using DPP0
; (for long or indirect addressesfrom 0000h
; to 3FFFh)

In+2 MOV 0000h, R1
; move contentsof GPR 1 to address
; location 10000h (in data page 4)
; supposed that segmentation is not
; disabled

Explicit Stack PointerUpdating
Anyof the RET, RETI, RETS, RETPor POPinstruc-
tions is not capable of correctly using a new SP reg-
ister valuewhich is to be updatedby an immediately
precedinginstruction.Thus, if onewants the newSP
register value to be used without erroneously per-
formed stackaccesses,one must putat leastone in-
struction between an explicitly SP-writing and any
subsequentof the just mentionedimplicitly SP-using
instructions,as shownin the following example:
In MOV SP, #0FA40h

; selecta new top of stack
In+1

; must not be an instruction popping
; operandsfrom the system stack

In+2 POP R0
; pop the word value from the new top of
; stack into GPR 0

External MemoryAccess Sequences
The effect described here will only become notice-
able if one looks at the externalmemory accessse-
quences on the external bus (i.e. by means of a
Logic Analyzer). Different pipeline stages can si-
multaneously put a request on the External Bus
Controller (EBC). Since the predefined priority of
external memory accesses is as follows, 1st Write
Data, 2nd Fetch Code, 3rd Read Data, the se-
quence of instructions processed by the CPU may
diverge from the sequence of the corresponding
externalmemory accesses performed by the EBC
.

Timing

As already described, instruction pipelining re-
duces the average instruction processing time in a
widescale (fromfour to one machine cycles).How-
ever, there are some rare cases where a particular
pipeline situation causes a single instruction proc-
essing time to be extended either by a half or by
one machine cycle. Although this additional time
representsonly a tiny part of thetotal programexe-
cution time, it might be of interest to avoid these
pipeline-caused time delays in time critical pro-
gram modules.
Besides a generalexecution time description, sec-
tion 5.2 providessome hints how one can optimize
time-critical program parts with regard to such
pipeline-caused timing particularities.

5 - Central Processing Unit

4/26

5.2 INSTRUCTION STATE TIMES

Basically, the time to execute an instruction de-
pendson where the instruction is fetched from,and
where possible operands are read from or written
to.The fastest processingmodeof the ST10x166 is
to execute a programfetchedfrom the internal pro-
grammemory. In that case,most of the instructions
can be processed within just one machine cycle,
which also represents the general minimum execu-
tion time.
All of the external memory accesses are performed
by the ST10x166 on-chip External Bus Controller
(EBC)which works in parallelwith the CPU. Mostly,
instructions from the external memory can not be
processed as fast as instructions from the internal
program memory, because some data transfers
which internally can be performed in parallel, have
to be performed sequentially via the external inter-
face. In contrast to internal program memory pro-
gram execution, the time required to process an
external program additionally depends on the
length of the instructions and operands, on the se-
lectedbus mode,and on the durationof anexternal
memory cycle which is partly selectableby the user.
Processinga programfrom the internalRAM space
is not as fast as execution from the internal ROM
area,but it offersa lot of flexibility (i.e., for end of line
programmingwhere a programcouldbe loadedinto
the internal RAM via the chip’s serial interface).

The following description allows evaluating the
minimum and maximum program execution times.
Thiswill be sufficient for most of the requirements.
Thissection is arranged in subsectionsof which the
first one defines the subsequentlyused time units,
the second contains an overview about the mini-
mum (standard) state times of the ST10x166 in-
structions, and the third describes the exceptions
from that standardtiming.

5.2.1 Time Unit Definitions
The following time units are used to describe the
instructionprocessing times:

[fOSC]: Oscillator frequency (may be variable
from 2MHz to 40MHz).

[State]: One state time is specifiedby two times
an oscillator period. Henceforth, one
State is used as the basic time unit, be-
cause it represents the shortest period of
time which has to be considered for in-
struction timing evaluations.

1 [State] = 2 x 1/f OSC [s]; for f OSC = variab le
= 50 [ns] ; for fOSC = 40MHz

[ACT]: This ALE (Address Latch Enable)Cycle
Time specifies the time required to per-
form one external memory access. One
ALE Cycle Time consists of either two
(for a non-multiplexedexternal bus
mode) or three (for a multiplexed external
bus mode) state times plus a number of
state times which is determined by the
number of wait states programmed in the
MCTC (Memory Cycle Time Control) and
MTTC (Memory Tristate Time Control) bit
fields of the SYSCONregister plus one
state time if ALECTL1 bit of ADDRSEL1
register is set to ‘1’.
In the case of the non-multiplexedexter-
nal bus mode:

1xACT =(2+(15 - MCTC)+(1- MTTC)
+(ALECTL1))xStates
= 100ns ... 900ns ; for fOSC = 40MHz
In the case of the multiplexed external
bus modes:

1x ACT=3 + (15 -MCTC) + (1 - MTTC
+(ALECTL1)) x States
= 150ns ... 950ns ; for fOSC = 40MHz

The total time (Ttot) which a particularpart of a pro-
gram takes to be processed can be calculated by
the sum of the single instruction processing times
(TIn) of the considered instructions plus an offset
value of 6 state times which considers the solitary
filling of the pipeline, as follows:
Ttot = TI1 + TI2 + ... + TIn + 6 x States
The time TIn which a single instruction takes to be
processed consists of a minimum number (TImin)
plus an additional number (TIadd) of instruction
state times and/or ALE Cycle Times, as follows:
TIn = TImin + TIadd

5.2.2 Minimum State Times
The following table 5.1 shows the minimum num-
ber of state times required to process a ST10x166
instruction fetched from the internal ROM (TImin
(ROM)). The minimum number of state times for in-
structions fetched from the internal RAM (TImin
(RAM)), or of ALE Cycle Times for instructions
fetched from the external memory (TImin (ext)), can
also be easily calculated by means of table 5.1.
Most of the ST10x166 instructions - except some
of the branches, the multiplication, the division and
a special move instruction - require a minimum of
two state times. In the case of internal ROM pro-

5 - Central Processing Unit

5/26

gram execution there is noexecution time depend-
encyon the instructionlength except for some spe-
cial branch situations. The injected target
instruction of a cache jump instruction can be con-
sidered for timing evaluations as if being executed
from the internal ROM, regardless of which mem-
ory range the rest of the current program is really
fetched from.

For some of the branch instructions, table 5.1 rep-
resents both the standard number of state times
which means that the corresponding branch is
taken, and an additional TImin value in parentheses
which refers to the case that either the branch con-
dition is not met or that a cache jump is taken.
Instructions executed from the internal RAM re-
quire the same minimum time as if being fetched
from the internal ROM plus an instruction-length
dependentnumber of state times, as follows:
For 2-byte instructions:
TImin(RAM) =TImin (ROM) + 4 x States

For 4-byte instructions:
TImin(RAM) =TImin (ROM) + 6 x States
In contrast to the internal ROM program execution,
the minimum time TImin(ext) to process an external
instruction additionally depends on the instruction
length. TImin(ext) is either 1 ALE Cycle Time for
most of the 2-byte instructions, or 2 ALE Cycle
Times for most of the 4-byte instructions. The fol-
lowing formula represents the minimum execution
time of instructions fetchedfrom an external mem-
ory via a 16-bit data bus:
For 2-byte instructions:
TImin(ext)=1xACT + (TImin(ROM) - 2) x States
For 4-byte instructions:
TImin(ext)=2xACTs + (TImin(ROM) - 2) x States
For instructions fetched from an external memory
via an 8-bit data bus, the minimum number of re-
quired ALE Cycle Times is twice the number for a
16-bit bus.

5.2.3 Additional State Times
As described in the following, some operand ac-
cesses can extend the execution time of an in-
struction, TIn. Since the additional time, TIadd, is
mostly caused by internal instruction pipelining, it
often will be possible to evade these timing effects
in time-critical program modules by means of a
suitable rearrangement of the corresponding in-
structionsequences.The ST10x166simulator and
emulator offer many facilities which support the
user in optimizing the program whenever required.

1)Internal ROMoperand reads: TIadd = 2x States
Both byte and word operand reads always require
2 additional state times.
2) Internal RAM operand reads via indirect ad-
dressing modes: TIadd = 0 or 1 x State
Reading a GPR or any other directly addressed
operand within the internal RAM space does NOT
cause additional state times. However, reading an
indirectly addressed internal RAM operand will ex-
tend the processing time by 1 state time if the pre-

Instruction
TImin (ROM)

[States]
TImin (ROM)

(at 20MHz CPU Clock) Unit

Any (except the following)

CALLI, CALLA
CALLS, CALLR, PCALL
JB, JBC, JNB, JNBS
JMPS
JMPA, JMPI, JMPR
MUL, MULU
DIV, DIVL, DIVU, DIVLU
MOV[B] Rn, [Rm + #data 16]
RET, RETI, RETP, RETS
TRAP

2

4
4
4
4
4

10
20
4
4
4

(2)

(2)

(2)

100

200
200
200
200
200
500

1000
200
200
200

(100)

(100)

(100)

ns

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Table 5-1. Minimum Instruction State Times

5 - Central Processing Unit

6/26

ceding instruction auto-increments or auto-decre-
ments a GPR as shown in the following example:
In MOV R1 , [R0+]

; auto-increment R0
In+1 MOV [R3], [R2]

; if R2 points into the internal RAM space:
; TIadd = 1 x State

In this case, the additional time can simply be
avoided by putting another suitable instruction be-
fore the instruction In+1 indirectly reading the inter-
nal RAM.
3)Internal SFR operand reads:
TIadd = 0, 1 x State or 2 x States
Mostly, SFR read accesses do NOT require addi-
tional processing time. In some rare cases, how-
ever,either one or two additionalstate times will be
caused by particular SFR operations,as follows:

- Reading an SFR immediately after an instruc-
tion which writes to the internal SFR space, as
shown in the following example:

In MOV T0, #1000h
; write to Timer 0

In+1 ADD R3, T1
; read from Timer 1: TIadd = 1 x State

- Reading the PSW register immediately after an
instruction which implicitly updates the condi-
tion flags, as shown in the following example:

In ADD R0, #1000h
; implicit modification of PSW flags

In+1 BAND C, Z
; read from PSW: TIadd = 2 x States

- Implicitly incrementing or decrementing the SP
register immediately after an instruction which
explicitly writes to the SP register, as shown in
the following example:

In MOV SP, #0FB00h
; explicit update of the stackpointer

In+1 SCXT R1, #1000h
; implicit decrement of the stack pointer:
; TIadd = 2 x States

In these cases, the extra state times can be
avoided by putting other suitable instructions be-
fore the instruction In+1 reading the SFR.
4) External operand reads: TIadd = 1 x ACT
Any external operand reading via a 16-bit data bus
requires one additional ALE Cycle Time. Reading
word operandsvia an 8-bit data bus takes twice as
much time (2 ALE Cycle Times) as the reading of
byte operands.

5) External operandwrites:
TIadd = 0 x State ... 1 x ACT
Writing of an externaloperand via a 16-bitdata bus
takes one additional ALE Cycle Time. For timing
calculations of external program parts, this extra
time must always be considered.The value of TIadd
which must be considered for timing evaluationsof
internal program parts, may fluctuate between 0
state times and 1 ALE CycleTime. This is because
external writes are normally performed in parallel
to other CPU operations. Thus, TIadd could already
have been considered in the standard processing
time of another instruction. Writing a word operand
via an 8-bit data bus requires twice as much time
(2 ALE Cycle Times) as the writing of a byte oper-
and.
6)Testing Branch Conditions:
TIadd = 0 or 1 x States
Mostly, NO extra time is required for conditional
branch instructions to decide whether a branch
condition is met or not. However, an additional
state time will be caused if the preceding instruc-
tionwrites to the PSW register, as shown in the fol-
lowing example:
In BSET USR0

; write to PSW
In+1 JMPR cc_Z, label

; test condition flag in PSW:
; TIadd = 1 x State

In this case, the extra state time can simply be in-
tercepted by putting another suitable instruction
before the conditionalbranch instruction.

7) Jumps into the internal ROM space:
TIadd = 0 or 2 x States
As already described, standard jumps into the in-
ternal ROM space require 4 state times to be exe-
cuted. This minimum time will be extended by 2
additional state times, if the branch target instruc-
tion is a double word instruction at a non-aligned
double word location (xxx2h, xxx6h, xxxAh,
xxxEh), as shown in the following example:
label

; any non-aligneddouble word instruction
; (i.e. at location 0FFEh)

....
In+1 JMPA cc_UC, label

; if a standardbranch is taken:
; TIadd = 2 x States (TIn = 6 x States)

A cache jump, which normally requires just 2 state
times, will be extended by 2 additional state times
if both the cached jump target instruction and its

5 - Central Processing Unit

7/26

successor instruction are non-aligneddouble word
instructions, as shown in the following example:
label

; any non-aligneddouble word instruction
; (i.e. at location 12FAh)

It+1
; any non-aligneddouble word instruction
; (i.e. at location 12FEh)

In+1 JMPR cc_UC, label
; provided that a cache jump is taken:
; TIadd = 2 x States (TIn = 4 x States)

If required, these extra state times can be avoided
by allocating double word jump target instructions
to aligned double word addresses (xxx0h, xxx4h,
xxx8h, xxxCh).

5.3 CPU SPECIAL FUNCTION REGISTERS

The core CPU requires a set of Special Function
Registers (SFRs) to maintain the system state in-
formation,to supplythe ALU with register-address-
able constantsand to control system configuration,
multiply and divide ALU operations, code memory
segmentation,data memorypaging, and accesses
onto the General Purpose Registers and the Sys-
tem Stack.

The access mechanismfor theseSFRs in theCPU
core is identical to the access mechanism for any
other SFR. Sinceall SFRscan simplybe controlled
by meansof any instructionwhich iscapable of ad-
dressing the SFR memory space, a lot of flexibility
has been gained, and the need to create a set of
system specific instructions was avoided. Note,
however, that there are user access restrictions for
someof the CPUcore SFRsto ensureproper proc-
essor operations.
The PSW, SP, and MDC registers can be modified
not only explicitly by the programmer, but also im-
plicitly by the CPU during normal instruction proc-
essing. Note that any explicit programmer’s write
request to an SFR supersedes a simultaneous
modification by hardware of the same register.
Note furthermore, that any byte write operation to
an SFR clears the non-addressedcomplementary
byte within the specified SFR. Note also that non-
implemented (reserved) SFR bits can not be modi-
fied, and will always supply a read value of ‘0’.

SYSCON (FF0Ch / 86h)
System ConfigurationRegister
Reset Values: 0000h, 0400h, 0440h, 0480h or

04C0h
15 14 13 12 11 10 9 8

R STKSZ RDYEN SGTDIS BUSACT BYTDIS CLKEN

7 6 5 4 3 2 1 0

BTYP MTTC RWDC MCTC

b15 = R: Reserved.
b14,b13 = STKSZ: Maximum System Stack Size

Selection of between32 and 256 words.
b12 = RDYEN: READYInput Enable control bit:

RDYEN = 0: READY disabled; pin can be used
for normal I/O
RDYEN = 1: READY enabled; pin used for
READYinput

b11 = SGTDIS: SegmentationDisable controle bit:
SGTDIS = 0: A16 and A17 enabled;Port 4 used
for segmentaddress
SGTDIS = 1: A16 and A17 disabled; Port 4 can
be used for normal I/O

b10 = BUSACT : Bus Active Control Bit.
b9 = BYTDIS: Byte High Enable (BHE) pin control

bit:
BYTDIS = 0: BHE enabled
BYTDIS = 1: BHE disabled; pin can be used for
normal I/O

b8 = CLKEN: System ClockOutput (CLKOUT) En-
able bit :
CLKEN = 0: CLKOUT disabled; pin can be used
for normal I/O
CLKEN = 1: CLKOUT enabled; pin used for sys-
tem clock output

b7,b6 = BTYP: ExternalBus ConfigurationControl
b5 = MTTC: MemoryTri-state Time Control
b4 = RWDC: Read/Write Delay Control.
b3,b2,b1,b0= MCTC: Memory Cycle TIme Con-

trol.

5 - Central Processing Unit

8/26

5.3.1 SYSCON: System Configuration
Register
This bit-addressableregister provides general sys-
tem configuration and control functions. There are
fivedifferent reset values for the SYSCONregister,
becausethe BTYPbit fieldandthe BUSACTbit are
initialized during reset dependent on the state of
the BUSACT, EBC0and EBC1 input pins.

5.3.1.1 INTERNAL ROM OR FLASH MEMORY/EX-
TERNAL MEMORY ACCESS MODE SELECTION

A two-bit field, BTYP, and BUSACT, reflect the se-
lected external bus configuration, as shown in ta-
ble 5.2.
BTYP bits and the BUSACT bit are always read-
and writeable bits, regardless of the bus configura-
tion selected during reset. But after the EINIT
instruction (end of initialization), only the external
bus configuration can be changed at any time.
When the SYSCON parameters are modified dur-
ing initialization, an instruction from a source (ex-
ternalbus or internal ROM) which is to be switched
must not be performed.(e.g. disabling the external
bus when executing from external memory)!

Switching between thebus modescanalso be per-
formed with the BUSCON1 register. (see section
5.3.1.5 for further information).
Note that the selection of a multiplexed external
bus configurationautomatically extends the Mem-
ory Tri-State Time by one state time (1 state
time=2 x 1/fOSC).
For further information and for examplesabout the
Single Chip Mode and the external bus configura-
tion modes, see section 9.1.

5.3.1.2 EXTERNAL BUS TIMING CONTROL (VIA
MCTC, MTTC, RWDC)

The MCTC bit field and the MTTC and RWDC bits
in the SYSCON register are provided for varying
external bus timing parameters as follows. The
Memory Cycle Time can be extended within a
range from 0 to 15 state times by means of the
MCTCbit field (1 state time = 2 x 1/fOSC). By means
of the MTTC bit, the Memory Tri-State time can be
extendedby either 1 or 0 additionalstate time. The
Memory Tri-State Time is additionallyextended by
one state time whenever a multiplexed external
bus configurationis selected.The RWDC bit allows
programming a time delay of either 0 or 0.5 state
times between the falling edges of the ALE and the
Read/Write signals. This read/write delay does not
extend the general memory access time. Note that
additionalexternalwait states do not slow down in-
ternal memory accesses. Table 5.3 summarizes
the SYSCONcontrol functions for the externalbus
timing.
Afterreset, the MCTC,MTTC and RWDCare all in-
itialized to zero. Thus, even very slow memories
will be accessed correctly.

5.3.1.3 BYTE HIGH ENABLE PIN CONTROL (VIA BYT-
DIS)

The BYTDIS bit is provided for controlling the ac-
tive low Byte High Enable (BHE) pin. The function
of the BHE pin is enabled if the BYTDIS bit con-
tains a ‘0’. Otherwise, it is disabledand the pin can
be used as standardI/O pin.The BHEpin is implic-
itly used by the External Bus Controller to select
one of two byte-organizedmemorychips which are
connected with the ST10x166 via a word wide-ex-
ternaldata bus. After reset, BYTDIS is initialized to
zero.
For further information about the use of the BHE
pin see chapter 10.

BUSACT BTYP Reset During Init After Init

0
0
0
0

00
01
10
11

ROM enable Seg. 0 No ext. Bus
(Reserved)
(Reserved)
(Reserved)

ROM enable Seg. 0
ROM enable Seg. 1
Disable ROM
Disable ext. Bus

No Action
No Action
No Action
No Action

1
1
1
1

00
01
10
11

8-Bit Non-Mux no ROM
8-Bit Mux no ROM
16-Bit Mux no ROM
16-Bit Non-Mux no ROM

8-Bit Non-Mux
8-Bit Mux
16-Bit Mux
16-Bit Non-Mux

8-Bit Non-Mux
8-Bit Mux
16-Bit Mux
16-Bit Non-Mux

Table 5-2. External Bus Configuration via BUSACT, BTYP bit field

5 - Central Processing Unit

9/26

5.3.1.4 READY PIN CONTROL (VIA RDYEN)

The RDYEN bit provides an optional Data-Ready
function via the active low READY input pin, to al-
low an external memory controller or peripherals to
determine the duration of an external memory ac-
cess. The Data-Ready function is enabled by set-
ting the RDYEN bit to ‘1’. In this case, port pin
P3.14 takes on its alternate function as active low
READY input pin. An active low signal on the
READY input pin signifies that data is available
and must be latched by the on-chip External Bus
Controller. Note, that it is the user’s responsibility
to set the direction of the READY pin to input be-
fore using this function.
When the Data-Ready function is enabledand bits
0 to 2 of SYSCONregisterare cleared, the external
bus timing is only determined by the READY pin,
the MTTC bit, the RWDC bit and by the selected
external bus mode. If 1 to 7 wait states are pro-
grammed in bits 0 to 2 of the MCTC field, the CPU
will first insert the selected number of wait states

into the memory cycle (Cycle Time Wait States),
regardlessof the state of the READY line. Then af-
ter the wait state time has expired, the CPU will
check the READY line and delay the memory ac-
cess dependingon the state of the READYline.
Warning : If the Data-Ready function is enabled,
the READY input pin must be activated for every
external memory access. Otherwise, the system
would be halted until a reset occurs. No time-out
protectionother than a WatchdogTimer overflow is
provided for that case.
In order to allow one to interface to a variety of pe-
ripherals, support for both asynchronous and syn-
chronous modes of operation is provided. If the
Data-Ready function is enabled, bit 3 in the SY-
SCON register (the MSB of the MCTC bit field) de-
termines whether the READY input pin is to be
used in asynchronousor synchronousmode:
SYSCON.3 = 1:Asynchronous READY input
SYSCON.3 = 0:Synchronous READY input

Control
Parameter

Value
Number of Additional

State Times
Affected Time

MCTC

MTTC

RWDC

BTYP

0000b
0001b
0010b
0011b
0100b
0101b
0110b
0111b
1000b
1001b
1010b
1011b
1100b
1101b
1110b
1111b

0b
1b

0b
1b

00b
01b
10b
11b

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1
0

0
0

0
1
1
0

(implicit)
(implicit)

Memory Cycle Time

Memory Tri-State Time

Read/Write Signal Delay

Memory Tri-State Time
(implicit for multiplexed
bus configurations)

Table 5-3. SYSCON External Bus Timing Control Functions

5 - Central Processing Unit

10/26

In the asynchronous mode of operation, the
READY input signal is internally synchronized to
the microcontroller’s operation. In this case, an ad-
ditional delay of up to two state times may be re-
quired in order to internally synchronize the signal.
In the synchronous mode of operation, it is the
user’s responsibility to ensure that the READY in-
put signal meets the specified setup and hold
times. In order to obtain the necessarytiming infor-
mation and to perform external synchronization,
the Clock Output function can be used.
After reset, the Data-Ready function is disabled.

5.3.1.5 CLOCK OUTPUT PIN CONTROL (VIA CLKEN)

The Clock Output function is enabledby settingthe
CLKEN bit of the SYSCON register to ‘1’. If en-
abled, port pin P3.15 takes on its alternate function
as CLKOUT output pin. The Clock Output isa 50%
duty cycle clock whose frequency is half the oscil-
lator frequency (fOUT = fOSC/2). For a 40MHz clock
oscillator, the CLKOUT frequencyis 20MHz.
Note that it is the user’s responsibility to set the di-
rection of the CLKOUT pin to output and to write a
‘1’ into port latch P3.15 before using this function.
After reset, the Clock Output function is disabled.

5.3.1.6 NON-SEGMENTED MEMORY MODE SELEC-
TION (VIA SGTDIS)

The SGTDIS bit allows selecting either the seg-
mented or non-segmented memory mode. In the
caseof thenon-segmentedmemorymode(SGTDIS
= ‘1’), the entire address space is restricted to 64
Kbytes (segment 0), and thus all addresses can be
represented by 16-bits. Thus, the contents of the
CSP register are totally ignored, and only the two
leastsignificantbits of the DPPregistersareusedfor

physical address generation. This means also that
the pins of Port 4 can be used as standard I/O pins.
In the case of the segmented memory mode
(SGTDIS = ‘0’), theCSP andDPPregistersare used
for the generation of physical 18-bit addresses as
described in sections 5.3.6 and 5.3.7. The pins of
Port 4 are used as address pins A17 and A16 pro-
vided that an externalbushas been configured.
Whenever the segmented memory mode is se-
lected, the CSP register is pushed onto the system
stackin addition to the IP registerbeforean interrupt
service routine is entered, and it is repopped when
the interrupt service routine is left again.
After reset, the segmented memory mode is se-
lectedby default.

5.3.1.7 MAXIMUM SYSTEM STACK SIZE SELEC-
TION (VIA STKSZ)

The maximum size of the system stack is directly
determinedby the two-bit field STKSZ as shown in
table below.

Note that the contents of the STKSZbit field imme-
diately affect the physical stack address genera-
tion via the SP register described in section 5.3.9.
Afterreset, the maximum stack sizeof 256 word lo-
cations is selected by default.

STKSZ Maximum System Stack Size

00b
01b
10b
11b

256 words
128 words
64 words
32 words

Table 5-4. Maximum System Stack Size

5 - Central Processing Unit

11/26

BUSCON1 (FF14h / 8Ah)
Bus ConfigurationRegister
Reset Value: 0000h

15 14 13 12 11 10 9 8

R RDYEN1 R BUSACT1 ALECTL1 R

7 6 5 4 3 2 1 0

BTYP MTTC1 RWDC1 MCTC

b15,b14,b13,b11,b8= R: Reserved.
b12 = RDYEN1: READY Input Enable control bit:

RDYEN = 0: READY function disabled for
BUSCON1 accesses
RDYEN = 1: READY function enabled for
BUSCON1 accesses

b10 = BUSACT1 : Bus Active Control Bit.
b9 = ALECTL1: ALE LengtheningControl Bit
b7,b6 = BTYP: ExternalBus ConfigurationControl
b5 = MTTC1: Memory Tri-state Time Control
b4 = RWDC1: Read/Write Delay Control.
b3 to b0 = MCTC: Memory Cycle TIme Control.

ADDRSEL1 (FE18h / 0Ch)
Address Select Register
Reset Value: 0000h

15 14 13 12 11 10 9 8

R RGSAD[6..5]

7 6 5 4 3 2 1 0

RGSAD[4..0] RGSZ

b15 t o b10 = R: Reserved.
b9,b3 = RGSAD: BUSCON1 Address Range

Start Address Selection.
b2,b1,b0= RGSZ: BUSCON1 Address Range Se-

lection.

Segment 0

FFFF

External Memory
Accessed

via SYSCON
Parameters

C000

16K Range,
Start Address
8000h (32K)

External Memory
Accessed

via BUSCON1
Parameters, e.g. 8Bit
Data Multiplexed Bus,

2 Wait-States+READY
enabled

8000

External Memory
Accessed

via SYSCON
Parameters, e.g.
16Bit Data Non-
Multiplexed Bus,
No Wait-State

0000

Figure 5-4. Partitioning Example with
BUSCON1 and SYSCON

5 - Central Processing Unit

12/26

5.3.2 BUSCON1: Bus Configuration Register
This register used with the ADDRSEL1 register al-
lows the automaticselection of a differentbus con-
figuration. It includes all control bits of the
SYSCONregister relevant for configuring.
There are three different methods to lengthen an
access to externalmemoriesor peripherals.One is
using MCTC to lengthen the middle of a bus cycle,
anotheris using MTTC to lengthenthe end of a bus
cycle, and the third is the ALECTL1 (ALE Control
Bit) of BUSCON1 to lengthen the beginning of a
bus cycle.
After reset, the ALECTL1 bit is reset. For periph-
eral components requiring a longer ALE pulse,
longer address setup, and hold times, the
ALECTL1 bit must be set to ”1”. Then any access
within the address range specified by the AD-
DRSEL1 register is lengthened by one machine
state (50ns @ 20MHz CPU clock). The ALE signal
is lengthened by one TCL (TCL=1/2 machine
state), and the address hold time after ALE is also
lengthened by one TCL.
After reset, all bits of the BUSCON1 register are
cleared. As opposed to SYSCON register, the
state of the external bus control pins EBC0, EBC1
and BUSACTare not copied into BUSCON1 after
reset.

To enable the BUSCON1 register, an address
range plus a start address must be specified
throughADDRSEL1 register, then BUSCON1 reg-
ister must be programmed to the desired bus con-
figuration and the BUSACT1 control bit must be
set. The BUSCON1 register will then take control
of the externalbuswhen an accessto the specified
address range is performed, otherwise the SY-
SCONparameters control the external bus charac-
teristics.
Figure 5.4 shows an example of control of parti-
tions of the external address range by SYSCON
and BUSCON1.

Warning: The BUSCON1 register controls only the
external bus. It’s not possible to control the on-chip
ROMor FLASHspacethroughtheBUSCON1regis-
ter.This can onlybe done with SYSCONregister.

5.3.3 ADDRSEL1: ADDRESS SELECT
REGISTER
This register specifies the address space in which
the BUSCON1 register will control theexternal bus
configuration.

This register is divided into three parts. Bits 0 to 2,
RGSZ (Range Size Selection bit field), specify the
addressrange according to the following table 5.5:
The next bit field, bits 3 to 9, Range Start Address
specified the start address of the address range.
The third field of register ADDRSEL1, bits 10 to 15,
is reserved for future expansion.
There is a fixed relationship between the range
size and the range start address. The range start
addresscan only be specified in boundariesdeter-
mined by the selected range size. That is, for a
range size of 16Kbyte, the start address of this
range can only be programmed to 16Kbyte
boundaries. For a range size of 2Kbyte, the start
address can be programmed to any 2Kbyte ad-
dressboundary. If the range size is 128Kbyte, then
for the ST10x166 the start address can only be
0Kbyte or 128Kbyte, since the total address range
is 256 Kbyte (two blocks of 128 Kbyte). Bits 3 to 9,
the Address Start Location bit field of register AD-
DRSEL1, can be ragarded as the most significant
address bits of the selected address range. Thus,
dependingon the selected range size, only a part
of this bit field is relevant for specification of the
start address. This is shown in the following table
(x = don’t care; R = relevant bit):

Range Size
RGSZ Selected Address Range

Relevant Bits of
Range Start Address

000
001
010
011
100
101
110
111

2 KByte
16 KByte
32 KByte
64 KByte

128 KByte
reserved
reserved
reserved

RRRRRRR
RRRRxxx
RRRxxxx
RRxxxxx
Rxxxxxx
–
–
–

Table 5-5. Address Range Selection

5 - Central Processing Unit

13/26

5.3.4 PSW: Processor Status Word
This bit-addressable register reflects the current
state of the microcontroller. It is subdividedinto two
partsof which the first one contains bits which rep-
resent the current ALU status, and the second bits
which determine the current CPU interrupt status.
A separate bit (USR0) within the PSW register is
provided for use as general purpose flag.
5.3.4.1 ALU STATUS (N, C, V, Z, E, MULIP)

Theconditionflagsof the PSW(N, C,V,Z, E) indicate
theALUstatusdueto thelast recentlyperformedALU
operation.Theyare setbymostof theinstructionsdue
to specific rules which depend on the ALU or data
movementoperationperformedby an instruction.
After execution of an instruction which explicitly up-
datesthe PSWregister, thecondition flagscannot be
interpretedas described in the following becauseany
explicit write to thePSW registersupersedesthe con-
dition flag valueswhich are implicitly generatedby the
CPU. Explicitly reading the PSW register supplies a
readvaluewhichrepresentsthestateofthe PSWreg-
ister after execution of the immediately preceding in-
struction.

- E-Flag: The E-flag can be altered by instruc-
tions which perform ALU or data movement op-
erations. The E-flag is cleared by those
instructions which can not be reasonably used
for table search operations. In all other cases,
the E-flag is set depending on the value of the
source operand to signify whether the end of a
search table is reached or not. If the value of
the source operand of an instruction equals the
lowest negative number which is representable
by the data format of the corresponding in-
struction (‘8000h’ for the word data type, or
‘80h’ for the byte data type) the E-Flag is set to
‘1’, otherwise it is cleared.

- Z-Flag: The Z-Flag is normally set to ‘1’ if the
result of an ALU operation equals zero, other-
wise it is cleared.

For the addition and subtraction with carry, the
Z-flag is only set to ‘1’ if the Z-flag already con-
tains a ‘1’, and if the result of the current ALU
operation additionally equals zero. This mecha-
nism is provided for the support of multiple pre-
cision calculations.For Boolean bit operations
with only one operand, the Z-flag represents
the logical negation of the previous state of the
specified bit.

PSW (FF10h/88h)
Processor Status Word Register
Reset Value : 0000h

15 14 13 12 11 10 9 8

ILVL IEN HLDEN R

7 6 5 4 3 2 1 0

R USR0 MULIP E Z V C N

b15,b14,b13,b12= ILVL: This field represents the
current interrupt level beingserviced by the CPU.
Upon entry into an interrupt routine, the four bits
of the priority level of the acknowledged interrupt
are copied into this field. By modifying this field,
the priority level of the current CPU task can be
programmed.

b11 = IEN: This bit globally enablesor disablesac-
ceptanceof interrupts.
IEN = 0: CPU Interrupts disabled.
IEN = 1: CPU Interrupts enabled.

b10 = HLDEN: Bus Arbitration Enable Bit
HLDEN = 0:HOLD/HLDA/BREQ disabled.
HLDEN = 1:HOLD/HLDA/BREQenabled.
Pin P2.13-P2.15are used for these functions

,b9,b8,b7= R: Reserved.
b6 = USR0: This bit is provided as the user’s gen-

eral purpose flag.
b5 = MULIP: This bit specifies thata multiply divide

operationwas interrupted before completion.
MULIP = 0: No multiply/divide operation in pro-
gress.
MULIP = 1: Multiply/divide operation in progress.

b4 = E: This bit supportstable search operation by
signifying the end of a table.

b3 = Z: This bit represents a zero result from the
ALU.

b2 = V: This bit represents an overflow result from
the ALU.

b1 = C: This bit represents a carry result from the
ALU.

b0 = N: This bit represents a negative result from
the ALU.

5 - Central Processing Unit

14/26

For Boolean bit operations with two operands,
the Z-flag represents the logical NORing of the
two specified bits. For the prioritize ALU opera-
tion, the Z-flag allows a differentiation of the
two cases which cause a result of zero.

- V-Flag: For the addition, subtraction and 2’s
complementation, the V-flag is always set to ‘1’
if the result overflows the maximum range of
signed numbers which are representable by
either 16 bits for word operations (‘-8000h’ to
‘+7FFFh’), or by 8-bits for byte operations (‘-
80h’ to ‘+7Fh’), otherwise the V-flag is cleared.
Note that the result of an integer addition, inte-
ger subtraction,or 2’s complement is not valid if
the V-flag signifies an arithmeticoverflow.
For the multiplication and division, the V-flag is
set to ‘1’ if the result can not be represented in a
word data type, otherwise it is cleared. Note that
a division by zero will always cause an overflow.
In contrast to the result of a division, the result
of a multiplication is valid regardless of whether
the V-flag is set to ‘1’ or not.

Since logical ALU operations can not produce
an invalid result, the V-flag is cleared by these
operations.

The V-flag is also used as ‘Sticky Bit’ for rotate
right and shift right operations. With only using
the C-flag, a rounding error caused by a shift
right operation can be estimated up to a quan-
tity of one half of the LSB of the result. In con-
junction with the V-flag, the C-flag allows
evaluating the rounding error with a finer resolu-
tion, as shown in table below.

For Boolean bit operations with only one oper-
and, the V-flag is always cleared. For Boolean
bit operations with two operands, the V-flag
represents the logical ORing of the two speci-
fied bits.

- C-Flag: After an addition, the C-flag indicates
that a carry from the most significant bit of the
specified word or byte data type has been gen-
erated.

After a subtraction or a comparison, the C-flag
indicates a borrow which represents the logical
negation of a carry for the addition. This means
that the C-flag is set to ‘1’ if no carry from the
most significant bit of the specified word or
byte data type has been generated during a
subtraction which is performed internally by the
ALU as a 2’s complement addition, and the C-
flag is cleared when this complement addition
caused a carry.

The C-flag is always cleared for logical, multi-
ply and divide ALU operations, because these
operations can not cause a carry anyhow.

For the shift and rotate operations, the C-flag
represents the value of the bit shifted out last.
If a shift count of zero is specified, the C-flag
will be cleared. The C-flag is also cleared for a
prioritize ALU operation because a ‘1’ is never
shifted out of the MSB during the normalization
of an operand.

For Boolean bit operations with only one oper-
and, the C-flag is always cleared. For Boolean
bit operations with two operands, the C-flag
represents the logical ANDing of the two speci-
fied bits.

C-Flag V-Flag Rounding Error Quantity

0
0
1
1

0
1
0
1

No Rounding Error
0 < Rounding Error

Rounding Error
Rounding Error

< 1/2 LSB
= 1/2 LSB
< 1/2 LSB

Table 5-6. Shift Right Rounding Error Evaluation

5 - Central Processing Unit

15/26

- N-Flag: For most of the ALU operations, the N-
flag is set to ‘1’ if the most significant bit of the
result contains a ‘1’, otherwise it is cleared. In
the case of integer operations, the N-flag can
be interpreted as the sign bit of the result
(negative: N=1, positive: N=0). Negative num-
bers are always represented as the 2’s com-
plement of the corresponding positive number.
The range of signed numbers extends from ‘-
8000h’ to ‘+7FFFh’ for the word data type, or
from ‘-80h’ to ‘+7Fh’ for the byte data type.

For Boolean bit operations with only one oper-
and, the N-flag represents the previous state of
the specified bit. For Boolean bit operations
with two operands, the N-flag represents the
logical XORing of the two specified bits.

- MULIP-Flag: The MULIP flag will be set to ‘1’
by hardware upon the entrance into an inter-
rupt service routine when a multiply or divide
ALU operation was interrupted before comple-
tion. Depending on the state of the MULIP bit,
the hardware decides whether a multiplication
or division must be continued or not at the end
of an interrupt service. The MULIP bit is over-
written with the contents of the stacked MULIP-
flag when the return-from-interrupt-instruction
(RETI) is executed. This normally means that
the MULIP-flag is cleared again after that.

After reset, all of the ALU status bits are
cleared.

5.3.4.2 CPU INTERRUPT STATUS (IEN, ILVL)

The Interrupt Enable bit allows to globally enable
(IEN = ‘1’) or disable(IEN = ‘0’) interrupts.The four-
bit Interrupt Level field (ILVL) specifies the priority
of the current CPU activity. The interrupt level is

updated by hardware upon the entry into an inter-
rupt service routine, but it can also be modified by
software to prevent other interrupts from being ac-
knowledged. In the case that an interrupt level ‘15’
has been assigned to the CPU, it has the highest
possible priority, and thus the current CPU opera-
tion can not be interrupted except by hardware
traps or external non-maskable interrupts. For de-
tails about the ST10x166 interrupt system see
chapter 7.
After reset, all interrupts are globally disabled, and
the lowest priority (ILVL=0) is assigned to the initi-
tial CPU activity.

5.3.4.3 HOLD/HLDA/BREQ BUS ARBITRATION

The HLDEN bit allows to enable the alternate func-
tions at pins P2.15 (HOLD), P2.14 (HLDA), and
P2.13 (BREQ). If HLDEN bit is cleared after once
being set, this will disable the bus arbitration func-
tion of this pins, but WILL NOT turn them back to
I/O or CAPCOM mode. This feature is interesting
in case of execution of critical real time routines
which must not be interrupted or delayed by exter-
nal HOLD requests.
5.3.5 IP: Instruction Pointer
This register determines the 16-bit intra-segment
address of the instruction which is currently
fetched within the code segment selected by the
CSP register. The IP register is not mapped into
the ST10x166’s address space,and thus it can not
be directly accessed by the programmer. The IP
can, however, be modified indirectly via the stack
by means of a return instruction.
The IP register is implicitly updatedby the CPU for
branch instructions and after instruction fetch op-
erations.

5 - Central Processing Unit

16/26

5.3.6 CSP: Code Segment Pointer
This non-bit addressable register selects the code
segment being used at run-time to access instruc-
tions. Currently, only two bits of the CSP register
are implemented while bits 2 to 15 are reserved for
future use. The CSP register allows accessing the
entire memory space in currently four segmentsof
64 Kbytes each.
Code memoryaddressesare generatedby directly
extending the 16-bit contents of the IP register by
the contents of the CSP register.

In the case of the segmented memory mode, bit 1
and bit 0 of the CSP register are output on the seg-
mentaddress pins A17 and A16 of Port 4 forall ex-
ternal code accesses. For the non-segmented
memory mode or the Single Chip Mode, the con-
tents of this register are not significant, becauseall
code acccesses are automatically restricted to
segment 0.

Note that the CSP register can only be read but not
written for data operations.It is, however, modified
either directly by means of the JMPS and CALLS
instructions, or indirectly via the stack by means of
the RETS and RETI instructions. Upon the accep-
tance of an interrupt or the execution of a software
TRAP instruction, the CSP register is automatically
set to zero. After reset, the CSP register is initial-
ized to ‘0000h’.

CSP (FF08h/04h)

Code Segment Pointer Register
Reset Value: 0000h

15 14 13 12 11 10 9 8

R

7 6 5 4 3 2 1 0

R SEGNR

b15 to b2 = R: Reserved.
b1,b0 = SEGNR: Code Segment Pointer Register.

Specifies the code segment number where the
current instruction is to be tetched. Will be ig-
nored in the case of segmentation being dis-
abled.

’0’

SEGNR 16-Bi t Intra-Segment Address

18-Bi t Code Address

18-Bit Address

Space

Code segment

15 151 0 0

3FFFF

00000

CSP Register IP Register

SYSCON.
SGTDIS

17 16 15 0

.

’0’

3

2

1

0

VR001621

Figure 5-5. Addressing via the Code Segment Pointer

5 - Central Processing Unit

17/26

DPP0 (FE00h / 00h)
Data Page Pointer Registers

Reset Value : 0000h
15 14 13 12 11 10 9 8

R R R R R R R R

7 6 5 4 3 2 1 0

R R R R DPP0PN

DPP1 (FE02h / 01h)
Data Page Pointer Registers
Reset Value 0001h

15 14 13 12 11 10 9 8

R R R R R R R R

7 6 5 4 3 2 1 0

R R R R DPP1PN

DPP2 (FE04h / 02h)
Data Page Pointer Register

Reset Value : 0002h
15 14 13 12 11 10 9 8

R R R R R R R R

7 6 5 4 3 2 1 0

R R R R DPP2PN

DPP3 (FE06h / 03h)
Data Page Pointer Register
Reset Value : 0003h

15 14 13 12 11 10 9 8

R R R R R R R R

7 6 5 4 3 2 1 0

R R R R DPP3PN

b15 to b4 = R: Reserved.
b3 to b0 = DPPxPN(x=0 to 3): Data PagePointer.

Specified the data page number selected by
DPPx. In the case that segmentation is disabled,
only the two least significant bits of DPPxPN are
significant!

5.3.7 DPP0, DPP1, DPP2, DPP3: Data Page
Pointers
These four non-bit addressableregisters select up
to four different data pages being active at run-
time. Currently, only the four least significant bits of
each DPP register are implemented while the bits
4 to 15are reserved for future use. The DPP regis-
ters allow accessing the entire memory space in
currently 16 pages of 16 Kbytes each.
The DPP registers are implicitly used whenever
data accesses to any memory space are made via
indirect or direct long 16-bit addressingmodes (ex-
cept for PEC data transfers). After reset, the Data
Page Pointers are initialized in a way that all indi-
rect or direct long 16-bit addresses result in identi-
cal 18-bit addresses. This allows accessing data
pages 0 to 3 in segment0 as shown in figure 5.6. If
the user does not want to use any data paging, no
further action is required.
Data paging is performed by extending the lower
14 bits of indirect or direct long 16-bit addressesby
the contents of a DDP register as shown in figure
5.7. The two MSBs of the 16-bit address are inter-
preted as the number of the DPP register which is
to be used for the address extension. Thecontents
of the selected DPP register specify one of cur-
rently sixteen possible data pages. This 4-bit data
page number in addition to the remaining 14-bit
page offset address forms the physical 18-bit ad-
dress.
In the case of the non-segmented memory mode,
only the two least significantbitsof the implicitly se-
lected DPP register are used for the physical ad-
dress generation just described. Thus, extreme
care should be taken when changing a DPP regis-
ter contents if a non-segmented memory model is
selected, because otherwise unexpected results
could occur.
In the case of the segmented memory mode, bits 3
and 2 of the implicitly selected DPP register are
output on the segment address pins A17 and A16
of Port 4 for all external data accesses.

A DPP register can be updated via any instruction
which is capable of modifying an SFR. Due to the
internal instruction pipeline, a new DPP value is
not yet usable for the operand address calculation
of the instruction immediately following the instruc-
tion updating the DPP register.

5 - Central Processing Unit

18/26

Page 15

Page 14

Page 13

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

Page 12

Page 11

Page 10

Page 9

Page 8

Page 7

0

0

0

0

0

013 2

0

0 0

00

0

0

1

1

1

1

DPP3

DPP2

DPP1

DPP0

11b

10b

01b

00b

Bit

4-Bit Page Address *
specify

DPP Registers

14-Bit
Intra-Page Address

(is concatened to the
DDP contents)

15 14 0. . .

16-Bit Data Address

* Note that all of the internal memory is accessible

via 16-Bit addresses after reset !

Sixteen
16-KByte

Pages

VR001 634

Figure 5-6. Default Configuration of the Data PagePointers

Page 15

Page 14

Page 13

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

Page 12

Page 11

Page 10

Page 9

Page 8

Page 7

1

1

0

0

1

013 2

1

1 1

00

0

0

1

0

0

0

DPP3

DPP2

DPP1

DPP0

11b

10b

01b

00b

Bit

4-Bit Page Address *
specify

DPP Registers

14-Bit
Intra-Page Address
(is concatened to the
DDP contents)

15 14 0. . .
16-Bit Data Address

* In the case that segmentation is desabled,

only the two least significant bits of the DPPs are used,

and thus only pages 0 to 3 can be specified !

Sixteen
16-KByte

Pages

VR0A1634

Figure 5-7. Addressing via the Data Page Pointers

5 - Central Processing Unit

19/26

5.3.8 CP: Context Pointer
This non-bit addressable register is used to select
the current register context. This means that the
CP register value determines the address of the
first GPR within a register bank of up to 16 word-
wide and/or bytewide GPRs.

Since the least significant bit of the CP register is
tied to ‘0’ and bit 10 is tied to the negated state of
bit 9 and bits 11 to 15 are tied to ‘1’ by hardware,
the CP register can only point to even word ad-
dresses from 0FA00h to 0DFFEh. Note however,
that it is the user’s responsibility that the physical
GPR address specified via the CP register in addi-
tionwith the shortGPR address must always be an
internal RAM location. If this condition is not met,
unexpectedresults may occur.
After reset, the CP register is initialized to ‘FC00h’.
Figure 5.10 shows how the CP register is used to
select a register bank. The CP register can be up-
dated via any instruction which is capable of modi-
fying an SFR. Due to the internal instruction
pipeline, a new CP value is not yet usable for GPR
address calculations of the instruction immediately
following the instruction updating the CP register.

CP (FE10h / 08h)
Context Pointer Register
Reset Value : FC00h

15 14 13 12 11 10 9 8

1 1 1 1 1 CP

7 6 5 4 3 2 1 0

CP (continuation) 0

b15 to b11 = 1: Bits tied to ’1’ by hardware.This al-
lows possible contents from ’FA00h’ to ’FDFEh’.
Note, however, that valid GPR addresses must
be situated within the internal RAM space.

b10 to b1 = CP: Context Pointer Register.
Modifiable portion of the CP register.
Note that bit 10 is always forced to the inverse
state of bit 9 by hardware. For software, bit 10
can only be read but not directly be written.

b0 = 0:
Bit tied to ’0’ by hardware, since only even CP
contents are allowed.

The Switch Context (SCXT) instruction allows sav-
ing the contentsof the CP registeron thestack and
updating the CP with a new value in just one ma-
chine cycle. The organization of the GPRs within
the internal RAM is described in the chapter 3 For
detailed information about the different addressing
modes mentioned in the following, see chapter 6
TheCP registeris implicitly used for addresscalcu-
lations by different addressing modes, as follows.

5.3.8.1 IMPLICIT CP USE WITH SHORT 4-BIT GPR
ADDRESSES

When a short 4-bit GPR address (mnemonic: Rw
or Rb) is used, the four bits specify an address
relative to the memory location specified by the
contentsof the CP register.
Dependingon whether a relative word (Rw)or byte
(Rb)GPR address is specified, the short4-bit GPR
address is multiplied either by two or by one before
it is added to the contents of the CP register as
shown in figure 5.8. Thus, both byte and word GPR
accesses are possible in this way.
GPRs used as indirect address pointers are al-
ways accessed wordwise. For some instructions
only the first four GPRs can be used as indirect ad-
dresspointers. These GPRs are specifiedvia short
2-bit GPR addresses. The respective physical ad-
dress calculation is identical to that for the short 4-
bit GPR addresses.

5.3.8.2 IMPLICIT CP USE WITH SHORT 8-BIT REGIS-
TER ADDRESSES

When a short 8-bit address (mnemonic: reg or bi-
toff) is used, and supposed that the respective
value is within a range from F0h to FFh, the four
least significant bits are interpreted as short 4-bit
GPR address while the four most significant bits
are ignored. As shown in figure 5.9, the respective
physical GPR address calculation is identical to
that for the short 4-bit GPR addresses. For single
bit accesseson a GPR, the GPR’s word address is
calculated as just described, but the position of the
bit within the word is specified by a separate addi-
tional 4-bit value.

5 - Central Processing Unit

20/26

Figure 5-8. Implicit CP Use by Short 4-Bit GPR addressing Modes

Figure 5-9. Implicit CP Use by Short 8-Bit Addressing

5 - Central Processing Unit

21/26

Internal RAM

R15 (CP) + 30

R14 (CP) + 28

R13

R12

Context
Pointer

R11

R10

R9

R8

R7
. . .

R6

R5

R4

R3

R2

R1 (CP) + 2

R0 (CP)

Figure 5-10. Register Bank Selection via the
CP register

5.3.9 SP: Stack Pointer
This non-bit addressableregister is used to point to
the top of the internal system stack (TOS). The SP
register is pre-decrementedwheneverdata is to be
pushed onto the stack, and it is post-incremented
whenever data is to be popped from the stack.
Thus, the system stack grows from higher toward
lower memory locations.
Since the least significant bit of the SP register is
tied to ‘0’ and bits 11 to 15 are tied to ‘1’ by hard-
ware, the SP register can only point to even word
addresses from 0F800h to 0FFFEh. After reset,
the SP register is initialized to ‘FC00h’.
The SP register can be updatedvia any instruction
which is capable of modifying an SFR. Based on
theinternal instructionpipeline,a POPor RETURN
instruction must not immediatly follow an instruc-
tion updating the SP register.

The maximum system stack size is programmable
via the STKSZ bit field in the SYSCON register.
The address space which can be addressed via
the SP register (addresses from 0F800h to
0FFFEh) can be regarded as virtual stack range
while the physical system stack range is forced by
thehardware to be situatedwithin the internalRAM
with its upper boundary at address 0FBFEh and
with its lower boundary at the memory location
which is specified by the selected maximum stack
sizeshown in table 5.7. Dependingon theselected
maximum stack size, different numbers of signifi-
cant SP bits are used for the physical address cal-
culation while the remaining bits are masked off.
After reset, the SP register is initialized in a way
that the system stackcan be accessedas usual as
long as the dynamic stack boundaries do not ex-
ceed the selected maximum stack size. This
means that the (virtual) SP contents are directly
mapped onto identical physical system stack ad-
dresses.
The virtual stack address space is subdivided in
portions whose size is identical to the maximum
size of the selected physical stack space. All of
these virtual stack portions are mapped onto the
available physical stack area by means of an ad-
dress calculation shown in the following: A number
of significant bits of the inverted SP contents is
subtracted from the upper stack base address,
0FBFEh.An AND mask being changed depending
on the STKSZ bit field determines which of the bits
are significant.

5 - Central Processing Unit

22/26

Physical Stack Address =
FBFEh - (~ (SP) ^ 1FEh)

for 256 words stack size
FBFEh - (~ (SP) ^ FEh)

for 128 words stack size
FBFEh - (~ (SP) ^ 7Eh)

for 64 words stack size
FBFEh - (~ (SP) ^ 3Eh)

for 32 words stack size
The following example demonstrates the circular
stack mechanism which is also an effect of this vir-
tual stack mapping: First, register R1 is pushed
onto the lowest physical stack location according
to the selected maximum stack size. With the fol-
lowing instruction, register R2 will be pushed onto
the highest physical stack location althoughthe SP
is decremented by 2 as for the previous push op-
eration.

; Assumed stack size is 64
; Assumed SP content is

... ; (SP) =FC82h
; Physical stack address=FB82h

PUSH R1; (SP) =FC80h
; Physical stack address=FB80h

PUSH R2; (SP) =FC7Eh
; Physical stack address=FBFEh

Upon each stack access, the SP register is com-
pared against two stack boundary registers. This
may cause a stack overflow or stack underflow
hardware trap to occur. For more details about the
use of this feature see the description of the
STKOVand STKUN stack boundary registers.

SP (FE 12h / 09h)
Stack Pointer Register
Reset Value : FC00h

15 14 13 12 11 10 9 8

1 1 1 1 1 sp

7 6 5 4 3 2 1 0

sp (continuation) 0

b15 to b11 = 1:
Bits tied to ’1’ by hardware. This allows possible
contents from ’F800h’ through ’FFFEh’. Note how-
ever, that the physical system stack is forced to in-
ternal RAM addresses by hardware, as shown in
table 5.7.
b10 to b1 = sp: StackPointer Register.
Modifiable portion of the SP register.

b0 = 0:
Bit tied to ’0’ by hardware, because only even SP
contentsare allowed.

SYSCON.
(STKSZ) Physical Stack Spaces Size (words) Significant SP Bits

00b FA00h - FBFFh 256 0 through 8

01b FB00h - FBFFh 128 0 through 7

10b FB80h - FBFFh 64 0 through 6

11b FBC0h - FBFFh 32 0 through 5

Table 5-7. Selectable Physical System Stack Ranges

5 - Central Processing Unit

23/26

5.3.10 STKUN: Stack Underflow Pointer
This non-bit addressable register is compared
against the SP register after each data pop opera-
tion from the system stack (i.e. for POP and RE-
TURN instructions) and after each addition to the
SP register. If the contents of the SP register are
greater than the contents of the STKUN register, a
stack overflow hardware trap will occur.
Stack Underflow Condition: (SP) > (STKUN)
Since the least significant bit of the STKUNregister
is tied to ‘0’ and bits 11 to 15 are tied to ‘1’ by hard-
ware, the STKUN register can only point to even
word addressesfrom0F800h through0FFFEh. Af-
ter reset, the STKUN register is initialized to
‘FC00h’.
A stack underflow trapcan beused for an automat-
ic filling of the system stack, for example, when an
external user stack is used as a storage extension
of the internalsystem stack. For more details about
the implementation of a stack underflow trap serv-
ice routine see chapter 13.

5.3.11 STKOV: Stack Overflow Pointer
This non-bit addressable register is compared
against the SP register after each operation which
pushes data onto the system stack (e.g.: PUSH
and CALL instructions or interrupts)and after each
subtraction from the SP register. If the contents of
the SP register are less than the the contentsof the
STKOV register, a stack overflow hardware trap
will occur.
Stack Overflow Condition:(SP) < (STKOV)
Since the least significantbit of the STKOVregister
is tied to ‘0’ and bits 11 to 15 are tied to ‘1’ by hard-
ware, the STKOV register can only point to even
word addresses from 0F800h to 0FFFEh. After re-
set, the STKOV register is initialized to ‘FA00h’.
The default initialization allows treating a stack
overflow as a fatal error in the corresponding trap
serviceroutine. Note, however, that data in thebot-
tom of the stack may have been overwritten by the
status information stacked upon servicing the
stack overflow trap.

The stack overflow trap could also be used for
automatic system stack flushing when the system
stack is used as a ‘Stack Cache’ for an external
userstack. In this case, the STKOVregister should
be initialized to a value which represents the de-
sired lowest Top of Stack address plus 12 accord-
ing to the selected maximum stack size. This
considers the worst case that will occur when a
stack overflow condition is detected just during en-

STKUN (FE16h / 0Bh)
Stack Underflow Pointer Register
Reset Value : FC00h

15 14 13 12 11 10 9 8

1 1 1 1 1 STKUN

7 6 5 4 3 2 1 0

STKUN (continuation) 0

b15 to b11 = 1 :
Bits tied to ’1’ by hardware.This restrictscontents
to values from ’F800h’ to ’FFFEh’.

b10 to b1 = STKUN: StackUnderflow Pointer Reg-
ister.
Modifiable portion of the STKUN register.

b0 = 0:
Bit tied to ’0’ by hardware because only even
STKUN contents are compared against the SP
register.

STKOV (FE14h / 0Ah)
Stack Overflow Pointer Register
Reset Value : FA00h

15 14 13 12 11 10 9 8

1 1 1 1 1 STKOV

7 6 5 4 3 2 1 0

STKOV (continuation) 0

b15 to b11 = 1:
Bits tied to ’1’ by hardware.This restrictscontents
to values from F800h to FFFEh.

b10 to b1 = STKOV: Stack Overflow Pointer Reg-
ister.
Modifiable portion of the STKOV register.

b0 = 0:
Bit tied to ’0’ by hardware because only even
STKOV contents are compared against the SP
register.

try into an interrupt service routine. Then, six addi-
tional stackword locationsare requiredfor pushing
the IP, PSW, and CSP registers for both the inter-
rupt service and the hardware trap service. For
more details about the implementation of a stack
overflow trap service routine see chapter 13.

5 - Central Processing Unit

24/26

5.3.12 MDH: Multiply/Divide Register High
Portion
This register is implicitly used by the CPU when it
performs a multiplication or a division. After a mul-
tiplication, this non- bit addressableregister repre-
sents the high order 16 bits of the 32-bit result. For
long divisions, the MDH register must be loaded
with the high order 16 bits of the 32-bit dividend be-
fore the division is started. After any division, the
MDH register represents the 16-bit remainder.
Wheneverthis register is updatedvia software, the
Multiply/Divide Register In Use (MDRIU) flag in the
Multiply/Divide Control register (MDC) is set to ‘1’.
When a multiplication or division is interrupted be-
fore its completion and when a new multiply or di-
vide operation is to be performed in the interrupt
service routine, the MDH register must be saved
along with the MDL and MDC registers to avoid er-
roneous results.

After reset, this register is initialized to ‘0000h’.
A detailed description of how to use the MDH reg-
ister for programming multiply and divide algo-
rithms can be found in section 13.2.

5.3.13 MDL: Multiply/Divide Register Low
Portion
This register is implicitly used by the CPU when it
performs a multiplication or a division. After a mul-
tiplication, this non-bit addressable register repre-
sents the low order 16 bits of the 32-bit result. For
long divisions,MDL mustbe loadedwith the low or-
der16 bits of the 32-bit dividendbefore the division
is started. Afterany division, the MDL register rep-
resents the 16-bit quotient.
Whenever this register is updatedvia software, the
Multiply/Divide Register In Use (MDRIU) flag in the
Multiply/Divide Control register (MDC) is set to ‘1’.
The MDRIU flag is cleared whenever the MDL reg-
ister is read via software. When a multiplication or
division is interrupted before its completion, and
when a new multiply or divide operation is to be
performed in the interrupt service routine, the MDL
register must be saved along with the MDH and
MDC registers to avoid erroneous results.
After reset, this register is initialized to ‘0000h’.

A detailed descriptionof how to use the MDL regis-
ter for programming multiply and divide algorithms
can be found in section 13.2.

MDH (FE0Ch / 06h)
Multiply Divide Register High Portion

Reset Value : 0000h
15 14 13 12 11 10 9 8

MDH

7 6 5 4 3 2 1 0

MDH (continuation)

b15 to b0 = MDH: Multiply Divide Register High
Portion
Specifies the high order 16 bits of the 32-bit Mul-
tiply and Divide Register (MD).

MDL (FE0Eh / 07h)
MultiplyDivide Register Low Portion
Reset Value : 0000h

15 14 13 12 11 10 9 8

MDL

7 6 5 4 3 2 1 0

MDL (continuation)

b15 to b0 = MDL: Multiply Divide Register Low
Portion
Specifies the low order 16 bits of the 32-bitMulti-
ply and Divide Register (MD).

5 - Central Processing Unit

25/26

5.3.14 MDC: Multiply/Divide Control Register
This bit addressable 16-bit register is implicitly
used by the CPU when it performsa multiplication
or a division. It is used to store the required control
information for the correspondingmultiply or divide
operation. The MDC register is updated by hard-
ware during each single cycle of a multiplyor divide
instruction.
When a division or multiplication was interrupted
before its completion, the MDC register must first
be saved along with the MDH and MDL registers
(to be able to restart the interrupted operation
later), and then it must be cleared to be prepared
for the new calculation.After completion of the new
division or multiplication, the state of the inter-
rupted multiply or divide operation must be re-
stored.
The MDRIU flag is theonly portionof the MDC reg-
ister which might be of interest for the user. The re-
maining portions of the MDC register are reserved
for a dedicateduse by the hardware, and thus they
should never be modified by the user other than as
described in the preceding paragraph. Otherwise,
a correct continuationof an interrupted multiply or
divide operation can not be guaranteed.
After reset, this register is initialized to ‘0000h’.
A detailed description of how to use the MDC reg-
ister for programming multiply and divide algo-
rithms can be found in section 13.2..

5.3.15 ONES: Constant Ones Register
All bits of thisbit-addressableregister are tied to ‘1’
by hardware.This register is read-only. The ONES
register can be used as a register-addressable
constant of all ones, i.e., for bit manipulation or
mask generation. It can be accessed via any in-
struction which is capable of addressingan SFR.

5.3.16 ZEROS: Constant Zeros Register
All bits of this bit- addressableregisterare tied to ‘0’
by hardware. This register is read-only. The ZE-
ROS register can be used as a register- address-
able constant of all zeros, i.e., for bit manipulation
or mask generation. It can be accessedvia any in-
struction which is capable of addressingan SFR.

MDC (FE0Eh/ 87h)
Multiply/Divide Control Register

Reset Value : 0000h
15 14 13 12 11 10 9 8

R

7 6 5 4 3 2 1 0

! ! ! MDRIU ! ! ! !

b15 to b8 = R: Reserved.
b7 to b5 - b3 to b0 = !:

These bit portions are used by the machine for
controlling multiply and divide operations inter-
nally. Thus, they should neverbe modifiedby the
user except afterhaving saved the previousMDC
contents or by restoring the MDC register.

b4 = MDRIU: MD Register In Use Flag.
Is set to ’1’ when the MDL or MDH register is writ-
ten by software, or when a divide or multiply in-
struction is executed. This MD-Register-in-
Use-Flag is cleared when the MDL register is
read by software.

ZEROS (FF1Ch/ 8Eh)
Constant Zeros Register
Reset Value : 0000h

15 14 13 12 11 10 9 8

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0

b15 to b0 = 0:
All of the bits are tired to ’0’ by hardware.The en-
tire ZEROS register is read-only.

ONES (FE1Eh / 8Fh)
Constant Ones Register

Reset Value : FFFFh
15 14 13 12 11 10 9 8

1 1 1 1 1 1 1 1

7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1

b15 to b0 = 1:
All of the bits are tired to ’1’ by hardware.The en-
tire ONES register is read-only.

5 - Central Processing Unit

26/26

INSTRUCTION SET OVERVIEW

CHAPTER 6

This chapter describes the ST10x166’s instruction
set. In the first section,a short overviewof all avail-
able instructions ordered by instruction classes is
given. The second section describes which the ad-
dressing modes available for each class. Section
6.3 contains a description of the condition codes
available for conditionalbranch instructions.
A detailed descriptionof each instruction, including
its operand data type, condition flag settings, ad-
dressing modes, length (number of bytes) and ob-
ject code format can be found in appendixA.

6.1 SUMMARY OF INSTRUCTION CLASSES

This section contains a summary of the
ST10x166’s instruction set subdivided in instruc-
tion classes. Mnemonic instruction names refer to
the correspondingdescription in appendix A where
one can gain more detailed information.

6.1.1 Arithmetic Instructions
Addition of two words or bytes:

ADD ADDB
Addition with Carry of two words or bytes:

ADDC ADDCB
Subtractionof two words or bytes:

SUB SUBB
Subtractionwith Carry of two words or bytes:

SUBC SUBCB
16x16 bit signed or unsigned multiplication:

MUL MULU
16/16 bit signed or unsigned division:

DIV DIVU
32/16 bit signed or unsigned division:

DIVL DIVLU
1’s complement of a word or byte:

CPL CPLB
2’s complement (negation)of a word or byte:

NEG NEGB

6. INSTRUCTION SET OVERVIEW

6.1.2 Logical Instructions
Bitwise ANDing of two words or bytes:

AND ANDB
Bitwise ORing of two words or bytes:

OR ORB
Bitwise XORing of two words or bytes:

XOR XORB

6.1.3 Boolean Bit Manipulation Instructions
Manipulation of a maskable bit field in either the
high or the low byte of a word:

BFLDH BFLDL
Setting of a bit:

BSET
Clearing of a bit:

BCLR
Movement of a bit:

BMOV
Movement of a negatedbit:

BMOVN
ANDing of two bits:

BAND
ORing of two bits:

BOR
XORing of two bits:

BXOR
Comparisonof two bits:

BCMP

6.1.4 Compare and Loop Control Instructions
Comparisonof two words or bytes:

CMP CMPB
Comparisonof two words with post-increment
by either 1 or2:

CMPI1 CMPI2
Comparisonof two words with post-decrement
by either 1 or2:

CMPD1 CMPD2

1/8

6.1.5 Shift and Rotate Instructions
Shifting right of a word:

SHR
Shifting left of a word:

SHL
Rotating right of a word:

ROR
Rotating left of a word:

ROL
Arithmeticshiftingrightof a word (signbitshifting):

ASHR

6.1.6 Prioritize Instruction
Determination of the number of shift cycles re-
quired to normalize a word operand (floating
point support):

PRIOR

6.1.7 Data Movement Instructions
Standarddata movement of a word or byte:

MOV MOVB
Data movement of a byte to a word location
with either sign or zero byte extension:

MOVBS MOVBZ

6.1.8 System Stack Instructions
Pushing of a word onto the systemstack:

PUSH
Popping of a word from the system stack:

POP
Saving of a word on the system stack, and then
updating the old word with a new value (pro-
vided for register bank switching):

SCXT

6.1.9 Jump and Call Instructions
Conditional jumping to an either absolutely, indi-
rectly, or relatively addressed target instruction
within the current code segment:

JMPA JMPI JMPR
Unconditional jumping to an absolutelyad-
dressed target instruction within any code
segment:

JMPS
Conditional jumping to a relatively addressed
target instruction within the current code seg-
ment dependingon the state of a selectable bit:

JB JNB
Conditional jumping to a relatively addressed
target instruction within the current code seg-
ment dependingon the state of a selectable bit

with a post-inversionof the tested bit in case of
jump taken (semaphore support):

JBC JNBS
Conditionalcalling of an either absolutly or indi-
rectly addressed subroutine within the current
code segment:

CALLA CALLI
Unconditionalcalling of a relativelyaddressed
subroutine within the current code segment:

CALLR
Unconditionalcalling of an absolutely ad-
dressed subroutine within any code segment:

CALLS
Unconditionalcalling of an absolutely ad-
dressed subroutine within the current code
segment plus an additional pushing of a select-
able register onto the system stack:

PCALL
Unconditionalbranching to the interrupt or trap
vector jump table in code segment 0:

TRAP

6.1.10 Return Instruction
Returning from a subroutine within the current
code segment:

RET
Returning from a subroutine within any code
segment:

RETS
Returning from a subroutine within the current
code segment plus an additionalpopping of a
selectable register from the system stack:

RETP
Returning from an interrupt service routine:

RETI

6.1.11 System Control Instructions
Resetting the ST10x166 by software:

SRST
Entering the Idle mode:

IDLE
Entering the Power Down mode:

PWRDN
Servicing the Watchdog Timer:

SRVWDT
Disabling the Watchdog Timer:

DISWDT
Signifying the end of the initialization routine
(pulls RSTOUT pin high, and disables the effect
of any later execution of a DISWDT instruction):

EINIT

6 - Instruction Set Overview

2/8

6.1.12 Miscellaneous
Null operation which requires 2 bytes of storage
and the minimum time for execution:

NOP

6.1.13 Software Instruction Set
BSO/Tasking provides software development
tools for the ST10 including a C Compiler package
with the Assembler a166. This accepts all assem-
bly language instruction mnemonics that have
been described before, and adds a software in-
struction set which is an extension of the previous
hardware instruction set.
The BSO/Tasking software instruction set recog-
nises all instructionsof the hardwareinstructionset
and some additional mnemonics. These additional
mnemonics are added to allow easy and comfort-
able programming. The assembler will determine
by means of the combination of operands, which
opcode is entered in the instruction format. This
means that based on the combination of operands
the appropriate hardware mnemonic is chosen.
Please refer to the BSO/Tasking Documentation
for further information.

6.2 ADDRESSING MODES

The ST10x166 provides many powerful address-
ing modes for access on word, byte and bit data,or
to specify the target address of a branch instruc-
tion. The addressing modes are subdivided in dif-
ferent categories as follows.

6.2.1 Constants
The ST10x166 instruction set supports the use of
wordwideor bytewide immediate constants.For an
optimum utilization of the available code storage,
these constants are represented in the instruction
formats by either 3, 4,8 or 16 bits. Thus, short con-
stants are always zero-extended while long con-
stants are truncatedif necessaryto match the data
format required for the particular operation:
Immediate constants are always signified by a
leading number sign ‘#’.

Mnemonic Word Operation Byte Operation

#data3
#date4
#data16
#data8
#mask

0000h + data3
0000h + data4
data16
0000h + data8
0000h + mask

00h + data3
00h + data4
data 16 ∧ 0FFh
data8
mask

Table 6-1. Data Type Adaptation of Immediate Constants

6 - Instruction Set Overview

3/8

6.2.2 Short Addressing Modes
All of these addressing modes use an implicit base
offset address to specify a physical 18-bit address.
By these addressing modes, data can be specified
within the GPR, SFR or bit-addressable memory
space:

Physical Add. = Base Add.+ ∆ x Short Add.

In the following, the short addressingmodes which
are shown in table 6.2 are described in moredetail:
Rw, Rb: Specifies direct access to any GPR in

the currently active context (register
bank). Both ‘Rw’ and ‘Rb’ require four
bits in the instruction format. The base
address is determined by the contents
of the CP register. ‘Rw’ specifiesa 4 bit
word GPR address relative to the base
address (CP), while ‘Rb’ specifies a 4
bit byte GPR address relative to the
base address (CP).

reg: Specifies direct access to any SFR or
GPR in the currently active context
(register bank). ‘reg’ requires eight bits
in the instruction format. Short ‘reg’ ad-
dresses from 00h to EFh always spec-
ify SFRs. In that case, the base
address is 0FE00h and the factor ‘∆’
equates 2. Dependingon theopcode of
an instruction, either the total word (for
word operations) or the low byte (for
byte operations) of an SFR can be ad-
dressed via ‘reg’.

Nmemonic Physical Address Short Address Range Allows Access On

Rw (CP) + 2xRw Rw = 0...15 GPRs (Word)

Rb (CP) + 1xRb Rb = 0...15 GPRs (Byte)

reg 0FE00h
(CP)
(CP)

+ 2xreg
+ 2x(reg ∧ 0Fh)
+ 1x(reg ∧ 0Fh)

reg
reg
reg

= 00h...EFh
= F0h...FFh
= F0h...FFh

SFRs
GPRs
GPRs

(Word. Low Byte)
(Word)
(Byte)

bitoff 0FD00h
0FF00h
(CP)

+ 2xbitoff
+ 2xbitoff ∧ 0FFh
+ 2x(bitoff ∧ 0Fh)

bitoff
bitoff
bitoff

= 00h...7Fh
= 80h...EFh
= F0h...FFh

RAM
SFR
GPR

Bit Word Offset
Bit Word Offset
Bit Word Offset

bitaddr Word offset see bitoff;
Immediate Bit Position

bitoff
bitpos

= 00h...FFh
= 0...15

Any Single Bit

Table 6-2. Short Addressing Modes

reg:
(cont’d)

Note that the high byte of an SFR can
not be accessed via the ‘reg’ address-
ing mode. Short ‘reg’ addresses from
F0h to FFh always specify GPRs. In
that case, only the lower four bits of
‘reg’ aresignificant for physicaladdress
generation,and thus it can be regarded
as being identical to the address gen-
eration described for the ‘Rb’ and ‘Rw’
addressing modes.

bitoff: Specifies direct access to any word in
the bit-addressable memory space.
‘bit off’ requires eight bits in the in-
struction format. Depending on the
specified ‘bitoff’ range, different base
addresses are used to generate physi-
cal addresses: Short ‘bitoff’ addresses
from 00h to 7Fh use 0FD00h as a base
address, and thus they specify the 128
highest internal RAM word locations
(0FD00h to 0FDFEh). Short ‘bitoff’ ad-
dresses from 80h to EFh use 0FF00h
as a base address, and thus they
specify the highest internal SFR word
locations (0FF00h to 0FFDEh). Short
‘bitoff’ addresses from 80h to EFh use
0FF00h as a base address, and thus
they specify the highest internal SFR
word locations (0FF00h to 0FFDEh).
For short ‘bitoff’ addresses from F0h to
FFh, only the lowest four bits and the
contents of the CP register are used to
generate the physical address of the
selected word GPR.

6 - Instruction Set Overview

4/8

bitaddr: Any bit address is specified by a word
address within the bit-addressable
memory space (see ‘bitoff’), and by a
bit position (‘bitpos’) within that word.
Thus, ‘bitaddr’ requires twelve bits in
the instruction format.

6.2.3 Long Addressing Mode
This addressing mode uses one of the four DPP
registers to specify a physical 18-bit address. Any
word or byte data within the entire memory space
can be accessed in such a manner. Word ac-
cesses may not be performed on odd byte ad-
dresses. Otherwise, a hardware trap would occur.
After reset, the DPP registers are initialized in a
way that all long addresses are directly mapped
onto the identical physical addresses.

Any long 16-bit address consists of two portions
which are interpreted in different ways. Bits 0 to 13
specify a 14-bit data page offset address while bits
14 to 15 specify that of the four Data Page Pointer
registerswhich is to be used to generatethe physi-
cal 18-bit address as described below:

At present, the ST10x166 supports 256 Kbytes of
addressspace, and thus only the lowest four bitsof
the selected DPP register contents are added to
the 14-bit data page offset address. In case of seg-
mentationbeing disabled,all data accessesare re-
strictedon segment0, and thus only the lowest two
bits of the selected DPP register are significant at
all. For more details about data paging see sec-
tion 5.3.7.
The long addressing mode is represented by the
mnemonic ‘mem’. Table 6.3 showsthe association
between long 16-bit addresses and the corre-
spondingData Page Pointer registers.

Mnemonic Physical Address Long Address Range Allows Access On

mem (DPP0) + mem ∧ 3FFFh
(DPP1) + mem ∧ 3FFFh
(DPP2) + mem ∧ 3FFFh
(DPP3) + mem ∧ 3FFFh

0000...3FFFh
4000...7FFFh
8000...BFFFh
C000...FFFFh

Any Byte or Word
Any Byte or Word
Any Byte or Word
Any Byte or Word

Table 6-3. Long Addressing Mode

Long Address
[Bits 15...14]

Long Address
[Bits 13...0]

specifies x

Physical Address = Contents of DPPx +
(x = 0 .. 3)

Page Offset Address

6 - Instruction Set Overview

5/8

6.2.4 Indirect Addressing Modes
These addressing modes can be regarded as a
mixture of short and long addressing modes. This
means that long 16-bit addresses are specified in-
directly by the contents of a word GPR which is
specified directly by a short 4-bit address (‘Rw’=0
to 15). Note that for some instructionsonly the low-
est four word GPRs (R0 to R3) can be used as in-
direct address pointers which are specified via
short 2-bit address in that case. There are indirect
addressing modes where the GPR contents are
modifiedby a constantadditionbefore the long 16-
bit address is calculated. Moreover, there are ad-
dressing modes which allow decrementing or
incrementing the indirect address pointers by a
data type-dependentvalue.

In each case, one of the four DPP registers is used
to specify physical 18-bit addresses. Any word or
byte data within the entire memory space can be
addressed indirectly. Word accesses may not be
performed on odd byte addresses. Otherwise, a
hardware trap would occur. After reset, the DPP
registers are initialized in a way that all indirectly
generated long addresses are directly mapped
onto the identical physical addresses.
The following algorithm describes how physical
addresses are generated via indirect address
pointers:

1) Determination of the physical address of the
word GPR which is used as indirect address
pointer. This address is calculated via the reg-
ister bank base address specified by the CP
register contents plus two times the specified
short address (‘Rw’).
GPR Address = (CP) + 2 x Short Address

2) In case of pre-decrement (signified by a lead-
ing minus sign ‘-’), the indirect address pointer
is decremented by a data-type-dependent
value (∆ = 1 for byte operations, ∆ = 2 for word
operations) before the long 16-bit address is
generated:
(GPR Address) = (GPR Address) - ∆
; optional step !

3) Then, the long 16-bitaddress is determined by
the contents of the indirect address pointer
(plus a selectable constant value in some
cases):
Long Address = (GPR Address) + Constant

4) Afterwards, the physical 18-bit address is de-
terminedvia the resulting long address and the
corresponding DPP register contents as al-
ready described for the long ‘mem’ addressing
modes. For more details about data paging,
see section 5.3.7.

5) In case of Post-Increment (signified by a sub-
sequent plus sign ‘+’), the indirect address
pointer value is additionally incremented by a
data-type-dependentvalue (∆ = 1 for byte op-
erations, ∆ =2 for word operations):
(GPR Address) = (GPR Address) + ∆
; optional step

The table below gives an overview of the particular
indirect addressing modes of the ST10x166.

Mnemonic Particularity

[Rw] Normally, any word GPR can be used as indirect address pointer. For some instructions,
however, only the first tour word GPRs can be used as indirect address pointers.

[Rw +] The specified indirect address pointer is automatically post-incremented by either 1 (forbyte
data operations) or 2 (for word data operations).

[-Rw] The specified indirect address pointer is automatically predecremented by either 1 (for byte
data operations) or 2 (for word data operations).

[Rw + #data 16] A 16-bit constant and the contents of the indirect address pointer are added before the long
16-bit address is calculated.

Table 6-4. Indirect Addressing Modes

6 - Instruction Set Overview

6/8

6.2.5 Branch Target Addressing Modes
Different addressing modes are provided to spec-
ify the target address and segment of jump or call
instructions.Relative, absolute and indirect modes
can be used to update the Instruction Pointer (IP)
register while the Code Segment Pointer (CSP)
register can be updated only with an absolute

value. A special mode is provided to address the
interrupt and trap jump vector table which is allo-
cated to the lowest portion of code segment 0.
In the following, the branch target addressing
modes are described in more detail:

Mnemonic Target Address Target Segment Valid Address Range

caddr
rel

[Rw]
seg
#trap7

(IP) = caddr
(I)=(IP)
(IP)=(IP)
(IP)=((CP)

-
(IP)=0000h

+ 2xrel
+ 2x(-rel + 1)
+ 2xRw)

+ 4xtrap7

_
_
_
_
(CSP) =
(CSP) =

seg
0000h

caddr
rel
rel
Rw
seg
trap7

= 0...FFFEh
= 00h...7Fh
= 80h...FFh
= 0...15
= 0...3
= 0...7Fh

Table 6-5. Branch Target Addressing Modes

caddr: Specifies an absolute 16-bit code ad-
dress within the current segment.
Branches MAY NOT be taken to odd
code addresses. Therefore, the least
significant bit of ‘caddr’ must always
contain a ‘0’,otherwise a hardwaretrap
will occur.

rel: This mnemonic represents an 8-bit
signed word offset address relative to
the current InstructionPointer contents
which represent the address of the in-
struction after the branch instruction.
Depending on the offset address
range, either forward (‘rel’ = 00h to 7F)
or backward (‘rel’ = 80h to FFh)
branches are possible. According to an
either word- or double-word sized
branch instruction, a ‘rel’ value of ‘-1’
(FFh) or ‘-2’ (FEh) leads to a repeated
execution of the branch instruction it-
self.

seg: Specifies an absolute code segment
number. Currently, the ST10x166 sup-
ports fourdifferentcode segments,and
thusonly the two least significant bits of
the ‘seg’ operand value are used for
updating the CSP register.

[Rw]: In this case, the 16-bit branch target in-
struction address is determined indi-
rectly by the contentsof a word GPR.
In contrast to indirect data addresses,
indirectly specified code addressesare
NOT calculated via additional pointer
registers (e.g. DPP registers). Note
that branches MAY NOT be taken to
odd code addresses. Therefore, the
least significant bit of the address
pointer GPR must always contain a ‘0’,
otherwisea hardwaretrap would occur.

trap7: Specifies a particular interrupt or trap
number for branching to the corre-
sponding interrupt or trap service rou-
tine via a jump vector table. According
to the maximum number of interrupt
sources which are provided for the fu-
ture,only trap numbersfrom 00h to 7Fh
can be specified. Any double word
code location in the address range
from 00000h to 001FCh in code seg-
ment 0 can be accessed by the ‘trap’
addressing mode. The association be-
tween trap numbers and the corre-
sponding interrupt or trap sources is
specified in table 7.1.

6 - Instruction Set Overview

7/8

6.3 CONDITION CODE SPECIFICATION

16 possible condition codes can be used to deter-
mine whether a conditional branch shall be taken
or not. Table 6.6 gives an overview of which mne-

monic abbreviations are available for that. It also
describes which kinds of tests are performed due
to the selectedconditioncode, and it shows the as-
sociationbetween the conditioncodes and their in-
ternal representationby a four-bit number.

Condition Code
Mnemonics

Test Description CC
Number

cc_UC 1 = 1 Unconditional 0h

cc_Z Z = 1 Zero 2h

cc_NZ Z = 0 Not zero 3h

cc_V V = 1 Overflow 4h

cc_NV V = 0 No overflow 5h

cc_N N = 1 Negative 6h

cc_NN N = 0 Not negative 7h

cc_C C = 1 Carry 8h

cc_NC C = 0 No carry 9h

cc_EQ Z = 1 Equal 2h

cc_NE Z = 0 Not equal 3h

cc_ULT C = 1 Unsigned less than 8h

cc_ULE (ZVC) = 1 Unsigned less than or equal Fh

cc_UGE C = 0 Unsigned greater than or equal 9h

cc_UGT (ZVC) = 0 Unsigned greater than Eh

cc_SLT (N⊕ V) = 1 Signed less than Ch

cc_SLE (ZV(N⊕ V)) = 1 Signed less than or equal Bh

cc_SGE (N⊕ V) = 0 Signed greater than or equal Dh

cc_SGT (ZV(N⊕ V)) = 0 Signed greater than Ah

cc_NET (ZVE) = 0 Not equal AND not end of table 1h

Table 6-6. Condition Codes

6 - Instruction Set Overview

8/8

INTERRUPT AND TRAP FUNCTIONS

CHAPTER 7

The architectureof theST10x166 supportsseveral
mechanisms for fast and flexible response to serv-
ice requests that can be generated from various
sources internal or external to the microcontroller.
These mechanisms include:
- Normal Interrupt Processing
The CPU temporarily suspends the current pro-
gram execution and branches to an interrupt serv-
ice routine in order to service an interrupt
requestingdevice. The current program status (IP,
PSW, in segmentation mode also: CSP) is saved
on the internal system stack. A prioritization
scheme with 16 priority levels allows the user to
specify the order in which multiple interrupt re-
quests are to be handled.
- Interrupt Processing via the Peripheral Event
Controller (PEC):
As a faster alternative to normal software oriented
interrupt processing, any interrupt requesting
source can also be serviced by the ST10x166’s in-
tegrated Peripheral Event Controller. Upon an in-
terrupt request, the PEC has the capability of
performing a single word or byte data transfer be-
tween any two memory locations in segment 0
(data pages 0 through3) throughone of eight pro-
grammable PEC Service Channels. During a PEC
transfer, the normal program executionof the CPU

is halted for 1 instruction cycle. No internal pro-
gram status information needs to be saved. For
PEC service, the same prioritization scheme is ap-
pliedwhich is usedfor normal interruptprocessing.
PEC transfersshare the 2 highest priority levels.
- Trap Functions:
In responseto the executionof certaininstructions,
trap functions are activated. A trap can also be
caused externally by the Non-Maskable Interrupt
pin NMI. Several hardware trap functions are pro-
vided for handling erroneous conditions and ex-
ceptions that arise during the execution of an
instruction. Hardware traps always have highest
priority and cause immediate system reaction. The
software trap function is invoked by the TRAP in-
struction which generatesa software interrupt for a
specified interrupt vector. For all types of traps, the
current program status is saved on the system
stack.
Warning: When program code is installed in the
Flash memory (ST10F166) and located in seg-
ment 0, the CPU can receive an interrupt, but will
not be able to service it during a writing operation
on the Flash memory. This condition can be avoid
ed with the Flash memory located in segment 1
and the program code in segment 0 (external
memory).

7. INTERRUPT AND TRAP FUNCTIONS

1/24

7.1 INTERRUPT SYSTEM STRUCTURE

In order to support modular and consistent soft-
ware design techniques, each source of an inter-
rupt or PEC request is supplied with a separate
interrupt control register and interrupt vector. The
control register contains the interrupt request flag,
the interrupt enable bit, and the interrupt priority of
the associated source. Each source request is ac-
tivated by one specificevent, dependingon the se-
lected operating mode of the respective device.
The only exceptions are the two serial channels of
the ST10x166, where an error interrupt request
can be generated by a parity, framing, or overrun
error. However, specific status flags which identify
the type of error are implemented in the serial
channels control registers (see section 8.4 for de-
tails).
The ST10x166 provides a vectored interrupt sys-
tem. In this system, certain vector locations in the
memoryspace are reserved for the reset, trap,and
interrupt service functions. Whenever a request
occurs, the CPU branchesto one of these locations
which is predetermined by hardware. This allows
direct identification of the source that caused the
request. The only exceptions are the class B hard-
ware traps, which all share the same vector ad-
dress. The status flags in the Trap Flag Register

TFR can then be used to determine the typeof the
trap (see section 7.2 for more details).For the spe-
cial software TRAP instruction, the vector address
is specified by the operand field of the instruction,
which is a seven bit trap number.

The reserved vector locations of the ST10x166’s
memory space form a jump table. Here, one can
place the appropriate jump instructions to the
memory locations where the interruptor trap serv-
ice routines will actually start. The entries to the
jump table are located at the lowest addresses in
code segmentzero of the memoryspace. Jump ta-
ble entries have a distance of 4 bytes between
consecutiveentries, except for thereset vectorand
the hardware trap vectors where the distance is 8
or 16bytes.
The following table contains all sources that are
capable of requesting interrupt or PEC service in
the ST10x166, including the associated interrupt
vectors and trap numbers. Also listed are the mne-
monics of the affected Interrupt Request flags and
their corresponding Interrupt Enable flags. The
mnemonics are composed of a part that specifies
the respective source, followed by a part that
specifies their function (IR=Interrupt Request flag,
IE=Interrupt Enable flag).

7 - Interrupt And Trap Functions

2/24

Source of Interrupt or
PEC Service Request

Request
Flag

Enable
Flag

Interrupt
Vector

Vector
Location

Trap
Number

CAPCOM Register 0 CC0IR CC0IE CC0INT 40h 10h

CAPCOM Register 1 CC1IR CC1IE CC1INT 44h 11h

CAPCOM Register 2 CC2IR CC2IE CC2INT 48h 12h

CAPCOM Register 3 CC3IR CC3IE CC3INT 4Ch 13h

CAPCOM Register 4 CC4IR CC4IE CC4INT 50h 14h

CAPCOM Register 5 CC5IR CC5IE CC5INT 54h 15h

CAPCOM Register 6 CC6IR CC6IE CC6INT 58h 16h

CAPCOM Register 7 CC7IR CC7IE CC7INT 5Ch 17h

CAPCOM Register 8 CC8IR CC8IE CC8INT 60h 18h

CAPCOM Register 9 CC9IR CC9IE CC9INT 64h 19h

CAPCOM Register 10 CC10IR CC10IE CC10INT 68h 1Ah

CAPCOM Register 11 CC11IR CC11IE CC11INT 6Ch 1Bh

CAPCOM Register 12 CC12IR CC12IE CC12INT 70h 1Ch

CAPCOM Register 13 CC13IR CC13IE CC13INT 74h 1Dh

CAPCOM Register 14 CC14IR CC14IE CC14INT 78h 1Eh

CAPCOM Register 15 CC15IR CC15IE CC15INT 7Ch 1Fh

CAPCOM Timer 0 T0IR T0IE T0INT 80h 20h

CAPCOM Timer 1 T1IR T1IE T1INT 84h 21h

GPT1 Timer 2 T2IR T2IE T2INT 88h 22h

GPT1 Timer 3 T3IR T3IE T3INT 8Ch 23h

GPT1 Timer 4 T4IR T4IE T4INT 90h 24h

GPT2 Timer 5 T5IR T5IE T5INT 94h 25h

GPT2 Timer 6 T6IR T6IE T6INT 98h 26h

GPT2 CAPREL Register CRIR CRIE CRINT 9Ch 27h

A/D Conversion Complete ADCIR ADCIE ADCINT A0h 28h

A/D Overrun Error ADEIR ADEIE ADEINT A4h 29h

Serial channel 0 Transmit S0TIR S0TIE S0TINT A8h 2Ah

Serial channel 0 Receive S0RIR S0RIE S0RINT ACh 2Bh

Serial channel 0 Error S0EIR S0EIE S0EINT B0h 2Ch

Serial channel 1 Transmit S1TIR S1TIE S1TINT B4h 2Dh

Serial channel 1 Receive S1RIR S1RIE S1RINT B8h 2Eh

Serial channel 1 Error S1EIR S1EIE S1EINT BCh 2Fh

Table 7-1. Interrupt Sources And Associated Interrupt Vectors

7 - Interrupt And Trap Functions

3/24

The vector locations for hardware traps and the
corresponding status flags in register TFR are
listed in table 7.2. Also listed are the priorities of
trap service in case simultaneous trap conditions
might be detected within the same instruction. Af-
ter any reset (hardware reset, software reset in-
struction SRST, or reset by watchdog timer
overflow), program execution starts from location
0000h. Reset conditions have priority over every
other system activity and therefore have the high-

est priority (trap priority III). For more details on re-
set refer to chapter 1.
Software traps may be performed to any vector lo-
cation between0h and 1FCh. A routine entered by
a software TRAP instruction is always executedon
the current CPU priority level which is indicated in
the ILVL field in the PSW. This means that routines
entered via the software TRAP instruction can be
interrupted by all hardware traps or higher level in-
terrupt requests.

Exception Condition
Trap
Flag

Trap
Vector

Vector
Location

Trap
Number

Trap
Priority

Reset Functions :

Hardware Reset
Software Reset
Watchdog Timer Overflow

-
-
-

RESET
RESET
RESET

0h
0h
0h

0h
0h
0h

III
III
III

Class A Hardware Traps :

Non-Maskable Interrupt
Stack Overflow
Stack Underflow

NMI
STKOF
STKUF

NMITRAP
STOTRAP
STUTRAP

08h
10h
18h

2h
4h
6h

II
II
II

Class B Hardware Traps :

Undefined Opcode
Protected Instruction Fault
Illegal Word Operand Access
Illegal Instruction Access
Illegal External Bus Access

UNDOPC
PRTFLT
ILLOPA
ILLINA
ILLBUS

BTRAP
BTRAP
BTRAP
BTRAP
BTRAP

28h
28h
28h
28h
28h

Ah
Ah
Ah
Ah
Ah

I
I
I
I
I

Reserved [2Ch-3Ch] [Bh-Fh]

Software Traps

TRAP Instruction Any
[0h-1FCh]
in steps
of 4h

Any
[0h-7Fh]

Current
CPU
Priority

Table 7-2. Reset And Trap Vector Locations

7.2 NORMAL INTERRUPT PROCESSING
AND PEC SERVICE

The priority of service for interrupts and PEC re-
quests is completely programmable. Each source
requestcan be assigned toa specificpriority. Once
per instruction cycle, all sources which require
PEC or interrupt processingwill contendfor servic-
ing. Every requesting source will try to exert its pri-
ority on the interruptsystem. A specialmechanism
(called ‘group priority’) has been implemented that
allows the specification of the order of service for

simultaneous requests from a group of different
sourceson the samepriority level. At the end of the
instruction cycle, only one source with the highest
priority will be left with control of the interrupt sys-
tem. This source will then be enabled for servicing
if the priority of the request is higher than the cur-
rent CPU priority in the PSW. This arbitration,
which occursonce every instructioncycle, is called
a ‘round of prioritization’.

7 - Interrupt And Trap Functions

4/24

7.2.1 Interrupt System Register Description
Interrupt processing is controlled globally by the
PSW through a general interrupt enable bit (IEN)
and the CPU priority field (ILVL). Additionally, the
different interrupt sources are controlled individu-
ally by their specific interrupt control registers.
Thus, the acceptance of requests by the CPU is
determined by both the individual interrupt control
registersand the PSW. For PEC service, one addi-
tional dedicated register and 2 pointers must be
programmed in order to specify the task which is to
be performedby the respective PEC service chan-
nel.

7.2.1.1 INTERRUPT CONTROL REGISTERS

All interrupt control registers are organized identi-
cally. An interrupt control register is 8 bits wide and
contains the complete interrupt status information
of the associated source which is required during
one round of prioritization. All interrupt control reg-
isters are bit addressable, and all bits can be read
or written by software. This allows each interrupt
source to be programmedor modified with just one
instruction.When accessing interrupt control regis-
ters through instructions which operate on word
data types, bits 8 through 15 will be read as zeros,
while the written value is insignificant.
Besides, an example of the ST10x166’s Interrupt
Control registers xxIC is shown, where xx replaces
the mnemonic for the specific source. Each inter-
rupt control register with its name and address will
be shown in the specificsection on the peripheral it
is associated with (see chapter 8). The function of
each single or multiple bit field of an interrupt con-
trol register is describedin moredetail in the follow-
ing paragraphs.
xxIR - Interrupt Request Flag
This bit is set by hardware whenever a service re-
quest from source xx occurs. The Interrupt Re-
quest flag is automatically cleared upon entry to
the interrupt service routine or upon service of the
request by the PEC. In the case of PEC service,
the Interrupt Request flag remains set if the
COUNT field of the selected PEC channel goes to
zero (see section 7.2.2.1 for details). This allows a
normal CPU interrupt to respond to a completed
PEC block transfer. Modifying the Interrupt Re-
quest flag by software causes the same effects as
if it had been set or cleared by hardware.

xxIC
InterruptControl Register for Source xx
Reset Value : 0000h

7 6 5 4 3 2 1 0

xxIR xxIE ILVL GLVL

b7 = xxIR: Interrupt Request Flag.
xxIR = 0: No interrupt request
xxIR = 1: Interrupt request.

b6 = xxIE: Interrupt Enable Control Bit.
xxIE = 0: Interrupt disabled
xxIE = 1: Interrupt enabled.

b5 to b2 = ILVL: Interrupt Priority Level.
ILVL = Fh: Highest priority level
ILVL = 0: Request will not be serviced.

b1, b0 = GLVL: InterruptGroup Priority.
GLVL = 3: Highest group priority
GLVL = 0: Lowest group priority.

xxIE - Interrupt Enable Flag
This bit is used to individuallyenable or disable the
acceptanceof a service request.
ILVL - InterruptPriority Level Field, xxIC[5..2]
Thesefour bits specify the priority level of a service
request. Values from 0h through Fh can be speci-
fied in this field, where Fh represents the highest
priority level.
Interrupt requests that are programmed to priority
levels 15 or 14 (i.e. ILVL=111Xb) will be serviced
by the PEC, unless the COUNT field of the associ-
ated PEC channel contains zero. In this case, the
request will be serviced by normal interrupt proc-
essing. Interrupt requests that are programmed to
priority levels 13 through1 will always be serviced
by normal interrupt processing.

For interrupt requests which are selected for PEC
service by the method describedabove, the LSB of
ILVL represents the MSB of the associated PEC
channel number. In other words, by programming
a source on priority level 15 (ILVL=1111b), PEC
channels7 through4 can beselected. By program-
ming a source on priority level 14 (ILVL=1110b),

7 - Interrupt And Trap Functions

5/24

PEC channels 3 through 0 can be selected. The
actual PEC channel number is then determined by
the Group Priority field GLVL which is described in
the following paragraph. Figure 7.1 shows the
mapping of the ILVL and GLVL fields and their in-
terpretationduring a round of prioritization.
During the prioritization process, the ILVL fields of
all interrupt requesting sources are compared to
the current CPU priority level which is containedin
the ILVL field of the PSW. An interrupt request of
higher priority than the current CPU priority can in-
terrupt the executing routine.

Upon entry into an interruptservice routine, the pri-
ority level of the source that won the arbitration is
copied into the ILVL field of the PSW after pushing
the old PSW contents on the stack.
The interrupt system of the ST10x166allows nest-
ing of up to 15 interrupt service routinesof different
priority levels. Note that an interrupt source which
is programmed to priority level 0 will never be serv-
iced by the CPU, because its priority level can
never be higher than the CPU priority.
GLVL - Interrupt Group Priority Field, xxIC[1..0]

Interrupt
Control Register

Prioritization

ILVL

Group Priority

PEC Channel #

Priority Level

GLVL

Figure 7-1. Mapping Of ILVL And GLVL Fields For The Interrupt Control Registers

These two bits are interpreted as the relative prior-
ity of an interrupt service request within a group of
simultaneous requests from different sources on
the same priority level. For sources which are pro-
grammed for PEC service in their ILVL fields, the 2
bits of GLVL represent the 2 LSBs of the associ-
ated PEC channel number. See also figure 7.1.
The group priority field is particularly relevant for
resolving simultaneous interrupt requests from
several sources on the same priority level. Up to 4
sources can be programmed to the same priority
level. They are prioritized according to their group
priority, where 3 is highest group priority. This also
means that simultaneousrequests for PEC service
are prioritized according to their PEC channel
number: the PEC channelwith the highestnumber
has the highest priority.
Note: All interrupt sources that are enabled and
programmedto the samepriority level must always
be programmed to different group priorities. Oth-
erwise, an incorrect interrupt vector will be gener-
ated.
Figure 7.2 exemplifies the possible configurations
which can be programmed in the interrupt control
registers.
7.2.1.2 INTERRUPT CONTROL FUNCTIONS IN THE
PSW

7 - Interrupt And Trap Functions

6/24

Field Type of Service
(COUNT: PEC Transfer Counter field Of Selected PEC Channel)ILVL GLVL

1 1 1 1

1 1 1 1

1 1

1 1

If COUNT ≠ 0: PEC Service, Channel 7

If COUNT = 0: CPU Interrupt, Priority Level 15,
Group Priority 3

1 1 1 1

1 1 1 1

1 0

1 0

If COUNT ≠ 0: PEC Service, Channel 6

If COUNT = 0: CPU Interrupt, Priority Level 15,
Group Priority 2

1 1 1 0

1 1 1 0

1 1

1 1

If COUNT ≠ 0: PEC Service, Channel 3

If COUNT = 0: CPU Interrupt, Priority Level 14,
Group Priority 3

1 1 1 0

1 1 1 0

0 0

0 0

If COUNT ≠ 0: PEC Service, Channel 0

If COUNT = 0: CPU Interrupt, Priority Level 14,
Group Priority 0

1 1 0 1 1 1 CPU Interrupt, Priority Level 13, Group Priority 3

1 1 0 1 1 0 CPU Interrupt, Priority Level 13, Group Priority 2

1 1 0 1 0 1 CPU Interrupt, Priority Level 13, Group Priority 1

1 1 0 1 0 0 CPU Interrupt, Priority Level 13, Group Priority 0

0 0 0 1 0 0 CPU Interrupt, Priority Level 1, Group Priority 0

0 0 0 0 1 1 No Service

0 0 0 0 1 0 No Service

0 0 0 0 0 1 No Service

0 0 0 0 0 0 No Service

Figure 7-2. Examples Of Possible Configurations In The Interrupt Control Registers

7 - Interrupt And Trap Functions

7/24

The Processor Status Word (PSW) is functionally
divided into 2 parts: the lower byte of the PSW ba-
sically represents the arithmeticstatus of the CPU,
the upper byte of the PSW controls the interrupt
system of the ST10x166. This section specifically
refers only to those fields of the PSW that globally
control interrupt and PEC service functions. The
organizationof the PSW is shown in figure 7.3.

ILVL - CPU Priority Field, PSW[15..12]
These four bits represent the priority level of the
routine that is currently being executed by the
CPU. During reset, the CPU Priority field is initial-
ized to the lowest priority level (i.e. level 0). Upon
entry to an interrupt service routine, the four bits
from the interrupt source’s Priority Level field ILVL
are copied into these four bits of the PSW,after the
previous contents of the PSW have been pushed
onto the system stack.
To determine which interrupt will be serviced, the
interrupt system continuously compares the cur-
rent CPU priority to the priority levels of all pending
interrupts. Modifying the ILVL field of the PSW of-
fers the capabilityof programming the priority level
below which the CPU can not be interrupted.

Because a PEC data transfer takes only one in-
struction cycle and is never interrupted, the CPU
priority field remains unaffectedby a PEC service.
For hardware traps, the CPU priority is set to the
highest priority level (i.e. 15) in the ILVL field of the
PSW. Therefore, no interrupt or PEC request can
be serviced while an exception trap service routine
is in progress. The software TRAP instruction,
however, does not change the CPU priority in the
ILVL field of the PSW, thus it can be interrupted by
higher level requests.
IEN - Interrupt Enable Control Bit, PSW.11
This bit globally enablesor disablesPEC operation
and the acceptance of interrupts by the CPU.
When IEN is cleared, no interrupt requests are ac-
ceptedby the CPU. When IEN is set to ‘1’, all inter-
rupt sources, which have been individually
enabledby the Interrupt Enable bits in their associ-
ated control registers, are globallyenabled.

Note: Traps are non-maskable and are therefore
not affected by the IEN bit.

7.2.2 PEC Service Channels Register
Description

PSW (FF10h / 88h)
Processor Status Word
Reset Value : 0000h

15 14 13 12 11 10 9 8

HLDEN R

7 6 5 4 3 2 1 0

R USR0 MULIP E Z V C N

ILVL IEN

Figure 7-3. Interrupt Control Functions In The PSW

7 - Interrupt And Trap Functions

8/24

Control
Register

Physical
Address

8-Bit
Address

Control
Register

Physical
Address

8-Bit
Address

PECC0 FEC0h 60h PECC4 FEC8h 64h

PECC1 FEC2h 61h PECC5 FECAh 65h

PECC2 FEC4h 62h PECC6 FECCh 66h

PECC3 FEC6h 63h PECC7 FECEh 67h

Table 7-3. PEC Channel Counter/Control Registers, Summary

The ST10x166’s Peripheral Event Controller
(PEC) provides 8 PEC Service Channels. Upon an
interrupt request, a PEC channel is capableof per-
forming a single byte or word data transfer be-
tween any two memory locations in segment 0
(data pages 0 through3). Each channel consists of
a dedicatedPEC ChannelCounter/Controlregister
and a pair of pointers for source and destinationof
the data transfer.
7.2.2.1 PEC CHANNEL COUNTER/CONTROL REGIS-
TERS

Each of the 8 PEC service channels implemented
in the ST10x166 is supplied with a separate PEC
Channel Counter/Control register. Note that these
registers are NOT bit addressable.They will be re-
ferred to as PECCy, where y represents the num-
ber of the associated PEC channel (y=0 through
7). Each register specifies the task which is to be
performedby the associated PEC channel. A spe-
cific PEC channel is selected by an interrupt
source through the ILVL and GLVL field in the in-
terrupt control register of the respective source
(see figure 7.1). Table 7.3 lists all PEC channel
counter/control registers, while their organization
is shown besides. In the following, their function
will be discussed in detail.

INC - IncrementControl Field
This 2-bit field specifies whether the Source
Pointeror the DestinationPointerof the associated
PEC channel shall be incremented after a PEC
data transfer. Only one of the2 pointers(either the
Source or the Destination Pointer) may be incre-
mented, it is not possible to increment both point-
ers after a transfer. When the function ‘increment
no pointer’ is selected (INC = 00b), the transfer is
always performed between the same two memory
locations.
Note: Whensoftware tries to program the INC field
to 11b, this value is modified by hardware to 10b.

PECCy
PEC Channel Counter/Control Registers, Organi-
zation (y = 0 through7)

Reset Value : 0000h
15 14 13 12 11 10 9 8

R INC BWT

7 6 5 4 3 2 1 0

COUNT

b15 to b11 = R: Reserved.
b10, b9 = INC: Increment Control Field:

INC = 00b: Increment no pointer
INC = 01b: Increment destinationpointer
INC = 10b: Increment source pointer
INC = 11b: (Reserved).

b8 = BWT: Byte/Word Transfer Select bit:
BWT = 0: Word Transfer
BWT = 1: Byte Transfer.

b7 to b0 = COUNT: PEC Transfer Counter Field:
COUNT = FFh :Countinuous transfer mode,
COUNT value not decremented
FEh ≥ COUNT ≥ 1 :COUNT value decremented
after each transfer
COUNT = 0:CPU interrupt is generated

7 - Interrupt And Trap Functions

9/24

This will cause the Source Pointer to be incre-
mented after a PEC data transfer.
BWT - Byte/Word Transfer SelectionBit
This bit selects the data type to be transferred
upon a PEC service request. When the BWT bit is
set to ‘1’, the BYTE data type is selected for a PEC
transfer.
When BWT is cleared, the selected data type for a
PEC transfer is WORD. For byte transfers, the op-
tional increment value of the source or destination
pointer is 1. For word transfers, the optional incre-
mentvalue of the sourceor destinationpointer is 2.
COUNT - PEC Transfer Counter Field
This 8-bit field is usedto specifythenumber of data
transfers to be performed by the respective PEC
channel.Either an unlimited or a limited number of
transfers(0 through254) canbe programmed.The
Transfer Counter field operates as an 8-bit down-
counter. Values from 0 through FFh can be speci-
fied in this field, where 0 and FFh have a special
meaning.
If the COUNT value is between FEh and 2 at the
time the PEC service request is generated, the
value is decremented after each PEC data trans-
fer. Also, the Interrupt Request flag of the source
which generated the PEC service request is
cleared.
If the COUNT value equals 1 at the time the PEC
service request is generated, the value is decre-
mented to zero after the PEC data transfer,but the
Interrupt Request flag of the source which gener-
ated the request remains set. This will cause an-
other request from the associated source.
If the COUNT value equals 0 at the time the re-
quest is generated, no PEC data transfer will be
performed. Instead, a CPU interrupt request is
generated on the same priority level (15 or 14) as
the original PEC request.TheCPU branchesto the
interrupt service routine of the source that gener-
ated the request. This interrupt service routine can
be used to reprogram the associated PEC service
channel.
Note: This feature can be used to specifically gen-
erate CPU interrupt requests on the 2 highest pri-
ority levels (level 15 or 14). For any source request
on priority level 15 or 14 whose COUNT field of the
associated PEC channel contains 0, a CPU inter-
rupt request with the vectorof that source is gener-
ated.Note that no PEC data transfer operationcan
be performed while the CPU is executing a routine
on CPU priority level 15. While the CPU is execut-
ing a routine on CPU priority level 14, only PEC

data transfers through service channels 4 through
7 can be processed.
If the Transfer Counter field has been set to FFh,
the continuous transfer mode is selected for the re-
spective PEC channel. In this mode, the COUNT
value is not decremented,which means that an un-
limited number of transfers will be performed by
this PEC channel. The operationof a PEC Service
Channel programmed for continuous transfer can
onlybe terminatedeither by disablingPEC service,
or by reprogramming its PEC Channel
Counter/Controlregister.For the differentpossibili-
ties of disabling interrupt sources, see section
7.2.3.1.

7.2.2.2 PEC SOURCE AND DESTINATION POINTERS

Eight pairs of word-wide pointers are associated
with the 8 PEC Service Channels. Each pair is di-
rectly assigned to one specific PEC channel. Each
of these pairs of pointers consists of a Source
Pointer, which contains the source address of the
PEC data transfer, and a Destination Pointer,
which contains the respective destinationaddress.
These pointers share the top 16 word locations
(byte addresses FDE0h through FDFFh) in the in-
ternalRAM. If no PECservice is required for a spe-
cific PEC channel, the locations of its pointers can
be used for general data storage.
Note: If word data transfer is selected for a specific
PEC channel (i.e. bit BWT=0), the respective
Sourceand DestinationPointersmust both contain
a valid word address which points to an even byte
boundary.Otherwise the Illegal Word Access trap
will be invokedwhen thischannel is used(see sec-
tion 7.3.2.6).
In the following, a SourcePointer will be referred to
as SRCPx, and a Destination Pointer will be re-
ferred to as DSTPx, where x indicates the number
of the associated PEC Service Channel (x=0
through 7). Figure 7.4 shows the mapping of the
PEC Source and Destination Pointers into the in-
ternal RAM.
Note that for all PEC data transfers, the data page
pointers DPP0 through DPP3 are NOT used. The
addresses contained in the PEC source and desti-
nation pointers are interpreted as direct 16-bit
memory addresses in segment 0, so that data
transfers can be performed between any two
memory locations within the first four data pages
(pages 0 through 3).
7.2.3 Prioritization of Interrupt and PEC
Service Requests

7 - Interrupt And Trap Functions

10/24

15 0

15 0

SFRs
DSTP7 FE00h

SRCP7

FDE0h

FDDEh

PEC
Source

and
Destination

Pointers

Internal

RAM

DSTP0 FA00h

SRCP0 External
Memory

F9FEh

PEC
Source Pointer

RAM Location
(Word Address)

PEC
Destination Pointer

RAM Location
(Word Address)

SRCP0 FDE0h DSTP0 FDE2h

SRCP1 FDE4h DSTP1 FDE6h

SRCP2 FDE8h DSTP2 FDEAh

SRCP3 FDECh DSTP3 FDEEh

SRCP4 FDF0h DSTP4 FDF2h

SRCP5 FDF4h DSTP5 FDF6h

SRCP6 FDF8h DSTP6 FDFAh

SRCP7 FDFCh DSTP7 FDFEh

Figure 7-4. Mapping Of PEC Source And Destination Pointers into the Internal RAM

7 - Interrupt And Trap Functions

11/24

Interrupt and PEC service requests from all
sources that are enabled compete for service in
the prioritization process. The prioritization se-
quence is repeated every instruction cycle.

7.2.3.1 ENABLING AND DISABLING OF INTERRUPT
SOURCES

Enablingand disabling of interrupt sources can be
performed in several ways:
1) Each interrupt source can be individually en-

abled or disabled by setting or clearing its In-
terrupt Enable flag in the interrupt control
register that is associated with this source.
However, as long as the global Interrupt En-
able control bit IEN in the PSW has not been
set, all interrupt sources remain globally dis-
abled and no interrupt requests will be ac-
knowledged by the CPU.

2) When the IEN bit in the PSW is set to ‘1’, all in-
terrupt sources that have been individuallyen-
abled become globally enabled. Interrupt
requests which are generated by these
sources can then participate in the prioritiza-
tion process. The requests will be acknow-
ledged by the CPU according to their priority.

3) By programming the ILVL field of an Interrupt
Control register to level 0, the associated
source can never interrupt the CPU.

4) Programming the CPU priority in the PSW to a
certain level prevents the CPU from being in-
terrupted by requests on the same or any
lower level. With this method, all interrupts be-
low a certain level can be disabled with one in-
struction, e.g. the Bit F ield (BFLDH)
instruction.

7.2.3.2 PRIORITY LEVEL STRUCTURE

In the ST10x166’sinterrupt system, the priorityof a
request for interrupt or PEC service is completely
programmable. All enabled source requests must
be programmedto differentpriorities, whichmeans
that sources which are programmed to the same
priority level must be programmed to different
group priorities. Otherwise, undetermined results
may occur for the interrupt vector. Using the group
priorities 0 through 3, up to 4 sources can be pro-
grammed to the same priority level.
Theadvantageof this priorityscheme is that the or-
der for servicing of simultaneousrequests from dif-

ferentsources on thesame priority level isnot fixed
by the system but can be assignedvia software.
In all cases, the source on the highest priority level
which also has the highest group priority wins the
current round of prioritization.Whether the request
of this source will be accepted by the CPU or not
depends on the current CPU priority. If the priority
of the requesting source is higher, the request is
acknowledged and the CPU passes control to the
source’s interrupt vector.
The interrupt system supports 16 different priority
levels. Only 15 of those levels are actuallyeffective
priority levels because requests on level 0 are not
capable of interrupting the CPU. Therefore, up to
15 interrupt service routines on different priority
levels can be nested. In the following section, a
method will be described which allows the limita-
tionof nested interrupt levels to a numberless than
15. This may be desirable for reasons of stack effi-
ciency.

Normally, the 2 highestpriority levels (level 15 and
14) are used by PEC requests. Those levels can
also be used to process a high priority CPU inter-
rupt if the COUNT field of the selected PEC chan-
nel contains 0 at the time this channel is invoked
(see section 7.2.2.1).

7.2.3.3 EXAMPLE FOR THE USE OF THE CPU PRI-
ORITY

The priority level of the routine currently being
serviced by the CPU is indicated in the CPU Prior-
ity field (ILVL) of the PSW. Modifying the CPU Pri-
ority field of the PSW by software adds additional
flexibility to the interrupt system of the ST10x166.
For example, it provides the user with a means of
‘reducing’ the implemented number of 16 priority
levels to any smaller integer number. This may be
desirable to prevent a group of several different
tasks with similar importance from interrupting
each other. It also reduces the stack depth. For up
to 4 tasksper group, thiscan simplybe doneby as-
signing the associated interrupt sources to the
same priority level (in their ILVL field), but to differ-
ent group priorities (in their GLVL field).

To prevent a group of more than 4 taskswith simi-
lar importance from interrupting each other, the
first action within an interrupt service routine of
eachof thesetasks could be toset the CPU Priority

7 - Interrupt And Trap Functions

12/24

field to the priority level (ILVL) of the source with
the highest priority within this group. In this way, in-
terrupt or PEC service requests of higher priority
other than in this group are still accepted.
All interrupt requests of lower or equal priority be-
come pending. Thus, the interrupt system oper-
ates as if all tasks of the group were on the same
priority level.

For example, an application may have 24 interrupt
sources, where these sources must be organized
in 3 priority classes with 8, 10, and 6 sources per
class. In the priority scheme of the ST10x166, the
24 sources could be organized and configured as
follows:
In this example, the 3 user-defined priority levels
are called ‘classes’. Each of the three classes A
through C includes interrupt sources on 2 or 3 pri-

ILVL GLVL Organization

3 2 1 0

Fh
PEC Service, 8 Channels

Eh

Dh

Ch x x x x
Class A, 8 Interrupts

Bh x x x x

Ah

9

8 x x x x

Class B, 10 Interrupts7 x x x x

6 x x

5 x x x x
Class C, 6 Interrupts

4 x x

3

2

1

0 No Service

Table 7-4. Example of 24-InterruptOrganization In 3 Classes

ority levels of the interrupt system. The 2 highest
priority levels of the interrupt system are used by
the PEC service functions. Priority level 0 does not
provide interrupt service. With the organization
shown in table 7.4, any acknowledged interrupt
from the sources within a class (e.g. A) must set
the CPU Priority field of the PSW to the highestpri-
ority level contained in its class (e.g. 8 for class B)
at the beginning of its interrupt service routine.

Using this technique, interrupts generated by the
lowest class (i.e. C) can be interruptedby a request
from higher classes(i.e. B or A). However,an inter-
rupt service routine of a source that belongs to the
highest class (i.e. A) can not be interrupted by re-
quests of the sameor lower classes.
7.2.4 Interrupt Procedure
Once an interrupt has been selected for servicing,
the state of the task currently being executed by

7 - Interrupt And Trap Functions

13/24

High
Addresses

High
Addresses

_ _ PSW } State of interrupted task
saved on system stack

_ _ IP

_ _ _ _

Low
Addresses

Low
Addresses

a) System Stack before
Interrupt Entry

b) System Stack after
Interrupt Entry

SP →

SP →

Figure 7-5. Interrupt Procedure With Segmentation Disabled

the CPU is saved on the system stack. To ensure
correct return to the location where the task had
been interrupted, the information stored on the
stack also depends on whether segmentation is
currently enabled, as indicated by the SGTDIS bit
in the SYSCONregister.

7.2.4.1 INTERRUPT PROCEDURE WITH SEGMEN-
TATION DISABLED

If segmentation is disabled, the contents of the
PSW and the contents of the IP are pushed on the
system stack. The interrupt source’s priority level is
then copied into the CPU Priority field of the PSW.
If a multiply or divide operation was in progress
when the interrupt was acknowledged, the MULIP
bit in the PSW of the interrupt service routine is set

to ‘1’. The InterruptRequest Flag of thesource that
caused the interrupt is cleared. The CPU then
passes control to the source’s interruptvector. The
pushed IP contains the address of the instruction
to which execution will return after the interrupt
service routine is completed.

Upon execution of the RETI instruction (Return
from Interrupt), the information that was pushedon
the stack is popped in reverse order. In this way,
the status of the interrupted routine is restored.
Figure 7.5 shows how the system stack is affected
when an interrupt is acknowledged while segmen-
tation is disabled.

7.2.4.2 INTERRUPT PROCEDURE WITH SEGMEN-
TATION ENABLED

The procedure that will be performed by the
ST10x166’s interrupt system when segmentation
is enabled is independentof the code segment that
the CPU is currently executing from.
If segmentation is used when an interrupt request
is acknowledged, the Code Segment Pointer
(CSP) must also be pushed on the system stack to
ensure correct return to the previoussegmentafter
completion of the interrupt service routine. The
contentsof the PSW are pushed first, then the con-
tents of the CSP and IP are pushed on the system
stack. The CSP for the interrupt service routine is
set to segment zero. As with segmentation dis-
abled, the interrupt source’s priority level is copied
into the CPU Priority field of the PSW, and the In-

terrupt Request flag of the source that caused the
interrupt is cleared. If a multiply or divide operation
was in progress when the interrupt was acknow-
ledged, the MULIP bit in the PSW of the interrupt
service routine is set to ‘1’. No data page pointer is
affected.
Upon execution of the RETI instruction (Return
from Interrupt),the informationthat was pushedon
the stack is popped in reverse order to restore the
previous status. Figure 7 .6 shows how the system
stack is affected by an interrupt that is acknow-
ledged when segmentation is enabled.
7.2.4.3 CONTEXT SWITCHING FOR INTERRUPT
SERVICE ROUTINES

7 - Interrupt And Trap Functions

14/24

High
Addresses

High
Addresses

_ _ PSW
State of interrupted task
saved on system stack

_ _ CSP

_ _ IP

Low
Addresses

Low
Addresses

a) System Stack before
Interrupt Entry

b) System Stack after
Interrupt Entry

SP →

SP →

Figure 7-6. Interrupt Procedure With Segmentation Enabled

Context switching in conjunction with processing
an interrupt service routine allows establishing a
new context within the interrupt service routine.
Thus, a completely new set of General Purpose
Registers (GPRs) can be provided for the interrupt
service routine, without the need of explicitly sav-
ing and restoring registers.
Context switching can be performed by executing
the Switch Context instruction (SCXT) within the
interrupt service routine before any GPR is ac-
cessed. For example, the instruction SCXT CP,
#New Bank is used to push the previous value of
the Context Pointer (CP) on the system stack and
set the CP to the value #New Bank which is speci-
fied as an immediateoperand in the SCXT instruc-
tion. Note that GPRs in the new register bank
should not be accessed by the instruction immedi-
ately following the SCXT instruction (see also sec-
tion 5.1.4).
Before executing the RETI instructionat the end of
an interrupt service routine, the previous Context
Pointer must be popped from the system stack to
ensure correct return to the previous context.
7.2.5 Interrupt Processing via the Peripheral
Event Controller PEC

As an alternative to software oriented interrupt
processing, the PEC provides a way to minimize
interrupt latency and software overhead in cases
where only a single data transfer operation is re-
quired to service a peripheral device. As all the
ST10x166’s peripheral functions are controlled by
Special Function Registers (SFRs), it is sufficient
for many applications to simply transfer data to or
from the Special Function Registers and a data
memory location to handle service requests. Ex-
amples would be storing of results from the A/D
converter, or data from a serial channel. With the
ST10x166’s PEC, data transfers between two
memory locations in segment 0 (data page 0
through3) are possible.

The PEC data transfer itself does not affect the IP
or the flags in the PSW. Therefore, no program
status information needs to be saved when the
PEC performs a data transfer. This improves the
overall system throughputand speeds up the serv-
icing of peripheral requests.
The priority level structure of the ST10x166’sinter-
rupt system has been designed such that requests
for PEC service have priority over requests for
CPU interrupt service. Exceptions to this are when
the CPU is executing a routine on CPU priority

7 - Interrupt And Trap Functions

15/24

level 15 or 14. While the CPUis executinga routine
on CPU priority level 14, only PEC data transfers
throughservice channels 4 through7 can be proc-
essed. While the CPU is executing a routine on
CPUpriority level 15, noPEC data transferscan be
processed.
When an interrupt request that has been pro-
grammed for PEC service is selected for servicing
by the prioritization circuit, the PEC performs one
data transfer operation. The data type (byte or
word) for this transfer is determined by bit BWT in
the PEC channel control register PECCy of the re-
spective PEC channel. The source and the desti-
nation of this data transfer are pointed to by source
pointer SRCPy and destinationpointer DSTPy.

After completion of the transfer operation, one of
the 2 pointers can optionally be incremented and
the channel’s transfer counter COUNT can be de-
cremented. When the transfer counter reaches 0,
a normal CPU interrupt request is generated and

the associated interrupt service routine can be
used to reprogram the affected PEC channel. A
functionaldiagram of the basicPEC service proce-
dure is shown in figure below.
Note: All sources which are requesting PEC serv-
ice should be programmed to the same PEC serv-
ice channel ONLY if it is ensured that they do not
generatesimultaneousrequests while the COUNT
field of the respective channel contains 1. In the
case of simultaneous requests where the COUNT
field containsa value greater than 1 at the time the
PEC channel is invoked, only one PEC data trans-
fer will be performed for all of the simultaneousre-
quests. When the COUNT field contains 1 and
simultaneous PEC requests for this channel are
generated, one PEC data transfer is performed,
and an interrupt to an undetermined vector ad-
dress may occur.
7.2.6 Interrupt and PEC Response Times

Figure 7-7. PEC Service Procedure

7 - Interrupt And Trap Functions

16/24

Interrupt response time is defined as the time re-
quiredfrom the moment an interrupt request flag of
an enabled interrupt source is set until fetching of
the first instruction I1 at the interrupt vector location
can begin. In general, the interrupt response time
in the ST10x166 is 3 instruction cycles. It depends

FETCH N N + 1 N + 2 I1

DECODE N - 1 N TRAP (1) TRAP (2)

EXECUTE N - 2 N - 1 N TRAP

WRITEBACK N - 3 N - 2 N - 1 N

IR-Flag

Interrupt Response Time

1

0

Figure 7-8. Pipeline Diagram For Interrupt Response

on the instructions N through N-3 which are in the
pipeline at the time the request flag is set, and on
the following two instructionsN+1 and N+2. This is
explained by the pipelinediagram in figure 7.8.

Whenever the pipeline is advanced and a new in-
struction cycle is started, all sources whose inter-
rupt request flags have been set during the
previous cycle compete for service in a round of
prioritization. In the next cycle, a TRAP is per-
formedto thevector locationof the winningsource,
and the source’s interrupt request flag is reset to
‘0’. Fetching of the instruction I1 at the vector loca-
tion is started in the following cycle. All instructions
that are in the pipeline at the time the interrupt re-
quest flag is set will be completed before the inter-
rupt service routine, while the following instruction
N+1 will be executed after return from the interrupt
service routine. As can be seen from figure 7.8,
the TRAP instruction requires two cycles to push
the PSW generatedby instructionN and the IPand
(in segmentation mode) the CSP of instruction
N+1.
The minimum interrupt response time is 5 states
(250ns at 40MHz). This applies to program execu-
tion from the internal ROM when no external oper-
and read requests are performed, and when the
interrupt request flag is set during the last state of
an instruction cycle. When the interrupt request

flag is set during the first state of an instructioncy-
cle, the minimum interrupt response time under
theseconditionsis 6 state times (300ns at 40MHz).
In general, all delays with respect to the standard
instruction execution time which may occur during
execution of instructions in the pipeline may result
in a longer interrupt response time. When internal
hold conditions between instruction pairs N-2/N-1
or N-1/N occur, or instruction N explicitly writes to
the PSW, the minimum interrupt response time
may be extended by 1 state time for each of these
conditions. When instruction N reads an operand
from the internal ROM, or when N is a call, return,
trap, or MOV Rn, [Rm+ #data16] instruction, the
minimum interrupt response time may additionally
be extendedby 2 state times during internal ROM
programexecution. In case instruction N reads the
PSW and instruction N-1 has an effect on the con-
dition flags, the interrupt response time may addi-
tionally be extended by 2 state times. The worst
case interrupt response time during internal ROM
program execution is 12 state times (500 ns at
40MHz). See paragraph 5 for more details on in-
struction timing.

7 - Interrupt And Trap Functions

17/24

The absolute worst case interrupt response time
will occur when instructions N through N+2 are
executedout of anexternal memory, instructions N
and N+1 require external operand read accesses,
instructions N-3 through N write back external op-
erands, and the interrupt vector location is also in
the external memory. In this case, the interrupt re-
sponse time is the time to perform 9 word bus ac-
cesses, because instruction I1 can not be fetched
over the external bus until all write, fetch and read
requests of preceding instructions in the pipeline
are terminated. Under the same conditions, but
with the interrupt vector location in the internal
ROM, the interrupt response time is 7 word bus ac-
cesses plus 2 states, because fetching of I1 from
the internal ROM can start earlier. Note that these
worst case situations are rather untypical and oc-
cur only when instructions N and N-1 are indirect
MOV instructions between two external memory
locations. When instructions N through N+2 are
executedout of an externalmemory, and the inter-
rupt vector location is also in external memory, but
all operands for instructions N-3 through N are in
internal memory, then the interrupt response time
is the time to perform 3 word bus accesses. Under
the same conditions, but with the interrupt vector

locationin the internalROM,the interruptresponse
time is 1 word bus access plus 4 states.
After an interrupt service routine has been termi-
nated through execution of the RETI instruction,
and if further interrupts are pending, the next inter-
ruptservice routine will not be entereduntil at least
two instruction cycles have been executed in the
programsection returnedto. In most cases, two in-
structions will be executed during this time. Only
one instruction will typically be executed if the first
instruction following the RETI instruction is a
branch instruction (without cache hit), or if it reads
an operand in the internal ROM, or if it is executed
out of the internal RAM.
Similar to the interrupt response time, the re-
sponse time for a PEC data transfer request can
be defined as the time required from the moment
an interrupt request flag has been set until the PEC
data transfer is started. In general, the PEC re-
sponse time in the ST10x166 is 2 instruction cy-
cles. It depends on the instructions N-3 through N
which are in the pipeline at the moment the request
flag is set, and on the following instruction N+1.
This is explained by the pipeline diagram in figure
7.9.

FETCH N N + 1 N + 2 N + 2

DECODE N - 1 N PEC N + 1

EXECUTE N - 2 N - 1 N PEC

WRITEBACK N - 3 N - 2 N - 1 N

IR-Flag

PEC Response Time

PEC is equivalent to MOV/B [DSTPx],[SRCPx]
or MOV/B [DSTPx+],[SRCPx]
or MOV/B [DSTPx],[SRCPx+] x=(0 . . 7)

1

0

Figure 7-9. Pipeline Diagram For PEC Response Time

7 - Interrupt And Trap Functions

18/24

Once per instruction cycle, all enabled interrupt
sources whose interrupt request flags have been
set during the previous cycle compete for service
in a round of prioritization. In the next cycle, the
PEC data transfer is started when the winning
source was programmed for PEC service, and the
source’s interrupt request flag is reset to ‘0’. Note
that when instruction N reads any of the PEC con-
trol registers PECC0 through PECC7 while a PEC
request wins the current round of prioritization, this
round is repeated and the PEC data transfer is
started one cycle later.
The minimum PEC response time is 3 states
(150ns at 40MHz). This applies to program execu-
tion from the internal ROM when no external oper-
and read requests are performed, and when the
interrupt request flag is set during the last state of
an instructioncycle. When the request flag was set
during the first state of an instruction cycle, the
PEC responsetime is 4 state times.

When internal hold conditions between instruction
pairs N-2/N-1 or N-1/N occur, the minimum PEC
response time may be extended by 1 state time for
each hold condition. When instruction N reads an
operandfromthe internal ROM,or when N is a call,
return, trap, or MOV Rn, [Rm+#data16]instruction,
the minimum PEC response time may additionally
be extended by 2 state times during internal ROM
program execution. In case instructionN reads the
PSW and instruction N-1 has an effect on the con-
dition flags, the PEC response time may addition-
ally be extended by 2 state times. The worst case

PEC response time during internal ROM program
execution is 9 state times (350ns at 40MHz).
The absolute worst case PEC response time will
occur when instructions N and N+1 are executed
out of an external memory and both require exter-
nal operand read accesses, and instructions N-3
through N-1 write back external operands. In this
case, the PEC responsetime is the time to perform
7 word bus accesses. Note that this worst case
situation is rather untypical and occurs only when
instructions N and N-1 are indirect MOV instruc-
tions between two external memory locations.

When instructions N and N+1 are executed out of
an external memory, but all operands for instruc-
tions N-3 through N-1 are in internal memory, then
the PEC response time is the time to perform 1
word bus access plus 2 state times.
Once a request for PEC service has been acknow-
ledged by the CPU, the execution of the next in-
struction is delayed by 2 state times plus the
additional time it might take to fetch the source op-
erand from internal ROM or external memory and
to write the destination operand over the external
bus in an external program environment.

7.2.7 External Interrupts
Nineteen of the ST10x166’sport pins may be used
as universal external interrupt input pins if their al-
ternate function is not required in conjunction with
an on-chipperipheral.These pins are listed in table
below .

Port Pin Alternate Symbol Alternate Function

P2.0 CC0IO CAPCOM Register 0 Capture Input/Compare Output

: : : :

P2.15 CC15IO CAPCOM Register 15 Capture Input/Compare Output

P3.2 CAPIN CAPREL Register Capture Input

P3.5 T4IN Timer 4 Count/Gate/Reload/Capture Input

P3.7 T2IN Timer 2 Count/Gate/Reload/Capture Input

Table 7-5. Port Pins Configurable As External Interrupt Input Pins

7 - Interrupt And Trap Functions

19/24

For each of these pins, either a positive, a nega-
tive, or both a positiveand a negativeexternal tran-
sition can be selected to cause an interruptor PEC
service request. The edge selection is performed
in the control register of the peripheral device as-
sociated with the respective port pin. The periph-
eral must be programmed to a specific operating
mode to allow generation of an interrupt by the ex-
ternal signal. The priority of the interrupt request is
determined by the interrupt control register of the
respective peripheral interrupt source, and the in-
terrupt vector of this source will be used in casean
interrupt is acknowledged.
In order to useany of the pins listed in Table 7.5 as
external interrupt inputs, its direction control bit
DPx.y in the corresponding port direction control
register DPx must be ‘0’.
When port pins CCxIO/P2.x (x=0 through 15) are
to be used as external interrupt input pins, bit field
CCMODx in the control register of the correspond-
ing capture/compare register CCx must be config-
ured for capture mode. When CCMODx is
programmed to 001b, the interrupt request flag
CCxIR in register CCxIC will be set on a positive
external transition at pin CCxIO/P2.x. When
CCMODx is programmed to 010b, a negative ex-
ternal transition will set the interrupt request flag.
WhenCCMODx=011b, both a positiveand a nega-
tive transition will set the request flag. In all three
cases, the contents of the allocated CAPCOM
timer T0 or T1 will be latched into capture register
CCx, independentwhether the timer is running or
not. When the interrupt enable bit CCxIE is set, a
PEC request or an interrupt request for vector
CCxINT will be generated. For further details on
the CAPCOM unit, see section 8.1.
PinsT2IN/P3.7 or T4IN/P3.5can be used as exter-
nal interrupt input pins when the associated auxil-
iary timer T2 or T4 in block GPT1 is configured for
capture mode. This mode is selected by program-
ming the modecontrol fields T2M or T4M in control
registers T2CON or T4CON to 101b. The active
edge of the external input signal is determined by
bit fields T2I or T4I. When these fields are pro-

grammed to X01b, interrupt request flags T2IR or
T4IR in registersT2IC or T4IC will be set on a posi-
tive external transition at pins T2IN/P3.7 or
T4IN/P3.5, respectively. When T2I or T4I are pro-
grammed to X10b, then a negativeexternal transi-
tion will set the corresponding request flag. When
T2Ior T4I are programmed to X11b,both a positive
and a negativetransition will set the request flag. In
all three cases, the contents of the core timer T3
will be captured into the auxiliary timer registers T2
or T4 based on the transition at pins T2IN or T4IN.
When the interrupt enable bits T2IE or T4IE are
set, a PEC request or an interrupt request for vec-
tor T2INT or T4INT will be generated. For further
details on the GPT1block, see section 8.2.

Pin CAPIN/P3.2 differs slightly from the other pins
described before in that it can be used as external
interrupt input pin without affecting peripheral func-
tions. When the capture mode enable bit T5SC in
register T5CON is set to ‘0’, signal transitions on
pin CAPIN/P3.2 will only set the interrupt request
flag CRIR in register CRIC, and the capture func-
tion of register CAPREL is not activated. This
means that register CAPREL can still be used as
reload register for GPT2 timer T5 while pin
CAPIN/P3.2 is used as external interrupt input.
Through bit field CI in register T5CON, the effec-
tive transition of the external interrupt input signal
canbe selected. WhenCI is programmedto 01b,a
positive external transition will set the interrupt re-
quest flag. CI=10b selects a negative transition to
set the interrupt request flag, and with CI=11b,
botha positiveand a negativetransitionwill set the
request flag. When the interrupt enable bit CRIE is
set, an interrupt request for vector CRINT or a PEC
requestwill begenerated.See section8.2.2 for fur-
ther details on the GPT2 block.

Thenon-maskable interrupt input pin NMI provides
another possibility to obtain CPU reaction on an
external input signal. The NMI pin is a dedicatedin-
put pin which causes a hardware trap when a
negativetransition is detectedon this pin. The NMI
trap function is discussed in detail in the following
section.

7 - Interrupt And Trap Functions

20/24

7.3 TRAP FUNCTIONS

The ST10x166provides two different kinds of trap-
ping mechanisms. These are software traps and
hardware traps. Trap functions offer the possibility
to bypass the interrupt system’s prioritization proc-
ess in cases where immediate system reaction is
required. Trap functions are not maskable and al-
ways have priority over interrupt requests on any
priority level.

7.3.1 Software Traps
The TRAP instruction is used to cause a software
call to an interrupt service routine. Associated with
the trap instruction is a trap number that can be
specified in the operand field of the instruction.
This trap number determineswhich vector location
in the memory space from 0h through1FCh will be
branchedto (see also table 7.2 in section 7.1.).

Executing a TRAP instruction causes a similar ef-
fect as if an interrupt at the same vector had oc-
cured. The IP and PSW, and in segmentation
mode also the CSP, are pushed on the internal
system stack and a jump is taken to the specified
vector location. When segmentation is enabled
and a trap is executed,the CSP for the trap service
routine is set to code segment 0. However, the
CPU Priority field of the PSW is not modified and
the trap service routine is executed on the priority
level from which it was invoked. Therefore, the
service routine entered by the TRAP instruction
can be interrupted by other traps or higher priority
interrupts. No Interrupt Request flags are affected
by the TRAP instruction. The interrupt service rou-
tine called by a TRAP instruction must be termi-
natedwith a RETI (returnfrom interrupt) instruction
to ensure correct return.

7.3.2 Hardware Traps
Hardware traps are used to identify faults or spe-
cific system states at runtime which cannot be
identified at assembly time. Eight different hard-
ware trap functions are supported by the
ST10x166. When a hardware trap condition has
been detected, the CPU branches to the trap vec-
tor location for the respective trap condition. De-
pendingon the trap condition,the instructionwhich
caused the trap is either completed or cancelled
(i.e., it hasno effecton the system state)before the
trap handling routine is entered.
Hardware traps are non-maskable and always
have priority over every other CPU activity. If sev-
eral hardware trap conditions are detected within
the same instruction cycle, the highest priority trap

is selected for servicing according to table 7.2 in
section 7.1.
Whenever a trap occurs, the PSW, the IP, and in
segmentation mode also the CSP, are pushed on
the system stack. The CPU priority field of the
PSWof the trap service routine is set to the highest
possible priority level (i.e., level 15), thus disabling
all interrupts. The CSP is set to codesegment zero
if segmentation is enabled. The trap service rou-
tine must be terminated with the RETI instruction.
Theeight hardware trap functionsof the ST10x166
are divided into two classes, class A and B. The
traps of class A are the external Non-Maskable In-
terrupt (NMI), the Stack Overflow, and the Stack
Underflow trap. All of these traps have the same
trap priority, but each of them has a separate vec-
tor address.

The traps of class B are the following:

- Undefined Opcode Trap

- Protection Fault Trap

- Illegal Word Operand Access Trap

- Illegal Instruction Access Trap

- Illegal External Bus Access Trap
These trap functions all share the same trap prior-
ity and vector address.
In order to allow a trap service routine to identify
the kind of trap which caused the exception, a bit-
addressable Special Function Register, the Trap
FlagRegister (TFR), is provided.The configuration
of this register is shown next page.

For each trap function, a separate request flag is
implemented. When a hardware trap occurs, the
corresponding request flag in the TFR register is
set to ‘1’. It must be reset by software in the trap
service routine, otherwise a new trap will be re-
quested after exiting the service routine. Setting a
trap request flag by software causes the same ef-
fects as if it had been set by hardware.
After the reset functions which have highest sys-
tem priority (trap priority III), the traps of class A
have the second highest priority (trap priority II). A
classA trapcan interrupt a classB trap, but not an-
other class A trap. If more than one of the class A
traps occurs at a time, an internal hardware priori-
tization takes place. The NMI trap has the highest,
the stack underflowtrap the lowest priority.
The traps of class B all have the same trap priority
(trap priority I), which is lower than the priority of
class A traps. Thus, class B traps can never inter-
ruptclass A traps; but pending class B trapswill be
executed after all class A traps are finished. In the
caseof simultaneouslyoccurring class B traps, the

7 - Interrupt And Trap Functions

21/24

correspondingflags in the TFR registerare setand
the trap service routine is entered.Sinceall class B
traps have the same vector, the priority of service
of simultaneously occurring class B traps is deter-
mined by software in the trap service routine.

TFR (FFACh / D6h)
Trap Flag Register TFR

Reset Value : 0000h
15 14 13 12 11 10 9 8

NMI STKOF STKUF R

7 6 5 4 3 2 1 0

UNDOPC R PRTFLT ILLOPA ILLINA ILLBUS

b15 = NMI: External non-Maskable Interrupt Trap
request flag.
Set when a negative transition is detectedat the
NMI pin. Must be reset by software.

b14 = STKOF: Stack Overflow Trap request flag.
Set when the stack pointer value is less than the
contents of theStack Overflow(STKOV) register.
Must be reset by software.

b13 = STKUF: Stack Underflow Trap request flag.
Set when the stack pointer value is greater than
the contents of the Stack Underflow (STKUV)
register. Must be reset by software.

b12 to b8 and b6 to b4 = R: Reserved.
b7 = UNDOPC: Undefined Opcode Trap request

flag.
Set when the opcode of the instruction currently
in decode is not a valid ST10x166 opcode. Must
be reset by software.

b3 = PRTFLT: ProtectionFault Trap request flag.
Set when an illegal format of a protected instruc-
tion is detected. Must be reset by software.

b2 = ILLOPA: Illegal Word Operand Access Trap
request flag.
Set when a word operand read or write access is
made to an odd byte address. Must be reset by
software.

b1 = ILLINA: Illegal Instruction Access Trap re-
quest flag.
Set when a branch is made to an odd byte ad-
dress. Must be reset by software.

b0 = ILLBUS: Illegal External Bus Access Trap re-
quest flag.
Set when an externalaccess is requestedand no
external bus is configured. Must be reset by soft-
ware.

A class A trap occurring during the execution of a
class B trap service routine will be serviced imme-
diately. During the execution of a class A trapserv-
ice routine, however,any class B trapoccurring will
not be serviced until the class A trap service rou-
tine has finished. Thus, in this case, the occur-
rence of the class B trap is stored in the TFR
register, but the IP value of the instruction which
caused this trap is lost.
In the case where e.g. an Undefined Opcode trap
occurs simultaneously with an NMI trap, both the
NMI and the UNDOPC flag is set, the IP of the in-
structionwith the undefinedopcode is pushedonto
the system stack, but the NMI trap is executed.Af-
ter return from the NMI service routine, the IP is
popped from the stack and immediately pushed
again be cause of the pending UNDOPC trap.

7.3.2.1 EXTERNAL NMI TRAP

Whenevera high to low transition on the dedicated
external NMI pin (Non-Maskable Interrupt) is de-
tected, the NMI flag in register TFR is set and the
CPU will enter the External NMI trap routine. The
IP value pushed on the system stack is the address
of the instruction following the one after which nor-
mal processing was interrupted by the NMI trap.

7.3.2.2 STACK OVERFLOW TRAP

Whenever the Stack Pointer value is decremented
to a value which is less than the value in the Stack
Overflow register STKOV, the STKOF flag is set in
the TFR register and the Stack Overflow trap is en-
tered. Which IP value will be pushed onto the sys-
tem stack depends on which operation caused the
decrement of the SP. When an implicit decrement
of the SP is made through a Push or Call instruc-
tion, or upon interrupt or trap entry, the IP value
pushed is the address of the following instruction.
When the SP is decremented by a Subtract in-
struction, the IP value pushed represents the ad-
dress of the instruction after the instruction
following the Subtract instruction.
For recovery from stack overflow it must be en-
sured that there is enough excess space on the
stack for twice saving the current system state
(PSW, IP, in segmented mode also: CSP). Other-
wise, a system reset should be generated. See
chapter 13 for more details on stack usage.

7 - Interrupt And Trap Functions

22/24

7.3.2.3 STACK UNDERFLOW TRAP

Whenever the Stack Pointer is incremented to a
value which is greater than the value in the Stack
Underflow register STKUN, the STKUF flag is set
in the TFR register and the Stack Underflow trap is
entered. Again, which IP value will be pushed onto
the system stack depends on which operation
caused the increment of the SP. When an implicit
increment of the SP is made through a Pop or Re-
turn instruction, the IP value pushed is the address
of the following instruction. When the SP is incre-
mented by an Add instruction, the IP value pushed
represents the address of the instruction after the
instructionfollowing the Add instruction.See chap-
ter 13 for more details on stack usage.

7.3.2.4 UNDEFINED OPCODE TRAP

Whenever the opcode of an instruction currently
decodedby the CPU is not the opcode of a valid in-
struction in theST10x166’s instructionset, the UN-
DOPC flag is set in the TFR register and the CPU
enters the Undefined Opcode trap. The IP value
pushedonto the system stack is the addressof the
instruction that caused the trap. This can be used
to emulate unimplemented instructions. The trap
service routine can examine the faulting instruction
to decode operands for unimplemented opcodes
based on the stacked IP. In order to resume proc-
essing, the stacked IP value must be incremented
by the size of theundefined instruction which is de-
termined by the user, before a RETI instruction is
executed.
7.3.2.5 PROTECTION FAULT TRAP

Wheneverone of the special protectedinstructions
is executed where the opcode of that instruction is

not repeated twice in the second word of the in-
struction and the byte following the opcode is not
the complement of the opcode, the PRTFLT flag in
the TFR register is set and the Protection Fault
Trap is entered. The protected instructions include
DISWDT, EINIT, IDLE, PWRDN, SRST, and
SRVWDT. The IP value pushed onto the system
stack for the protection fault trap is the address of
the instruction that caused the trap.

7.3.2.6 ILLEGAL WORD OPERAND ACCESS TRAP

Whenever a word operand read or write access is
made to an odd byte address, the ILLOPA flag is
set and the Illegal Word Operand Access trap is
entered. The IP value pushed onto the system
stack is the address of the instruction following the
one which caused the trap.

7.3.2.7 ILLEGAL INSTRUCTION ACCESS TRAP

Whenever a branch is made to an odd byte ad-
dress, the ILLINA flag is set in the TFR register and
the Illegal Instruction Access trap is entered. The
IPvalue pushed onto the systemstack is the illegal
odd target address of the branch instruction.

7.3.2.8 ILLEGAL EXTERNAL BUS ACCESS TRAP

Whenever the CPU requests an external instruc-
tion or data fetch, and no external bus configura-
tion has been specified in the BTYP field of the
SYSCON register, the ILLBUSflag in the TFR reg-
ister is set and the Illegal Bus Access trap is en-
tered. The IP value pushed onto the system stack
is the address of the instruction following the one
which caused the trap.

7 - Interrupt And Trap Functions

23/24

NOTES :

7 - Interrupt And Trap Functions

24/24

PERIPHERALS

CHAPTER 8

This chapter provides a descriptionof the function-
ality and programming of the peripherals incorpo-
rated in the ST10x166.Each of the peripheralunits
is discussed in a separate section: the CAPCOM
unit in section 8.1, the General Purpose Timers
(GPT) in section 8.2, the A/D Converter in section
8.3, the Serial Channels in section 8.4, and the
Watchdog Timer in section 8.5.
Peripheral Interfaces
The peripherals generally have two different types
of interfaces, an interface to the CPU and an inter-
face to external hardware.
Communication between CPU and peripherals is
performed through Special Function Registers
(SFRs) and interrupts. The SFRs serve as con-
trol/status and data registers for the peripherals.
Interrupt requests are generated by the peripher-
als based on specific events (e.g. operation com-
plete, error) which occur during their operation.
For interfacing with external hardware, specific
pins of ports P2, P3, or P5 are used when an input
or output function has been selected for a periph-
eral. During this time, the port pins are controlled
by the peripheral (when used as outputs)or by the
external hardware which controls the peripheral
(when used as inputs). This is called the ‘alternate
(input or output) function’ of a port pin, in contrast
to its function as a general purposeI/O pin.
Each port consists of a port data register and a di-
rection control register (except for port 5 which is
an input only port). The name Px (x=0..5) of a port
data register is generallyused to refer to the whole
port Px. For reference to a port pin, the notation
Px.y (y=0..15) for the associatedbit in the port data
register is used as well as the symbol for the alter-
nate functionof a port pin.
This chapter about the peripherals will provide all
informationwhich is necessaryto use the alternate
functionsof a port in conjunction with a peripheral.
A detailed description of the internal port structure
will be given in chapter 10 (Parallel Ports).

PeripheralTiming
Internaloperationof CPUand peripheralsis based
on the oscillator frequency (fOSC) divided by 2. The
resulting frequencyis referred to as ‘system clock’.
The basic time unit for internal operation of a chip
is commonly called ‘state time’. For the ST10x166,
one state is defined as 2 periods of the oscillator
frequency. When a 40MHz oscillator is used, the
internal system clock is 20MHz, and 1 state lasts
for 50ns.
The clock which is gated to the peripheralsis inde-
pendentfrom the CPUclock. During Idlemode, the
CPU clock is stopped while the peripherals con-
tinue their operation. Peripheral SFRs may be ac-
cessed by the CPU on ceper state. When an SFR
is written to by software in the same state where it
is also to be modified by the peripheral, the soft-
ware write operation has priority. Furtherdetails on
peripheral timing are included in the specific sec-
tions about each peripheral.
Programming Hints
(1) All SFRs reside in data page 3 of the memory

space. Whenever SFRs are to be accessed
through indirect or direct addressing with 16-
bit (mem) addresses, it must be guaranteed
that data page 3 is selected by one of the data
page pointer registers DPP0 through DPP3.
This is not required for accessing SFRs via
short 8-bit (reg) addressing or via the Periph-
eral Event Controller (PEC), because in these
cases the data page pointers are not used.

(2) Byte write operations to word wide SFRs via
indirect or direct 16-bit (mem) addressing or
byte transfers via the PEC force zeros in the
non-addressed byte. Byte write operations via
short 8-bit (reg) addressing can only access
the low byte of an SFR and force zeros in the
high byte. It is therefore recommended to use
the bit field instructions(BFLDLand BFLDH) to
write to any number of bits in either byte of an
SFR without disturbing the non-addressed
byte and the unselected bits.

8. PERIPHERALS

1/64

(3) Some of the bits which are contained in the
ST10x166’s SFRs are marked as ‘reserved’.
User software should never write ‘1’s to re-
served bits. These bits are currently not imple-
mented and may be used in future ST10x166
family products to invoke new functions. In this
case, the activestate for thesefunctionswill be
‘1’, and the inactive state will be ‘0’. In the
ST10x166, the value read from reserved bits is
0.

8.1 CAPTURE/COMPARE (CAPCOM) UNIT

The CAPCOM unit supports generation and con-
trol of timing sequences on up to 16 channelswith
a minimumof software intervention. TheCAPCOM
unit is typicallyused to handlehigh speed I/O tasks
such as pulse and waveform generation, pulse
width modulation,or recording of the time at which
specific events occur, and it also allows the imple-
mentation of up to 16 software timers. The maxi-
mum resolution of the CAPCOM unit is 400ns (at
40MHz oscillator frequency).
CAPCOM Block Diagram
TheCAPCOM unit consists of two 16-bit timers (T0
and T1), each with its own reload register (T0REL
and T1REL), and a bank of sixteen dual purpose
16-bit capture/compare registers (CC0 through
CC15).
The input clock for T0 or T1 is programmable to
several prescaled values of the system clock, or it
can be derived from an overflow/underflowof timer

T6 in block GPT2. T0 may also operate in counter
mode allowing it to be clocked by an external
event.
Each capture/compare register may be pro-
grammed individually for captureor compare func-
tion, and each register may be allocated to either
timer T0 or T1. Eachcapture/compareregister has
one pin of port 2 associatedwith it which serves as
an input pin for the capture functionor as an output
pin for the compare function.
The capture function causes the current timer con-
tents to be latched into the capture/compareregis-
ter based on an external event on its associated
port 2 pin. The compare function may cause an
output signal transition on thatport 2 pin whose as-
sociated capture/compare register matches the
current timer contents. Specific interrupt requests
are generated up on each capture/ compare event
or upon timer overflow. Figure 8.1 shows a block
diagram of the CAPCOM unit.
Register Overview
From the programmer’s point of view, the term
‘CAPCOM unit’ refers to a set of SFRs which are
associated with this peripheral, including the port
pins which may be used for alternate input/output
functions.As can be seen from Figure 8.2, for each
pin (e.g. P3.0) within a port there is a direction con-
trol bit (e.g. DP3.0) within the associated port di-
rection control register (e.g. DP3). In this figure,
those portions of port and direction registers which
are not used by the CAPCOM unit for alternate
functionsare not shaded.

8 - Peripherals

2/64

Port 2
Alternate

Input/Output
Functions

16
Capture/Compare
Interrupt Request

Flags

Reload Reg.T0REL

Reload Reg.T1REL

CC0IR

16

16-Bit
Capture/
Compare
Registers

CC0 - CC15

Mode
Control

System Clock

System Clock

GPT2 Timer T6

GPT2 Timer T6

Over/Underflow

Over/Underflow

Input

Input

Control

Control

T0IN/P3.0

CC0IO/P2.0

CC15IO/P2.15

CAPCOM Timer T0

CAPCOM Timer T1

T0IR

CC15IR

T1IR

Interrupt

Interrupt

Request

Request

VR001616

Figure 8-1. CAPCOM Unit Block Diagram

8 - Peripherals

3/64

DP3
P3
DP2
P2
T0
T0REL
T1
T1REL
CC0 .. CC15
T01CON
CCM0 .. CCM3
T0IC
T1IC
CC0IC .. CC15IC

Port 3 Direction Control Register
Port 3 Data Register
Port 2 Direction Control Register
Port 2 Data Register
CAPCOM Timer 0 Register
CAPCOM Timer 0 Reload Register
CAPCOM Timer 1 Register
CAPCOM Timer 1 Reload Register
CAPCOM Registers 0 .. 15
CAPCOM Timer 0 and Timer 1 Control Register
CAPCOM Mode Control Registers 0 .. 3
CAPCOM Timer 0 Interrupt Control Register
CAPCOM Timer 1 Interrupt Control Register
CAPCOM Register 0 ..15 Interrupt Control Registers

CC15IC
CC15IC

CC15IC
CC15IC

CC5 CC5IC
CC4 CC4IC

CC6 CC6IC

CCM1

CC7 CC7IC

VR001640

CC15IC

CC15IC

CC15IC

CC15IC

CC15IC
CC15IC

CC15IC

CC15IC

CC15IC

CC15IC
CC15IC

CC15IC

CC15IC

CC15IC

CC15IC
CC15IC

CC15IC

CC15IC

CC15IC

CC15IC

DP2

DP3

P2

P3

CC15IO ... CC0IO

T0IN/P3.0

P2.15 ... P2.0

CC12IC

CC0IC

CC1

CC9

CC13

CC9IC

CC0

CC8

CC12

CC8IC

CC13IC

CC1IC
CC2

CC10

CC14

CC10IC

Registers
Data

T0IC

T1IC

T01CON

CCM0

CCM2

CCM3

CC14IC

CC2IC
CC3

CC11

CC15

CC11IC

T0

T1

CC15IC

CC3IC

Alternate Functions
Ports & Direction Control

Registers Control
Control Interrupt

TOREL

T1REL

Figure 8-2. SFRs and Port Pins Associated with the CADCON Unit

8 - Peripherals

4/64

8.1.1 Timers T0 and T1
The primary use of the timers T0 and T1 is to pro-
vide two independenttime bases (400nsmaximum
resolution for the capture/compare registers, but
they may also be used independent of the cap-
ture/compareregisters.

The functions of the timers T0 and T1 are control-
led by the bit addressable 16-bit control register
T01CON described below. T1 is controlled by the
upper byte, and T0 is controlled by the lower byte
of T01CON. T0R and T1R are the run flags of T0
and T1, respectively. They allow for enabling and
disabling the timers. The following description of
the timer modes and operation always applies to
the enabled state of the timers, i.e., when both T0R
and T1R are set to ‘1’.

T01CON (FF50h / A8h)
CAPCOMTimer 0 and 1 Control Register
Reset Value : 0000h

15 14 13 12 11 10 9 8

R T1R R T1M T1I

7 6 5 4 3 2 1 0

R T0R R T0M T0I

b15,b13,b12,b7,b5,b4= R: Reserved.
b14 = T1R: Timer/Counter 1 Run Bit.

If set at ’1’ will enable the Timer/Counter 1
b11 = T1M: Timer/Counter 1 Mode Selection Bit.
If set at ’1’ will enable counter mode, otherwise
enable timer mode.

b10 to b8 = T1I: Timer/Counter 1 input Selection
Bits.
See table 8.1 and 8.2 for more informationon the
input.

b6 = T0R: Timer/Counter 0 Run Bit.
If set at ’1’ will enable the Timer/Counter 0.

b3 = T0M: Timer/Counter 0 Mode Selection Bit.
If set at ’1’ will enable counter mode, otherwise
enable timer mode.

b2 to b0 = T0I: Timer/Counter 0 input Selection
Bits.
See table 8.1 and 8.2 for more informationon the
input.

In all modes, both timerT0 andtimer T1 are always
counting upward. The current timer values are ac-
cessible by the CPU in timer registers T0 and T1,
which are both non bit addressable SFRs. When
T0 or T1 are written by the CPU in the state imme-
diately before a timer increment or reload is to be
performed, the CPU write operation has priority,
and the increment or reload is disabled to guaran-
tee correct timer operation.

8.1.1.1 TIMER MODE

Bits T0M and T1M in SFR T01CONselectbetween
timer or countermode for T0 or T1, respectively. In
timer mode (T0M= ‘0’ or T1M= ‘0’), the input clock
for a timeris derivedfrom the internal system clock
divided by a programmable prescaler. The differ-
ent options for the prescaler are selected sepa-
rately for T0 and T1 by the bit fields T0I and T1I.
The input frequencies fT0 and fT1 for T0 and T1 are
determinedas a functionof the oscillator frequency
as follows, where <T0I> and <T1I> represent the
contentsof the bit fields T0I and T1I:

fT0 = fOSC

16 × 2<T0I>
, fT1 = fOSC

16 × 2<T1I>

When a timer overflows from FFFFh to 0000h, it is
reloaded with the value stored in its respective re-
load register T0REL or T1REL. The reload values
determine the periods PT0 and PT1 between two
consecutiveoverflows of T0 and T1 as follows:

PT0 = 16× (216 − <T0REL>) × 2<T0I>

fOSC

PT1 = 16× (216 − <T1REL>) × 2<T1I>

fOSC

The timer input frequencies, resolution, and peri-
odswhich result fromthe selected prescaler option
in T0I or T1I when using a 40MHz oscillator are
listed in table 8.1. The numbers for the timer peri-
ods are based on a reload value of 0000h. Note
that some numbers may be rounded to 3 signifi-
cant digits.

8 - Peripherals

5/64

Aftera timer has beenstarted by setting its run flag
(T0R or T1R) to ‘1’, the first increment will occur
within the time interval which is defined by the se-
lected timer resolution. All further increments occur
exactly after the time defined by the timer resolu-
tion. When both timers are to be incrementedor re-
loaded at the same time, T0 is alwaysserviced one
state before T1.

8.1.1.2 COUNTER MODE

Counter mode is selected for timerT0 or T1 by set-
ting the appropriate mode selection bit (T0M or
T1M) in register T01CON to ‘1’. Both timers can
operate in counter mode by counting the over-
flows/underflows of timer T6 in block GPT2 (see
section 8.2.2 for details on GPT2). In addition,
timer T0 offers the capability of being clocked by
external events. Either a positive, a negative, or
both a positive and a negative transition at pin
T0IN (alternate input function of port pin P3.0) can
be selected to cause an increment of T0.
When T1 is programmed to run in counter mode
(T1M= ‘1’), bit field T1I is used to enable the over-
flows/underflows of timer T6 as the count source

for T1. This is the only option for T1, and it is se-
lectedby the combinationT1I=X00b.When bit field
T1I is programmedto other combinations,timer T1
stops.
When T0 is programmed to run in counter mode
(T0M= ‘1’), bit field T0I is used to select the count
source and transition which should cause a count
trigger for T0. Table 8.2 shows the possible selec-
tions for the counter mode of timers T0 and T1.
In order to use pin P3.0/T0IN as external count in-
put pin for T0, P3.0 must be configured as input,
i.e., the corresponding direction control bit DP3.0
in register DP3 must be set to ‘0’. If P3.0/T0IN is
configured as output, timer T0 may be clocked by
modifying port data register bit P3.0 through soft-
ware, e.g. for testing purposes.
The maximum external input frequency to T0 in
counter mode is fOSC /16 (1.25MHz at 40MHz
fOSC). To ensure that a signal transition is properly
recognized, an external count input signal should
be held for at least 8 state times before it changes
its level again. The incremented count value ap-
pears in SFR T0 within 8 state times after the sig-
nal transitionat pin T0IN.

fosc = 40MHz
Timer Input Selection T01/T1I

000b 001b 010b 011b 100b 101b 110b 111b

Prescaler for fosc 16 32 64 128 256 512 1024 2048

Input Frequency 2.5MHz 1.25MHz 625kHz 312.5kHz 156.25kHz 78.125kHz 39.06kHz 19.53kHz

Resolution 400ns 800ns 1.6µs 3.2µs 6.4µs 12.8µs 25.6µs 51.2µs

Period 26ms 52.5ms 105ms 210ms 420ms 840ms 1.68s 3.36s

Table 8-1. CAPCOM Timers T0 and T1 Input Frequencies, Resolution and Periods

Counter T0 is incremented on
T0I/T1I

Counter T1 is incremented on
(2) (1) (0)

Overflow or Underflow of GPT2 Timer T6 X 0 0 Overflow or Underflow of GPT2 Timer T6

Positive External Transition at Pin T0IN X 0 1 (Counter T1 stops)

Negative External Transition at Pin T0IN X 1 0 (Counter T1 stops)

Positive and Negative Transition at T0IN X 1 1 (Counter T1 stops)

TABLE 8-2.Input Selection for T0 and T1 in Counter Mode

8 - Peripherals

6/64

8.1.1.3 RELOAD

A reload of a timerwith the 16-bit value stored in its
associated reload register is performed in timer
mode as well as in countermodeeach time a timer
overflows from FFFFh to 0000h. The reload regis-
ters T0REL and T1REL are not bit-addressable.

8.1.1.4 TIMER T0 AND T1 INTERRUPTS

Upon timeroverflow, the corresponding timer inter-
rupt request flag T0IR or T1IR for the respective
timer will be set. This flag can be used to generate
an interrupt or trigger a PEC service request when
enabledby the interrupt enable bits T0IE or T1IE.
Each of the two timers (T0 or T1) has its own bit-
addressable interrupt control register (T0IC or
T1IC) and its own interrupt vector (T0INT or
T1INT). The organization of the interrupt control
registers T0IC and T1IC is described hereafter.
Refer to chapter 7 for more details on the interrupt
control registers.

T0IC (FF9Ch / CEh)
CAPCOM Timer T0 Interrupt Control Registers
T0IC
Reset Value : 0000h

7 6 5 4 3 2 1 0

T0IR T0IE ILVL GLVL

b7 = T0IR: Timer 0 InterruptRequest Bit.
This flag can be used to generate an interrupt or
trigger a PEC service request.

b6 = T0IE: Timer 0 Interrupt Enable Bit.
If set at ’1’ will enable the timer 0 interrupt.

b5 to b2 = ILVL: Interrupt Priority Level Bits.
See chapter 7 for more details.

b1,b0 = GLVL: Interrupt Group Priority Bits.
See chapter 7 for more details.

T1IC (FF9Eh / CFh)
CAPCOM Timer T1 Interrupt Control Registers
T1IC
Reset Value : 0000h

7 6 5 4 3 2 1 0

T1IR T1IE ILVL GLVL

b7 = T1IR: Timer 1 InterruptRequest Bit.
This flag can be used to generate an interrupt or
trigger a PEC service request.

b6 = T1IE: Timer 1 Interrupt Enable Bit.
If set at ’1’ will enable the timer 1 interrupt.

b5 to b2 = ILVL: Interrupt Priority Level Bits.
See chapter 7 for more details.

b1,b0 = GLVL: Interrupt Group Priority Bits.
See chapter 7 for more details.

8 - Peripherals

7/64

Figure 8-3. CAPCOM Timer T0 Block Diagram

Figure 8-4. CAPCOM Timer T1 Block Diagram

8.1.1.5 BLOCK DIAGRAM

The following block diagrams illustrate the selec-
tionof the available functionsfor timerT0 and timer
T1. Figure 8.3 shows a block diagram of timer T0,

while Figure 8.4 shows a block diagram of timer
T1.

8 - Peripherals

8/64

8.1.2 Capture/Compare Registers
The sixteen 16-bit capture/compare registers CC0
through CC15 are used as data registers for cap-
tureor compareoperationswith respect to timerT0
and T1. The capture/compare registersare not bit-
addressable.

Each of the registers CC0 through CC15 may be
individually programmed for capture- or one of 4
differentcomparemodes, and may be allocatedin-
dividually to one of the timers T0 or T1. A special
combinationof comparemodes additionallyallows
the implementation of a ‘double-register’ compare
mode. When capture or compare operation is dis-
abled for one of the registers, it may be used for
general purposevariable storage.
The functions of the 16 capture/compareregisters
are controlled by 4 bit-addressable 16 bit mode
control registers named CCM0, CCM1, CCM2,
and CCM3, which are all organized identically.
Each register contains bits for the mode selection
and timer allocation of four capture/compareregis-
ters. The organization of CAPCOM mode control
register CCM0, and the organization of CAPCOM
mode control registers CCM1, CCM2, and CCM3
are decribed below. As the selection of the individ-
ual operatingmode is identical for each of the cap-
ture/compare registers, only a detaileddescription
of register CCM0 is given. The description for reg-
isters CCM1 through CCM3 is identical except for
the indices of the respective capture/comparereg-
isters.
Table 8.3 lists the possible capture and compare
modes which can be programmed for each cap-
ture/compare register. The different modes are
discussed in detail in the following subsections.

CCM0 (FF52h / A9h)
CAPCOMMode Control Registers CCM0

Reset Value : 0000h
15 14 13 12 11 10 9 8

ACC3 CCMOD3 ACC2 CCMOD2

7 6 5 4 3 2 1 0

ACC1 CCMOD1 ACC0 CCMOD0

b15 = ACC3: Capture/Compare Register CC3 Al-
location bit.
If set at ’1’, allocateCC3 to Timer 1, otherwiseal-
locate CC3 to Timer 0.

b14 to b12 = CCMOD3: Capture/CompareRegis-
ter CC3 Mode Selection.
See Table 8.3.

b11 = ACC2: Capture/Compare Register CC2 Al-
location Bit.
If setat ’1’ allocate CC2 to timer 1, otherwiseallo-
cate CC2 to timer0.

b10 to b8 = CCMOD2: Capture/CompareRegister
CC2 Mode Selection.
See Table 8.3.

b7 = ACC1: Capture/CompareRegister CC1 Allo-
cation Bit.
If setat ’1’ allocate CC1 to timer 1, otherwiseallo-
cate CC1 to timer0.

b6 to b4 = CCMOD1: Capture/Compare Register
CC1 Mode Selection.
See Table 8.3.

b3 = ACC0: Capture/CompareRegister CC0 Allo-
cation Bit.
If setat ’1’ allocate CC0 to timer 1, otherwiseallo-
cate CC0 to timer0.

b2 to b0 = CCMOD0: Capture/Compare register
CC0 Mode Selection.
See Table 8.3.

8 - Peripherals

9/64

CCMODx Function

(2) (1) (0)

0 0 0 Capture / Compare Disabled

0 0 1 Capture on Positive External Transition at Pin CCxIO

0 1 0 Capture on Negative External Transition at Pin CCxIO

0 1 1 Capture on Positive and Negative External Transition at Pin CCxIO

1 0 0
Compare Mode 0: Interrupt only; several interrupts per timer period; enables double-
registers compare mode for registers CC8 through CC15

1 0 1
Compare Mode 1: Pin toggles on each match; several compare events per timer
period; registers CC0 through CC7 have to be in this mode for double-register
compare operate

1 1 0 Compare Mode 2 : Interrupt only; only one interrupt per timer period

1 1 1
Compare Mode 3: Pin set on match; pin reset on timer overflow; only one compare
event per timer period

Note : x = 0 ..15

Table 8-3. Capture/Compare Register Mode Selection

CCM1 (FF54h / AAh)
CAPCOMMode Control Registers CCM1
Reset Value : 0000h

15 14 13 12 11 10 9 8

ACC7 CCMOD7 ACC6 CCMOD6

7 6 5 4 3 2 1 0

ACC5 CCMOD5 ACC4 CCMOD4

See description CCM0.

CCM2 (FF56h / ABh)
CAPCOMMode Control Registers CCM2
Reset Value : 0000h

15 14 13 12 11 10 9 8

ACC11 CCMOD11 ACC10 CCMOD10

7 6 5 4 3 2 1 0

ACC9 CCMOD9 ACC8 CCMOD8

See description CCM0.

CCM3 (FF58h / ACh)
CAPCOMMode ControlRegisters CCM3

Reset Value : 0000h
15 14 13 12 11 10 9 8

ACC15 CCMOD15 ACC14 CCMOD14

7 6 5 4 3 2 1 0

ACC13 CCMOD13 ACC12 CCMOD12

See description CCM0.

8 - Peripherals

10/64

As each of the 16 capture/compare registers CC0
through CC15 can be programmed to any of the
availablecaptureor compare modes, thesemodes
will be described in detail in the following only for
one representative capture/compare register
which is referred to as CCx. The index x may be
substitutedby any of the indices 0 through15.
Identically, the Port 2 pin which is associated with
register CCx will be referred to as CCxIO, where
CCxIO is the alternate function of P2.x. The inter-
rupt request flag which is associated with cap-
ture/compareregister CCx is referred to as CCxIR,
and the allocation and mode control bits for CCx
are referred to as ACCx and CCMODx, respec-
tively.

8.1.2.1 CAPTURE MODE

The contents of the timer (T0 or T1, according to
the state of the allocation control bit ACCx) are
latched into the allocated capture register CCx in
response to an external event. The external event
causing a capture can be programmedto be either
a positive, a negative, or both a positive and a
negative transition at the respective external input
pin CCxIO.

The active transition is selected by the mode bits
CCMODx in the respective CAPCOM mode con-
trol register. In any case, the event causing a cap-
ture will also set the respective interrupt request
flag CCxIR which can cause an interrupt or a PEC
service request when enabled.

Figure 8.5 shows a block diagram for one cap-
ture/compareregister in capture mode.
In order to use pin P2.x/CCxIO as external capture
input pin for capture register CCx, P2.x must be
configured as input, i.e., the corresponding direc-
tioncontrol bit DP2.x in register DP2 must be set to
‘0’. To ensure that a signal transition is properly
recognized, an external capture input signal
should be held for at least 8 state times before it
changes its level.

During these 8 states, the capture input signalsare
scanned sequentially. When a timer is modified or
incremented during this process, the new timer
contentswill already be captured for the remaining
capture registers within the scanning sequence.
If P2.x/CCxIO is configured as output, the capture
function may be performed by modifying port data
register bit P2.x through software, e.g. for testing
purposes.

Figure 8-5. Capture Mode Block Diagram

8 - Peripherals

11/64

8.1.2.2 COMPARE MODES

The comparemodesallow triggeringof eventswith
minimum software overhead. In all compare
modes, the 16-bit value stored in compare register
CCx (in the following also referred to as ‘compare
value’) is continuouslycompared with the contents
of the timer (T0 or T1) to which the register is allo-
cated. If the current timer contents match the com-
pare value, an appropriate output signal which is
based on the selected compare mode can be gen-
erated at the corresponding Port 2 pin, and an in-
terrupt request is generated by setting the
associated interrupt request flag CCxIR.
As for thecapture mode, the compareregistersare
also processed sequentially during compare
mode. When any two compare registers are pro-
grammed to the same compare value, their corre-
sponding interrupt request flags will be set to ‘1’
and the selected output signals will be generated
within 8 state times after the allocated timer is in-
cremented to the compare value. Further compare
events on the same compare value are disabled
until the timer is incremented or written to by soft-
ware. After a reset, compare events for register
CCx will only becomeenabled if the allocatedtimer
has been incremented or written to by software
and one of the compare modes described in the
following has been selected for this register.

The different compare modes which can be pro-
grammed for a givencompare register CCx are se-
lected by the mode control field CCMODx in the
associated capture/comparemode control register
(see table 8.3). In the following, each of the com-
pare modes, including the special ‘double-register’
mode, is discussed in detail.

8.1.2.2.1 Compare mode 0
This is an interrupt-only mode which can be used
for software timing purposes. Compare mode 0 is
selected for a given compare register CCx by set-
ting bit field CCMODx of the corresponding mode
control register to ‘100b’.

In this mode, interrupt request flag CCxIR is set
each time a match is detected between the con-
tents of compare register CCx and the allocated
timer. Several of these compare events are possi-
ble within a single timer period when the compare
value in register CCx is updated during the timer
period. ThecorrespondingPort 2 pin P2.x is not af-
fected by compare events in this mode and can be
used as a normal I/O pin.
If compare mode 0 is programmed for one of the
registers CC8 to CC15, the double-register com-
pare mode becomes enabled for this register if the
corresponding bank 1 register is programmed to
compare mode 1 (see section 8.1.2.2.5 for details
on the double-registermode).
Figure 8.6 shows a functional diagram of a com-
pare register CCx configured for compare mode 0.
Note that the port latch and pin remain unaffected
in comparemode 0. Figure8.7 showsa simpletim-
ing example for this mode. In this example, the
comparevalue in registerCCx is modified from cv1
to cv2 after compare events #1 and #3, and from
cv2to cv1 after events #2 and #4, etc... Thisresults
in periodic interrupt requests from timer Ty, and in
interrupt requests from register CCx which occur at
the time specifiedby the user throughcv1 and cv2.

Figure 8-6. Compare Mode 0 and 1 Block Diagram

8 - Peripherals

12/64

Figure 8-7. Timing Example for Compare Mode 0

8.1.2.2.2 Compare Mode 1
Compare mode 1 is selected for register CCx by
setting bit field CCMODx of the corresponding
mode control register to ‘101b’.
When a match between the contents of the allo-
cated timer and the compare value in register CCx
is detected in this mode, interrupt request flag
CCxIR is set to ‘1’, but also the correspondingpin
CCxIO(alternate output function of Port 2 pin P2.x)
is toggled. For this purpose, the state of Port 2 out-
put latch P2.x (not the pin) is read, inverted, and
then written back to the output latch.
Compare mode 1 allows several compare events
within a single timer period. An overflow of the
timer to which compare register CCx is allocated
has no effect on pin P2.x, nor does it disable or en-
able further compare events.
In order to use pin P2.x/CCxIO as compare signal
output pin for compare register CCx in compare

mode 1, P2.x must be configured as output, i.e.,
the corresponding direction control bit DP2.x in
register DP2 must be set to ‘1’. With this configura-
tion, the initial state of the output signal can be pro-
grammed or its state can be modified at any time
by writing to bit latch P2.x. However, if P2.x is writ-
ten to by software at the same time it would be al-
tered by a compare event, the software write will
have priority. In this case, the hardware-triggered
changewill not become effective.

For operation in the double-register compare
mode, compare mode 1 must be selected for the
registersCC0 to CC7 (seesection 8.1.2.2.5for de-
tails on the double register mode).
Figure 8.8 shows the timing example from the pre-
vious section, now for compare mode 1. The func-
tional block diagram of a compare register in
comparemode 1 is included in figure8.6 of the pre-
vious section. Note that in compare mode 1 the
port latch is toggled upon each compareevent.

VR0A1639

t Event #1 Event #2 Event #3 Event #4
CCx:=cv2 CCx:=cv2CCx:=cv1 CCx:=cv1

Compare Value cv2

Contents of Ty:

Compare Value cv1

Interrupt
Requests:

FFFFh

0000h

Reload Value < TyREL >

CCxIRTyIR TyIR TyIRCCxIR CCxIR CCxIR

x = (0. ..15)
y = (0, 1)

8 - Peripherals

13/64

Figure 8-8. Timing Example for Compare Mode 1

8.1.2.2.3 Compare Mode 2
Compare mode 2 is an interrupt-only mode similar
to compare mode 0, but only one interrupt request
per timer period will be generated.Compare mode
2 is selected for register CCx by setting bit field
CCMODx of the correspondingmode control regis-
ter to ‘110b’.
When a match is detected in compare mode 2 for
the first timewithin a timerperiod, interrupt request
flag CCxIR is set to ‘1’. The corresponding Port 2
pin P2.x is not affected and can be used as a nor-
mal I/O pin. However, after the first match has
been detected in this mode, all further compare
events within the same timer period are disabled

for compare register CCx until the allocated timer
overflows. This means that, after the first match,
even when the compare register is reloaded with a
value higher than the current timer value, no com-
pare event will occur until the next timer period.
Figure 8.9 shows a functional diagram of a com-
pare register configured for compare mode 2. Note
that the port latch and pin remain unaffected in
compare mode 2. Figure 8.10 shows a simple tim-
ing example for this compare mode. In this exam-
ple, the compare value in register CCx is modified
from cv1 to cv2 after compare event #1. However,
compare event #2 will not occur until the next pe-
riod of timer Ty.

VR001639

t

Compare Value CCz

Compare Value CCx

FFFFh

0000h

Reload Value < TyREL >

CCxIRTyIR TyIR TyIRCCzIR CCxIR CCzIR

Requests:
Interrupt

Contents of Ty:

State of CCxIO:

0

1

x = (0...7)

z = (8...15)

y = (0, 1)

8 - Peripherals

14/64

Figure 8-9. Compare Mode 2 and 3 Block Diagram

Figure 8-10. Timing Example for Compare Mode 2

VR0B1639

t Event #1

CCx:=cv2 CCx:=cv1

Event #2

Compare Value cv2

Compare Value cv1

FFFFh

0000h

Reload Value < TyREL >

CCxIRTyIR TyIR TyIRCCxIR

Requests:
Interrupt

Contents of Ty:

x = (0...15)

y = (0, 1)

8 - Peripherals

15/64

8.1.2.2.4 Compare Mode 3
Compare mode 3 is selected for register CCx by
setting bit field CCMODx of the corresponding
mode control register to ‘111b’. In compare mode
3, only one compare event will be generated per
timer period.
When the first match within the timer period is de-
tected, interrupt request flag CCxIR is set to ‘1’ and
pin CCxIO (alternate function of Port 2 pin P2.x)
will be set to ‘1’. The pin will be reset to ‘0’ whenthe
allocated timer overflows. If a matchwas found for
register CCx in this mode, all further compare
events during the current timer period are disabled
for CCx until the corresponding timer overflows. If,
after a match was detected, the compare register
is reloaded with a new value, this value will not be-
come effective until the next timerperiod.
In order to use pin P2.x/CCxIO as compare signal
output pin for compare register CCx, P2.x must be
configuredas output, i.e., the correspondingdirec-
tioncontrol bit DP2.x in registerDP2 must be set to
‘1’. With this configuration, the initial state of the
output signal can be programmed or its state can
be modified at any time by writing to bit latch P2.x.

Figure 8.11 shows the timing example from the
previous section, now for compare mode 3. The
functional block diagram of a compare register in
comparemode 3 is included in figure8.9 of the pre-
vious section. Note that in compare mode 3 the
port latch is set by the compare event and reset by
the next timer overflow.

8.1.2.2.5 Double-RegisterCompare Mode
In the double-register compare mode, two com-
pare registers work together to control one pin.
This mode is selected by a special combination of
modes for the two registers.

For the double-registermode, the 16 capture/com-
pare registers are regarded as two banks of 8 reg-
isters each.Registers CC0 throughCC7 form bank
1, while registers CC8 through CC15 form bank 2.
For the double-register mode, a bank 1 register
and a bank2 register forma register pair. Both reg-
isters of the register pair operateon the pin associ-
ated with the bank 1 register (pins CC0IO through
CC7IO, which are the alternate functions of Port 2
pins P2.0 through P2.7). Table 8.4 shows the rela-
tionship between the bank 1 and 2 register pairs
and the affected pins for the double-registermode.

Figure 8-11. Timing Example for Compare Mode 3

VR0C1639

t

Compare Value cv2

Compare Value cv1

FFFFh

0000h

Reload Value < TyREL >

CCxIRTyIR TyIR TyIRCCxIR

Requests:
Interrupt

Contents of Ty:

State of

0

1

x = (0...15)

y = (0, 1)

Event#1
CC x:=cv2

Event#2
CCx:=cv1

CCxIO:

8 - Peripherals

16/64

Register Pair Associated Pin

Bank 1 Bank 2

CC0 CC8 CC0IO

CC1 CC9 CC1IO

CC2 CC10 CC2IO

CC3 CC11 CC3IO

CC4 CC12 CC4IO

CC5 CC13 CC5IO

CC6 CC14 CC6IO

CC7 CC15 CC7IO

Table 8-4. Double-Register Mode Compare
Register Pairs

The double-register mode can be programmed in-
dividually for each register pair. In order to enable
the double-register mode, a bank 1 register (CC0
through CC7) must be programmed for compare
mode 1, and the corresponding bank 2 register
(CC8 through CC15) must be programmed for
comparemode 0. If the correspondingbank 1 com-
pare register is disabled or programmed for a
mode other than mode 1, the bank 2 register will
operate in compare mode 0 (interrupt-only mode)
as described in section 8.1.2.2.1.

In the following, a bank 2 register (programmed to
compare mode 0) will be referred to as CCz, while
the correspondingbank 1 register (programmed to
compare mode 1) will be referred to as CCx.
When a match is detected for one of the two regis-
ters in a register pair (CCx or CCz), the associated
interrupt request flag (CCxIR or CCzIR) is set to ‘1’
and pin CCxIO corresponding to bank 1 register
CCx is toggled. The interrupt generated always
correspondsto the register that caused the match.
NOTE: If a match occurs simultaneously for both
register CCx and register CCz of the register pair,
pin CCxIO will be toggled only once, but two sepa-
rate compare interrupt requests will be generated,
one for vectorCCxINT, and one for vectorCCzINT.
In order to use pin P2.x/CCxIO as compare signal
output pin in the double-register mode, P2.x must
be configuredas output, i.e., the correspondingdi-
rection control bit DP2.x in register DP2 must be
set to ‘1’. With this configuration, P2.x has the
same characteristics as in compare mode 1.
Figure 8.12 shows a functionaldiagram of a regis-
ter pair configured for the double-registercompare
mode. In this configuration example, the same
timer allocation was chosen for both compare reg-
isters, but each register may also be individuallyal-
located to either timer T0 or T1. Figure 8.13 shows
a timing example for this comparemode. In this ex-
ample, the compare values in registers CCx and
CCz are not modified.

8 - Peripherals

17/64

Figure 8-12. Double-Register Compare Mode Block Diagram

Figure 8-13. Timing Example for the Double-Register Compare Mode

VR001639

t

Compare Value CCz

Compare Value CCx

FFFFh

0000h

Reload Value < TyREL >

CCxIRTyIR TyIR TyIRCCzIR CCxIR CCzIR

Requests:
Interrupt

Contents of Ty:

State of CCxIO:

0

1

x = (0...7)

z = (8.. .15)

y = (0, 1)

8 - Peripherals

18/64

8.1.2.3 CAPTURE/COMPARE INTERRUPTS

Upon a capture or compare event, the interrupt re-
quest flag CCxIR for the respective capture/com-
pare registerCCx is set to ‘1’. This flag canbe used
to generatean interruptor triggera PECservice re-
quest when enabled by the interrupt enable bit
CCxIE.
Capture interrupts can be regarded as external in-
terrupt requests with the additional feature of re-
cording the time at which the triggering event
occurred (see also section 7.2.7).

Each of the 16 capture/compare registers (CC0
through CC15) has its own bit addressable inter-
rupt control register (CC0IC through CC15IC) and
its own interrupt vector (CC0INT through
CC15INT).The organizationof theinterrupt control
registers CC0IC through CC15IC is described on
next page. Refer to chapter 7 for more details on
the interrupt control registers.

8.2 GENERAL PURPOSE TIMERS (GPT)

The GPT unit represents a very flexible multifunc-
tional timer structurewhich may be used for timing,
event counting, pulse width measurement, pulse
generation, frequency multiplication, and other
purposes. It incorporates five 16-bit timers that
have been divided into two blocks, GPT1 and
GPT2.
Block GPT1 contains 3 timers/counters, while
block GPT2 contains 2 timers/counters and a 16-
bit Capture/Reload register (CAPREL). The GPT2
timers have a maximum resolution of 200ns (at
40MHz oscillator frequency), the resolution of the
GPT1 timers is 400ns. Each timer in each block
may operate independently in a number of differ-
ent modes suchas gated timer or countermode, or
may be concatenated with another timer of the
same block. The auxiliary timers of GPT1 may op-
tionally be configured as reload or capture regis-
ters for the core timer. In the GPT2 block, the
additional CAPREL register supports capture and
reload operation with extended functionality, and
its core timer T6 may be concatenatedwith CAP-
COM timers T0 and T1. Each block has alternate
input/outputfunctions and specific interrupts asso-
ciated with it. Figures 8.14 and 8.15 show block
diagrams of GPT1 and GPT2. In the following, the
GPT1 and GPT2 blocks will be described sepa-
rately.

8 - Peripherals

19/64

CAPCOM Registers Interrupt Control Registers
CC0IC through CC15IC

Reset Value for all of the registers: 0000h

CC0IC (FF78h / BCh)

7 6 5 4 3 2 1 0

CC0IR CC0IE ILVL GLVL

CC1IC (FF7Ah / BDh)

7 6 5 4 3 2 1 0

CC1IR CC1IE ILVL GLVL

CC2IC (FF7Ch / BEh)

7 6 5 4 3 2 1 0

CC2IR CC2IE ILVL GLVL

CC3IC (FF7Eh / BFh)

7 6 5 4 3 2 1 0

CC3IR CC3IE ILVL GLVL

CC4IC (FF80h / C0h)
7 6 5 4 3 2 1 0

CC4IR CC4IE ILVL GLVL

CC5IC (FF82h / C1h)

7 6 5 4 3 2 1 0

CC5IR CC5IE ILVL GLVL

CC6IC (FF84h / C2h)

7 6 5 4 3 2 1 0

CC6IR CC6IE ILVL GLVL

CC7IC (FF86h / C3h)

7 6 5 4 3 2 1 0

CC7IR CC7IE ILVL GLVL

CC8IC (FF88h / C4h)
7 6 5 4 3 2 1 0

CC8IR CC8IE ILVL GLVL

CC9IC (FF8Ah / C5h)

7 6 5 4 3 2 1 0

CC9IR CC9IE ILVL GLVL

CC10IC (FF8Ch / C6h)

7 6 5 4 3 2 1 0

CC10IR CC10IE ILVL GLVL

CC11IC (FF8Eh / C7h)
7 6 5 4 3 2 1 0

CC11IR CC11IE ILVL GLVL

CC12IC (FF90h / C8h)

7 6 5 4 3 2 1 0

CC12IR CC12IE ILVL GLVL

CC13IC (FF92h / C9h)

7 6 5 4 3 2 1 0

CC13IR CC13IE ILVL GLVL

CC14IC (FF94h / CAh)
7 6 5 4 3 2 1 0

CC14IR CC14IE ILVL GLVL

CC15IC (FF96h / CBh)

7 6 5 4 3 2 1 0

CC15IR CC15IE ILVL GLVL

8 - Peripherals

20/64

System
Clock

Auxiliary Timer T2

Core Timer T3

Auxil iary Timer T4

Interrupt

Requests

External

Output

Interrupt

and

Output

ControlControl

Mode

and

Input

External

External

Count/

Capture/

Reload

Inputs

Up/Down

Control

Input

VR001624

Figure 8-14. Block Diagram of GPT1

System

Clock

External

Capture

Input

Mode

and

Input

Control

Core Timer T6

CAPREL Register

Auxiliary Timer T5

Interrupt

and

Output

Control

Interrupt

Requests

External

Output

To CAPCOM

Timers T0, T1

VR 0A1624

Figure 8-15. Block Diagram of GPT2

8 - Peripherals

21/64

8.2.1 GPT1 Block
All three timersT2, T3, T4 of blockGPT1can run in
3 basic modes, which are timer, gated timer, and
counter mode, and all timers caneither count up or
down. Each timer has an alternate input function
pin on port3 associatedwith it which serves as the
gate control in gated timer mode, or as the count
input in counter mode. As a specific feature of the
core timer T3, its count direction may be dynami-
cally altered by a signal at an external input pin,
and each overflow/underflow may be indicated on
an alternate output function pin. The auxiliary tim-
ers T2 and T4 may additionally be concatenated
with the core timer, or used as capture or reload
registers for the core timer.

The current contents of each timer can be read or
modifiedby the CPU by accessing the correspond-
ing timer registers T2, T3, or T4, which are located
in the non-bit-addressable SFR space. When any
of the timer registers is written by the CPU in the
state immediately beforea timer increment, reload,
or capture is to be performed,the CPUwrite opera-
tion has priority in order to guarantee correct re-
sults.
From a programmer’s point of view, the GPT1
block is composedof aset of SFRs as shown in fig-
ure 8.16. Those portions of port and direction reg-
isters which are not used for alternate functions by
the GPT1 block are not shaded.

DP3
P3 T2

T3

T4

T2CON

T3CON

T4CON

T2IC

T3IC

T4IC

VR0A1640

Alternate Functions
Ports & Direction Control

Registers
Data

Registers Control
Interrupt

T2IN/P3.7
T3IN/P3.6
T4IN/P3.5
T3EUD/P3.4
T3OUT/P3.3

Control

DP3
P3
T2
T3
T4
T2CON

Port 3 Direction Control Register
Port 3 Data Register
GPT1 Timer 2 Register
GPT1 Timer 3 Register
GPT1 Timer 4 Register
GPT1 Timer 2 Control Register

T3CON
T4CON
T2IC
T3IC
T4IC

GPT1 Timer 3 Control Register
GPT1 Timer 4 Control Register
GPT1 Timer 2 Interrupt control Register
GPT1 Timer 3 Interrupt Control Register
GPT1 Timer 4 Interrupt Control Register

Figure 8-16. SFRs and Port Pins Associated with the GPT1 Block

In the following, the individual features of each timer in block GPT1 will be discussed separately.

8 - Peripherals

22/64

8.2.1.1 GPT1 CORE TIMER T3

The configuration of the core timer T3 is deter-
mined by its bit-addressable control register
T3CON, which is shown below

T3CON (FF42h / A1h)
GPT1 Core Timer T3 Control Register
Reset Value : 0000h

15 14 13 12 11 10 9 8

R T3OTL T3OE T3UDE

7 6 5 4 3 2 1 0

T3UD T3R R T3M T3I

b15 to b11, b5 = R: Reserved.
b10 = T30TL: Timer Output Toggle Latch.
Toggles on each overflow/underflowof T3.
Can be set or reset by software.
b9 = T30E: Alternate Output Function Enable.
This function is inabled if T30E=1
b8 = T3UDE: Timer 3 External Up/Down Control
Enable Bit.
b7 = T3UD: Timer 3 Up/Down Control Bit.
See table 8.6
b6 = T3R: Timer 3 Run Bit.
If set at ’1’ will run Timer/Counter3 otherwisestops
Timer/Counter 3.
b4,b3 = T3M: Timer 3 Mode Control.
b2 to b0 = T3I: Timer 3 InputSelection Bits.
See table 8.7 and 8.8 for more details.

Timer 3 Mode Selection
Bit field T3M (Timer 3 Mode Control) selects the
basic operating mode for timer T3. The available
optionsare listed in table 8.5,and will be discussed
in detail in the following subsections.

T3M Mode

(1) (0)

0 0 Timer

0 1 Counter

1 0 Gated Timer (gate is active low)

1 1 Gated Timer (gate is active high)

Table 8-5. Core Timer T3 Mode Control

Timer 3 Run Bit
The timer can be started or stopped by software
throughbit T3R (Timer T3 Run Bit). If T3R= ‘0’, the
timer stops. Setting T3R to ‘1’ will start the timer. In
gated timermode, the timer will only run if T3R= ‘1’
and the gate is active.
Count DirectionControl
The count direction of the core timer can be speci-
fied either by software or by the external input pin
T3EUD (Timer T3 External Up/Down Control In-
put),which is the alternateinput functionof portpin
P3.4. Theseoptions are selectedby bits T3UDand
T3UDE in control register T3CON. When the
up/down control is done by software (bit T3UDE =
‘0’), the count direction can be altered by setting or
clearing bit T3UD. When T3UDE = ‘1’, pin T3EUD
is selected to be the controllingsourceof thecount
direction. However, bit T3UD can still be used to
reverse the actual count direction, as listed in ta-
ble 8.6. If T3UD = ‘0’ and pin T3EUD shows a low
level, the timer is counting up. With a high level at
T3EUD the timer is counting down. If T3UD = ‘1’, a
high level at pin T3EUD specifies countingup, and
a low level specifies counting down. The count di-
rection can be changed regardless of whether the
timer is running or not.
When pin T3EUD/P3.4 is used as external count
direction control input, its corresponding direction
control bit DP3.4 must be set to ‘0’.

8 - Peripherals

23/64

Pin
T3EUD

Bit
T3UDE

Bit
B3UD

Count Direction

X 0 0 Count Up

X 0 1 Count Down

0 1 0 Count Up

1 1 0 Count Down

0 1 1 Count Down

1 1 1 Count Up

Table 8-6. GPT1 Core Timer T3 Count
Direction Control

Timer 3 Output Toggle Latch
An overflow or underflow of timer T3 will clock the
toggle bit T3OTL in control register T3CON.
T3OTL can also be set or reset by software. Bit
T3OE (Alternate Output Function Enable) in regis-
ter T3CON enables the state of T3OTL to bean al-
ternate function of the external output pin
T3OUT/P3.3. For that purpose, a ‘1’ must be writ-
ten into port data latch P3.3 and pin T3OUT/P3.3
must be configured as output by setting direction
control bit DP3.3 to ‘1’. If T3OE = ‘1’, pin T3OUT
then outputs the state of T3OTL. If T3OE= ‘0’, pin
T3OUT can be used as a general purpose I/O pin.
In addition,T3OTL canbe used in conjunctionwith
the timer over/underflows as a trigger source for
the counter or reload functions of the auxiliary tim-
ers. For this purpose, the state of T3OTL does not
have to be available at pin T3OUT, becausean in-
ternal connection is provided for this option. This
feature is described in detail in section 8.2.1.2.3
and 8.2.1.2.4 about the auxiliary timers.

8.2.1.1.1 Timer Mode
Timer mode is selected for the core timer T3 by
setting bit field T3M in register T3CON to ‘00b’. In
this mode, T3 is clocked with the internal system
clock divided by a programmable prescaler, which
is selected by bit field T3I. The input frequency fT3
for timer T3 is scaled linearly with slower oscillator
frequencies fOSC, as can be seen from the follow-
ing formula:

fT3 = fOSC

16 × 2<T3I>

The timer input frequencies,resolutionand periods
which result from the selected prescaler option
when using a 40MHz oscillator are listed in ta-
ble 8.7. This table also applies to the gated timer
mode of T3 and to the auxiliary timers T2 and T4 in
timer and gated timer mode. Note that some num-
bers may be rounded to 3 significant digits.
Figure 8.17 shows a block diagram of timer T3 in
timer mode.

8.2.1.1.2 Gated Timer Mode
In the gated timer mode, the same options for the
input frequencyas for the timermodeare available
(see table 8.7). However, the input clock to the
timer in this mode is gated by the external input pin
T3IN (Timer T3 External Input), which is an alter-
nate function of P3.6. Figure 8.18 shows a block
diagramof the core timer in this mode.
The gated timer mode is selected by setting bit
T3M.1 (T3CON.4) to ‘1’. Bit T3M.0 (T3CON.3) se-
lects the active level of the gate. Pin T3IN/P3.6
must be configured as input, i.e., direction control
bit DP3.6 must contain ‘0’.

fosc = 40MHz
Timer Input Selection T2I/T3I/T4I

000b 001b 010b 011b 100b 101b 110b 111b

Prescaler for fOSC 16 32 64 128 256 512 1024 2048

Input Frequency 2.5MHz 1.25MHz 625kHz 312.5kHz 156.25kHz 78.125kHz 39.06kHz 19.53kHz

Resolution 400ns 800ns 1.6µs 3.2µs 6.4µs 12.8µs 25.6µs 51.2µs

Period 26ms 52.5ms 105ms 210ms 420ms 840ms 1.68s 3.36s

Table 8-7. GPT1 Timer Input Frequencies, Resolution and Periods

8 - Peripherals

24/64

Figure 8-17. Block Diagram of Core Timer T3 in Timer Mode

Figure 8-18. Block Diagram of Core Timer T3 in Gated Timer Mode

If T3M.0 = ‘0’, the timer is enabled when T3IN
shows a low level. A high level at this pin stops the
timer. If T3M.0= ‘1’,pin T3INmust have a high level
in order to enable the timer to run. In addition, the
timer can be turned on or off by software using bit

T3R. The timerwill only run if T3R= ‘1’ and the gate
is active; it will stop if either T3R= ‘0’ or the gate is
in active. Note that a transition of the gate signal at
pin T3IN does not cause an interrupt request.

8 - Peripherals

25/64

8.2.1.1.3 Counter Mode
Counter mode is selected for T3 by programming
bit field T3M in register T3CON to ‘01b’. In counter
mode, timer T3 is clocked by a transition at the ex-
ternal input pin T3IN, which is an alternate function
of P3.6. The event causing an increment or decre-
ment of the timer can be a positive, a negative, or
both a positiveand a negative transition at this pin.
The options are selected by bit field T3I in control
register T3CON as shown in table 8.8.

For counter operation,pin T3IN/P3.6 must be con-
figured as input by setting direction control bit
DP3.6 to ‘0’. The maximum input frequency which
is allowed in counter mode is fosc/16 (1.25MHz at
fOSC = 40MHz). To ensure that a transition of the
count input signal which is applied to T3IN is cor-
rectly recognized, its level should be held for at
least 8 state times before it changes. Figure 8.19
shows a block diagram of the core timer in this
mode.

Figure 8-19. Block Diagram of Core Timer T3 in Counter Mode

T3I Counter T3 in Incremented/Decremented on :

(2) (1) (0)

0 0 0 No Transition Selected, T3 Disabled

0 0 1 Positive External Transition at Pin T3IN

0 1 0 Negative External Transition at Pin T3IN

0 1 1 Positive and Negative Ext. Transition at T3IN

1 X X (reserved)

Table 8-8. GPT1 Core Timer T3 Counter Mode Input Selection

8 - Peripherals

26/64

8.2.1.1.4 InterruptControl for Core Timer T3
When the timerT3 overflowsfrom FFFFh to 0000h
(when counting up), or when it underflows from
0000h to FFFFh (when counting down), interrupt
request flag T3IR in register T3IC will be set. This
will cause an interrupt to the timerT3 interruptvec-
tor T3INT, or trigger a PEC service if the interrupt
enablebit (T3IEin registerT3IC) is set. Theorgani-
zation of register T3IC is shown below. Refer to
chapter 7 for more details on interrupts.

8.2.1.2 GPT1 AUXILIARY TIMERS T2 AND T4

Both auxiliary timers T2 and T4 have exactly the
same functionality. They can be configured for
timer, gated timer, or counter mode with the same
options for the timer frequenciesand the count sig-
nal as the core timer T3. In addition to these 3
counting modes, the auxiliary timers can be con-
catenatedwith the core timer,or they may be used
as reload or capture registers in conjunction with
the core timer. Unlike the core timer, the auxiliary
timers can not be controlled for up or down count
by an external signal, nor do they have a toggle bit
or an alternate output function.
The individual configuration for timers T2 and T4 is
determined by their bit-addressable control regis-
ters T2CON and T4CON, which are both organ-
ized identically. Note that functions which are
present in all 3 timersof block GPT1are controlled
in thesame bit positionsand in the samemanner in
each of the specific control registers. The control
registers for the auxiliary timers are shown below.

T2CON (FF40h / A0h)
GPT1 Auxiliary Timers T2 ControlRegister
Reset Value : 0000h

15 14 13 12 11 10 9 8

R

7 6 5 4 3 2 1 0

T2UD T2R T2M T2I

T4CON (FF44h / A2h)

GPT1 Auxiliary Timers T4 ControlRegister
Reset Value : 0000h

15 14 13 12 11 10 9 8

R

7 6 5 4 3 2 1 0

T4UD T4R T4M T4I

b15 to b8 = R: Reserved.
b7 = TxUD: Timer x Up/Down Control bit.

TxUD = 0: Select up counting
TxUD = 1: Select down counting

b6 = TxR: Timer x Run Bit.
TxR = 0: Timer x Stops
TxR = 1: Timer x Runs

b5 to b3 = TxM: Timer x Mode Control.
See table 8.9.

b2 to b0 = TxI: Timer x Input Selection.
See table 8.7, 8.10,8.11 or 8.12 formore details.

T3IC (FF62h / B1h)
GPT1 Core Timer T3 Interrupt Control Register
Reset Value : 0000h

7 6 5 4 3 2 1 0

T3IR T3IE ILVL GLVL

8 - Peripherals

27/64

T2M/T4M Mode

(2) (1) (0)

0 0 0 Timer

0 0 1 Counter

0 1 0 Gated Timer (gate is active low)

0 1 1 Gated Timer (gate is active high)

1 0 0 Reload

1 0 1 Capture

1 1 X (reserved, no function selected)

Table 8-9. GPT1 Auxiliary Timer T2 and T4 Mode Control

The operating modes for the auxiliary timers T2
and T4 are independently selectable by bit fields
T2M and T4M. The available options for both tim-
ers are listed in table 8.9, and will be discussed in
detail in the following subsections.
In all of the counting modes of operation,the auxil-
iary timers can count up or down dependingon the
state of their control bits T2UD and T4UD. They
can be started or stopped through their run bits
T2R and T4R. In gated timer mode, the respective
timer will only run if T2R= ‘1’ or T4R= ‘1’ and the
gate is active.

8.2.1.2.1 Timer Mode

The operationof the auxiliary timers in thismode is
identical to that of the core timer T3. Timer mode is

selected for the auxiliary timers T2 or T4 by setting
the mode control field T2M or T4M in the respec-
tive control register T2CON or T4CON to ‘000b’.
The input frequenciesfT2 and fT4 to T2 and T4 are
determined by the contents of the timer input se-
lection fields T2I and T4I as follows:

fT2 = fOSC

16 × 2<T2I>
, fT4 = fOSC

16 × 2<T4I>

For an overview of the resulting input frequencies,
resolution, and periods when using a 40MHzoscil-
lator, refer to table 8.7 in section 8.2.1.1.1. The
block diagramof an auxiliary timer in timer mode is
shown in the following figure 8.20.

Figure 8-20. Block Diagram of an Auxiliary Timer in Timer Mode

8 - Peripherals

28/64

8.2.1.2.2 Gated Timer Mode
The gated timer mode for the auxiliary timers func-
tions as described for the core timer. For the auxil-
iary timers, an active low level for the gate is
selected by setting the mode control fields T2M or
T4M to ‘010b’, and an active high level is selected
by the bit combination ‘011b’. The gate for timer T2
is the external input pin T2IN, and T4IN is the gate

Figure 8-21. Block Diagram of an Auxiliary Timer in Gated Mode

for timer T4. T2IN is an alternate function of P3.7,
while T4IN is an alternate function of P3.5. In order
to use these alternate functions, the corresponding
direction control bits DP3.7 and DP3.5 must be set
to ‘0’. Figure 8.21 shows a block diagram of an
auxiliary timer in gated timer mode.

8.2.1.2.3 Counter Mode
Basically, the counter mode for the auxiliary timers
functions as described for the core timer. In addi-
tion, however, timersT2 and T4 offer the possibility
of selecting between two count sources. The first
source is an external input pin, T2IN for timer T2,
and T4IN for timer T4. Onecan select eithera posi-
tive, a negative, or both a positive and a negative
transition to cause an increment or decrement.
The direction control bits DP3.7 for T2IN or DP3.5
for T4IN must be set to ‘0’, and the input signal
shouldbe held at least8 statesfor correctedge de-
tection, which results in a maximum allowed fre-
quency for the count input signal of 1.25MHz at
fOSC = 40MHz.

Thesecond countsource is the toggle bit T3OTL of
the core timer T3. One can also select either a
positive, a negative, or both a positive and a nega-
tive transition of T3OTL to cause an increment or
decrement. Note that only state transitions of
T3OTL which are caused by the overflows/under-
flows of T3 will trigger the counter function of
T2/T4. Modifications of T3OTL by software will
NOT trigger the counter function of T2/T4. Ta-
ble 8.10 summarizes the different counter modes
of the auxiliary timers. A block diagram of an auxil-
iary timer in counter mode is shown in figure 8.22.

Using the toggle bit T3OTLas a clocksource for an
auxiliary timer in counter mode offers the feature of

8 - Peripherals

29/64

T2I/T4I Counter T2/T4 is Incremented/Decremented on

(2) (1) (0)

0 0 0 No transition Selected, Tx Disabled

0 0 1 Positive External Transition on TxIN

0 1 0 Negative External Transition on TxIN

0 1 1 Positive and Negative External Transition on TxIN

1 0 0 No Transition Selected, Tx Disabled

1 0 1 Positive Transition of T3OTL

1 1 0 Negative Transition of T3OTL

1 1 1 Positive and Negative Transition of T3OTL

Table 8-10. GPT1 Auxiliary Timers Counter Mode Input Selection (x = 2 or 4)

Figure 8-22. Block diagram of an Auxiliary Timer in Counter Mode

concatenating the core timer T3 and an auxiliary
timer. Depending on which transition of T3OTL is
selectedto clockthe auxiliary timer, one can form a
32-bit or 33-bit timer. This is explained in the fol-
lowing:
If both a positive and a negative transition of
T3OTL is used to clock the auxiliary timer, this
timer is clocked one very overflow/underflowof the
core timer T3. Thus, the two timers form a 32-bit
timer.
If eithera positiveor a negativetransitionof T3OTL
is selected to clock the auxiliary timer, this timer is

clockedon every second overflow/underflowof the
core timer. This configuration forms a 33-bit timer
(16-bit core timer+T3OTL+16-bit auxiliary timer).
The count directions of the two concatenated tim-
ers are not required to be the same. This offers a
wide variety of differentconfigurations.A blockdia-
gram showing the concatenation of a core timer
and an auxiliary timer is shown in Figure 8.23.

8 - Peripherals

30/64

T2I/T4I Reload on

(2) (1) (0)

0 0 0 No transition Selected, Tx Disabled

0 0 1 Positive External Transition on TxIN

0 1 0 Negative External Transition on TxIN

0 1 1 Positive and Negative External Transition on TxIN

1 0 0 No Transition Selected, Tx Disabled

1 0 1 Positive Transition of T3OTL

1 1 0 Negative Transition of T3OTL

1 1 1 Positive and Negative Transition of T3OTL

Table 8-11. GPT1 Auxiliary Timers Reload Trigger Selection (x = 2 or 4)

Figure 8-23. Concatenation of Core Timer T3 And an Auxiliary Timer

8.2.1.2.3 Reload Mode
Reload mode is selected by programming the
modecontrol fields T2M or T4M to ‘100b’. In reload
mode, the core timer T3 is reloaded with the con-
tents of an auxiliary timer register. Two different
sources can be selected to cause a reload of the

core timer. The options are programmedby the in-
put selection bits of bit fields T2I and T4I in regis-
ters T2CON or T4CON as shown in table 8.11.
When programmed for reload mode, the respec-
tive auxiliary timer T2 or T4 stops, independent of
its run flag T2R or T4R.

8 - Peripherals

31/64

Figure 8-24. GPT1 Auxiliary Timer in External Reload Mode

When bit T2I.2= ‘0’ or bit T4I.2= ‘0’, the source
which can cause a reload is the external input pin
T2IN for timer register T2 or pin T4IN for timer reg-
ister T4. One can select either a positive, a nega-
tive, or both a positive and a negative transition at
these input pins to cause a reload. When a se-
lected transition is detectedat the input pin T2IN or
T4IN, the core timer T3 is reloaded with the con-
tents of the auxiliary timer, and the interrupt re-
quest flag T2IR or T4IR of the auxiliary timer is set.
The direction control bits DP3.7 for T2IN or DP3.5
for T4IN must be set to ‘0’, and the input signal
should hold its level for at least 8 states to ensure
correct recognition of the triggering edge. Figure
below shows a block diagram of this external re-
load mode.

When bit T2I.2= ‘1’ or bit T4I.2= ‘1’, a transition of
the toggle bit T3OTL which is caused by an over-
flow/underflowof T3 is the trigger for a reload.Note
that software modificationsof T3OTLwill NOT trig-
ger the reload function. Again, one can select
either a positive, a negative,or both a positive and
a negative transition of T3OTL to cause a reload.
When a selected transition of T3OTL is detected,
the core timer T3 is reloaded with the contents of
the auxiliary timer, and the interrupt request flag
T2IR or T4IR of the respectiveauxiliary timer is set.
Note that the interrupt request flagT3IR of the core
timerT3 will also be set, indicatingthe overflow/un-
derflow of T3. Figure 8.25 shows a block diagram
of this reload mode.

8 - Peripherals

32/64

Figure 8-25. GPT1 Auxiliary Timer in Reload Mode Triggered by T30TL

Note: Although it is possible, the user should not
program both of the auxiliary timers to reload the
core timer on the same trigger event, since in this
caseboth of thereload registerswould try to reload
the core timer at the same time. In this case, the
contentsof T4 are loaded into the core timerT3.
The reload mode triggered by T3OTL can be used
in a number of different configurations.Depending
on the selection of the active transition, the follow-
ing functions can be performed:
If both a positive and a negative transition of
T3OTL is selected to trigger a reload, the core
timer will be reloadedwith the contentsof the aux-
iliary timer each time it overflows or underflows.
This is the ‘normal’ reload mode (reload on over-
flow/underflow).
If eithera positiveor a negativetransitionof T3OTL
is selected to trigger a reload, the core timerT3 will
be reloaded with the contents of the auxiliary timer
on every second overflow or underflow.
Using the latter configuration for both auxiliary tim-
ers, one can perform very flexible pulse width

modulation (PWM). One of the auxiliary timers is
programmed to reload the core timer on a positive
transitionof T3OTL, the other is programmedfor a
reloadon a negative transitionof T3OTL. Thus, the
core timer is alternately reloaded by each of the
auxiliary timers.
Figure 8.26 shows such a configuration of the
GPT1 timers for flexible PWM. T2 is programmed
to reload T3 on a positive transition of T3OTL,
while T4 will reload T3 on a negative transition of
T3OTL. The alternate output function for T3OTL is
enabled (T3OE= ‘1’), and the PWM output signal
will be available at pin T3OUT with the configura-
tion DP3.3= ‘1’ and P3.3= ‘1’ for port pin P3.3, as
explained in section 8.2.1.1. The auxiliary timer T2
holdsthevalue of thehigh time of the outputsignal,
while T4 is used to reload T3 with the value of the
low time. With this method, the low and high time of
the PWM signal can be varied in a wide range.
Note that T3OTL is implemented as a bit in SFR
T3CON, so that it can be altered by software if re-
quired to modify the PWM signal.

8 - Peripherals

33/64

Figure 8-26. GPT1 Timer Configuration For PWM Generation

8.2.1.2.4 Capture Mode
Capture mode is selected by programming the
mode control fields T2M or T4M to ‘101b’. In cap-
ture mode, the contents of the core timer are
latched into an auxiliary timer register in response
to a signal transition at the respective auxiliary
timer’s external input pin, which is T2IN/P3.7 for
timer register T2, or T4IN/P3.5 for timer register
T4. The capture trigger signal can be a positive, a

negative, or both a positive and a negative transi-
tion.

The two least significant bits of bit fields T2I or T4I
are used to select the active transition (see table
below), while the most significant bits T2I.2 or
T4I.2 are irrelevant for the capture mode. When
programmedfor capturemode, the respectiveaux-
iliary timer T2 or T4 stops, independent of its run
flag T2R or T4R.

T2I/T4I Contents of T3 Captured into T2/T4 on

(2) (1) (0)

X 0 0 No transition Selected, Tx Disabled

X 0 1 Positive External Transition on TxIN

X 1 0 Negative External Transition on TxIN

X 1 1 Positive and Negative External Transition on TxIN

Table 8-12. GPT1 Auxiliary Timers Capture TriggerSelection (x = 2 or 4)

8 - Peripherals

34/64

Figure 8-27. GPT1 Auxiliary Timer in Capture Mode

If a selected transition at the corresponding input
pin T2IN or T4IN is detected, then the contents of
the core timer are loaded into the auxiliary timer
register and the associated interrupt request flag
T2IR for timer T2 or T4IR for timer T4 will be set.
Note that the direction control bits DP3.7 (for T2IN)
and DP3.5 (for T4IN) must be set to ‘0’, and that
the level of the capture trigger signal should be
held for at least 8 states to ensure correct edge de-
tection. Figure below shows a block diagram of an
auxiliary timer in capture mode.
8.2.1.2.5 InterruptControl

Upon each overflow/underflow or upon each cap-
ture or reload trigger of one of the auxiliary timers
T2 or T4, its corresponding interrupt request flag
(T2IR or T4IR) will be set. This flag may cause an
interrupt to the specific auxiliary timer’s interrupt
vector (T2INT or T4INT), or initiate a PEC transfer,
when the request is enabled. Each of the auxiliary
timers T2 and T4 has its own interrupt control reg-
ister (T2IC, T4IC), as shown in figure below. Refer
to chapter 7 for further details on interrupts.

T2IC (FF60h / B0h)
GPT1 Auxiliary Timer 2 Interrupt Control Register

Reset Value : 0000h
7 6 5 4 3 2 1 0

T2IR T2IE ILVL GLVL

T4IC (FF64h / B2h)
GPT1 Auxiliary Timer 4 Interrupt Control Register
Reset Value : 0000h

7 6 5 4 3 2 1 0

T4IR T4IE ILVL GLVL

b7 = TxIR: Timer x InterruptRequest Bit.
This flag can be reset to generate an interrupt or
trigger a PEC service request.

b6 = TxIE: Timer x InterruptEnable Bit.
If set at ’1’ will enable the timer x interrupt.

b5 to b2 = ILVL: Interrupt Priority Level Bits.
See chapter 7 for more details.

b1 to b0 = GLVL: Interrupt Group Priority bits.
See chapter 7 for more details.

8 - Peripherals

35/64

DP3
P3

T5

T6

CAPREL

T5CON

T6CON

T5IC

T6IC

CRIC

VR0B1640

T6OUT/P3.1
CAPIN/P3.2

Alternate Functions
Ports & Direction Control

Registers
Data

Registers Control
InterruptControl

DP3
P3
T5
T6
CAPREL
T5CON
T6CON
T5IC
T6IC
CRIC

Port 3 Direction Control Register
Port 3 Data Register
GPT2 Timer 5 Register
GPT2 Timer 6 Register
GPT2 Capture/Reload Register
GPT2 Timer 5 Control Register
GPT2 Timer 6 Control Register
GPT2 Timer 5 Interrupt Control Register
GPT2 Timer 6 Interrupt Control Register
GPT2 CAPREL Interrupt Control Register

Figure 8-28. SFRs And Port Pins Associated with the GPT2 Block

8.2.2 GPT2 Block
Block GPT2 supports high precision event control
with a maximum resolutionof 200ns (at 40MHz os-
cillator frequency). It includes the two timers T5
and T6, and the 16-bit capture/reload register
CAPREL. Timer T6 is referred to as thecore timer,
and T5 is referredto as the auxiliary timerof GPT2.
An overflow/underflowof T6, which can only oper-
ate in timer mode, is indicated by a toggle bit
T6OTL whose state may be output on an alternate
function port pin. In addition, T6 may be reloaded
with the contents of CAPREL. The toggle bit also
supports concatenation of T6 with auxiliary timer
T5, while concatenation of T6 with CAPCOM tim-

ers T0 and T1 is provided through a direct connec-
tion. Based on an external signal, the contents of
T5 can be captured into register CAPREL, and T5
may optionally be cleared. Both timer T6 and T5
can count up or down, and the current timer value
can be read or modified by the CPU in the non-bit-
addressable SFRs T5 and T6. Each of the above
features will be described in detail in the following
subsections.
From a programmer’s point of view, the GPT2
block is represented by a set of SFRs as shown in
figure below. Those portions of port and direction
registerswhich are not used for alternatefunctions
by the GPT2 block are not shaded.

8 - Peripherals

36/64

8.2.2.1 GPT2 CORE TIMER T6

The operation of the core timer T6 is controlled by
the bit-addressable control register T6CON, is
shown below.
The core timer T6 can only run in timer mode. It is
started or stopped by software through bit T6R
(Timer T6 Run Bit). If T6R= ‘0’, the timerstops. Set-
ting T6R to ‘1’ will start the timer. The count direc-
tion can be controlled by software through bit
T6UD.

8.2.2.1.1 Timer Mode
Timer T6 is clocked with the internal system clock
divided by a programmable prescaler. Eight differ-
ent prescaler options can be selected by bit field
T6I in control register T6CON. The input frequency
fT6 to timer T6 is scaled linearly with slower oscilla-
tor frequenciesand is determinedas follows:

fT6 = fOSC

8 × 2<T6I>

Theresulting input frequency,resolution, and timer
period when using a 40MHz oscillator is illustrated
in table 8.13. This table also applies to GPT2 aux-
iliary timer T5. Note that the numbers may be
rounded to 3 significantdigits.

T6CON (FF48h / A4h)
GPT2 Core Timer T6 Control Register T6CON

Reset Value : 0000h
15 14 13 12 11 10 9 8

T6SR R T6OTL T6OE R

7 6 5 4 3 2 1 0

T6UD T6R R T6I

b15 = T6SR: Timer Reload Mode Enable Bit.
The reload from register CAPREL is enabled if
this bit is set at ’1’.

b14 to b11 and b5 to b3 = R: Reserved.
b10 = T6OTL: Timer 6 Output Toggle Latch.

Toggles on each overflow/underflowof T6.
Can be set or reset by software.

b9 = T6OE: Timer 6 Alternate Output Function en-
abled if T6OE = 1.

b7 = T6UD: Timer 6 Up/Down Control.
T6UD = 0. Timer 6 is counting up
T6UE = 1. Timer 6 is counting down.

b6 = T6R: Timer 6 Run Bit.
Timer 6 runs if T6R = 1.

b2 to b0 = T6I: Timer 6 Input Selection.
See table 8.13.

b2 to b0 = T6I: Timer 6 Input Selection.
See table 8.13.

fosc = 40MHz
Timer Input Selection T2I/T3I/T4I

000b 001b 010b 011b 100b 101b 110b 111b

Prescaler for fosc 8 16 32 64 128 256 512 1024

Input Frequency 5MHz 2.5MHz 1.25kHz 625kHz 312.5kHz 156.25kHz 78.125kHz 39.06kHz

Resolution 200ns 400ns 800 ns 1.6µs 3.2µs 6.4µs 12.8µs 25.6µs

Period 13ms 26ms 52.5ms 105ms 210ms 420ms 840ms 1.68s

Table 8-13. GPT2 Timer Input Frequencies, Resolution and Periods

An overflow or underflow of timer T6 will clock the
toggle bit T6OTL in control register T6CON.
T6OTL can also be set or reset by software. Bit
T6OE (Alternate Output Function Enable) in regis-
ter T6CON enables the state of T6OTL to bean al-
ternate function of the external output pin
T6OUT/P3.1. For that purpose, a ‘1’ must be writ-
ten into port data latch P3.1 and pin T6OUT/P3.1
must be configured as output by setting direction
control bit DP3.1 to ‘1’. If T6OE= ‘1’, pin T6OUT

then outputs the state of T6OTL. If T6OE= ‘0’, pin
T6OUT can be used as a general purpose I/O pin.

In addition, T6OTL can be used as the trigger
source for the counter function of auxiliary timer
T5. For this purpose, the state of T6OTL does not
have to be available at pin T6OUT, because an in-
ternal connection is provided for this option. This
feature is described in detail in section 8.2.2.2
about auxiliary timer T5.

8 - Peripherals

37/64

Figure 8-29. Block Diagram of GPT2 Core Timer T6 in Timer Mode

A reload of timerT6 on overflow/underflowwith the
contents of register CAPREL can be selected
throughbit T6SR in registerT6CON. A detailedde-
scription of this option can be found in sec-
tion 8.2.2.2.3 about the CAPREL register.
An overflow or underflow of timer T6 can also be
used to clock timers T0 or T1 in the CAPCOM unit.
For this purpose, a direct internal connection be-
tween timer T6 and timers T0 and T1 exists. Refer
to section 8.1 (CAPCOM Unit) for more details.
Figure below shows a block diagram of T6 in timer
mode.

8.2.2.1.2 Timer T6 InterruptControl
When timer T6 overflows from FFFFh to 0000h
(when counting up), or when it underflows from
0000h to FFFFh (when counting down), the inter-
rupt request flag T6IR in register T6IC will be set.
This will causean interrupt to the timer T6 interrupt
vector T6INT, or will trigger a PEC transfer, if the
interruptenable bit T6IE in register T6IC is set.The
organization of interrupt control register T6IC is
shown below. Refer to chapter 7 for more details
on interrupts.

T6IC (FF68h / B4h)
GPT2 Timer T6 InterruptControl Register

Reset Value : 0000h
7 6 5 4 3 2 1 0

T6IR T6IE ILVL GLVL

8.2.2.2 GPT2 AUXILIARY TIMER T5

The auxiliary timer T5 can operate in timer or
counter mode. These two modes are described
below. Unlike the core timer T6, the auxiliary timer
T5 has no toggle bit and no alternate output func-
tion. The operation of T5 is controlled by register
T5CON, which is shown in the following subsec-
tions.
In both timer and counter mode of operation, the
auxiliary timer T5 can count up or down depending
on the control bit T5UD, and it can be started or
stoppedthrough its run bit T5R (Timer T5 Run Bit).
If T5R= ‘0’, the timer stops. Setting T5R= ‘1’ will
start the timer.

8 - Peripherals

38/64

Figure 8-30. Block Diagram of GPT2 Core Auxiliary Timer T5 in Timer Mode

T5CON (FF46h / A3h)
GPT2 Auxiliary Timer T5 Control Register
Reset Value : 0000h

15 14 13 12 11 10 9 8

T5SC T5CLR CI R

7 6 5 4 3 2 1 0

T5UD T5R R T5M T5I

b15 = T5SC: Timer 5 Capture Mode Enable Bit.
Capture into register CAPREL is enabled if
T5SC = 1.

b14 = T5CLR: Timer 5 Clear Bit.
T5CLR = 0. Timer 5 is not cleared on a detected
transition at CAPIN
T5CCR = 1. Timer 5 is clear in a detected transi-
tion at CAPIN.

b13,b12= CI: Register CAPREL Input Selection.
See table 8.15.

b11 to b8 and b5 to b4 = R: Reserved.
b7 = T5UD: Timer 5 Up/Down Control Bit.

T5UD = 0. Timer 5 is countingup
T5UD = 1. Timer 5 is countingdown.

b6 = T5R: Timer 5 Run Bit.
Timer 5 runs if T5R = 1 otherwisestops.

b3 = T5M: Timer 5 Mode Control.
If T5M = 0 timer mode is enabled otherwise
counter mode is enabled.

b2 to b0 = T5I: Timer 5 InputSelection.
See table 8.13 and 8.14 for more details.

8.2.2.2.1 Timer Mode
In this mode, selected in registerT5CON by setting
bit T5M= ‘0’, the auxiliary timer T5 operatesexactly
as described for the core timer T6. It has the same
8 prescaler options, which are selected by bit field
T5I in control register T5CON. The input frequency
fT5 to timer T5 is determined as follows:

fT5 = fOSC

8 × 2<T5I>

Theresulting input frequency,resolution, and timer
period when using a 40MHz oscillator is the same
as for T6 (see table 8.13). Figure 8.30 shows a
block diagramof T5 in timer mode.

8.2.2.2.2 Counter Mode

8 - Peripherals

39/64

Figure 8-31. Block Diagram of GPT2 Auxiliary Timer T5 in Counter Mode

The counter mode of timer T5, selected by T5M=
‘1’, can only be used in conjunctionwith the toggle
bit T6OTL of the core timer T6, since timer T5 has
no external input pin. In this mode, timer T5 is
clocked by a transition of T6OTL. Note that only
state transitions of T6OTL which are caused by
overflows/underflows of T6 will trigger the counter
functionof T5. Modifications of T6OTL by software
will NOT trigger the counter function of T5. Either a
positive, a negative, or both a positive and a nega-
tive transition of T6OTL can be selected to cause
an increment or decrement of T5. The options are
selected by bit field T5I in control register T5CON
asshown in table 8.14. Figurebelowshows a block
diagramof timerT5 in this mode.
This mode can be used to concatenate the core
timer T6 and the auxiliary timer T5 to form a 32-bit
or a 33-bit timer (16-bit timer T6+T6OTL+16-bit
timer T5, see also section 8.2.1.2.3). The count di-
rectionsof the twotimers are not requiredto be the
same, which offers a wide variety of different con-
figurations. Figure 8.32 shows a block diagram for
the concatenationof timersT5 and T6.
8.2.2.2.3 Timer T5 InterruptControl

T5I Counter T5 is Incremented/Decremented on

(2) (1) (0)

0 X X No Transition Selected, T5 Disabled

1 0 0 No Transition Selected, T5 Disabled

1 0 1 Positive Transition of T6OTL

1 1 0 Negative Transition of T6OTL

1 1 1 Positive and Negative Transition of T6OTL

Table 8-14. Auxiliary Timer T5 Counter Mode Input Selection

When timer T5 overflows from FFFFh to 0000h
(when counting up), or when it underflows from
0000h to FFFFh (when counting down), the inter-
rupt request flag T5IR in register T5IC will be set.
This will cause an interrupt to the timer T5 interrupt
vector T5INT, or will trigger a PEC transfer, if the
interruptenable bit T5IE in register T5IC is set.The
organizationof interruptcontrol registerT5IC is de-
scribed below. Refer to Chapter 7 for more details
on interrupts.

8.2.2.3

T5IC (FF66h / B3h)
GPT2 Timer 5 Interrupt Control Register
Reset Value : 0000h

7 6 5 4 3 2 1 0

T5IR T5IE ILVL GLVL

8 - Peripherals

40/64

Figure 8-32. Concatenation of Timers T5 and T6

CI
Contents of T5 Captured into CAPREL on

(1) (0)

0 0 No Transition Selected, Capture Disabled

0 1 Positive External Transition on CAPIN

1 0 Negative External Transition on CAPIN

1 1 Positive and Negative Transition Ext. on CAPIN

Table 8-15. Register CAPREL Capture Trigger Selection

GPT2 CAPTURE/RELOAD
REGISTER CAPREL

This 16-bit register can be used as a captureregis-
ter for the auxiliary timer T5 or as a reload register
for the core timer T6, or as both. These functions
are controlled separately by bits in the two timer
control registersT5CON and T6CON.In the follow-
ing, the use of register CAPREL in capture and re-
load mode is described in detail.

8.2.2.3.1 Capture Mode
This mode is selected by setting bit T5SC= ‘1’ in
control register T5CON. The source for a capture
trigger is the external input pin CAPIN, which is an
alternate input function of port pin P3.2. Either a
positive, a negative, or both a positive and a nega-
tive transition at this pin can be selected to trigger
the capture function. The active edge is controlled
by bit field CI in register T5CON according to ta-
ble below.

8 - Peripherals

41/64

For triggering a capture operation on register
CAPREL, pin CAPIN/P3.2 must be configured as
input by setting its directioncontrol bit DP3.2 to ‘0’.
The maximum input frequencyfor the capture trig-
ger signal at pin CAPIN is fOSC /8 (2.5MHz at fOSC
=40MHz). To ensurethat a transitionof the capture
trigger signal is correctly recognized, its level
should be held for at least 4 state times before it
changes.
Whena selected transition at the external input pin
CAPIN is detected, the contents of the auxiliary
timer T5 are latched into register CAPREL, and in-
terrupt request flag CRIR is set. With the same de-
tected transitionat CAPIN, timer T5 can be cleared
to 0000h. This option is controlled by bit T5CLR in

register T5CON. The timer T5 clear function can
be selected regardless of the capture function. To
ensure that a transition of the clear trigger signal is
correctly recognized, its level should be held for at
least 4 state times. Once timer T5 is cleared, the in-
terrupt request flag CRIR in register CRIC is set.
Figure below shows a block diagram of register
CAPREL in capture mode.
Note that bit T5SC only controlswhether a capture
is performed or not. If T5SC=‘0’, the input pin
CAPIN can still be used as an external interrupt in-
put (see also section 7.2.7). This interrupt is con-
trolled by the CAPREL interrupt control registerCR
IC described in section 8.2.2.3.3 .

Figure 8-33. Register CAPREL In Capture Mode

8 - Peripherals

42/64

8.2.2.3.2 Reload Mode
This mode is selected by setting bit T6SR= ‘1’ in
register T6CON. The eventcausing a reload in this
mode is an overflow or underflow of the core timer
T6.
If T6SR= ‘1’ when timer T6 overflows from FFFFh
to 0000h (when counting up) or when it underflows
from 0000h to FFFFh (when counting down), the
value stored in register CAPREL is loaded into
timer T6. This will not set the interrupt request flag
CRIR associated with the CAPREL register. How-
ever, interrupt request flag T6IR will be set indicat-
ing the overflow/underflow of T6. Figure below
shows a block diagram of the reload mode of reg-
ister CAPREL.

Figure 8-34. Register CAPREL In Reload Mode

8.2.2.3.3 CAPREL Register Interrupt Control
Whenevera transitionaccording to the selection in
bit field CI is detected at pin CAPIN/P3.2, interrupt
request flag CRIR in register CRIC is set. This will
causean interrupt to the CAPRELregister interrupt
vector CRINT, or will triggera PECservice if the in-
terrupt enable bit CRIE in register CRIC is set. The
organization of register CRIC is described below.
Refer to chapter 7 for more details on interrupts.

CRIC (FF6Ah / B5h)
CAPREL Register Interrupt Control Register
Reset Value : 0000h

7 6 5 4 3 2 1 0

CRIR CRIE ILVL GLVL

8 - Peripherals

43/64

Figure 8-35. Register CAPREL In Capture And Reload Mode

8.2.2.3.4 Using the Capture and Reload Mode
Since the reload and the capture mode of register
CAPRELcanbeconfiguredindividuallybybitsT5SC
and T6SR, one can set both bits to use the two
modes of register CAPREL simultaneously. This
feature can be used to builda digitalPLL configura-
tion which generates an output frequency that is a
multiple of the input frequency, as described in the
following. Figure below shows a block diagram of
thisconfiguration.The operation in this mode will be
explainedwith anexample.
Consider the case, where one has to detect con-
secutive external events which may occur aperiodi-
cally, but needs a finer resolution, that means, more
‘ticks’ within the time betweentwo externalevents.

For this purpose, one measures the time between
the externalevents using timer T5 and the CAPREL
register. Timer T5 runs in timer mode counting up
(T5UD= ‘0’) with a frequencyof forexample fOSC /64.
Theexternaleventsare applied to pin CAPIN.When
an external event occurs, the timer T5 contents are
latched into register CAPREL, and timer T5 is

cleared (T5CLR= ‘1’). Thus, register CAPREL al-
ways contains the correct time between two
events, measured in timer T5 increments. Timer
T6, which runs in timer mode counting down
(T6UD= ‘1’) with a frequencyof for example fOSC /8,
uses the value in register CAPREL to perform a re-
load on underflow.This means, the value in register
CAPREL represents the time between two under-
flows of timer T6, now measured in timer T6 incre-
ments. Since timer T6 runs 8 times faster than timer
T5, it will underflow 8 times within the time between
two external events. Thus, the underflow signal of
timer T6 generates 8 ‘ticks’. Upon each underflow,
interrupt request flag T6IRwill be set and bit T6OTL
will be toggled.ThestateofT6OTLmaybeoutputon
pin T6OUT. This signal has 8 timesmore transitions
than the signalwhich is applied to pin CAPIN.

The underflowsignal of timer T6 can furthermore be
used to clock the CAPCOM timers T0 and/or T1,
which gives the user the possibility to set compare
eventsbasedona finer resolutionthanthatof theex-
ternalevents.

8 - Peripherals

44/64

8.3 A/D CONVERTER (ADC)

The ST10x166 provides a 10-bit A/D converter
with 10 multiplexed analog input channels and a
sample & hold circuit on-chip. It supports 4 differ-
ent conversion modes, including single channel,
single channel continuous, auto scan, and auto
scan continuous conversion. The external analog
referencevoltages VAREF andVAGND are fixed. Fig-
ure below shows a block diagram of the A/D con-
verter.
In the following Figure 8.37, all SFRs and port pins
are listed which are associated with the A/D con-
verter.

8.3.1 Conversion Modes and Operation
The analog input channels AN0 through AN9 are
alternate functions of port 5, which is a 10-bit input
only port. The port 5 lines may either be used as
analog or digital inputs. No special action is re-
quired by the user software to configure the port 5
lines as analog inputs.

The functions of the A/D converter are controlled
by the A/D Converter Control Register ADCON.
This bit-addressable register holds the bits which

Figure 8-36. A/D Converter Block Diagram

8 - Peripherals

45/64

P5
ADDAT
ADCON
ADCIC
ADEIC

Port 5 Data Register
A/D Converter Result Register
A/D Converter Control Register
A/D Converter End of Conversion Interrupt Control Register
A/D Converter Overrun Error Interrupt Control Register

Figure 8-37. SFRs and Port pins Associated with the A/D Converter

specify the analog channel, the conversion mode,
and the status of the converter.

Bit ADST is used to start or stop the A/D converter.
The busy flag ADBSY is a read-only flag which in-
dicates whether a conversion is in progress or not.
Bit field ADM determines the mode of operationof
the A/D converter as illustrated in table 8.16.
These modes will be discussed in detail in the fol-
lowing subsections.
Bit field ADCH in register ADCON specifies the
analog input channel which is to be converted in
the single channel conversionmodes, or the chan-
nel with which a conversion sequence of different

channels will be started in the auto scan modes.
Table 8.17 shows the reference between the
ADCH field and the selected input channels. Pro-
gramming ADCH to one of the reserved combina-
tions will produce invalid results.
The A/D Converter Result Register ADDAT,
shown in figure below holds the result of a conver-
sion. The low order 10 bits (ADDAT [9..0]) contain
the converted digital result, while the upper four
bits (ADDAT [15..12]) represent the number of the
channel which was converted. Register ADDAT is
not bit-addressable. The data remains in ADDAT
until it is overwritten by the data of the next conver-
sion.

ADCIR
ADEIR

ADDATP5 ADCON

VR0C1640

AN9 ... AN0
P5.9 ... P5.0

Ports
Registers

Data
Registers Control

InterruptControl

8 - Peripherals

46/64

ADM Conversion Mode

(1) (0)

0 0 Single Channel Conversion

0 1
Single Channel
Continuous Conversion

1 0 Auto Scan Conversion

1 1
Auto Scan Continuous
Conversion

Table 8-16. Conversion Mode Selection

ADDAT (FEA0h / 50h)
A/D Converter Result Register
Reset Value: 0000h

15 14 13 12 11 10 9 8

CHNR R ADRES [9..8]

7 6 5 4 3 2 1 0

ADRES [7..0]

b15 to b12 = CHNR: 4-Bit Channel Number.
b11 and b10 = R: Reserved.
b9 to b0 = ADRES: 10-Bit Result of the A/D Con-

version.

ADCON (FFA0h/ D0h)
A/D Converter Control Register
Reset Value: 0000h

15 14 13 12 11 10 9 8

R ADBSY

7 6 5 4 3 2 1 0

ADST R ADM ADCH

b15 to b9 and b6 =R: Reserved.
b8 = ADBSY: ADC Busy Flag

Read only bit.
Indicates if a conversion is in progress or not.

b7 = ADST: Start Bit.
Is used to start or stop the A/D Converter.

b5 to b4 = ADM: Mode Selection bit.
Determines the mode of operation of the A/D
Converter as illustrates in table 8.16.

b3 to b0 = ADCH: ADC Analog Input Channel Se-
lection.
See table 8.17.

8 - Peripherals

47/64

ADCH Selected Channel

(3) (2) (1) (0)

0 0 0 0 AN0 : Analog Input Channel 0

0 0 0 1 AN1 : Analog Input Channel 1

0 0 1 0 AN2 : Analog Input Channel 2

0 0 1 1 AN3 : Analog Input Channel 3

0 1 0 0 AN4 : Analog Input Channel 4

0 1 0 1 AN5 : Analog Input Channel 5

0 1 1 0 AN6 : Analog Input Channel 6

0 1 1 1 AN7 : Analog Input Channel 7

1 0 0 0 AN8 : Analog Input Channel 8

1 0 0 1 AN9 : Analog Input Channel 9

1 0 1 X (reserved, no channel selected)

1 1 X X (reserved, no channel selected)

Table 8-17. Analog Input Channel Selection

In all 4 conversion modes, a conversion is started
by setting bit ADST= ‘1’. This will also set the busy
flag ADBSY. The converter then selects and sam-
ples the input channelspecified by the channel se-
lection field ADCH in register ADCON. This will
take 1.575µs (at 40MHz oscillator frequency).The
sampled level will then be held internally for the
rest of the conversion, which will require another
8.175µs (at 40 MHz). When the conversion of this
channel is complete, the 10-bit result togetherwith
the number of the convertedchannel is transferred
into the result register ADDAT, and the interrupt re-
quest flag ADCIR will be set. If a previous conver-
sion result was not read out of register ADDAT by
the time a new conversion is complete, then the
A/D overrun error interrupt request flag ADEIR will
also be set. Theprevious result in register ADDAT
is lost because it is overwrittenby the new value.
If bit ADST is reset and then set again while a con-
version is in progress, this conversion will be
aborted and the converter will start again. When
setting bit ADST, a different conversion mode and
channelnumber may be specified.While a conver-
sion is in progressmodificationsto the mode selec-
tion field ADM will not become effective until the
next conversion. Modifications to the channel se-
lection field ADCH will not become effective until

the next conversion in the single channel conver-
sion modes, or the next conversion round in the
auto scan modes.

8.3.1.1 SINGLE CHANNEL CONVERSION MODE

This mode is selected by programming the mode
selection field ADM in registerADCON to ‘00b’. Af-
ter starting the converter through bit ADST, the
channel specified in bit field ADCH will be con-
verted. After the conversion is complete, interrupt
request flag ADCIR will be set and the converter
will automatically stop and reset bits ADBSY and
ADST. Resetting bit ADST while a conversion is in
progresshas no effect.

8.3.1.2 SINGLE CHANNEL CONTINUOUS
CONVERSION

This mode is selectedby bitcombination ‘01b’ in bit
field ADM. After starting the converter, the speci-
fied channel will be converted repeatedly until the
converter is stopped by software. Interrupt request
flag ADCIR is set at the end of each single conver-
sion. Whenbit ADST is reset by software, the con-
verter will complete the current conversion and
then stop and reset bit ADBSY.

8 - Peripherals

48/64

8.3.1.3 AUTO SCAN CONVERSION MODE

With this mode, a set of different analog input
channels can be converted without requiring soft-
ware to change the channelnumber. The channels
are converted consecutively, starting with channel
ANn which is specified in bit field ADCH, down to
and including channel AN0. The auto scan conver-
sion mode is selected by ‘10b’ in bit field ADM. Af-
ter conversion of channel ANn has been
completed, interrupt request flag ADCIR is set and
the converter starts to convertchannelANn-1.This
procedure is repeated until conversion of channel
AN0 is complete. The A/D converter then stops
and resets bits ADST and ADBSY. Resetting bit
ADST while a conversion is in progress has no ef-
fect.

8.3.1.4 AUTO SCAN CONTINUOUS CONVERSION

This mode is selected by setting field ADM in regis-
ter ADCON to ‘11b’. The auto scan continuous
mode differs from the auto scanmode described in
the previous section only in that the converterdoes
not stop after the conversion of channel AN0 is
completed.The internalchannelnumbercounter is
reloaded with the channel number which is speci-
fied in register ADCON, and the conversion round
is started again. This procedure is repeated until
the converter is stopped by software. When bit
ADST is reset by software, the converter will con-
tinue until the conversion of channel AN0 is com-
plete. It will then stop and reset bit ADBSY.

8.3.2 A/D Converter Interupt Control
At the end of each conversion, interrupt request
flag ADCIR in interrupt control register ADCIC is
set. This end-of-conversion interrupt request may
cause an interrupt to vectorADCINT, or it may trig-
ger a PEC data transfer which stores the conver-
sion result from register ADDAT e.g. into a table in
the internal RAM for later evaluation. Note that the
number of the converted channel is contained in
the four most significant bits in register ADDAT.
When the conversion result has not been read out
of register ADDAT at the time the next conversion
is complete, the previous result will be overwritten
and interrupt request flag ADEIR in registerADEIC
will be set. This overrun error interrupt request of
the A/D converter may be used to cause an inter-
rupt to vector ADEINT. The interrupt control regis-
ters which are associated with the A/D converter
aredescribed below. For more detailson interrupts
refer to chapter 7.

ADCIC (FF98h / CCh)
Interrupt Control Registers
Reset Value: 0000h

7 6 5 4 3 2 1 0

ADCIR ADCIE ILVL GLVL

ADEIC (FF9Ah / CDh)
Interrupt Control Registers
Reset Value: 0000h

7 6 5 4 3 2 1 0

ADEIR ADEIE ILVL GLVL

8.4 SERIAL CHANNELS

For serial communication with other microcontrol-
lers, microprocessors, and external peripherals,
the ST10x166 has two identical serial interfaces
on-chip,Serial Channel 0 (ASC0) and Serial Chan-
nel 1 (ASC1). They support full-duplex asynchro-
nous communication up to 625KBaud and
half-duplex synchronous communication up to
2.5MBaud. In the synchronous mode, data are
transmitted or received synchronous to a shift
clock which is generated by the ST10x166. In the
asynchronousmode, 8 or 9-bitdata transfer,parity
generation,and the number of stop bits can be se-
lected. The reception of data is double-buffered.
Parity, framing, and overrun error detection is pro-
vided to increase the reliability of data transfers.
For multiprocessor communication, a mechanism
to distinguish address from data bytes is included,
and a loop-back option is available for testing pur-
poses. Each serial channel has separate interrupt
vectors for receive, transmit, and error, and each
channel has its own dedicated baud rate gener-
ator. This is a 13-bit timer with a 13-bit reload reg-
ister which supports a wide range of baud rates
without oscillator tuning.
Figure 8.38 givesan overviewof the SFRsand port
pins which are associatedwith the serial channels.
Those portions of Port 3 and its direction control
register DP3 which are not used for alternate func-
tions by the serial channelsare not shaded.

8 - Peripherals

49/64

DP3
P3
S0BG
S0TBUF
S0RBUF
S1BG
S1TBUF
S1RBUF
S0CON
S1CON
S0TIC
S0RIC
S0EIC
S1TIC
S1RIC
S1EIC

Port 3 Direction Control Register
Port 3 Data Register
Serial Channel 0 Baud Rate Generator/Reload Register
Serial Channel 0 Transmit Buffer Register (write only)
Serial Channel 0 Receive Buffer Register (read only)
Serial Channel 1 Baud Rate Generator/Reload Register
Serial Channel 1 Transmit Buffer Register (write only)
Serial Channel 1 Receive Buffer Register (read only)
Serial Channel 0 Control Register
Serial Channel 1 Control Register
Serial Channel 0 Transmit Interrupt Control Register
Serial Channel 0 Receive Interrupt Control Register
Serial Channel 0 Error Interrupt Control Register
Serial Channel 1 Transmit Interrupt Control Register
Serial Channel 1 Receive Interrupt Control Register
Serial Channel 1 Error Interrupt Control Register

Figure 8-38. SFRs And Port Pins Associated With The Serial Channels

DP3
P3

RXD0/P3.11
TXD0/P3.10

RXD1/P3.9

TXD1/P3.8

S0TIC
S0RIC

S0EIC

S1TIC
S1RIC

S1EIC

S0BG

S0TBUF

S0RBUF

S1BG

S1TBUF

S1RBUF

S0CON

S1CON

VR0D1640

Alternate Functions
Ports & Direction Control

Registers
Data

Registers
Control

Control
Interrupt

8 - Peripherals

50/64

8.4.1 Modes of Operation
The operation of the serial channels ASC0 and
ASC1 is controlled by the bit-addressable control
registers S0CON and S1CON, which are shown
below. They contain control bits for mode and error
check selection, and status flags for error identifi-
cation.
Serial data transmission or receptionis only possi-
ble when the Baud Rate GeneratorRun Bit S0R or
S1R for the respective channel is set to ‘1’. The in-
dividual operating mode for each channel is deter-
mined by the mode control fields S0M and S1M in
registers S0CON and S1CON as shown in Table
8.18. These fields may not be programmed to one
of the reserved combinations, otherwise unpre-
dictable results may occur.
A transmission will be performed by writing the
data to be transmitted into the associatedTransmit
Buffer register S0TBUF or S1TBUF. In general,
any instruction or PEC data transfer operation
which uses these registers as destination will initi-
ate a transmission. Note that S0TBUF and
S1TBUF are non bit-addressable WRITE ONLY
registers, and that only the number of data bits
which is determined by the selected operating
mode will actually be transmitted. This means that
the bits written to positions 9 through 15 of regis-
ters S0TBUF and S1TBUF are always insignifi-
cant. Aftera transmissionhas beencompleted, the
transmit buffer registers are cleared to 0000h.

S0CON (FFB0h / D8h)
Serial Channel Control Register S0CON
Reset Value: 0000h

15 14 13 12 11 10 9 8

S0R S0LB S0BRS R S0OE S0FE S0PE

7 6 5 4 3 2 1 0

S0OEN S0FEN S0PEN S0REN S0STP S0M

S1CON (FFB8h / DCh)
Serial Channel Control Register S1CON

Reset Value: 0000h
15 14 13 12 11 10 9 8

S1R S1LB S1BRS R S1OE S1FE S1PE

7 6 5 4 3 2 1 0

S1OEN S1FEN S1PEN S1REN S1STP S1M

b15 = SxR: ASCx Baud Rate GeneratorRun Bit.
The Baud Rate Generator is enabled if SxR = 1.

b14 = SxLB: Loop Back Mode Enable Bit.
The Loop Back Mode is enabled if SxLB = 1.

b13 = SxBRS: Baud Rate Selection Bit.
The current baud rate is multiplied by 2/3 if
SxBRS=1.

b12 to b11 = R: Reserved.
b10 = Sx0E: Overrun Error Flag.

Set by hardware when an overrun error occurs
and SxOEN= 1. Must be reset by software.

b9 = SxFE: Framing Error Flag.
Set by hardware when a framingerroroccursand
SxFEN = 1; Must be reset by software.

b8 = SxPE: Parity Error Flag.
Set by hardware when a parity error occurs and
SxPEN = 1; Must be reset by software.

b7 = SxOEN: Overrun Check Enable Bit.
SxOEN = 0: Overrun Check Disabled
SxOEN = 1: Overrun Check Enabled.

b6 = SxFEN: Framing Check Enable Bit.
SxFEN = 0: Framing Check Disabled
SxFEN = 1: Framing Check Enabled.

b5 = SxPEN: Parity Check Enable Bit.
SxPEN = 0: Parity Check Disabled
SxPEN = 1: Parity Check Enabled.

b4 = SxREN: Receiver Enable Bit.
Used to Initiate Reception. Reset by hardwareaf-
ter a byte in synchronous mode has been re-
ceived.

b3 = SxSTP: Number of Stop Bits Selection.
SxSTP = 0: One Stop Bit
SxSTP = 1: Two Stop Bits.

b2 to b0 = SxM: ASCx Mode Control.
(see table 8.18).

8 - Peripherals

51/64

Data reception is enabled by the Receiver Enable
Bits S0REN and S1REN, respectively.After recep-
tion of a character has been completed, the re-
ceived data and, if provided by the selected
operatingmode, the receivedparity bit canbe read
from the Receive Buffer registers S0RBUF or
S1RBUF of the associated serial channel. These
registers are non bit addressable READ ONLY
registers. Bits in the upper half of S0RBUF and
S1RBUF which are not significant for the selected
operatingmode will be read as zeros.
Data reception is double-buffered, so that recep-
tion of a second character may already begin be-
fore the previously received character has been
read out of the receive buffer register. In all modes,
receive buffer overrun error detection can be se-
lected through bits S0OEN and S1OEN. When en-
abled, the overrun error status flag S0OE or S1OE
and the error interrupt request flagS0EIR or S1EIR
for the respective channel will be set when the re-
ceive buffer register has not been read by the time
reception of a second character is complete. The
previously received character in the receive buffer
is overwritten.

S0M/S1M

Mode
(2) (1) (0)

0 0 1 8-bit data, asynchronous operation

0 1 1 7-bit data + parity bit, asynchronous operation

1 0 0 9-bit data, asynchronous operation

1 0 1 8-bit data + wake-up bit, asynchronous operation

1 1 1 8-bit data + parity bit, asynchronous operation

0 0 0 8-bit data, asynchronous operation

X 1 0 (reserved)

Table 8-18. Serial Channel Modes of Operation

In each of the operating modes provided by the se-
rial channels of the ST10x166, a loop-back option
can be selected through bits S0LB or S1LB. This
option allows to simultaneously receive the data
which are being transmitted by the ST10x166. To
increase the range of programmablebaud rates for
the two serial interfaces, a baud rate selection op-
tion can be selected through S0BRS or S1BRS.
The current baud rate will be multiplied by 2/3. All
operating modes of the serial channels will be de-
scribed in detail in the following subsections.

8.4.1.1 ASYNCHRONOUS OPERATION

In asynchronous operation, full-duplex communi-
cation is supported.The sameoperatingmodeand
baud rate is used for both transmission and recep-
tion. Each serial channel of the ST10x166has two
pins associatedwith it which are alternate functions
of port 3 pins. RXD0/P3.11 and TXD0/P3.10 are
used by ASC0 in asynchronous operation as re-
ceive data input and transmit data output pins, re-
spectively, while RXD1/P3.9 and TXD1/P3.8 are
used by ASC1. Figure 8.39 shows a block diagram
of a serial channel in the asynchronous mode of
operation.

8 - Peripherals

52/64

Figure 8-39. Serial Channel Asynchronous Mode Block Diagram

Information Frames in Asynchronous Opera-
tion
Each information frame that can be transmitted or
received by the serial channels in asynchronous
operationconsists of the following elements:

- One start bit

- An 8-bit or 9-bit data frame, selected by bit
fields S0M/S1M

- One or two stop bits, selected by bits
S0STP/S1STP in control registers
S0CON/S1CON

Figure 8.40 shows an information frame with an 8-
bit data frame. D0 to D6 are data bits. D7 can be
configured as the 8th data bit (8-bit data mode) or
as the parity bit (7 -bit data +parity bit mode).
Figure 8.41 shows an information frame with a 9-
bit data frame. D0 to D7 are data bits. D8 can be
configured to either be the 9th data bit (9-bit data
mode), the parity bit (8-bit data + parity bit mode),
or the special wake-up bit used in multiprocessor
communication (8-bit data+wake-up bit mode).

8 - Peripherals

53/64

Start
Bit

D0
(LSB)

D1 D2 D3 D4 D5 D6
D7

(parity)

1’st
Stop
Bit

2’nd
Stop
Bit

Figure 8-40. 8-Bit Data Frame

Start
Bit

D0
(LSB)

D1 D2 D3 D4 D5 D6 D7
D8

(parity-
wk-up)

1’st
Stop
Bit

2’nd
Stop
Bit

Figure 8-41. 9-Bit Data Frame

Asynchronous Transmission
A transmission is initiated by writing the data to be
transmitted into the transmit data buffer register
S0TBUF or S1TBUF, respectively. However, a
transmission will only be performed if the corre-
sponding baud rate generator run bit S0R= ‘1’ or
S1R= ‘1’ at the time the write operation to the
transmit buffer occurs. Transmission then starts at
the next overflow of the divide-by-16 counter (see
figure 8.39). First the start bit will be output on the
associatedtransmitdata output pinTXD0 or TXD1,
followed by the selected number of data bits, LSB
first. In the two modes with parity bit generation,
the parity bit will automatically be generated by
hardware and inserted at the MSB position of the
data frame during transmission.
When one stop bit has been selected for the data
frame(S0STP= ‘0’ or S1STP=‘0’), the correspond-
ing transmit interrupt request flag S0TIR or S1TIR
will be set after the lastbit of the data frame(includ-
ing the parity or wake-up bit) has been sent out,
otherwise it will be set after the first stop bit has
been sent out.
When a write operation to the transmit data buffer
is performed while a transmission on the respec-
tive channel is in progress, the current transmis-
sion will be aborted, the associated output pin
TXD0 or TXD1 will go high, and a new character
frame will be sent with the data written to S0TBUF

or S1TBUFat the next overflowof thedivide-by-16
counter.Continuousdata transfercan be achieved
by using the transmit interrupt request to reloadthe
transmit data buffer in the interrupt service routine
or by PEC data transfer.
In order to use pin TXD0/P3.10 or TXD1/P3.8 as
transmit data output, the corresponding port data
output latch P3.10 or P3.8 must be set to ‘1’, and
the pin must be configured as output by setting its
direction control bit DP3.10 or DP3.8 to ‘1’.
Asynchronous Reception
Reception is initiated on channel ASC0 by a de-
tected 1-to-0 transition on pin RXD0 if bit S0R= ‘1’
and S0REN= ‘1’, and on ASC1 by a 1-to-0 transi-
tion on RXD1 if S1R= ‘1’ and S1REN= ‘1’. The re-
ceive data input pins RXD0 and RXD1 are
sampled at 16 times the rate of the selected baud
rate.The 7th, 8th,and 9th sample are examinedby
the internal bit detectors. The effective bit value is
determined by a majoritydecision in order to avoid
erroneous results that may be caused by noise.
If the detectedvalue is not a ‘0’ when the start bit is
sampled, the receive circuit is reset and waits for
the next 1-to-0 transition at pin RXD0 or RXD1, re-
spectively. If the start bit proves valid, the receive
circuit continues sampling and shifts the incoming
data frame into the receive shift register.

8 - Peripherals

54/64

When the last stop bit has been received, the con-
tents of the receive shift register are transferred to
the receive data buffer register. Simultaneously,
the receive interrupt request flag S0RIR or S1RIR
is set after the 9th sample in the first stop bit time
slot when one stopbit has been programmed, or in
the second stop bit time slot when two stop bits are
programmed, regardless whether valid stop bits
have been received or not. The receive circuit then
waits for the next start bit (1-to-0 transition) at its
receive data input pin. Note that in the 8-bit
data+wake-upbit mode the data from receive shift
register will only be transferred into SOR-
BUF/S1RBUF and the receive interrupt request
flag will only be set if the 9th data bit received was
a ‘1’.
When the receiver enable bit S0REN or S1REN of
a serial channel in asynchronousoperation is reset
to ‘0’ while a reception is in progress, the current
reception will be completed, including generation
of the receive interrupt request and, in case of er-
rors, generation of the error interrupt request and
settingof theerror status flagswhich are described
in the following. Reception then stops for the af-
fected channel, and further start bits at the receive
data input pin will be ignored.
In order to use pin RXD0/P3.11 or RXD1/P3.9 as
receive data input, the corresponding direction
control bit DP3.11 or DP3.9 must be set to ‘0’.
Hardware Error Detection Capabilities
To improve the safety of asynchronous data ex-
change, the serial channels of the ST10x166 pro-
vide selectable hardware error detection
capabilities. For each channel, three error status
flags in the channel‘s control register S0CON or
S1CON indicate whether an error has been de-
tected during reception. Upon completion of a re-
ception, the error interrupt request flag S0EIR or
S1EIR will be set simultaneously with the receive
interrupt request flag S0RIR or S1RIR if one or
more of the following conditions are met:

- If the framing error detection enable bit S0FEN
or S1FEN is set and any of the expected stop
bits is not high, the framing error flag S0FE or
S1FE is set indicating that the error interrupt
request is due to a framing error.

- If the parity error detection enable bit S0PEN
or S1PEN is set in the modes where a parity bit
is received, and the parity check on the re-
ceived data bits proves false, the parity error

flag S0PE or S1PE is set indicating that the er-
ror interrupt request is due to a parity error.

- If the overrun error detection enable bit S0OEN
or S1OEN is set and the last character re-
ceived was not read out of the receive buffer
by software or PEC transfer at the time recep-
tion of a new frame is complete, the overrun er-
ror flag S0OE or S1OE is set indicating that the
error interrupt request is due to an overrun er-
ror.

In the following subsections, specific charac-
teristics of the individual operating modes for the
asynchronous communication are described in
more detail.

8.4.1.1.1 8-Bit Data Mode

This mode is selected by programming the mode
selection field S0M or S1M in register S0CON or
S1CON to ‘001b’. The data frame which will be
transmittedand/or received consists of 8 data bits.
After a reception, the upper byte of the receive
buffer register contains zero. The parity checking
function upon reception is disabled in this mode,
independent of the state of S0PEN and S1PEN.
The overrun and framing checks, however, can be
enabled.

8.4.1.1.2 7-Bit Data + Parity Bit Mode

This mode is selected by programming the respec-
tive mode selection field S0M or S1M to ‘011b’.
The data frame which will be transmitted and/or re-
ceived consistsof 7 data bits and a parity bit. All er-
ror checks may be enabled in this mode.
Ontransmission, the paritybit is automaticallygen-
erated by hardware and inserted at the MSB posi-
tion of the data frame. The parity bit is set to ‘1’ if
the modulo 2 sum of the 7 data bits is 1, otherwise
it is cleared (even parity).
On reception, the parity on the 7 data bits received
is generated by hardware. The result is then com-
pared to the 8th bit received, which is the parity bit.
If thecomparisonproves false, both the parityerror
flag and the error interrupt request flag for the re-
spective serial channel are set, provided the parity
check has been enabled in the serial channel’s
control register. The actual parity bit received is
placed in the 8th bit of the receive data buffer reg-
ister. The upper byte of the receive buffer register
is always zero in this mode.

8 - Peripherals

55/64

8.4.1.1.3 9-Bit Data Mode
This mode is selected by programming the respec-
tive mode selection field S0M or S1M to ‘100b’.
The data frame which will be transmitted consists
of the lower 9 bits of the transmit buffer register.
On reception, all 9 data bits received are trans-
ferred from the receive shift register to the receive
buffer register, and the remaining 7 bits (9 through
15) of the receive buffer register are cleared to
zero. The parity checking function upon reception
is disabled in this mode, independent of the state
of S0PEN and S1PEN. The overrun and framing
checks, however, can be enabled.

8.4.1.1.4 8-Bit Data + Wake-Up Bit Mode
This is a special mode provided to facilitate multi-
processor communication, and it is selected by
programming the modeselection field S0M or S1M
to ‘101b’. The data frame which will be transmitted
includes the lower 9 bits of the transmit buffer reg-
ister.
The operation in this mode isbasically the same as
in the 9-bit data mode. However, on reception, if
the 9th data bit received is a ‘0’, the received data
are not transferred into the receive buffer registers
S0RBUF/S1RBUF and no receive interrupt re-
quest will be generated.A wayto use this featurein
multiprocessor systems is as follows:
When the master processor wants to transmit a
block of data to one of several slaves, it first sends
out an address byte which identifies the target
slave. An address byte differs from a data byte in
that the additional9th bit is a ‘1’ for an addressbyte
and a ‘0’ for a data byte. Operating in the8-bit data
+ wake-up bit mode, no slavewill be interruptedby
a data ‘byte’.An address‘byte’, however,will inter-
rupt all slaves, so that each slave can examine the
8 LSBs of thereceived characterand see if it isbe-
ing addressed. The addressed slave will switch its
operating mode to the 9-bit data mode (e.g by
clearing bit SxM.0, see table 8.18) and prepare to
receive the data bytes that will be coming. The
slaves that were not beingaddressed remain in the
8-bit data + wake-up bit mode, ignoring the incom-
ing data bytes.

8.4.1.1.5 8-Bit Data+Parity Bit Mode
This mode is selected by programming the respec-
tive mode selection field S0M or S1M to ‘111b’.

The data frame which will be transmittedand/or re-
ceived consists of 8 data bits and a paritybit. All er-
ror checks may be enabled in this mode.
On transmission, the paritybit (even parity) is auto-
matically generated based on the 8 data bits and
inserted at the MSB positionof the data frame.

On reception, the parity on the 8 data bits received
is generated and the result is compared to the 9th
bit received, which is the parity bit. If the compared
bits are different, both the parity error flag and the
error interrupt request flag are set, provided the
parity check has been enabled. The actual parity
bit received is placed in the 9th bit of the receive
data buffer register, and the remaining 7 bits (9
through 15) of the receive buffer register are
cleared to zero.

8.4.1.2 SYNCHRONOUS OPERATION

This operating mode of the serial channels ASC0
and ASC1 allows half-duplex communication and
is mainly providedfor simpleI/O expansionvia shift
registers. 8 data bits are transmitted or received
synchronousto a shift clockgeneratedby the inter-
nal baud rate generator. The shift clock is only ac-
tive as long as data bits are transmitted or
received. Synchronous operation is selected by
programming the modecontrol fieldS0M or S1Mof
a serial channel to ‘000b’. Figure 8.42 shows a
block diagram of a serial channel in synchronous
mode.
In synchronousoperation, pin TXD0/P3.10 is used
by ASC0 to output the shift clock, while
RXD0/P3.11either serves as transmitdata input or
receive data output. Channel ASC1 uses pins
RXD1/P3.9 and TXD1/P3.8 for these purposes.

8.4.1.2.1 SynchronousData Transmission
For data transmission, the transmit data buffer reg-
ister S0TBUF (S1TBUF) is loaded with the byte to
be transmitted. If bit S0R = ‘1’ and S0REN = ‘0’ in
register S0CON (S1R = ‘1’ and S1REN = ‘0’ in
S1CON) at that time, the LSB of the transmit buffer
register will appear at pin RXD0 (RXD1) within 4
state times after this write operation has beenexe-
cuted. Subsequently, the contents of the transmit
buffer register are shifted out synchronouswith the
clock at the corresponding shift clock output pin
TXD0 (TXD1). After the bit time for the 8th bit, both
pins TXD0 and RXD0 (TXD1 and RXD1) will go
high, the transmit interrupt request flag S0TIR
(S1TIR) is set, and serial data transmission stops.

8 - Peripherals

56/64

Figure 8-42. Serial Channel Synchronous Mode Block Diagram

While a synchronous data transmission is in pro-
gress, any write operation to the transmit buffer
register of this serial channel will abort the current
transmission and start a new transmit process.
When the receiver enable bit S0REN or S1REN is
set to ‘1’ during a transmission, unpredictable re-
sults may occur on the affected channel.

In order to configureTXD0/P3.10or TXD1/P3.8 as
shift clock output, both the correspondingport out-
put bit latch P3.10 or P3.8 and the directioncontrol
bit DP3.10 or DP3.8 must be set to 1. Pin
RXD0/P3.11 or RXD1/P3.9 is each configured as
transmitdata output by settingboth P3.11= ‘1’ and
DP3.11 = ‘1’, or P3.9 = ‘1’ and DP3.9 = ‘1’, respec-
tively.

8 - Peripherals

57/64

8.4.1.2.2 SynchronousData Reception
Data reception is initiated by setting bit S0REN =
‘1’ (S1REN = ‘1’). If bit S0R = ‘1’ (S1R = ‘1’), the
data applied at pin RXD0 (RXD1) are clocked into
the receive shift register synchronous to the clock
which is output at pin TXD0 (TXD1). After the 8th
bit has been shifted in, the contents of the receive
shift register are transferred to the receive data
buffer S0RBUF (S1RBUF), the receive interrupt
request flag S0RIR (S1RIR) is set, the receiver en-
able bit S0REN (S1REN) is reset, and serial data
reception stops. RXD0/P3.11 or RXD1/P3.9 are
configuredas receive data input by settingDP3.11
= ‘0’ or DP3.9 = ‘0’.
Once a receptionis in progresson a serialchannel,
resetting its receiver enable bit S0REN or S1REN
to ‘0’ by software has no effect. Writing to its trans-
mit buffer register while a reception is in progress
has no effect on reception nor will it ever start a
transmission.

In synchronous operation, the low byte of the re-
ceive buffer register represents the received data,
while the high byte is always zero after synchro-
nous reception. If a previously received byte has
not been read out of the receive buffer register at
the time reception of the next byte is complete,
both the error interrupt request flag S0EIR or
S1EIR and the overrun error status flag S0OE or
S1OE will be set, provided the overrun check has
been enabled by bit S0OENor S1OEN.

8.4.1.2.3 Loop-backMode

For testing purposes, a special loop-back mode is
provided which allows testing of each serial chan-
nel without using the alternate functions of the port
pins associated with this channel. While in loop-
back mode, instead of receiving data from the RX
D0 or RXD1pin, the data which are transmittedare
simultaneouslyclocked into the receive shift regis-
ter.
A transmission in loop-back mode is initiated for
channel ASC0 by a write operation to S0TBUF
when S0LB = ‘1’, S0REN = ‘1’ and S0R = ‘1’, and
for ASC1 by writing to S1TBUF with S1LB = ‘1’,
S1REN= ‘1’ and S1R= ‘1’. This featureis available
for all operating modes (asynchronous and syn-
chronous) of the serial channels.

8.4.2 Baud Rates
Eachof the serial channelsof the ST10x166has its
own dedicated 13-bit baud rate generator with 13-
bit reload capability, allowing independent baud
rate selection for each channel.
Both baud rate generators are 13-bit timers
clocked with the internal system clock divided by 2
(10MHz at 40MHz oscillator frequency). The tim-
ers are counting downwards and can be started or
stopped through the Baud Rate Generator Run
Bits S0R or S1R in register S0CON or S1CON.
Each underflowof a timerprovides one clockpulse
to a serial channel. The timers are reloaded with
the value stored in their 13-bit reload register each
time they underflow. The baud rate selection bits
S0BRS and S1BRS allow the increase of the baud
rate by a coefficientof 2/3.
Thus, the baud rate of a serial channel is deter-
mined by the oscillator frequency, the Baud Rate
Selection Bit, the reload value, and the mode
(asynchronousor synchronous)of the serial chan-
nel.
Registers S0BG and S1BG are the dual-function
Baud Rate Generator/Reload registers. Reading
S0BG or S1BG returns the contents of the timer,
while writing to S0BG or S1BG always updates the
reload register. When writing to S0BG or S1BG
(i.e., to the reload registers), the 3 upper bits 13
through15 are insignificant,whilereading S0BGor
S1BG (i.e., the timer registers)always returnszero
in bits 13 through 15.
An auto-reloadof the timer with the contents of the
reload register is performed each time S0BG or
S1BG is written to. However, if S0R = ‘0’ or S1R =
‘0’ at the time the writeoperation to S0BG or S1BG
is performed,the timer will not be reloadeduntil the
first instruction cycle after S0R = ‘1’ or S1R = ‘1’.

8.4.2.1 ASYNCHRONOUS MODE BAUD RATES

In asynchronous operation, the baud rate gener-
ators provide a clock with 16 times the rate of the
established baud rate. The reason for this is that
on reception every bit frame is sampled 16 times.
Thus, the baud rates Basync0 and Basync1for the
serial channels ASC0 and ASC1 in asynchronous

8 - Peripherals

58/64

Baud Rate f osc Reload Value

625 KBaud 40 MHz 0000h

19.2 KBaud 39.3216 MHz 001Fh

9600 Baud 39.3216 MHz 003Fh

4800 Baud 39.3216 MHz 007Fh

2400 Baud 39.3216 MHz 00FFh

1200 Baud 39.3216 MHz 01FFh

600 Baud 39.3216 MHz 03FFh

75 Baud 39.3216 MHz 1FFFh

Table 8-19. Asynchronous Modes Baud Rates (Baud Rate SxBRS=0)

operation are determined by the following formu-
las:

Basync0 = fOSC

64 × (<S0BRL> + 1)

Basync1 = fOSC

64 × (<S1BRL> + 1)

When SxBRS = ‘1’, these formulas are:

Basync0 = 2
3

fOSC

64 × (<S0BRL> + 1)

Basync1 = 2
3

fOSC

64 × (<S1BRL> + 1)

<S0BRL> and <S1BRL> represent the contents of
the reload registers, taken as unsigned 13-bit inte-
gers.

Table 8.19 lists various commonly used baud rates
togetherwith the required reload value. The maxi-
mum baud rate that can be achieved for the asyn-
chronousmodes when using a 40MHz oscillator is
625KBaud.

8.4.2.2 SYNCHRONOUS MODE BAUD RATES

In the synchronous mode, the baud rate gener-
ators provide 4 times the rate of the desired baud
rate. Therefore, the underflow rate coming from
the baud rate timers is additionallydivided by four.
The maximum baud rate that can be achieved in
synchronousoperationwhen using a 40MHzoscil-
lator is 2.5 MBaud. Generally, the baud rates
Bsync0 and Bsync1 for the serial channels in syn-
chronous operationare determinedas follows:

Basync0 = fOSC

16 × (<S0BRL> + 1)

Basync1 = fOSC

16 × (<S1BRL> + 1)

When SxBRS = ‘1’, these formulas are:

Basync0 = 2
3

fOSC

16 × (<S0BRL> + 1)

Basync1 = 2
3

fOSC

16 × (<S1BRL> + 1)

8 - Peripherals

59/64

Serial Channel Interrupt Control Registers
Reset Value: 0000h
S0TIC (FF6Ch / B6h)

7 6 5 4 3 2 1 0

S0TIR S0TIE ILVL GLVL

S0RIC (FF6Eh / B7h)
7 6 5 4 3 2 1 0

S0RIR S0RIE ILVL GLVL

S0EIC (FF70h / B8h)
7 6 5 4 3 2 1 0

S0EIR S0EIE ILVL GLVL

S1TIC (FF72h / B9h)
7 6 5 4 3 2 1 0

S1TIR S1TIE ILVL GLVL

S1RIC (FF74h / BAh)
7 6 5 4 3 2 1 0

S1RIR S1RIE ILVL GLVL

S1EIC (FF76h / BBh)
7 6 5 4 3 2 1 0

S1EIR S1EIE ILVL GLVL

8.4.3 Serial Channels Interrupt Control
Three bit addressable interrupt control registers
are provided for each serial channel. Registers
S0TIC and S1TIC control the transmit interrupt,
registers S0RIC and S1RIC control the receive in-
terrupt, and registers S0EIC and S1EIC control the
error interrupt of serial channel ASC0 and ASC1,
respectively. Each interrupt source also has its
own dedicated interrupt vector. S0TINT is the
transmit interrupt vector, S0RINT is the receive in-
terrupt vector, and S0EINT is the error interrupt
vector for channel ASC0, while S1TINT, S1RINT,
and S1EINT are the corresponding interrupt vec-
tors for ASC1.
The cause of an error interrupt request (framing,
parity, overrun error) can be identified by the error
status flags in control registers S0CON and
S1CON. Note that, unlike the error interrupt re-
quest flags S0EIR or S1EIR, the error status flags
S0FE/S0PE/S0OE or S1FE/S1PE/S1OE are not
reset automatically upon entry into the error inter-
rupt service routine, but must be cleared by soft-
ware.
The organization of the interrupt control registers
associated with the serial channels is shown here.
For more details on interruptsrefer to chapter 7.

8 - Peripherals

60/64

Figure 8-43. Watchdog Timer Block Diagram

Figure 8-44. SFRs and Reset Indication Pin Associated with the Watchdog Timer

WDT

Watchdog
Timer Register

(read only)

Watchdog
Timer Control

Register

WDTCON

RSTOUT

VR0E1640

Reset Indication Pin Data Registers Control Registers

8.5 WATCHDOG TIMER (WDT)

To allow recovery from software or hardware fail-
ure, a Watchdog Timer has been provided in the
ST10x166. If the software fails to service this timer
beforean overflowoccurs,an internal hardwarere-
set will be initiated. This internal reset will also pull
the RSTOUT pin low (see chapter 11). When the
software has been designed to service the Watch-
dog Timer before it overflows, the WatchdogTimer
times out if the program does not progress prop-
erly. The Watchdog Timer will also time out if a
software error was due to hardware related fail-

ures. This prevents the controller from malfunc-
tioning for longer than a user-specified time.

The Watchdog Timer is a 16-bit up counter which
can be clocked with either the oscillator frequency
(fOSC) divided by 4 or with fOSC /256. The upper 8
bitsof the WatchdogTimer can be preset to a user-
programmablevalue in order to vary the watchdog
time. Figure 8.43 shows a block diagram of the
Watchdog Timer, while Figure 8.44 shows the
SFRs and the reset indication pin RSTOUT which
are associated with the Watchdog Timer.

8 - Peripherals

61/64

Watchdog Operation
The current count value of the Watchdog Timer is
contained in the Watchdog Timer Register WDT,
which is a non-bit-addressableREAD-ONLY regis-
ter. The operation of the Watchdog Timer is con-
trolled by the bit-addressable Watchdog Timer
Control Register WDTCON shown hereafter.
After any software-, external hardware-, or Watch-
dog Timer reset, the Watchdog Timer is enabled
and starts counting up from 0000h with the fre-
quency fOSC/4. The Watchdog Timer can be dis-
abled via the instruction DISWDT (Disable
Watchdog Timer). Instruction DISWDT is a pro-
tected 32-bit instruction which will ONLY be exe-
cuted during the time between a reset and
execution of either the EINIT (End of Initialization)
or the SRVWDT (Service Watchdog Timer) in-
struction. Either one of these instructions disables
the execution of DISWDT.
When the Watchdog Timer is not disabled via in-
struction DISWDT, it will continue counting up,
even during Idle Mode. If it is not serviced via the
instructionSRVWDT by the time the count reaches
FFFFh, the Watchdog Timer will overflow and
cause an internal reset. This reset will pull the ex-
ternal reset indication pin RSTOUT low. It differs
from a software or external hardware reset in that
bit WDTR (Watchdog Timer Reset Indication flag)
of register WDTCON will be set. A hardware reset
or the SRVWDT instruction will clear this bit. Bit
WDTRcan then be examined by software in order
to determine the cause of the reset.
To prevent the Watchdog Timer from overflowing,
it must be serviced periodically by the user soft-
ware. The Watchdog Timer is serviced with the in-

struction SRVWDT, which is a protected 32-bit in-
struction. Servicing the Watchdog Timer clears the
low byte and reloads the high byte of the Watchdog
Timer Register WDT with the preset value in bit
field WDTREL, which is the high byte of register
WDTCON. Servicing the Watchdog Timer will also
reset bit WDTR. After being serviced, the Watch-
dog Timer continuescounting up from <WDTREL>
x 28. Instruction SRVWDT has been encoded in
such a way that the chance of unintentionallyserv-
icing the Watchdog Timer is minimized. When in-
struction SRVWDT does not match the format for
protectedinstructions, the ProtectionFault trap will
be entered (see chapter CHAPTER 7).
The time period for an overflow of the Watchdog
Timer is programmable in two ways. First, there
are two options for the input frequency to the
Watchdog Timer. Either fOSC/4 or fOSC/256 can be
selected by bit WDTIN in register WDTCON. Sec-
ond, the reload value WDTREL for the high byte of
WDT can be programmed in register WDTCON.
The period PWDT between servicing the Watchdog
Timer and the next overflow can be determined as
follows:

PWDT= 22+<WDTIN>×6 × (216 − <WDTREL> × 28)
fOSC

Table below shows the possible ranges for the
watchdog time which can be achieved using a
40MHz oscillator. Note that some numbers are
rounded to 3 significant digits. For safety reasons,
the user is advised to rewrite WDTREL each time
before the Watchdog Timer is serviced.

8 - Peripherals

62/64

WDTCON (FFAEh/ D7h)
WatchdogTimer Control Register
Reset Value: 0000h

15 14 13 12 11 10 9 8

WDTREL

7 6 5 4 3 2 1 0

R WDTR WDTIN

b15 to b8 = WDTREL: Reload Value for the high
byte of the Watchog Timer.

b7 to b2 = R: Reserved.

b1 = WDTR: Watchdog Timer Reset. Indication
flag, Read only bit, this bit is set by watchdog
overflow. It is cleared by hardware reset or by the
SRVWDT instruction.

b0 = WDTIN: Watchdog Timer Input Frequency
Selection.
WDTIN = 0: fosc/4
WDTIN = 1: fosc/256.

WDTREL Prescaler for f osc

4 (WDTIN = 0) 256 (WDTIN = 1)

FFh 25.6µs 1.6ms

00h 6.55ms 419ms

Table 8-20. Watchdog Time Ranges

8 - Peripherals

63/64

NOTES:

8 - Peripherals

64/64

EXTERNAL BUS INTERFACE

CHAPTER 9

The ST10x166 has been architected to be placed
in a number of different applications and system
designs. In order to meet the needs of designs
where more memory is required than is provided
on the chip, a numberof externalbusconfiguration
modes are supported.These are listed below:
Single Chip Mode
No external bus is configured in this mode. Select-
ing this mode during reset implies that program
execution starts from the internal program mem-
ory. No external memory can be accessedas long
as the ST10x166is in thismode. However, the sin-
gle chip mode can be left to enter any of the follow-
ing external bus configuration modes by simply
reprogramming the System Configuration (SY-
SCON) register.
16/18-BitAddress, 8-Bit Data, Multiplexed Bus
This mode is provided for accesses to a byte-or-
ganized external memory. The eight least signifi-
cant bits of the address and the data byte are
time-multiplexed on the lower portion of the word-
wide external bus. For this mode, Port 0 is used as
interface to the multiplexed external address/data
bus. As long as memory segmentation is not dis-
abled, Port 4 is additionally used as an output for
the two most significant bits of the required 18-bit
addresses.
16/18-Bit Address, 16-Bit Data, Multiplexed
Bus
This mode is provided for accesses to a word-or-
ganizedexternalmemory. The sixteen least signifi-
cant address bits and the data word are
time-multiplexed on the word-wide external bus.

9. EXTERNAL BUS INTERFACE

For this mode, Port 0 is used as interface to the
multiplexed external address/databus. As long as
memory segmentation is not disabled,Port 4 isad-
ditionallyused as an output for the two mostsignifi-
cant bits of the required18-bit addresses.
16/18-Bit Address, 16-Bit Data, Non-Multi-
plexed Bus
This mode is also provided for accesses to a word
organized external memory. However, two sepa-
ratebuses are used for the sixteen least significant
address bits and the data word. Thus, addresses
and data do not have to be time-multiplexed. For
this mode, Port 0 is used as an interface to the ex-
ternaldata bus and Port1 isused as an interface to
the external address bus. As long as memory seg-
mentation is not disabled, Port 4 is additionally
used as an output for the two most significant bits
of the required 18-bit addresses.
16/18-Bit Address, 8-Bit Data, Non-Multiplexed
Bus
This mode is provided for accesses to a byte-or-
ganized external memory. However, two separate
buses are used for the eight least significant bits of
the address and the data byte. For this mode, Port
0 is used as an interface to the 8-bit external data
bus and Port 1 is used as an interface to the 16-bit
external address bus. No time-multiplexing and no
additional address latch is required in this bus
mode. If segmentation is enabled, Port 4 is addi-
tionally used to output the two most significant bits
of the required 18-bit address.
Basically, the ST10x166 supports an 18-bit ad-
dressspace. The16-bit addressmode refers to the
case of segmentationbeing disabled.

1/20

Regardless of which external bus mode is se-
lected, accesses to addresses from ‘0FA00h’
through ‘0FFFFh’ are performed internally. In case
of initializing the ST10166to the single chip mode,
internalROM accessesbecomebasically enabled,
and thus accesses to addresses from ‘00000h’
through ‘07FFFh’ are performed internally, too.
Otherwise, any access to addresseswithin the first
32Kbytes would be performed externally. In any
case, accesses to addresses from ‘08000h’
through ‘0F9FFh’, or in any segment other than
zero, would be tried to be made externally. Note,
however, that external memory locations higher
than ‘0FFFFh’ cannot be accessed if the non-seg-
mented memory mode or the single chip mode is
selected.This also applies to the ST10F166device
and its Flash memory. For more details about the
ST10x166’s memory organization see chapter3.

9.1 EXTERNAL BUS CONFIGURATION
DURING RESET

Any of the initial external bus configuration modes
is selected by means of three External Bus Con-
figuration pins (EBC0, EBC1 and BUSACT). For
this, the input values on these dedicated pins are
sampled during reset and copied into the BTYP bit
field and the BUSACT bit of the SYSCON register
as follows:
SYSCON.7 = EBC1
SYSCON.6 = EBC0
SYSCON.10 = BUSACT
Table9.1 showsthe associationbetween the initial
BUSACT, EBC0 and EBC1 input pin values, the
corresponding external bus configuration modes
and the ports used as interface to the external ad-
dress and/or data bus(es):

BUSACT EBC1 EBC0 External Bus Configuration
Ports used for

A17, A16 A15..A0 D15..D0

1 0 0
Single Chip Mode
No External Bus

- - -

1 0 1
Reserved
No External Bus

- - -

1 1 0
Reserved
No External Bus

- - -

1 1 1
Reserved
No External Bus

- - -

0 0 0
18-Bit Address/8-Bit Data
Non-Multiplexed
No Internal ROM

P4 P1 P0(low)

0 0 1
18-Bit Address/8-Bit Data
Time-Multiplexed
No Internal ROM

P4 P0 P0(low)

0 1 0
18-Bit Address/16-Bit Data
Time-multiplexed
No Internal ROM

P4 P0 P0

0 1 1
18-Bit Address/16-Bit Data
Non-Multiplexed
No Internal ROM

P4 P1 P0

Table 9-1. Initial External Bus Configuration During Reset

9 - External Bus Interface

2/20

As just mentioned, the BUSACT bit and the BTYP
field in the SYSCON register are initialized during
reset. This selected configuration can be modified
during initialization, but ,after the EINIT instruction,
only the externalbus configurationcan bemodified
at any time. Any changes of the configuration
which affect the on-chip ROM or Flash Memory
can only be made until the end of the initialization
instruction (e.g. the mapping of the ROM to seg-
ment 1, the ROM disabled).
Table 9.2 shows all the possibilityof configuration.
If the ST10x166 is initialized to an external bus
configuration mode other than the single chip
mode, Port 4 pins are used as an output for the
most significant address pins (A17 and A16). This
alternate function of Port 4 stays enabled until the

SGTDIS bit in the SYSCON register is set to ‘1’. If
one of the two 16-bit Data Bus modes is selected
during reset, the function of the Byte High Enable
pin (BHE) becomes also enabled and stays en-
abled until the BYTDIS bit in the SYSCON register
is set to ‘1’. This ensures that the External Bus
Controller can properly access the initialization
code in anycase. Many of theexternalbus transfer
characteristicsare controlledvia the SYSCONreg-
ister in addition. Software programming of the SY-
SCON register allows the user to vary particular
timing parameters in a wide range.During reset, all
of theexternalbus timingparametersare initialized
in a way that even very slow external memories
can be accessedproperly. For more details on the
programmableexternal bus timing parameterssee
section 9.7

BUSACT BTYP Reset During Init After Init

0 00 ROM enable
Segment 0
No ext. Bus

ROM enable
Segment 0

No action

0 01 (reserved) ROM enable
Segment 1

No action

0 10 (reserved) Disable ROM No action

0 11 (reserved) Disable ext. Bus No action

1 00 8-Bit Non-Mux
No ROM

8-Bit Non-Mux 8-But Non-Mux

1 01 8-Bit-Mux
No ROM

8-Bit Mux 8-Bit Mux

1 10 16-Bit-Mux
No ROM

16-Bit-Mux 16-Bit-Mux

1 11 16-Bit Non-Mux
No ROM

16-Bit Non-Mux 16-Bit-Non-Mux

Table 9-2. Action/Function SelectedAt:

9 - External Bus Interface

3/20

9.2 SINGLE CHIP MODE

The single chip mode must be selected whenever
program execution shall start from the on-chip pro-
gram memory. If this mode has been selected
once during reset, internal accesses stay globally
enabled. During reset, the Instruction Pointer (IP)
and the Code SegmentPointer (CSP) registersare
both cleared, and thus program execution begins
at the internal ROM location 00000h.
As shown in figure 9.1, Port 0, Port 1 and Port 4
(A17and A16)can be used as generalpurpose I/O
registers.
Note that any intended access to a location within
the external memory space will cause a hardware
trap to occur if the controller is in the single chip
mode.
For applications where the on-chip program mem-
ory is not sufficient, the single chip mode can be
left by simply modifying the BTYP bit field and the

BUSACT bit in the SYSCON register (see sec-
tion 5.3.1.1). In this case, an externalmemory can
be accessed and the entire on chip memory re-
mains accessible.

9.3 16/18-BIT ADDRESS, 8-BIT DATA,
NON-MULTIPLEXED BUS

This external bus mode must be selected if a byte
external memory shall be connected to the
ST10x166. As shown in figure 9.2, Port 1 is used
as a word address output while the lower half of
Port 0 is used as separatedbyte data output.Since
two independent buses are used, no time multi-
plexing and no additionaladdress latch is required
in this case. As long as memory segmentation is
not disabled, Port 4 is additionally used as an out-
put for the two most significant bits of the required
18-bit address. The upper half of Port 0 can not be
used for general purpose I/O.

Figure 9-1. Single Chip Mode

Figure 9-2. 16/18 Bit Address, 8-Bit Data,
Non-Multiplexed Bus

9 - External Bus Interface

4/20

Figure 9-3. 16/18-Bit Address, 8-Bit Data, Multiplexed Bus

9.4 16/18-BITADDRESS, 8-BIT DATA,
MULTIPLEXED BUS

This external bus mode must be selected if a byte-
wide external memory shall be connected to the
ST10x166.
As shown in the figure 9.3, the lower address byte
and the data byte are time-multiplexed on the
lower portion of the word-wide externalbus. There-
fore, an external byte-wide address latch is re-
quired for the eight least significant address bits.
An Address Latch Enable (ALE) signal is gener-
ated by the on-chip External Bus Controller (EBC)
to signify a valid address being available on Port 0.
As long as memory segmentation is not disabled,
Port 4 is additionallyused as an output for the two
most significant bits of the required 18-bit ad-

dresses. Port 1 can be used for general purpose
I/O functions.
Whenever a word is to be accessed externally in
this mode, the EBC generates two consecutivead-
dresses and adjusts incoming bytes into words, or
outgoing words into bytes. The low byte of a word
is accessed first, then the high byte access is per-
formed.
The process of transferring two bytes sequentially
over the external bus for any word access, causes
the operation of the processor to slow down. In
fact, this mode is not as fast as the other external
memory access modes. However, there is a cost
advantagesince inexpensive byte-wide memories
can be used.
A detailed applicationexamplefor thisexternal bus
configurationmode is shown in appendix‘C’.

9 - External Bus Interface

5/20

9.5 16/18-BITADDRESS, 16-BIT DATA,
MULTIPLEXED BUS

This external bus mode can be selected if a word-
wide external memory is connected to the
ST10x166.
As shown in the figure 9.4, Port 0 is used as a
word-wide output for both the address and data
which are time-multiplexed on the word-wide ex-
ternal bus. Therefore, an external word wide ad-
dress latch is required. The least significant
address bit A0 is normally not significant when ac-
cessing word-organized memories. An Address
Latch Enable (ALE) signal is generatedby the on-
chip External Bus Controller (EBC) to signify a
valid address being available on Port 0. As long as
memorysegmentationis not disabled, Port 4 is ad-
ditionallyused as an output for the two most signifi-
cant bits of the required 18-bit addresses. Port 1
can be used for general purpose I/O functions.
Compared with the other external bus configura-
tion modes, the 16/18-bit Address, 16 bit Data,
Multiplexed Bus mode provides a middle level of

performance. It is faster than the 8-bit data bus
mode because a memory does not need to be ac-
cessed twice in order to fetch a word-wide value.
This advantage, however, is not totally utilized
since addresses and data are time multiplexed on
the external bus. This time multiplexing reduces
the overall possible bandwidth of the bus.

This external bus configuration mode can also be
selected if the word-organized external memory is
implemented by two separate 8-bit-wide memo-
ries. These two memories can be accessed both
wordwise, coupled together as one word-wide
memory, and individually as two independentbyte
memories.
For the case where the two byte-wide memories
are to be accessed only wordwise, the addressing
scheme is the same as if only one 16-bit wide
memory is used. For the case where the two
memories are also to be accessed as inde-
pendentlysuitable byte wide memories, the Exter-
nal Bus Controller (EBC) must be enabled to use
the function of the Byte High Enable pin as de-
scribed in the following.

Figure 9-4. 16/18-Bit Address, 16-Bit Data, Bus Multiplexed Bus (Word-Wide Memories)

9 - External Bus Interface

6/20

Firstly, the Byte Disable bit (BYTDIS) in the SY-
SCON register must contain a ‘0’ (this is the default
after system reset), and secondly a 16-bit Data
Bus mode must have been configured. If these
presuppositions are fulfilled, the Byte High Enable
(BHE) functionwhich is an alternateactive low out-
put function of Port 3 Pin 12 (P3.12) becomes en-
abled, and will be implicitly used by the External
Bus Controller (EBC) whenever an external mem-
ory access is performed.
Table9.3 showswhich BHE output is generatedby
the EBC dependent on the least significant ad-
dress bit (A0) and the type of access desired for
the two coupled external byte memories.
Note that the EBC places any byte value to be writ-
ten to the external memory on both the upper byte
portion and the lower byte portion of the 16-bit ex-
ternal data bus. However, the byte will only be
storedin that byte memory which is specifiedby A0
and BHE.

To be correctly used as just described, the BHE
output pin must be connectedto the chip select in-
put (CS) of the memory at the high byte location,

BHE A0 Type of Access

0 0
Both byte memories are
accessed together for word
transfers

0 1
Only the high byte memory is
accessed for byte transfers

1 0
Only the low byte memory is
accessed for byte transfers

1 1 Not used

Table 9-3. Word or Byte Ac cess to Two
Coupled Byte-Wide Memories

Figure 9-5. 16/18-Bit Address, 16-Bit Data, Bus Multiplexed (Byte-Wide Memories)

and the A0 address output pin must be connected
to the chip select input of the memory at the low
byte location, as shown in figure 9.5.

Detailed application examples for the just men-
tionedexternalbus and memoryconfigurationsare
shown in appendix ‘C’.

9 - External Bus Interface

7/20

9.6 16/18-BITADDRESS, 16-BIT DATA,
NON-MULTIPLEXED BUS

This external bus mode can be selected if the
ST10x166 is to be used in collaboration with a
word-wide external memory.
As shown in figure 9.6, Port 1 is used as a word-
wide address output and Port 0 is used as sepa-
rated word-wide data output. The least significant
address bit A0 is normally not used when access-
ing word-organized memories. Since two inde-
pendent buses are used, no time-multiplexing and
no additionaladdress latch is required in this case.
As long as memory segmentation is not disabled,
Port 4 is additionallyused as an output for the two
most significant bits of the required 18-bit ad-
dresses.
Compared with the other external bus configura-
tion modes, the 16/18-bit Address, 16 bit Data,
Non-Multiplexed Bus mode provides the highest
level of performance. It is faster than other modes
because it does not have to access the memory

Figure 9-6. 16/18-Bit Address, 16-Bit Data, Non-Multiplexed Bus (Word-Wide Memories)

twice in order to fetch a word-wide value, and it
also saves the additional time delay caused by ad-
dress and data multiplexing.

As shown in figure 9.7, this externalbus configura-
tion mode can also be selected if the word-organ-
ized external memory is implemented by two
separate 8-bit wide memory devices. These two
memories can be accessed both wordwise, cou-
pled together as one word-wide memory, and indi-
vidually as two independentbyte memories.
For the case where the two memories are ac-
cessed coupled together as one word-wide mem-
ory, the addressingscheme is the same as if only
one 16-bit wide memory was used. For the case
where the memories are also accessed as inde-
pendentlysuitable byte-wide memories, the Exter-
nal Bus ControllerEBC must be enabledto use the
function of the Byte High Enable pin (BHE) as de-
scribed in the previous section 9.5.
Detailed application examples for the just men-
tioned external bus and memory configurationare
shown in appendix ‘C’.

9 - External Bus Interface

8/20

Figure 9-7. 16/18-Bit Address, 16-Bit Data, Non-Multiplexed Bus (Word-Wide Memories)

9.7 EXTERNAL BUS TRANSFER
CHARACTERISTICS

With regard to timing characteristics, there are ba-
sically two types of external buses which can be
configured. These are multiplexed and non-multi-
plexed buses. Transfer characteristics for these
two types are described in detail in the following.

9.7.1 Multiplexed Bus Transfer Characteristics
In both Multiplexed Bus modes, the resource ‘Ex-
ternal Bus’ is time-shared between addresses and
data. Figure 9.8 shows the timing sequence of a
memory read and memory write access via a mul-
tiplexed bus.

A memory access is initiated by the controller by
placingan address on the busand then generating
the Address Latch Enable signal (ALE). This signal
triggers an external latch to capture the address.
After a period of time during which the address
must have been latched externally, the address is
removed from the bus. Note that in the 16/18-bit
Address, 8-bit Data, Multiplexed bus mode, only
the lower eight bits of Port 0 are multiplexed on the
external bus between address output and data in-
put/output,while the upper eight bits of Port 0 con-
tinue to output address bits A15 to A8 throughout
the entire memory access cycle. Note also that
Port 4 is never time-multiplexed and continues to
output the two most significant (segment) address
bits A17 and A16.

9 - External Bus Interface

9/20

9.7.1.1 MULTIPLEXED BUS MEMORYREADS

At the same time when the address is removed
from the bus which is then tri-stated again, the ac-
tive low memory read signal (RD) is applied to the
memory. This enables the memory to drive data
onto the bus. After a period of time which is deter-
mined by the access time of the memory, data be-
come valid on the bus.

Then, the controller latches the valid data from the
bus and removes its memory read signal. This
causes the memory to remove its data from the
bus which is then tri-stated again.

9.7.1.2 MULTIPLEXED BUS MEMORYWRITES

After the address has been stored externally and
removed from the bus again, data are driven onto

the bus and the active low memory write signal
(WR) is applied to the memory. This enables the
memory to store the data from the busonto the ad-
dressedlocation. After a periodof timewhich isde-
termined by the access time of the memory, the
data become valid in the addressed memory loca-
tion. Then, the controllerremoves its memorywrite
signal. The data remain valid on the bus until the
next memory access cycle is started.

9.7.2 Non-Multiplexed Bus Transfer
Characteristics
In the Non-Multiplexed Bus mode, there are sepa-
rate buses for both the address and the data. Fig-
ure 9.9 shows the timing sequence of a memory
read and memory write access via a non-multi-
plexed bus.

Figure 9-8. Multiplexed External Bus Accesses

9 - External Bus Interface

10/20

Figure 9-9. Non-Multiplexed External Bus Access

9.7.2.1 NON-MULTIPLEXED BUS MEMORY READS

A memory read access is initiatedby the controller
by placingan addresson theaddressbus. This ad-
dress stays valid on the bus until the next memory
access cycle is started. After a fixedperiod of time,
the active low memory read signal (RD) is applied
to the memory. This enables the memory to drive
data onto the data bus. After a periodof timewhich
is determined by the access time of the memory,
data become valid on the data bus. Then, the con-
troller latches the valid data from the data bus and
removes its memory read signal. This causes the
memoryto remove its data from the data bus which
is then tri-statedagain. Simultaneouslywith the re-
moval of the RD signal, the controller puts the ad-
dress for the next memory access on the address
bus if a subsequentexternal memory access is re-
quired.

9.7.2.2 NON-MULTIPLEXED BUS MEMORY WRITES

A memory write access is initiated by the controller
by placing an addresson the addressbus. This ad-
dress stays valid on the bus until the next memory
access cycle is started. After a fixed period of time,
the controller drives its data onto the data bus and
applies the active low memory write signal (WR) to
the memory. This enables the memory to store the
data from the data bus onto the addressed loca-
tion. After a period of time which is determined by
the access time of the memory, the data become
valid in the addressed memory location. Then, the
controller removes its memory write signal and
puts the address for the next memory access on
the address bus if a subsequent external memory
access is required. The data remain valid on the
data bus until the next memory access cycle is
started.

9 - External Bus Interface

11/20

9.8 USER SELECTABLE BUS
CHARACTERISTICS

Important timing characteristicsof the external bus
interface, including the Memory Cycle Time, the
Memory Tri-State Time, the Read/Write Delay
Time and the Address Latch Enable length have
beenmade user programmable to allow adaptinga
wide range of different external bus and memory
configurations with different types of memories.
Note that internal memory access time are not ex-
tended by external waitstates.
Examples, tables and formulas showing the calcu-
lation of the user selectablebus characteristicscan
be found in the appendix,section ‘C’.

9.8.1 Programmable Memory Cycle Time
The ST10x166 allows the user to adjust the con-
troller’sMemory Access Cycle Time to the Memory
Cycle Time of the external memory being used.
The Memory Cycle Time is the total time required
to perform a memory access. It represents the pe-
riod of time from the moment when the controller
puts an address on the bus for the first time until
the next external memory accesscan be started at
the earliest. As shown in figure 9.10, the Memory
Cycle Time determines how fast the memory can
be accessed in general.

If an external memory is too slow, the controller
must slow down in order to allow the memory to
keep pace. The ST10x166can be sloweddown for
external memory accesses by introducing wait
states during the access. During these Memory
CycleTimewait states,the CPU is idle. Figure9.11
shows when Memory Cycle Time wait states are
introduced during the memoryaccess.

The ST10x166 allows the user to programMemory
Cycle Time wait states in increments of half a ma-
chine cycle within a range from 0 to 15 (default af-
ter reset). The Memory Cycle Time wait states can
be configured via software by modifying the MCTC
field of the SYSCON register, as shown in table
9.4. One Memory Cycle Time Wait State requires
half a machinecycle (50ns at fOSC = 40MHz).
By means of the Memory Cycle Time Wait States,
the Memory Cycle Time can be varied as follows:
Multiplexed Bus Modes:

150ns - 900ns (at fOSC = 40MHz)
Non-Multiplexed Bus Mode:
100ns - 850ns (at fOSC = 40MHz)

These programmable Memory Cycle Time wait
states can be specified for all of the external bus
configurationmodes.

9.8.2 Programmable Memory Tri-State Time

MCTC Number of
Wait States

Additional Delay
(at f osc = 40MHz) [ns]Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 15 750

0 0 0 1 14 700

0 0 1 0 13 650

0 0 1 1 12 600

0 1 0 0 11 550

0 1 0 1 10 500

0 1 1 0 9 450

0 1 1 1 8 400

1 0 0 0 7 350

1 0 0 1 6 300

1 0 1 0 5 250

1 0 1 1 4 200

1 1 0 0 3 150

1 1 0 1 2 100

1 1 1 0 1 50

1 1 1 1 0 0

Table 9-4. MCTC Encoding of the Memory Cycle Time Wait States

9 - External Bus Interface

12/20

Figure 9-10. Memory Cycle Time

Figure 9-11. Memory Cycle Time Wait States

9 - External Bus Interface

13/20

The ST10x166 allows the user to adjust the time
between two subsequentmemory accesses to ac-
count for the Tri-State Time of theexternalmemory
being used. The Tri-State time is the time required
by the memory to release the bus once the mem-
ory read (RD) signal has been deasserted. As
shown in figure 9.12, the Memory Tri-State Time
determines how quickly one memory access can
follow another.
If an external memory is too slow in releasing the
bus after a memory read access, the controller
must wait for putting the next address on the bus
until the bus is tri-stated again. Therefore, an addi-
tionalMemoryTri-State Timewait state must be in-
troduced before the next memory access. The
CPU is not idle during a Memory Tri-State Time
wait state. Thus, CPU operations will only be
slowed down if a subsequent external instruction
or data fetch operation is required during the next
instruction cycle. Figure 9.13 shows when a Mem-
ory Tri-State Time wait state is introduced during
the external memory accesses.

The ST10x166 allows the user to program 0 or 1
(default after reset) Memory Tri-State Time wait
state by means of the MTTC bit in the SYSCON
register as shown in table 9.5. One Memory Tri-
State Time Wait State requires half a machine cy-
cle (50ns at fOSC = 40MHz).

MTTC Wait States

0 Introduce One Wait State

1 Introduce No Wait States

Table 9-5. Encoding of the Memory Tri-State
Time Wait State

These programmable Memory Tri-State Time wait
states can be specified for all of the external bus
configuration modes. Note, however, that one im-
plicit Memory Tri-State wait state is automatically
added for both multiplexed external bus configura-
tion modes.

9 - External Bus Interface

14/20

Figure 9-12. Memory Tri-State Time

Figure 9-13. Memory Tri-State Time Wait States

9 - External Bus Interface

15/20

9.8.3 Read/Write Signal Delay
The ST10x166 allows the user to adjust the timing
of the data read and write output signals to account
for timing requirementsof external peripherals. As
shown in figure 9.14, the Read/Write Delay repre-
sents the periodof time between the falling edge of
the AddressLatch Enable(ALE)signal and the fall-
ing edgeof the read (RD) or write(WR) signal. If no
additional Read/Write Delay is programmed, the
falling edges of the ALE, WR and RD signals are
coincident. With the delay programmed, the falling
edge of the ALE signal leads the falling edges of
the RD or WR signal by a quarter of a machine cy-
cle. An additional Read/Write Delay does not ex-
tend the Memory Cycle Time, and thus it does not
slow down the controller in general.

The ST10x166 allows the user to disable or enable
(default after reset) Memory Read/Write Signal
Delays by means of the RWDC bit in the SYSCON
register as shown in table 9.6. One Read/Write
Signal Delay requires a quarter of a machine cycle
(25ns at fOSC = 40MHz).

RWDC ALE-RD/WR Delays

0 Enabled

1 Disabled

Table 9-6. RWDC Encoding of The Read/Write
Signal Delay

Figure 9-14. Memory Read/Write Signal Delay

These programmable Read/Write Signal Delays
can be specified for all of the external bus configu-
ration modes.

9 - External Bus Interface

16/20

9.8.4 ALE signal delay
The ST10x166 allows the user to adjust the Ad-
dress Latch Enable signal to account for the ad-
dress setup and hold time of the external
components being used. The Address Latch En-
able signal is required to trigger an external latch
which captures the address.Then after a period of
time, during which the address has been latched,
the address is removed from the ST10x166’sbus.
If the external component need a longer address
setup and hold times, the ST10x166’s ALE pulse

must be lengthened. This feature is provided by
the ST10x166 with the ALECTL1 bit of BUSCON1
register.
When ALECTL1 is set to ”1”, any accesswithin the
addressrange defined by the ADDRSEL1 register,
is lengthened by one TCL (TCL= 25ns at 20MHz
CPUclock), and the addresshold time after ALE is
lengthenedby one TCL.
Figure 9.15 illustrates the bus cycle timing when
ALECTL1 is set.

Figure 9-15. Timing With ALE Lengthening (Multiplexed Bus)

9 - External Bus Interface

17/20

9.8.5 Switching between the Bus Modes.
With the features of the ST10x166, the different
bus modes and the BUSCON1 register, it is possi-
ble to switch the bus characteristics ‘on-the-fly’.
One can change the number of wait states, switch
from a multiplexed bus to a non-multiplexedbus or
vice versa, or can use the READY functionin a cer-
tainaddress rangewhile operatingwithout READY
in the remaining address range. This can eitherbe
done by using the SYSCON and BUSCON1 regis-
ters with different parameters in certain address
ranges, or by reprogramming the SYSCON or
BUSCON1 register prior to an access which
should be performed with different bus charac-
teristics. However, it is not recommended or very
useful to modify the SYSCON or BUSCON1 regis-
ter which is currently being used for instruction
fetches,since pipeline effects can make it very dif-
ficult to determine which of the following accesses
will be made with the new configuration. Thus, it is
recommended to modify bus configuration regis-
ters used for instruction fetcheswhile executing in-
structions from either internal ROM, RAM, or from
a different SYSCON or BUSCON1 address range.
For example, if one wants to reprogram the
BUSCON1 register, one should execute the in-
structions to modify the register from an address
space which is currently controlled by the SY-
SCON register.

As mentioned before, it is possible to switch from
an 8-bit data bus to a 16-bit data bus and vice
versa, and to switch between a multiplexed and a
non-multiplexed bus. There exists one condition,
however, which presents a special case. When
switching from a non-multiplexed bus to a multi-
plexed bus, an extra hold state is required due to
timing constraints. In addition, Port 1, which is
used for the address bus, continues to output the
address, although the address will also appear at
Port 0, time multiplexed with the data. This has the
advantage, that the chip select logic, which is tied
to the address bus, does not have to either be
switched from Port 1 to Port 0 or vice versa. Figure
9.16 shows a timing diagram for switching from a
non-multiplexedbus to a multiplexed bus.
Note: As long as any SYSCON or BUSCON1 se-
lects a non-multiplexedbus, Port 1 is dedicatedfor
the address bus function and can not be used as
general purpose I/O port. In order to use Port 1 for
general purpose I/O, both the SYSCON and the
BUSCON1 register must select one of the multi-
plexed bus modes. This is also true for the READY
function.In order to use the READYpin for general
purpose I/O, RDYEN in register SYSCON and
RDYEN1 in register BUSCON1 must be ‘0’.

Figure 9-16. Switching From Non-Multiplexed Bus to Multiplexed Bus

9 - External Bus Interface

18/20

9.9 EXTERNAL MEMORY ACCESS VIA THE
DATA READY SIGNAL

An optional Data-Ready functioncan be usedto al-
low an externaldevice to determine the duration of
an external memory access. Note that the READY
input pin must be correctly activated for every ex-
ternal memory access if the Data-Ready function
has been enabled. Otherwise, the CPU would be
halted until a reset occurs. No time-out protection
other than a WatchdogTimer overflow is provided.
The Data-Ready function can be enabled by set-
ting the RDYEN bit in the SYSCON register to ‘1’
(see chapter 5).
When the Data-Ready function is enabled, the du-
ration of all externalaccesses is determinedas fol-
lows:

- If 0 wait states are programmed in bits 0 to 2 of
the MCTC field, the duration is determined by
the state of the READY input pin.

- If between 1 and 7 wait states are programmed
in bits 0 to 2 of the MCTC field, the CPU will
first insert the programmed wait states into the
memory cycle, and after the wait states has ex-
pired it will check the READY line and delay
the memory access depending on the state of
the READY line. This feature provides the fol-
lowing advantages for the user:

1) Memory can be connected, operating with or
without wait states, and peripherals, operating
with READY, to the external bus of the
ST10x166 and use wait states together with
the READY function. If the memory is ac-
cessed, the chip select logic is used to bring
the READY line to a LOW state. The CPU will

insert the programmed number of wait states
(if any) into the memory cycle, then check the
READY line, find that the external device is
ready (READY = ‘0’), and terminate the mem-
ory cycle. If the peripheral device is accessed,
first the programmed wait states are inserted,
and then the READY line is checked. For
READY = 0, the bus cycle will be terminated.
For READY= ‘1’, the CPU will hold the bus cy-
cle until READYgoes to ‘0’, and then terminate
the cycle. Since normally peripherals operat-
ing with a READY function are much slower
than memories, even memories requiring wait
states, this will have no impact on the access
time to the peripheral.

2) When using the asynchronous READY func-
tion, the first time the READYline is checked is
near the fallingedge of the ALE signal. Thus, in
order to guarantee a correct bus cycle the
READYline has to present a valid logic level at
this time point. Some peripherals, however,
hold the READY line at a low state when they
are not accessed, and require some time after
being addressedby the CPUto signaltheir ‘not
ready’ state, i.e. bring the READYline to a one.
But, if the READYline is still low with the falling
edge of the ALE signal, the CPU interpretsthis
as ‘external device is ready’, and inserts no
wait states during the following bus cycle. This
problem is eliminated, since the CPU will first
insert the programmed wait states before
checking the READYline.

Figure 9.17 a) and b) illustrate this feature. In this
example,three wait stateshave been programmed

9 - External Bus Interface

19/20

in field MCTC of register SYSCON in addition to
the READY function. In Figure 9.17 a), the READY
line goes to zero prior to the execution of the wait
states, but the chip continues to hold the memory
access cycle until all wait states are performed.
This example could be the case when accessinga
memory, which just requires three wait states, and
where the READY line is brought to low with the
Chip Select signal for the memory. In Figure 9.17
b), after insertion of all three wait states the

READY line is checkedand found to be high. The
chip now continuesto hold the memory access cy-
cle until the READY line goes to low. Then the bus
cycle is terminated. This example could be the
case when accessing a slow peripheral device
(which in this case is slower than a normal bus cy-
cle with three wait states).

Figure 9-17. Using READY And Wait-States

9 - External Bus Interface

20/20

PARALLEL PORTS

CHAPTER 10

TheST10x166 provides76 parallel I/O lines organ-
ized into four 16-bit I/O ports (Port 0 through 3),
one 2-bit I/Oport (Port 4), and one 10-bit input port
(Port 5). All port lines are bit addressable, and all
lines of Port 0 through 4 are individually bit-wise
programmable as inputs or outputs via direction
registers.
Each port line has one programmable alternate in-
put or output function associated with it. Port 0 and
Port 1 may be used as the address and data lines
when accessing external memory. Port 4 outputs
the additional segment address bits A16 and A17
when segmentation is enabled.The pins of Port 2
serve as capture inputs or compareoutputs for the
CAPCOM unit, or as bus arbitration signals for
communication with external DMA functions. Port
3 includes alternate input/output functions of CAP-
COM timer T0, the general purpose timer blocks
GPT1/2, and the serial channels ASC0/1. In addi-
tion, Port 3 provides the bus interface control sig-
nals WR, BHE, READY, and the system clock
CLKOUT.Port 5 is used for the analog input chan-
nels to the A/D converter.

All ports have Schmitt-Trigger input charac-
teristics, except when used as external data bus
and as analog inputs to the A/D converter.

10. PARALLEL PORTS

The following subsections first give a general de-
scription of Ports 0 through 4, then each of these
ports is described in detail. Port 5 will be discussed
separately in section 10.2.

10.1 PORTS 0 THROUGH 4

Each of the Ports 0 through4 has its own port data
register (P0 through P4) and direction register
(DP0 through DP4). The 16-bit data registers P0
through P3 for Ports 0 through 3, and the corre-
sponding Port Direction control registers DP0
throughDP3 are described below.
The 8-bit data register P4 for Port 4 is also de-
scribed. Port 4 is actually a 2-bit port, but the data
and direction registers of Port 4 are realized as
byte-wide registers. Bits 2 through 7 are reserved
bits, while bits 8 through 15 are unimplemented.
Writing to the unimplemented bits has no effect,
while reading always returns zero.
In the following, the symbol Px (x = 0 through4) for
a port data register is also used to refer to the
whole Port x.

1/18

Ports 0 through 3 Data Registers
P0 (FF00h / 80h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

P0.15 P0.14 P0.13 P0.12 P0.11 P0.10 P0.9 P0.8

7 6 5 4 3 2 1 0

P0.7 P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0

P1 (FF04h / 82h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

P1.15 P1.14 P1.13 P1.12 P1.11 P1.10 P1.9 P1.8

7 6 5 4 3 2 1 0

P1.7 P1.6 P1.5 P1.4 P1.3 P1.2 P1.1 P1.0

P2 (FFC0h / E0h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

P2.15 P2.14 P2.13 P2.12 P2.11 P2.10 P2.9 P2.8

7 6 5 4 3 2 1 0

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0

P3 (FFC4h / E2h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

P3.15 P3.14 P3.13 P3.12 P3.11 P3.10 P3.9 P3.8

7 6 5 4 3 2 1 0

P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0

b15 to b0 = Px.y: Port Px Data Register.
(x = 0 through3, y = 0 through15).

Ports 0 through 3 Direction Registers
DP0 (FF02h / 81h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

DP0.15 DP0.14 DP0.13 DP0.12 DP0.11 DP0.10 DP0.9 DP0.8

7 6 5 4 3 2 1 0

DP0.7 DP0.6 DP0.5 DP0.4 DP0.3 DP0.2 DP0.1 DP0.0

DP1 (FF06h / 83h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

DP1.15 DP1.14 DP1.13 DP1.12 DP1.11 DP1.10 DP1.9 DP1.8

7 6 5 4 3 2 1 0

DP1.7 DP1.6 DP1.5 DP1.4 DP1.3 DP1.2 DP1.1 DP1.0

DP2 (FFC2h / E1h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

DP2.15 DP2.14 DP2.13 DP2.12 DP2.11 DP2.10 DP2.9 DP2.8

7 6 5 4 3 2 1 0

DP2.7 DP2.6 DP2.5 DP2.4 DP2.3 DP2.2 DP2.1 DP2.0

DP3 (FFC6h / E3h)
Reset Value : 0000h

15 14 13 12 11 10 9 8

DP3.15 DP3.14 DP3.13 DP3.12 DP3.11 DP3.10 DP3.9 DP3.8

7 6 5 4 3 2 1 0

DP3.7 DP3.6 DP3.5 DP3.4 DP3.3 DP3.2 DP3.1 DP3.0

b15 to b0 = DPx.y: Port Px Direction Control.
(x = 0 through3, y = 0 through15)
DPx.y = 0: Port Line Px.y is Input (high-imped-
ance)
DPx.y = 1: Port Line Px.y is Output.

P4 (FF08h / 84h)
Port 4 Data Register P4
Reset Value 0000h

7 6 5 4 3 2 1 0

R P4.1 P4.0

b7 to b2 = R: Reserved.
b1 to b0 = P4.y: Port P4 Data Register.

(y = 0 through1)

DP4 (FF0Ah / 85h)
Port 4 Direction Control Register DP4
Reset Value 0000h

7 6 5 4 3 2 1 0

R DP4.1 DP4.0

b7 to b2 = R: Reserved.
b1 to b0 = DP4.y: Port P4 Direction Control.

(y = 0 through1)
DP4.y = 0: Port Line P4.y is Input (high-imped-
ance)
DP4.y = 1: PortLine P4.y is Output.

10 - Parallel Ports

2/18

Using P0 through P4 as General Purpose I/O
Ports
When the alternate input or output functionassoci-
ated with a port pin is not enabled, the pin can be
used as a general purpose I/O pin. Each port pin
consists of a port output latch, an output buffer, an
input latch, an input (read) buffer, and a direction
control latch. Each port pin can be individuallypro-
grammed for input or output via the respective di-
rection control bit DPx.y. Figure 10.1 shows a
general block diagram of a port pin as it is config-
ured when used as a generalpurpose I/O port.

Port pins selected as inputs (DPx.y = ‘0’) are
placed into a high-impedance state since the out-
put buffer is disabled. This is the default configura-
tion after reset. During reset, all port pins are
configured for input. When exiting reset while no
external bus function is selected, all port pins re-
main in input modeunless configured otherwise by
the user. When an external bus is selected, the

Figure 10-1. Block Diagram of a Port 0 through 4 General Purpose I/O Port

corresponding port pins are switched to the direc-
tion required by the selected bus type. This is ex-
plained in detail in the following sections.
The logic level of a pin is clocked into the input
latch once per state time, regardless whether the
port is configuredfor input or output.

A write operation to a port pin configured as an in-
put causes the value to be written into the port out-
put latch, while a read operation returns the
latched state of the pin itself. A read-modify-write
operation reads the value of the pin, modifies it,
and writes it back to the output latch.
Writing to a pin configured as an output
(DPx.y = ‘1’) causes the output latch and the pin to
have the written value, since the output buffer is
enabled. Reading this pin returns the value of the
output latch. A read-modify-write operation reads
the value of the output latch, modifies it, and writes
it back to the output latch, thus also modifying the
level at thepin.

10 - Parallel Ports

3/18

Alternate Input and Output Functions of P0
through P4
Each of the 76 port lines of the ST10x166 has an
alternate input or output functionassociatedwith it.
34 port lines have both an alternate input and out-
put function, the other 42 lines have eitheran alter-
nate input or an alternateoutput function.
If an alternateoutput functionof a pin is to be used,
the direction of this pin must be programmed for
output (DPx.y = ‘1’). Otherwise the pin remains in
the high-impedancestate and isnot affectedby the
alternate output function.
If an alternate input function of a pin is used, the di-
rection of the pin must be programmed for input
(DPx.y =‘0’) if an external device is driving the pin.
The input direction is the default after reset. If no
external device is connected to the pin, however,
one can also set the direction for this pin to output.
In this case, the pin reflects the state of the port
output latch. Thus, the alternate input function
reads the value stored in the port output latch. This
can be used for testing purposes to allow a soft-
ware triggerof an alternateinput functionbywriting
to the port output latch.
On most of the port lines, the user software is re-
sponsible for setting the proper direction when us-
ing an alternate input or output function of a pin.
This is done by setting or clearing the direction
control bit DPx.y of the pin before enabling the al-
ternate function. There are port lines, however,
where the directionof the port line is switchedauto-
matically. For instance, in the multiplexed external
bus modes of Port 0, the direction must be
switched several times for an instruction fetch in
order to output theaddressesand to input the data.
Obviously, this can not be done through instruc-
tions. In thesecases, the direction of the port line is
switched automatically by hardware if the alternate
functionof such a pin is enabled.
There is one basic structure for all port lines with
only an alternate input function.Port lines with only
an alternate output function, however, have differ-
ent structures due to the way the direction of the
pin is switched and dependingon whether the pin
is accessible by the user software or not in the al-
ternate function mode.
The following sections describe in detail each of
the ports and its alternate input and output func-
tions.

10.1.1 Port 0 and Port 1
Port 0 and Port 1 are two 16-bit I/O ports.They are

bit addressable,and eachline can be programmed
individually for input or output. When no external
program and/or data memory is connected to the
chip, Port 0 (P0) and Port 1 (P1) can be used as
general purposeI/O ports.
As described in Chapter 9, ports P0 and P1 are
used as the address and data lines in the various
bus configurations which can be selected for con-
necting external memory to the chip. Port 0 is used
in all 4 externalbus configurations,while P1 is only
used as the address bus (A15 - A0) in the 16/18-bit
Address,Non-MultiplexedBus mode.Port 1 canbe
used as a general purpose I/O port in the multi-
plexedexternal bus configurationmodes.
When a multiplexed bus configuration is selected,
andtheCPU accessesexternalmemory, Port0 first
outputs the 16-bit intra-segment address informa-
tion as an alternate output function. Port 0 is then
switched to the high-impedanceinput mode to read
the incoming instructionor data.In the 16/18-bitAd-
dress,8-bit Data Bus mode, two memory cycles are
required for word accesses, the first for the low byte
and the second for the high byte of the word. When
datais written to anexternalmemory,Port0 outputs
the data byte or word afteroutputtingthe address.
In the non-multiplexedbusconfiguration,Port 1 out-
puts the 16-bit intra-segment address, while Port 0
reads the incoming instruction or data word or
writes the data to the external memory. Therefore,
Port 0 has both alternate input and alternate output
functions, while Port 1 has only an alternate output
function. Figure 10.2 shows the structure of a Port
0 pin, and figure 10.3 shows the structure of a Port
1 pin.
When an external bus mode is enabled, the direc-
tion of the port pin and the data input to the port out-
put latch are controlled by the bus controller
hardware. The input to the port output latch is dis-
connectedfrom the internalbus and is switched via
a multiplexer to the line labeled AlternateData Out-
put. On Port 0, the alternate data can be the 16-bit
intra-segment address or the 8/16-bitdata informa-
tion. On Port 1, the alternatedata is the 16 bit intra-
segmentaddressin the non-multiplexedbus mode.
The incoming data on Port 0 is read on the line Al-
ternate Data Input. While an external bus mode is
enabled, the user software should not write to the
port output latch, otherwise unpredictable results
may occur. When the externalbusmodes areagain
disabled, the contents of the direction register last
written by the userbecomeactive. While the 16/18-
Bit Address,8-Bit Data, Non-MultiplexedBus mode
is enabled, the upper half of Port 0 can not be used
for general purpose I/O,

10 - Parallel Ports

4/18

Figure 10-2. Block Diagram of a Port 0 Pin

Figure 10-3. Block Diagram of a Port 1 Pin

10 - Parallel Ports

5/18

10.1.2 Port 2
All of the 16 pins of Port 2 (P2) may be used for the
alternate input/output functions of the CAPCOM
unit. They serve as an input line for the capture
function or as an output line for the compare func-
tions. The alternate symbols CC0IO through
CC15IO have been assigned to Port 2 in addition
to the standard symbols P2.0 through P2.15 in or-
der to reflect its alternate functions. Figures 10.4
to 10.6 show block diagrams of Port 2 pins.
When a Port 2 line is used as a capture input, the
state of the input latch, which represents the state
of the port pin, is directed to the CAPCOM unit via
the line AlternatePin Data Input. Theuser software
must set the direction of the pin to input if an exter-
nal capture trigger signal is used. If the direction is
set to output, the state of the port output latch will
be read since the pin represents the state of the
output latch. This can be used to trigger a capture
event through software by setting or clearing the
port latch. Note that in the output configuration,no

external device may drive the pin, otherwise con-
flicts would occur.
When a Port 2 line is used as a compare output
(compare modes 1 and 3; refer to chapter 8.1), the
compare event (or the timer overflow in compare
mode 3) directly affects the port output latch. In
comparemode 1, when a valid comparematch oc-
curs, the state of the port output latch is read by the
CAPCOM control hardware via the line Alternate
Latch Data Input, inverted, and written back to the
latch via the line Alternate Data Output. The port
output latch is clocked by the signalCompare Trig-
ger which is generated by the CAPCOM unit. In
compare mode 3, when a match occurs, the value
‘1’ is written to the port output latch via the line Al-
ternate Data Output. When an overflow of the cor-
responding timer occurs, a ‘0’ is written to the port
output latch. In both cases, the output latch is
clocked by the signal Compare Trigger. The direc-
tion of the pin should be set to output by the user,
otherwise the pin will be in the high-impedance
state and will not reflect the state of the output
latch.

Figure 10-4. Block Diagram of Port 2 Pin 0 to 12

10 - Parallel Ports

6/18

Figure 10-5. Block Diagram of Port 2 Pin 13, 14

Figure 10-6. Block Diagram of Port 2 Pin 15

10 - Parallel Ports

7/18

As can be seen from the block diagram, the user
software always has free access to the port pin
even when it is used as a compare output. This is
useful for setting up the initial level of the pin when
using compare mode 1 or the double-register
mode. In these modes, unlike in comparemode 3,
the pin is not set to a specific value when a com-
pare match occurs. Instead, it is toggled.

When the user wants to write to the port pin at the
same time a compare trigger tries to clock the out-
put latch, the write operation of the user software
has priority. Each time a CPU write access to the
portoutput latch occurs, the input multiplexerof the
port output latch is switched to the line connected
to the internal bus. The port output latch will re-
ceive the value from the internal bus. The hard-
ware triggeredchange will be lost.
In order to support multi-master systems and com-
municationwith externalDMA functions, three pins
of Port 2 provide a busarbitration.

The pin P2.15 configured in its alternate function
HOLD is an input. When brought to low (active
state), this input indicates to the ST10x166 that an-
other master wants to perform one or several ac-
cesses on the external bus of the ST10x166. After
synchronisation of this signal and complete termi-
nation of the current external bus cycle if any, the
ST10x166 backs off its external bus and activates
the signal HLDA to flag the second master that the
bus is now free.This conditionwill be held until the
HOLD line goes back to high. Then the signal
HLDA is disabled and the ST10x166 takes over
control of the externalbus again if required. During
the HOLD phase, the ST10x166 can still operate
and fetch instruction or data when executing out of
internalmemory. The CPU reallystops executionif
external data or instruction fetches are required.
The pin P2.14 used as hold acknowledge signal
HLDA is active low. This signal indicates to the

second master that the bus of the ST10x166 is
now free for use.
The pin P2.13 is used as secondalternate function
of bus request signal BREQ. This signal intends to
give the ST10x166 a chance to flag its own exter-
nal bus request to the second master. The second
master can then decide whether or not to grant the
ST10x166 the external bus for one or more exter-
nal bus accesses.
To enable these bus arbitration signals, the bit
HLDEN of the PSW register must be set. After re-
set, once this bit has been set to ‘1’ these three
pins of Port 2 can no longer be used for general
purpose I/O or for the CAPCOM unit, even if this
HLDEN bit is cleared after once being set.
During an external HOLD request acknowledged,
the ST10x166 set the external address, data, and
control bus to the following states:
Port 0 Tri-state, if an externalbus is

enabled
Port 1 Tri-state, if a non-multiplexed

bus mode is selected
Port 4 Tri-state, if an externalbus and

segmentationare enabled
ALE Float to ’0’ through high-imped-

ance pull down
RD Float to ’1’ through high-imped-

ance pull up

WR Tri-state even when used as
general purposeI/O pin

BHE Tri-state, if BHE function enabled
READY No change

Figure 10.7 and 10.8 illustrate the timings for entry
and exit from HOLD mode.

10 - Parallel Ports

8/18

Figure 10-7. Timing For Entry Into Hold (Non-Multiplexed Bus)

Figure 10-8. Timing For Exit From Hold (Non-Multiplexed Bus)

10 - Parallel Ports

9/18

10.1.3 Port 3
Each of the 16 pins of Port 3 (P3) has an alternate
input or output function associated with it. Seven
pins have an alternate input function, seven pins
have an alternate output function, and two pins,
RXD0 and RXD1, have an alternate input or output
function depending on the operating mode of the
serial channel they are associated with. The alter-
nate functionsof Port 3 are listed in table 10.1.

When the alternate input or output function of a
Port 3 pin is not used, this pin can be used as a
general purpose I/O pin. When an alternate func-
tion is used on a Port3 pin, the configurationof this
pin depends on the type of the alternate function.
There are fourdifferent configurationsdescribed in
the following paragraphs.

Symbol Alternate Symbol Input/Output Function

P3.0 T0IN I Timer 0 Count Input

P3.1 T6OUT O Timer 6 Toggle Latch Output

P3.2 CAPIN I CAPREL Register Capture Input

P3.3 T3OUT O Timer 3 Toggle Latch Output

P3.4 T3EUD I Timer 3 External Up / Down Control Input

P3.5 T4IN I Timer 4 Count / Gate / Reload / Capture Input

P3.6 T3IN I Timer 3 Count / Gate Input

P3.7 T2IN I Timer 2 Count / Gate / Reload / Capture Input

P3.8 TXD1 O Serial Channel 1 Data Output in Asynchronous Mode;
Clock Output in Syncrhonous Mode

P3.9 RXD1 I/O Serial Channel 1 Data Input in Asynchronous Mode;
Data Input / Output in Synchronous Mode

P3.10 TXD0 O Serial Channel 0 Data Output in Asynchronous Mode;
Clock Output in Synchronous Mode

P3.11 RXD0 I/O Serial Channel 0 Data Input in Asynchronous Mode;
Data Input / Output in Synchronous Mode

P3.12 BHE O Byte High Enable Control Signal for External Memory

P3.13 WR O Write Strobe for External Data Memory

P3.14 READY I Ready Input

P3.15 CLKOUT O System Clock Output

Table 10-1. Port 3 Alternate Input/Output Functions

10 - Parallel Ports

10/18

10.1.3.1 PORT 3 PINS T0IN, T2IN, T3IN, T4IN,
T3EUD, CAPIN, AND READY

The basic structure of these seven Port 3 pins,
which only have an associated alternate input
function, is identical, as shown in figure 10.9. Note
that the READY pin has an additionalalternate in-
put line which is tied directly to the pin. This line is
used for the synchronous Ready function.

When the on-chip peripheral associated with such
a pin is configured to use the alternate input func-
tion, it reads the input latch, which represents the
state of the pin, via the line labeled Alternate Data
Input. If an externaldevice is driving the pin, the di-
rection of the pin must be set to input.When no ex-
ternal device is connected to the pin, one can set
the direction to output and write to the port output
latch to trigger the Alternate Data Input line.

Figure 10-9. Block Diagram of a Port 3 Pin With an Alternate Input Function

10 - Parallel Ports

11/18

10.1.3.2 PORT 3 PINS T3OUT, T6OUT, TXD0, TXD1,
WR, CLKOUT

These six of the seven Port 3 pins which have only
an alternate output function associated also have
an identical structure, shown in figure 10.10. The
Alternate Data Output line, which is controlled by
the respective peripheral unit, is ANDed with the
port output latch line. When using these alternate

functions,the user mustset the directionof the port
line to output (DP3.y = ‘1’) and must write a ‘1’ into
the port output latch. Otherwise the pin is in its
high-impedance state (when configured as input)
or the pin is stuck at ‘0’ (when writing a ‘0’ into the
port output latch). When the alternate output func-
tionsare notused, the AlternateData Output line is
in its inactive state, which is a high level (‘1’).

Figure 10-10. Block Diagram of a Port 3 Pin With an Alternate Output Function

10 - Parallel Ports

12/18

10.1.3.3 PORT 3 PIN BHE

Figure 10.11 shows the block diagram of pin
P3.12/BHE, which is the seventh Port 3 pin with
only an alternate output function. Since the BHE
signal might be required directly after reset when
an external 16-bit data bus mode (multiplexed or
non-multiplexed) is selected through pins EBC1
and EBC0, there is no way the user can configure
the BHEpin. Thus, it will be switched automatically
to the alternate function.

Whenan external 16-bit databus mode is selected
AND the BHE function is enabled through bit BYT-
DIS = ‘0’ in register SYSCON (default after reset),
the two multiplexers in theport data output line and
the port direction control line are switched. The di-
rection is set to ‘1’ (output),and thepin is controlled
by the Alternate Data Output line.

If the BHE pin is not required in an application, the
usercan disable the functionby settingbit BYTDIS
to ‘1’. The pin can then be used for general pur-
pose I/O.

Figure 10-11. Block Diagram of Port 3 Pin BHE

10 - Parallel Ports

13/18

10.1.3.4 PORT 3 PINS RXD0 AND RXD1

The configurationof the two pinsRXD0 and RXD1,
with both an alternateinput and an alternateoutput
function, is shown in figure 10.12. The Alternate
Data Output line again is ANDed with the port out-
put latch line.

In the asynchronous modes of the Serial Chan-
nels, pins RXD0 and RXD1 are always used as
data inputs. The direction of thesepins must be set
to input by the user (DP3.y = ‘0’). The Serial Chan-

nels read the state of pins RXD0 and RXD1 via the
line Alternate Data Input.
In the half-duplex synchronous mode, pins RXD0
and RXD1 are used as either data inputs or out-
puts. For transmission, the user first must set the
direction to output (DP3.y = ‘1’)and must write a ‘1’
into the port output latch. For reception, the user
must set the direction to input before starting the
reception. When the alternate output function on
these pins is not used, the Alternate Data Output
line is in its inactive state, which is a high level (‘1’).

Figure 10-12. Block Diagram of Port 3 Pins RXD0 and RXD1

10 - Parallel Ports

14/18

10.1.4 Port 4
The alternate functions on the two pins of Port 4
(P4) are the two segment address lines A16 and
A17, shown in table below. As for Port 0, Port 1,

and the BHE signal, the alternate function of Port
4 might be required directly after reset. Thus, the
alternate function of Port 4 will be switched auto-
matically.

Figure 10-13. Block Diagram of a Port 4 Pin

Figure10.13 showsa blockdiagramof a Port4 pin,
which is the same as for a Port 1 pin. When an ex-
ternal bus is selected AND segmentation is en-
abled through bit SGTDIS = ‘0’ in register
SYSCON (default after reset), the input to the port
output latch is switched via a multiplexer from the
internal bus to the Alternate Data Output line,

which supplies the segmentaddress. Via a second
multiplexer, the output buffer is enabled to drive
the segment address.
If segmentation is not required in an application,
the user can disable segmentation by setting bit
SGTDIS to ‘1’. The pins of Port 4 can then be used
for general purpose I/O.

Symbol Alternate Symbol Input/Output Function

P4.0 A16 O Lower Address Line of Segment Address

P4.1 A17 O Higher Address Line of Segment Address

Table 10-2. Port 4 Alternate Output Functions

10 - Parallel Ports

15/18

10.2 Port 5

Port 5 (P5) differs from Ports 0 through4, since it is
a 10-bit input only port. Besides being used as a
digital input port, all lines of Port 5 may be used as
the analog input channels to the A/D converter.
The input buffers to P5 have Schmitt-Trigger char-
acteristics in order to achieve logic levels from the
analog inputs.Figure 10.14 illustrates the structure
of a Port 5 pin.
Since Port 5 is an inputonlyport, it has no port out-
put latches and no direction register. However, an
address in the bit addressable register address
space is provided in order to be able to read Port 5
by software. Register P5 shows the format of the

Figure 10-14. Block Diagram of a Port 5 Pin

result when reading Port 5. Port 5 is actually a 10-
bit port, but the port register P5 is realized as a
word register. Positions P5.10 through P5.15 are
reserved and will be read as zeros. A write opera-
tion to P5 has no effect. The value written to it is
lost.
No special distinction has to be made between
Port 5 lines being used as analog inputs and Port 5
lines being used as digital inputs. A readoperation
on Port 5 may be performed on any of the 10 bits.
The bits corresponding to lines being used as ana-
log inputs are don’t carebits. An A/D conversionon
a line being used as a digital input will convert the
logic level applied to the pin. Table 10.3 illustrates
the Port 5 lines and the correspondinganalog input
channels.

10 - Parallel Ports

16/18

Symbol Alternate
Symbol

Description

P5.0 AN0 Analog Input Channel 0

P5.1 AN1 Analog Input Channel 1

P5.2 AN2 Analog Input Channel 2

P5.3 AN3 Analog Input Channel 3

P5.4 AN4 Analog Input Channel 4

P5.5 AN5 Analog Input Channel 5

P5.6 AN5 Analog Input Channel 6

P5.7 AN7 Analog Input Channel 7

P5.8 AN8 Analog Input Channel 8

P5.9 AN9 Analog Input Channel 9

Table 10-3. Alternate Functions of Port 5 P5 (FFA2h / D1h)
Port 5 Register P5
Reset Value: XXXXh

15 14 13 12 11 10 9 8

R P5.9 P5.8

7 6 5 4 3 2 1 0

P5.7 PR.6 P5.5 P5.4 P5.3 P5.2 P5.1 P5.0

b15 to b10 = R: Reserved.
b9 to b0 = P5.y: Port 5 Data Register.

READ ONLY (y = 0 through9).

10 - Parallel Ports

17/18

NOTES :

10 - Parallel Ports

18/18

SYSTEM RESET

CHAPTER 11

The internal system reset function provides initiali-
zation of the ST10x166into a defined defaultstate.
This internal reset function is invoked by any of the
following conditions:

1) By asserting a hardware reset signal on the
RSTIN (Hardware Reset Input) pin

2) Upon the execution of the SRST (SoftwareRe-
set) instruction

3) By an overflow of the Watchdog Timer

Whenever one of these conditions occurs, the mi-
crocontroller is reset into its predefined default
state through an internal reset procedure. When a
reset is initiated, pending internal hold states are
cancelled and external memory access cycles are
aborted, regardless of an unreturned READY sig-
nal.Writeoperations to the internalRAM, however,
are completed before the internal reset procedure
begins. After this internal reset has been com-
pleted in case of a software or watchdog timer trig-
gered reset, or afterdeassertionof the signal at pin
RSTIN in case of a hardware reset, the microcon-
troller will start program executionfrommemory lo-
cation 0000h in code segment zero. Here, one
would normally place a branch instruction to the
startof a software initialization routine for the appli-
cation specific configuration of peripherals and
CPU Special Function Registers.

11.1 RSTIN and RSTOUT Pins

Two pins, RSTIN (Reset In) and RSTOUT (Reset
Out), are dedicated to the system reset function of
the ST10x166.The RSTIN pin is used for resetting
the microcontroller through an external hardware
reset signal. To perform a complete reset se-
quence, the ST10x166 requires 1040 state times
(52µs at 20MHz CPU clock) with RSTIN low.

11. SYSTEM RESET

In order to obtainan automatic power-onreset, the
RSTIN pin can be connectedto an externalcapaci-
tor, since this pin already has an internal pullup re-
sistor connected to VCC (see figure 11.1a). The
reset signal on RSTIN first passes a Schmitt-Trig-
ger in order to obtain a fast transition.For a power-
on reset, the RSTIN pin has to be held low for the
minimum duration of the start-up time of the oscil-
lator (about 50ms for a quartzcrystal). The internal
pullup resistormay vary between 50kΩ and 150kΩ
therefore the minimum power-on reset time must
be determinedby the lowest value of thispullup re-
sistor. One may also use an additional external re-
sistor. In the reset circuit shown in figure 11.1b,
resetsource1 may be used e.g for power-onreset,
and reset source 2 for warm reset. In the case of a
warm reset where the oscillator is already stabi-
lized, the minimum low time of the reset signal at
pin RSTIN is only 2 state times. Noise pulses
longer than 2 state times will always initiate a com-
plete resetof the ST10x166.Shorter pulses will not
be considered by the ST10x166 and must be
avoided. If RSTIN is still low by the time the internal
reset sequence is completed, the sequence will
start again. This procedure continues until a high
level is found at the RSTIN pin at the end of a reset
sequence.
The RSTOUT pin will be pulled low after a hard-
ware reset signal has been asserted on the RSTIN
pin. It is also pulled low whenever the SRST in-
struction is executed or a Watchdog Timer over-
flow has occurred. The signal on the RSTOUT pin
can be used to simultaneouslyreset external hard-
ware whenever the ST10x166 is reset. The
RSTOUT pin stays low until the protected EINIT
(End of Initialization) instruction is executed. Fig-
ure 11.2 shows the relation between the RSTIN
and the RSTOUT signal.

1/4

Figure 11-1. Reset Circuits

Figure 11-2. Reset Function

11.2 RESET VALUES FOR ST10x166
REGISTERS

Most SFRs, including system registers and periph-
eral control and data registers, are forced to zero
once the internal reset has completed. This default
configuration has been selected such that all pe-
ripherals and the interrupt system are disabled
from operation. Only data page pointers DPP1
through DPP3, the CP, SP, STKOV, STKUN, SY-
SCON, WDTCON, and specific read only registers
may contain default values other than zero after a
system reset. A complete summary of all
ST10x166 registers and their reset values is con-
tained in Appendix B.
Note that the contents of the internal RAM are not
affected by a systemreset. After a power-on reset,
the contents of the internal RAM are undefined.
This implies that the GPRs and the PEC source
and destinationpointers (SRCPy, DSTPy, y = 0..7)
which are mapped into the internal RAM are also
undefinedafter a power-on reset. After a warm re-
set or a reset which is causedby an overflowof the
Watchdog Timer or by execution of the SRST in-
struction, the previous contents of the internal
RAM remain unaffected.
The four Data Page Pointers DPP0 through DPP4
are initialized during a system reset such that they
are pointing to the lowest four consecutive 16 K
data pages. DPP0 points to data page 0, DPP1
points to data page 1, DPP2 points to data page 2,
and DPP3 points to data page 3.

11 - System Reset

2/4

11.3 WATCHDOG TIMER OPERATION AFTER
RESET

The Watchdog Timer starts running after the inter-
nal reset has completed. Its default clock fre-
quency will be the internal system clock/2 (10MHz
at fOSC = 40MHz), and its default reload value is
00h such that a watchdogtimer overflow will occur
131072 states (6.55ms at fOSC = 40MHz) after
completion of the internal reset. When the system
reset was caused by a Watchdog Timer overflow,
the WDTR (Watchdog Timer Reset Indication) flag
in register WDTCON will be set to ‘1’. This indi-
cates the cause of the internalreset to the software
initialization routine. WDTR is reset to ‘0’ by an ex-
ternal hardware reset or by servicing the watchdog
timer.
After the internal reset has completed, the opera-
tion of the WatchdogTimer can be disabled by the
DISWDT (Disable Watchdog Timer) instruction.
This instruction has been implemented as a pro-
tected instruction. For further security, its execu-
tion is only enabled in the time period after a reset
until either the SRVWDT (Service Watchdog
Timer) or the EINIT instruction has occurred. Oth-
erwise, execution of the DISWDT instruction will
have no effect. More details about Watchdog
Timer operationcan be found in section 8.5.

11.4 PORTS AND EXTERNAL BUS
CONFIGURATION DURING RESET

During the internal reset, all of the ST10x166’sport
pins are configured as inputs through their direc-
tion registers and are switched to the high imped-
ance state (see chapter 10 for details about the
internal port structure). This ensures that the
ST10x166 and external devices will not try to drive
the same pin to different levels. Pin ALE floats to a
low state througha weakinternal pulldown,and pin
RD floats to high.
The BTYP (Bus Type) field of the SYSCON regis-

ter is initialized to the bus configuration that is de-
termined by the state of pins BUSACT, EBC0 and
EBC1 (External Bus Configuration) at the end of
the internal system reset. The Bus Active bit
(BUSACT) will be cleared to ‘0’ if single-chip mode
has been selected (BUSACT= ‘1’, EBC1/0= 00b),
otherwise it is set to ‘1’. The other bits of the SY-
SCON register are forced to zero. This default in-
itialization of the SYSCON register has been
selected such that external memories are ac-
cessed with the slowest possible configuration for
the respective bus type. The Ready function is dis-
abled.
When the internal reset has completed, the con-
figuration of Ports 0, 1, 4, and of the BHE signal
(High Byte Enable,alternate functionof P3.12)de-
pends on the bus type which was selected during
reset via the BUSACT, EBC0 and EBC1 pins. All
other pins remain in the high-impedancestate until
they are changed by software or peripheral opera-
tion.
When single chip mode was selected, Ports 0, 1,
and 4, and P3.12/BHE also remain in the high-im-
pedance state until modified by software or
through bus type reconfiguration in register SY-
SCON.
When any of the externalbus modes was selected
during reset,Port 0 and/or Port 1 will operate in the
selected bus mode. The two pins of Port 4 will out-
put the segment address, since bit SGTDIS in reg-
ister SYSCON is ‘0’ (default after reset). The code
segmentpointer (CSP) is initialized to zero,and all
bits of the data page pointers except for the two
LSBs are also initialized to zero during reset.
Therefore,Port 4 will always output00b afterreset.
When no memory accesses above 64K are to be
performed,segmentationmay be globallydisabled
by setting bit SGTDIS to ‘1’.
When an external 16-bit data bus mode (16/18-bit
address, multiplexed or non-multiplexed) is se-
lected, the BHE pin will be active after a reset. It
can be disabled by setting the BYTDIS bit in the
SYSCON register to ‘1’.

11 - System Reset

3/4

11.5 INITIALIZATION SOFTWARE ROUTINE

To ensure proper entry into the initialization soft-
ware routine, a hardware branch to location
zero/segment zero is made immediately following
completion of the internal systemreset or deasser-
tion of a correct reset signal on pin RSTIN, respec-
tively. Since location 0000h is the first vector in the
trap/interrupt vector table, it is the responsibility of
the user to place a branch instruction at location
zero which branches to the first instruction of the
initialization routine. Note that 8 bytes (locations
0000h through 0007h) are provided in this table for
the reset function. If single chip mode is selected
throughpins BUSACT, EBC1 and EBC0, the inter-
nal ROM for the ST10166 or the internal Flash
memory for the ST10F166, is accessed when the
initial branch is made to location zero. Otherwise,
an external fetch to locationzero is made.
After reset, the ROM access or the bus configura-
tion can be modified in the first instruction of the
software initialization routine. This is normally re-
quired whenever an external memory is used, be-
cause the SYSCON register is initialized during
reset to the slowest possible memory configura-
tion. To select the desired memory configuration
and the required access parameters, one simply
movesa constant to theSYSCONregister thusen-
suring that propersynchronizationbetween the ex-
ternal memory and the ST10x166 is achieved.The
externalbus configurationoptions are described in
detail in section 9.1.
To decreasethe number of instructions required to
initialize the ST10x166, each peripheral is pro-
grammed to a default configuration upon reset, but
is disabled from operation. These default configu-
rations can be found in the descriptionsof the indi-
vidual peripherals in chapter 8.

During the software design phase, portions of the
internal memory space must be assigned to regis-
ter banks and systemstack.Whenselecting initiali-
zation values for the SP (Stack Pointer) and CP
(Context Pointer) registers, one must ensure that
these registers are initialized before any GPR or
stack operation is performed. This includes inter-
rupt processing which is disabled upon completion
of the internal reset, and should remain disabled
until the SP is initialized.

In addition, the stack overflow (STKOV) and the
stack underflow (STKUN) registers should be in-
itialized. After reset, the CP,SP, and STKUN regis-
ters all contain the same reset value FC00h, while
the STKOV register contains FA00h. With the de-
fault reset initialization, 256 words of system stack
are available, where the system stack selected by
the SP grows downwards from FBFEh, while the
register bank selected by the CP grows upwards
from FC00h.

Based on the application, the user may wish to in-
itialize portions of the internal memory before nor-
mal program operation. Once the register bank
has been selected throughprogramming of the CP
register, one can easily perform memory zeroing
through indirect addressing of the desired portions
of the internal memory.
At the end of the initialization, the interrupt system
may be globally enabled by moving the appropri-
ate constant to the PSW register. One must be
careful not to enablethe interruptsystem before in-
itialization is complete.
The software initialization routine should be termi-
nated with the EINIT instruction. This instruction
has been implemented as a protected instruction.
Execution of the EINIT instruction disables the ac-
tion of the DISWDT instruction and causes the
RSTOUT pin to go high (see also figure 11.2). This
signal can be used to indicate the end of the initiali-
zation routine and the proper operation of the mi-
crocontroller to external hardware.

11.6 THE BOOT-STRAP MODE

On the ST10F166, 256Bytes of ROM (electrically
programmable) are free to store the Boot-Strap
Routine. This routine defined by the user, allows to
pass round the immediate branch at the address
0000h in singlechip mode.
This program has to be loaded with the Flash Pro-
gramming Board provided by SGS-THOMSONMi-
croelectronics.

To access this mode, ALE pin must be pulled high
during a hardware reset (RSTIN).
This feature is optional, and if no programis stored
in this area, a softwarereset instruction(SRST) will
select the address 0000h in the program memory.

11 - System Reset

4/4

POWER REDUCTION MODES

CHAPTER 12

Two different power reduction modes with differ-
ent levels of power reduction have been imple-
mented in the ST10x166 which may be entered
under software control. In Idle mode, the CPU is
stopped, while the peripherals continue their op-
eration. In Power Down mode, both the CPU and
the peripherals are stopped. Idle mode can be
terminated by any reset or interrupt request,
while Power Down mode can only be terminated
by a hardware reset.

12.1 POWER DOWN MODE

To save power in a system, the microcontroller
can be placed in Power Down mode. All clocking
of internal blocks is stopped, but the contents of
the internal RAM are preserved through the volt-
age supplied by the VCC pins. The Watchdog
Timer is stopped in Power Down mode. One can
only exit this mode through an external hardware
reset by asserting a low level on the RSTIN pin
for a specified period of time (at least 2 state
times). This reset will initialize all SFRs and ports
to their default state, but will not change the con-
tents of the internal RAM.
There are two levels of protection against unin-
tentionally entering the Power Down mode. First,
the PWRDN (Power Down) instruction which is
used to enter this mode has been implemented
as a protected instruction. Second, this instruc-
tion is effective ONLY if the NMI (Non Maskable
Interrupt) pin is externally pulled low while the
PWRDN instruction is executed. The microcon-
troller will then enter the Power Down mode after
the PWRDN instruction has completed.

12. POWER REDUCTION MODES

This featurecan be usedin conjunctionwith an ex-
ternal power failure signal, which pulls the NMI pin
low when a power failure is imminent. The micro-
controller will enter the NMI trap routine which can
performsaving of the internal state into RAM. After
the internal state has been saved, the trap routine
may set a flagor writea certainbit pattern into spe-
cific RAM locations, and then execute the PWRDN
instruction. If the NMI pin is still low at this time, the
Power Down mode will be entered, otherwise pro-
gramexecutioncontinues.During power down, the
voltage at the VCC pins can be lowered to 2.5V
and the contents of the internal RAM will be pre-
served.
Later,when a reset occurs, the initialization routine
can check the identification flag or bit pattern in
RAM to determine whether the controller was in-
itially switched on or whether it was properly re-
started from Power Down mode.

12.2 IDLE MODE

One can decrease the power consumption of the
ST10x166microcontroller by entering Idle mode. If
enabled, all peripherals, INCLUDING the Watch-
dog Timer, continue to function normally, only the
CPU operation is halted.

The Idle mode is entered after the IDLE instruction
has been executed and the instruction before the
IDLE instruction has completed. To prevent unin-
tentional entry into Idle mode, the IDLE instruction
has been implemented as a protected instruction.

The Idle mode is terminated by interrupt requests
from any enabled interrupt source whose individ-
ual Interrupt Enable flag was set before the Idle
mode was entered.

1/4

For a requestwhich was selected for CPUinterrupt
service, the associated interrupt service routine is
entered if the priority level of the requesting source
is higher than the current CPU priority and the in-
terrupt system is globally enabled. After the RETI
(Return from Interrupt) instruction of the interrupt
service routine is executed, the CPU continues
normal program execution with the instruction fol-
lowing the IDLE instruction. Otherwise, if the inter-
rupt request can not be serviced because of a too
low priority or a globally disabled interrupt system,
the CPU immediately resumes normal program
executionwith the instruction followingthe IDLE in-
struction.
For a request which was programmed for PEC
service, a PEC data transfer is performed if the pri-
ority level of this request is higher than the current
CPU priority and the interrupt system is globally
enabled. After the PEC data transfer has been
completed, the CPU returns into Idle mode. Other-
wise, if the PEC request can not be serviced be-
cause of a too low priority or a globally disabled
interrupt system, the CPU does not return to Idle
mode but restarts normal program execution with
the instruction following the IDLEinstruction.
The Idle mode can also be terminated by a Non-
Maskable Interrupt through a high to low transition
on the NMI pin. After the Idle mode has been termi-
nated by an interrupt or NMI request, the interrupt
system performs a round of prioritization to deter-
mine the highest priority request. In the case of an
NMI request, the NMI trap will always be entered.
Any interrupt request whose individual Interrupt
Enable flag was set before the Idle mode was en-
tered will terminate the Idle mode regardless of the
current CPU priority. The CPU will NOT go back
into Idle mode when a CPU interrupt request is de-
tected, even when the interrupt was not serviced
because of a higher CPU priority or a globally dis-
abled interrupt system (IEN = ‘0’). The CPU will
ONLY go back into Idle mode when the interrupt
system is globally enabled (IEN = ‘1’) AND a PEC
service on a priority level higher than the current
CPU level is requested and executed.
The Watchdog Timer may be used for monitoring
the Idle mode: an internal reset will be generatedif
no interrupt or NMI request occurs before the
Watchdog Timer overflows. To prevent the Watch-
dog Timer from overflowing during Idle mode, it
must be programmed to a reasonabletime interval
before the Idle mode is entered.

12.3 STATUS OF OUTPUT PINS DURING IDLE
AND POWER DOWN MODE

During Idle mode , the CPU clocks are turned off,
while all peripherals continue their operation in the
normal way. Therefore, all ports pins which are
configured as general purpose output pins output
the last data value which was written to their port
output latches. If the alternate output function of a
port pin is usedby a peripheral,the stateof the pin
is determined by the operation of the peripheral
(Port 2, Port 3). In particular, if CLKOUT, the alter-
nate output function of P3.15, has been enabled, it
is also active during Idle mode.
Port pins which are used for bus control functions
go into that state which represents the inactive
state of the respective function (WR), or to a de-
fined state which is based on the last bus access
(BHE). Pins which are dedicated for bus control
functions are also held in the inactive state (ALE,
RD). Port pins which are used as external ad-
dress/data bus hold the address/data which was
output during the last external memory access be-
fore entry into Idle mode under the followingcondi-
tions:

- On P0[15:8],Port 0 outputs the high byte of the
last transferred address if the 16/18 bit ad-
dress, 8-bit data, multiplexed bus mode is
used, otherwise all pins of Port 0 are floating.
Pins P0[7:0] are always floating in Idle mode.

- Port 1 floats if the non-multiplexed bus mode is
used, otherwise Port 1 acts as a general pur-
pose I/O port.

- Port 4 outputs the segment address for the last
access if segmentation is enabled, otherwise
Port 4 acts as a general purpose I/O port.

During Power Down mode , the clocks to the CPU
and to the peripherals are turned off. In the
ST10x166, the oscillator is completely switched
off. Like in Idlemode, all port pins which are config-
ured as generalpurpose output pins output the last
data value which was written to their port output
latches.
When the alternate output function of a port pin is
used by a peripheral, the state of this pin is deter-
mined by the last action of the peripheral before
the clocks were switched off. In particular, if
CLKOUT, the alternate output function of P3.15,
had been enabled, it is not active during Power
Down mode.

12 - Power Reduction Modes

2/4

All external bus actions are completed before Idle
or Power Down mode is entered. However, Idle or
Power Down modes can NOT be entered if
READY is enabled, but has not been deasserted
during the last bus access.
The following table 12.1 presentsa summaryof the
state of all ST10x166 output pins during Idle and
Power Down modes.

Abbreviationsused:
AF State determined by (last) activity

of Alternate Output Function
ADDR _ H Address High Byte

DATA Data in Port Output Latch
16/8 16/18-bit Address, 8-bit Data,

Multiplexed Bus
16+16 16/18-bit Address, 16-bit Data,

Non-Multiplexed Bus
non-segm SegmentationDisabled

Outputs

Idle Mode Power Down Mode

No external
bus enabled

External bus
enabled

NO external
bus enabled

External bus
enabled

ALE L L L L

RD H H H H

Port0

7:0
15.8

DATA
DATA

FLOAT
last ADDR_H (16/8)
FLOAT otherwise

DATA
DATA

FLOAT
last ADDR_H (16/8)
FLOAT otherwise

Port1 DATA last ADDR (16 + 16)
DATA otherwise

DATA last ADDR (16 + 16)
DATA otherwise

Port2 DATA/AF DATA / AF DATA/AF DATA/last AF

Port3 DATA/AF DATA / AF DATA/AF DATA/last AF

BHE/P3.12 DATA L or H DATA L or H

WR/P3.13 DATA H DATA H

CLKOUT/P3.15
(if enabled)

active active L L

Port4
A16, A17

DATA DATA (non-segm)
last ADDR otherwise

DATA DATA (non-segm)
last ADDR otherwise

RSTOUT 1) 1) 1) 1)

Table 12-1. Output Pins Status during Idle and Power Down Mode

1) Low if IDLE or PWRDN executed before EINIT, otherwise H

12 - Power Reduction Modes

3/4

NOTES:

12 - Power Reduction Modes

4/4

SYSTEM PROGRAMMING

CHAPTER 13

To aid in software development, a number of fea-
tureshas been incorporated into the instructionset
of the ST10x166. These include constructs for
modularity, loops, and context switching. In many
cases, commonly used instruction sequences
have been simplified while providing greater flexi-
bility. The following sections cover programming
featuresand implementations to fully utilize this in-
struction set.

13.1 INSTRUCTIONS PROVIDED AS
SUBSETS OF INSTRUCTIONS

In many cases, instructions found in other micro-
controllers are providedas subsetsof more power-
ful instructions in the ST10x166. This allows the
same functionality to be providedwhile decreasing
the hardware required and decreasing decode
complexity. In order to aid assemblyprogramming,
these instructions, familiar from othermicrocontrol-
lers, can be built in macros. The following subsec-
tions describe methods of providing the functionof
these common instructions.

13.1.1 Directly Substitutable Instructions
Instructionsknown from other microcontrollers can
be replaced by the following instructions on the
ST10x166 listed table 13.1

13.1.2 Modification of System Flags
All bit and word instructions can access the PSW
register. Thus, to set or clear PSW flags, no
CLEAR CARRY or ENABLE INTERRUPTS in-
struction is required. These functions are per-
formed using bit set or clear (BSET, BCLR)
instructions.

13.1.3 External Memory Data Access
By providinga Von-Neumannmemory architecture
and by providing hardware to detect access to in-
ternal RAM, GPRs, and SFRs, special instructions
are not required to load data pointers or explicitly
load and store external data. See chapter 6 for a
detaileddescription of data addressing modes.

13. SYSTEM PROGRAMMING

Other µC ST10x166 Function

CLR Rn AND Rn, #0h Clear Register

CPLB Bit BMOVN Bit, Bit Complement Bit

DEC Rn SUB Rn, #1h Decrement Register

INC Rn ADD Rn, #1h Increment Register

SWAPB Rn ROR Rn, #8h Swap Bytes in Word

Table 13-1. Instruction Equivalents

1/8

13.2 MULTIPLICATION AND DIVISION

Multiplication and division of words and double
words is provided through multiple cycle instruc-
tions implementing a Booth algorithm. Each in-
struction implicitly uses the 32-bit MD register
(MDL-low 16 bits, MDH-high 16 bits). Whenever
eitherhalf of this register is written into, the MDRIU
flag (Multiply or Divide Register In Use) in the MDC
register is set. It is cleared whenever the MDL reg-
ister is read. Because an interrupt can be acknow-
ledged before the MD register contents are saved,
this flag is required to alert interruptroutines (which
require the use of the multiply/divide hardware) of
state preserved in the MD register. This register,
however, must only be saved when an interrupt
routine requires use of the MD register and a pre-
vious task has not saved the current result. This
flag is easily tested by the Jump on Bit instructions.
Multiplication is simplyperformed by specifying the
correct signed or unsigned version of the instruc-
tion. The result is then stored in the MD register.
The overflow flag (V) is set if the result from a mul-
tiply or divide instruction is greater than 16 bits.
This flag can then be used to determine whether
both word halves of theMD registermust be trans-
ferred from the MD register. One must first move
the high portion of the MD register into the register
file or memory to ensure that the MDRIU flag re-
flects the correct state.

The following instruction sequence performs an
unsigned 16 by 16-bitmultiplication:
SAVE: JNB MDRIU,START
;Test if MD was in use.

SCXT MDC, #0
;Save and clear control register
;(only required if multiply or ;di-
vide instruction was interrupted).

BSET SAVED
;Save indication of stored state.

PUSH MDH
;Save previous MD contents.

PUSH MDL
;on system stack.

Note: The above save sequence and the restore
sequenceafter COPYL are only required if the cur-
rent routine could have interrupted a previousrou-
tine which contained a MUL or DIV instruction.The
MDC register is also saved because it is possible
that a previous routine’s Multiply or Divide instruc-
tion was interrupted while in progress. In this case
the information about how to restart the instruction
is contained in this register. The MDC register
must be cleared to be correctly initialized for a sub-
sequent multiplication or division.

START: MULU R1, R2
;Multiply 16x 16 unsigned, Sets
;MDRIV.

JNB V, COPYL
;Test for only 16-bit result.

MOV R3, MDH
;Move high portion of MD.

COPYL: MOV R4, MDL
;Move low portion of MD, Clears
;MDRIV.

RESTORE: JNB SAVED, DONE
;Test if MD registers were saved.

POP MDL
;Restore registers.

POP MDH

POP MDC

DONE:
;any instruction.

To perform division, the user must first move the
dividend into the MD register. If a 16/16 bit division
is specified, only the low portion of the MD register
must be loaded. The result is also stored in the MD
register. The low portion of the MD register, MDL,
contains the integer result of the division while the
high portion of the MD register, MDH, contains the
remainder.

The overflow flag V is set if the result can not be
represented in a word data type. One must first
copy the high portion of the MD register result into
the register file or memory to ensure that the
MDRIU flag is set correctly, but one may write to
eitherhalf of the MD register to set the MDRIUflag.
The following instruction sequence performs a 32
by 16 bit division:

13 - System Programming

2/8

MOV MDH, R1
;Move dividend to MD register,
;Sets MDRIV.

MOV MDL, R2
;Move low portion to MD.

DIV R3
;Divide 32/16 signed, R3 holds
;the divisor.

JB V, ERROR
;Test for divide overflow.

MOV R3, MDH
;Move remainder to R3.

MOV R4, MDL
;Move integer result to R4,
;Clears MDRIV.

Whenever a multiply or divide instruction is inter-
rupted while in progress, the MULIP flag in the
PSW of the interrupting routine is set. When the in-
terrupt routine is exited with the RETI instruction,
this bit is implicitly tested before the old PSW is
popped from the stack. If MULIP = ‘1’, the inter-
rupted multiply/divide instruction will then be com-
pleted after the RETI instruction has been
executed.

Interrupt routines which require the use of the mul-
tiply/divide hardware MUST first push and then
clear the MDC register beforestartinga multiply/di-
vide operationif a multiply/divide instruction was in
progress in the interrupted routine (MULIP = ‘1’).
The MDC register holds state of the interrupted
multiply/divide instruction which is necessary in or-
der to complete the instruction properly after the
RETI instruction. The old MDC contents must be
popped from the stack before the RETI instruction
is executed.

13.3 BCD CALCULATIONS

No direct support for BCD calculations is provided
in the ST10x166. BCD calculations are performed
by converting between BCD data types and binary
data types, performing the desired calculationsus-
ing standard data types. Due to the enhancedper-
formance of division instructions, one can quickly
convert frombinary to BCDthrough divisions by 10
of binary data types. Conversion from BCD to bi-
nary is enhanced by multiple bit shift instructions.
Thus, similar performance is achieved in compari-
son to instructions which would support BCD data
types while no additionalhardware is required.
13.4 STACK OPERATIONS

Two types of stacksare provided in the ST10x166.
The first type is used implicitly by the system and is
contained in the internal RAM. The second type
provides stack access to the user in either the in-
ternal or external memory. Both stack types grow
from high memory addresses to low memory ad-
dressesand are described in the followingsubsec-
tions.

13.4.1 Internal System Stack
A system stack is provided to store return vectors,
segment pointers, and processor status for proce-
dures and interrupt routines. A system register,
SP, points to the top of the stack. This pointer isde-
crementedwhen data is pushed onto the stackand
incremented when data is popped.
The internal system stackcan alsobe used to tem-
porarily store data between subroutines or tasks.
Instructions are provided to push or pop registers
on/from the system stack. However, in most cases
the register bankingschemeprovides the best per-
formance for saving state between multiple tasks.
Note: THE SYSTEM STACK PERMITS STOR-
AGE OF WORDS ONLY. Bytes can be stored on
the system stack, but must be extended to words
first. One must also consider that only even byte
addressescan be stored in the SP register (LSB of
SP is always ‘0’).

Detectionof stack overflow/underflowis supported
by two registers, STKOV (Stack Overflow Pointer)
and STKUN (Stack Underflow Pointer). Specific
system traps (Stack Overflow trap, Stack Under-
flow trap) will be enteredwhenever the SP reaches
either boundary specified in these pointer regis-
ters.

The contents of the Stack Pointer are always com-
pared to the contents of the Overflow register
whenever the SP is DECREMENTED either by a
Call, Push, or Subtract instruction. An Overflow
Trap will be enteredwhen the SP value is less than
the value in the StackOverflow register
The Stack Pointer value is compared to the con-
tents of the Underflow register whenever the SP is
INCREMENTED either by a Return, Pop, or Add
instruction. An Underflow Trap will be entered
when the SP value is greater than the value in the
Stack Underflow register.
When a value is MOVED into the Stack Pointer,
NO check against the Overflow/Underflow regis-
ters is performed.

13.4.1.1 USE OF STACK UNDERFLOW/OVERFLOW
REGISTERS

13 - System Programming

3/8

In many cases, the user will place a Software Re-
set (SRST) instruction in the stack underflow and
overflow trap service routines indicating a fatal er-
ror. However, it is also possible to use the stack un-
derflow and stack overflow registers to cache
portions of a larger external stack. This technique
places only the portion of the system stack cur-
rently being used in the internal memory, thus al-
lowing a greater portion of the internal RAM to be
used for program data or registerbanking.
This basic techniqueallows data to be pusheduntil
the overflow boundary of the internal stack is
reached. At this point a portion of the stacked data
must be saved in the external memory to create
space for further stack pushes. This is called stack
flushing. When executing a number of return or
pop instructions, the upper boundary (since the
stack empties upward to higher memory locations)
is reached. The entries that have been previously
saved on the external memory must now be re-
stored. This is called stack filling. Because proce-
dure call instructions do not continue to nest
indefinitelyand returninstructions are interspersed
with calls, flushing and filling normally occur very
infrequently. If this is not true for a given program
environment, this technique should not be used
becauseof the overheadof flushing and filling.
To avoid movement of data that remains internally
on the stack during flushing and filling, a circular
stack mechanismhas been implementedby mask-
ing off the higher bits of the stack pointer. Thus,
only portions of the internal RAM that are flushed
or filled need to be moved. Without this circular
stacking, the user would have to move each entry
that remained on the stack by the distance of the
space being flushed or filled.
The circular stack techniquerequires that the inter-
nal stack be one of the following sizes: 32, 64, 128
or 256 words.
When a boundary is reached, the stack underflow
or overflow trap is entered where the user moves a
predetermined portion of the internal stack to or
from the external stack. The amount of data trans-
ferred is determined by the average stack space
required by routines and the frequency of calls,
traps, interrupts, and returns. In most cases, this
will be approximately one quarter to one tenth the
size of the internal stack. Once the transfer is com-

plete, the boundary pointers are updated to reflect
the newly allocated space on the internal stack.
Thus, the user is free to writecode without concern
for the internal stack limits. Only the executiontime
required by the trap routines is seen by user pro-
grams.
Becauseof circular stacking, data accessed at the
boundarylimits of the internal stack is accessedas
if no boundary existed. When data is pushed be-
yond the bottom of the internal memory (location
FA00h), the data actually is pushed at the top of
the allocated stack space (e.g. location FBFEh
where 256 words have been allocated for the
stack). Thus, the internal access pointer wraps
around the internal stack as specified by the stack
size in the SYSCON register. The stack pointer al-
ways points to the virtual location in the external
memory. The boundary pointers, STKOV and
STKUN, also point to the external virtual stack lo-
cations.

The following procedure is required upon initializa-
tion of the controller:
1) Specify in the SYSCON register the size of the

internal RAM to be dedicated to the system
stack.

2) Initialize two pointers in the internal data mem-
ory which specify the upper and lower bound-
ary of the external stack. These values are
then tested in the stack underflow and over-
flow trap routines.

3) Initialize the stack underflow pointer to the bot-
tom of the external stack, and the overflow
pointer to the value of the underflowpointermi-
nus thesize of the internalstack plus six words
(for the reserved space).

Following this procedure, the internal stack will fill
until the overflow pointer is reached.After entry to
the overflow trap procedure, the top of the stack
will be copied out to the externalRAM. The internal
pointers will then be modified to reflect the newly
allocated space. After exiting from the trap proce-
dure, the internal stack will wrap around to the top
of the internal stack, and continue to grow until the
new value of the stackoverflow pointer is reached.

13.4.2 User Stacks

13 - System Programming

4/8

User stacks provide the ability to create task spe-
cific data stacks and to off-load data from the sys-
tem stack. The user may push both bytes and
words onto a user stack, but is responsible for us-
ing the appropriateinstructions when poppingdata
from the specific user stack. No hardware detec-
tion of overflow or underflowof a user stack is pro-
vided. The following addressing modes allow
implementationof user stacks:
Rb, [Rw+] or Rw, [Rw+]:

Post-increment Indirect Addressing: Used to
pop one byte or word from a user stack. This
mode is only available for MOV instructions,
and can specify any GPR as the user stack
pointer.

[-Rw], Rb or [-Rw], Rw:
Pre-decrement Indirect Addressing: Used to
push one byte or word onto a user stack. This
mode is only available for MOV instructions,
and can specify any GPR as the user stack
pointer.

Rb, [Rw+] or Rw, [Rw+]:
Post-increment Index Register Indirect Ad-
dressing: Used to pop one byte or word from a
user stack. This mode is available to most in-
structions,but only GPRsR0-R3 can be speci-
fied as the user stack pointer.

13.5 REGISTER BANKING

Register banking provides the user with an ex-
tremely fast method of switching user context. A
single machine cycle instruction saves the old
bank and enters a new registerbank. Eachregister
bank may assign up to 16 registers. Each register
bank should be allocated during coding based on
the needs of each task. Once the internal memory
has been partitioned into a register bank space, in-
ternal stack space, and a global internal memory
area, each bank pointer is then assigned. Thus,
upon entry to a new task, the appropriate bank
pointer is used as the operandof the SCXT(switch
context) instruction.Upon exit from a task,a simple
POP instruction to the context pointer (CP) re-
stores the previous task’s register bank.

13.6 PROCEDURE CALL ENTRY AND EXIT

To support modular coding, a procedure mecha-
nism is provided to allow coding of frequently used
portions of code into subroutines. The CALL and
RET instructions store and restore the value of the
Instruction Pointer (IP) on the system stack before
and after a subroutine is executed. One must also
ensurethat any data pushedonto the systemstack
during execution of the subroutine is popped be-
fore the RET instruction is executed.

13.6.1 Passing Parameterson the System
Stack
Parameters may be passed on the system stack
throughPUSH instructionsbefore the subroutineis
called, and POP instructions during execution of
the subroutine. Base plus offset indirect address-
ing also permits access to parameterswithoutpop-
ping these parameters from the stack during
execution of the subroutine. Indirect addressing
provides a mechanism of accessing data refer-
enced by data pointers which are passed to the
subroutine.
In addition, two instructions have been imple-
mented to allow one parameter to be passed on
the system stack without additional software over-
head.

The PCALL (push and call) instruction first pushes
the ‘reg’ operand and the IP contents on the sys-
tem stack and then passes control to the subrou-
tine specified by the ‘caddr’ operand.
When exiting from the subroutine, the RETP (re-
turn and pop) instruction first pops the IP and then
the ‘reg’ operand from the system stack and re-
turns to the calling program.

13.6.2 Cross Segment Subroutine Calls
Calls to subroutines in different segments require
use of the CALLS (call inter-segment subroutine)
instruction. This instruction preserves both the
CSP (code segment pointer) and IP on the system
stack.
Upon return from the subroutine, a RETS (return
from inter-segmentsubroutine) instruction must be
used to restore both the CSP and IP. This ensures
that the next instructionafter the CALLS instruction
is fetched from the correct segment. It is possible
to use CALLS within the same segment, but two
words of the stackare still used to store both the IP
and CSP.

13.6.3

13 - System Programming

5/8

Providing Local Registers for Subroutines
For subroutines which require local storage, the
following methods are provided:
_ Alternate Bank of Registers: Upon entry to a

subroutine, it is possible to specifya newset of
local registers by executing a SCXT (switch
context) instruction. This mechanism does not
provide a method to recursively call a subrou-
tine.

_ Saving and Restoring of Registers: To provide
local registers, one can push the contents of
the registers which are required for use by the
subroutine, and pop the previous values be-
fore returning to the calling routine. This is the
most common technique used today and it
does provide a mechanism to support recur-
sive procedures. This method, however, re-
quires two machine cycles per register stored
on the system stack (one cycle to PUSH the
register, and one to POP the register).

_

Use of the SystemStack for Local Registers: It
is possible to use the SP and CP to set up local
subroutine register frames. This allows sub-
routines to dynamically allocate local variables
as needed in two machine cycles. To allocate
a local frame one simply subtracts the number
of required local registers from the SP, and
then moves the value of the new SP to the CP.
This operation is supported through the SCXT
(switch context) instructionwith the addressing
mode ‘reg, mem’. Using this instruction one
can save the old contentsof the CP on thesys-
tem stack and move the value of the SP into
CP (see example in figure 13.1). Each local
register is then accessed as if it was a normal
register. Note that the system stack is growing
downwards, while the register bank is growing
upwards.
Upon exit from the subroutine, one first re-
stores the old CP by popping it from the stack,
and then simply adds the number of local reg-
isters used to the SP to restore the allocated
local space back to the system stack.

Example:

After subroutine entry:

SUB SP, #10 ; 5 Words

Old SP SCXT CP, SP

R4

Newly
Allocated
Register

Bank

R3

R2

R1

CP R0

New SP Old CP contents Before exiting subroutine:

POP CP
ADD SP, #10 ; 5 Words

Old Stack
Area

New
Stack Area

Figure 13-1. Local Registers

13 - System Programming

6/8

13.7 TABLE SEARCHING

A number of features have been included to de-
crease the execution time required to search ta-
bles. First, branch delays are eliminated after the
first iteration of the loop. Second, in non-sequen-
tially searched tables, the enhancedperformance
of the ALU allows more complicated hash algo-
rithms to be processed to obtain better table distri-
bution. For sequentially searched tables, the
auto-increment indirect addressing mode and the
E (end of table) flag stored in the PSW decrease
the number of overhead instructions executed in
the loop. Below, two examples illustrate searching
ordered tables and non-ordered tables, respec-
tively:

MOV R0, #BASE
;Move table base into R0.

LOOP: CMP R1, [R0+]
;Compare target to table entry.

JMPA cc _ SGT, LOOP
;Test whether target has
;not been found.

Note: The last entry in the table must be greater
than the largest possible target.

MOV R0, #BASE
;Move table base into R0.

LOOP: CMP R1, [R0+]
;Compare target to table entry.

JMPA cc _ NET, LOOP
;Test whether target is not
;found AND the end of table has not
;been reached.

Note: The last entry in the table must be equal to
the lowest signed integer (8000h).

13.8 PERIPHERAL CONTROL AND
INTERFACE

All communication between peripherals and the
CPU is performed either by PEC transfers to and
from the internal memory, or by explicitly address-
ing the SFRs associated with the specific peripher-
als. After resetting the ST10x166, all peripherals
(except Watchdog Timer) are disabled and initial-
ized to default values. To program a desired con-
figuration of a specific peripheral, one uses MOV
instructions of either constants or memory values
to specific SFRs. One can also alter specific con-
trol flags through bit instructions.
Once in operation, the peripheraloperates autono-
mously until an end condition is reached at which

time it requests a PEC transfer or requests CPU
servicing through an interrupt routine. One can
also poll information fromperipherals through read
accesses of SFRs or bit operations including
branch tests on specific control bits in SFRs. To
ensure proper allocation of peripherals among
multiple tasks, a portionof the internal memoryhas
been made bit addressable to allow user sema-
phores. Instructions have also been provided to
lock out tasks through software by setting or clear-
ing of user specific bits and conditionallybranching
based on these specificbits.
It is recommended that fields of bits in control
SFRs are updated using the BFLDH and BFLDL
instructions to avoid undesired intermediate
modes of operation which can occur when AND-
OR instruction sequencesare used.

13.9 FLOATING POINT SUPPORT

All floating point operations are performed using
software. Standard multiple precision instructions
are used to performcalculationson data types that
exceed the size of the ALU. Multiple bit rotate and
logic instructions allow easy masking and extract-
ing of portions of floating point numbers.
To decrease the time required to perform floating
pointoperations, two hardwarefeatureshave been
implemented in the core CPU. The first aids in nor-
malizing floating point numbers by indicating the
position of the first set bit in a GPR. One can then
use this result to rotate the floating point result ac-
cordingly. The second feature aids in properly
rounding the result of normalized floating point
numbers through the overflow (V) flag in the PSW.
This flag is set when a one is shiftedout of the carry
bit. The overflow flag and the carry flag are then
used to round the floatingpoint result based on the
desired rounding algorithm.

13.10 TRAP/INTERRUPT ENTRY AND EXIT

Interrupt routines are entered when a requesting
interrupt has a priorityhigher than the current CPU
priority level. Traps are entered regardless of the
current CPU priority. When eithera trapor interrupt
routine is entered, the state of the machine is pre-
servedon the system stack and a branchto theap-
propriate trap/interrupt vector is made. This
sequenceis described in detail in chapter 7.
All trap and interrupt routines require use of the
RETI (return from interrupt) instruction to exit from
the called routine.This instruction restores the sys-
tem state from thesystemstack andthen branches
to the location where the trap or interrupt occurred.

13 - System Programming

7/8

NOTES :

13 - System Programming

8/8

February 1996 1/6

This is preliminary information from SGS-THOMSON.Details are subject to change without notice.

APPENDIX A

ST10F166 REGISTERS

A ST10F166 REGISTERS

This part of the Appendix contains a sum-
mary of all registers incorpored in the
ST10x166. Section A.1 lists all CPU Gen-
eral Purpose Registers. In Section A.2, all

ST10x166 Specific Special Function Reg-
isters are summarized in alphabetical or-
der.

A.1 CPU GENERAL PURPOSE REGISTERS (GPRs)

CPU General Purpose Registers are ac-
cessed via the Context Pointer (CP). The
Context Pointer must be programmed such
that the accessed GPRs are always locat-

ed in the internal RAM space. All GPRs are
always located in the internal RAM space.
All GPRs are bit addressable.

Word Registers

Name Physical
Address

8-Bit
Address

Description Reset
Value

R0 (CP) + 0 F0h CPU General Purpose Register R0 XXXXh

R1 (CP) + 2 F1h CPU General Purpose Register R1 XXXXh

R2 (CP) + 4 F2h CPU General Purpose Register R2 XXXXh

R3 (CP) + 6 F3h CPU General Purpose Register R3 XXXXh

R4 (CP) + 8 F4h CPU General Purpose Register R4 XXXXh

R5 (CP) + 10 F5h CPU General Purpose Register R5 XXXXh

R6 (CP) + 12 F6h CPU General Purpose Register R6 XXXXh

R7 (CP) + 14 F7h CPU General Purpose Register R7 XXXXh

R8 (CP) + 16 F8h CPU General Purpose Register R8 XXXXh

R9 (CP) + 18 F9h CPU General Purpose Register R9 XXXXh

R10 (CP) + 20 FAh CPU General Purpose Register R10 XXXXh

R11 (CP) + 22 FBh CPU General Purpose Register R11 XXXXh

R12 (CP) + 24 FCh CPU General Purpose Register R12 XXXXh

R13 (CP) + 26 FDh CPU General Purpose Register R13 XXXXh

R14 (CP) + 28 FEh CPU General Purpose Register R14 XXXXh

R15 (CP) + 30 FFh CPU General Purpose Register R15 XXXXh

2/6

ST10F166 REGISTERS

Byte registers

Name Physical
Address

8-Bit
Address

Description Reset
Value

RL0 (CP) + 0 F0h CPU General Purpose Register RL0 XXh

RH0 (CP) + 1 F1h CPU General Purpose Register RH0 XXh

RL1 (CP) + 2 F2h CPU General Purpose Register RL1 XXh

RH1 (CP) + 3 F3h CPU General Purpose Register RH1 XXh

RL2 (CP) + 4 F4h CPU General Purpose Register RL2 XXh

RH2 (CP) + 5 F5h CPU General Purpose Register RH2 XXh

RL3 (CP) + 6 F6h CPU General Purpose Register RL3 XXh

RH3 (CP) + 7 F7h CPU General Purpose Register RH3 XXh

RL4 (CP) + 8 F8h CPU General Purpose Register RL4 XXh

RH4 (CP) + 9 F9h CPU General Purpose Register RH4 XXh

RL5 (CP) + 10 FAh CPU General Purpose Register RL5 XXh

RH5 (CP) + 11 FBh CPU General Purpose Register RH5 XXh

RL6 (CP) + 12 FCh CPU General Purpose Register RL6 XXh

RH6 (CP) + 13 FDh CPU General Purpose Register RH6 XXh

RL7 (CP) + 14 FEh CPU General Purpose Register RL7 XXh

RH7 (CP) + 15 FFh CPU General Purpose Register RH7 XXh

ST10F166 REGISTERS

3/6

A.2 SPECIAL FUNCTION REGISTERS

Name
Physical
Address

8-Bit
Address

Description
Reset
Value

ADCIC b FF98h CCh
A/D Converter End of Conversion Interrupt Control
Register

0000h

ADCON b FFA0h D0h A/D Converter Control Register 0000h

ADDAT FEA0h 50h A/D Converter Result Register 0000h

ADDRSEL1 FE18h 0Ch Address Select Register 0000h

ADEIC b FF9Ah CDh
A/D Converter Overrun Error Interrupt Control Reg-
ister

0000h

BUSCON1 b FF14h 8Ah Bus Configuration Register 0000h

CAPREL FE4Ah 25h GPT2 Capture/Reload Register 0000h

CC0 FE80h 40h CAPCOM Register 0 0000h

CC0IC b FF78h BCh CAPCOM Register 0 Interrupt Control Register 0000h

CC1 FE82h 41h CAPCOM Register 1 0000h

CC1IC b FF7Ah BDh CAPCOM Register 1 Interrupt Control Register 0000h

CC2 FE84h 42h CAPCOM Register 2 0000h

CC2IC b FF7Ch BEh CAPCOM Register 2 Interrupt Control Register 0000h

CC3 FE86h 43h CAPCOM Register 3 0000h

CC3IC b FF7Eh BFh CAPCOM Register 3 Interrupt Control Register 0000h

CC4 FE88h 44h CAPCOM Register 4 0000h

CC4IC b FF80h C0h CAPCOM Register 4 Interrupt Control Register 0000h

CC5 FE8Ah 45h CAPCOM Register 5 0000h

CC5IC b FF82h C1h CAPCOM Register 5 Interrupt Control Register 0000h

CC6 FE8Ch 46h CAPCOM Register 6 0000h

CC6IC b FF84h C2h CAPCOM Register 6 Interrupt Control Register 0000h

CC7 FE8Eh 47h CAPCOM Register 7 0000h

CC7IC b FF86h C3h CAPCOM Register 7 Interrupt Control Register 0000h

CC8 FE90h 48h CAPCOM Register 8 0000h

CC8IC b FF88h C4h CAPCOM Register 8 Interrupt Control Register 0000h

CC9 FE92h 49h CAPCOM Register 9 0000h

CC9IC b FF8Ah C5h CAPCOM Register 9 Interrupt Control Register 0000h

CC10 FE94h 4Ah CAPCOM Register 10 0000h

CC10IC b FF8Ch C6h CAPCOM Register 10 Interrupt Control Register 0000h

CC11 FE96h 4Bh CAPCOM Register 11 0000h

CC11IC b FF8Eh C7h CAPCOM Register 11 Interrupt Control Register 0000h

CC12 FE98h 4Ch CAPCOM Register 12 0000h

CC12IC b FF90h C8h CAPCOM Register 12 Interrupt Control Register 0000h

CC13 FE9Ah 4Dh CAPCOM Register 13 0000h

4/6

ST10F166 REGISTERS

CC13IC b FF92h C9h CAPCOM Register 13 Interrupt Control Register 0000h

CC14 FE9Ch 4Eh CAPCOM Register 14 0000h

CC14IC b FF94h CAh CAPCOM Register 14 Interrupt Control Register 0000h

CC15 FE9Eh 4Fh CAPCOM Register 15 0000h

CC15IC b FF96h CBh CAPCOM Register 15 Interrupt Control Register 0000h

CCM0 b FF52h A9h CAPCOM Mode Control Register 0 0000h

CCM b FF54h AAh CAPCOM Mode Control Register 1 0000h

CCM2 b FF56h ABh CAPCOM Mode Control Register 2 0000h

CCM3 b FF58h ACh CAPCOM Mode Control Register 3 0000h

CP FE10h 08h CPU Context Pointer Register FC00h

CRIC b FF6Ah B5h GPT2 CAPREL Interrupt Control Register 0000h

CSP FE08h 04h
CPU Code Segment Pointer Register (2 bits, read
only)

0000h

DP0 b FF02h 81h Port 0 Direction Control Register 0000h

DP1 b FF06h 83h Port 1 Direction Control Register 0000h

DP2 b FFC2h E1h Port 2 Direction Control Register 0000h

DP3 b FFC6h E3h Port 3 Direction Control Register 0000h

DP4 b FF0Ah 85h Port 4 Direction Control Register (2 bits) 0000h

DPP0 FE00h 00h CPU Data Page Pointer 0 Register (4 bits) 0000h

DPP1 FE02h 01h CPU Data Page Pointer 1 Register (4 bits) 0001h

DPP2 FE04h 02h CPU Data Page Pointer 2 Register (4 bits) 0002h

DPP3 FE06h 03h CPU Data Page Pointer 3 Register (4 bits) 0003h

MDC b FF0Eh 87h CPU Multiply Divide Control Register 0000h

MDH FE0Ch 06h CPU Multiply Divide Register – High Word 0000h

MDL FE0Eh 07h CPU Multiply Divide Register – Low Word 0000h

ONES FF1Eh 8Fh Constand Value 1’s Register (read only) FFFFh

P0 b FF00h 80h Port 0 Register 0000h

P1 b FF04h 82h Port 1 Register 0000h

P2 b FFC0h E0h Port 2 Register 0000h

P3 b FFC4h E2h Port 3 Register 0000h

P4 b FF08h 84h Port 4 Register (2 bits) 0000h

P5 b FFA2h D1h Port 5 Register (10 bits, read only) XXXXh

PECC0 FEC0h 60h PEC Channel 0 Control Register 0000h

PECC1 FEC2h 61h PEC Channel 1 Control Register 0000h

PECC2 FEC4h 62h PEC Channel 2 Control Register 0000h

PECC3 FEC6h 63h PEC Channel 3 Control Register 0000h

Name
Physical
Address

8-Bit
Address

Description
Reset
Value

Special Function Register (Cont’d)

ST10F166 REGISTERS

5/6

PECC4 FEC8h 64h PEC Channel 4 Control Register 0000h

PECC5 FECAh 65h PECChannel 5 Control Register 0000h

PECC6 FECCh 66h PEC Channel 6 Control Register 0000h

PECC7 FECEh 67h PEC Channel 7 Control Register 0000h

PSW b FF10h 88h CPU Program Status Word 0000h

S0BG FEB4h 5Ah
Serial Channel 0 Baud Rate Generator Reload Reg-
ister

0000h

S0CON b FFB0h D8h Serial Channel 0 Control Register 0000h

S0EIC b FF70h B8h Serial Channel 0 Error Interrupt Control Register 0000h

S0RBUF FEB2h 59 Serial Channel 0 Receive Buffer Register (read only) XXXXh

S0RIC b FF6Eh B7h Serial Channel 0 Receive Interrupt Control Register 0000h

S0TBUF FEB0h 58h
Serial Channel 0 Transmit Buffer Register (write on-
ly)

0000h

S0TIC b FF6Ch B6h Serial Channel 0 Transmit Interrupt Control Register 0000h

S1BG FEBCh 5Eh
Serial Channel 1 Baud Rate Generator Reload Reg-
ister

0000h

S1CON b FFB8h DCh Serial Channel 1 Control Register 0000h

S1EIC b FF76h BBh Serial Channel 1 Error Interrupt Control Register 0000h

S1RBUF FEBAh 5Dh Serial Channel 1 Receive Buffer Register (read only) XXXXh

S1RIC b FF74h BAh Serial Channel 1 Receive Interrupt Control Register 0000h

S1TBUF FEB8h 5Ch
Serial Channel 1 Transmit Buffer Register (write on-
ly)

0000h

S1TIC b FF72h B9h Serial Channel 1 Transmit Interrupt Control Register 0000h

SP FE12h 09h CPU System Stack Pointer Register FC00h

STKOV FE14h 0Ah CPU Stack Overflow Pointer Register FA00h

STKUN FE16h 0Bh CPU Stack Underflow Pointer Register FC00h

SYSCON b FF0Ch 86h CPU System Configuration Register 0XX0h*)

T0 FE50h 28h CAPCOM Timer 0 Register 0000h

T01CON b FF50h A8h CAPCOM Timer 0 and Timer 1 Control Register 0000h

T0IC b FF9Ch CEh CAPCOM Timer 0 Interrupt Control Register 0000h

T0REL FE54h 2Ah CAPCOM Timer 0 Reload Register 0000h

T1 FE52h 29h CAPCOM Timer 1 Register 0000h

T1IC b FF9Eh CFh CAPCOM Timer 1 Interrupt Control Register 0000h

T1REL FE56h 2Bh CAPCOM Timer 1 Reload Register 0000h

T2 FE40h 20h GPT1 Timer 2 Register 0000h

T2CON b FF40h A0h GPT1 Timer 2 Control Register 0000h

T2IC b FF60h B0h GPT1 Timer 2 Interrupt Control Register 0000h

T3 FE42h 21h GPT1 Timer 3 Register 0000h

Name
Physical
Address

8-Bit
Address

Description
Reset
Value

Special Function Register (Cont’d)

6/6

ST10F166 REGISTERS

T3CON b FF42h A1h GPT1 Timer 3 Control Register 0000h

T3IC b FF62h B1h GPT1 Timer 3 Interrupt Control Register 0000h

T4 FE44h 22h GPT1 Timer 4 Register 0000h

T4CON b FF44h A2h GPT1 Timer 4 Control Register 0000h

T4IC b FF64h B2h GPT1 Timer 4 Interrupt Control Register 0000h

T5 FE46h 23h GPT2 Timer 5 Register 0000h

T5CON b FF46h A3h GPT2 Timer 5 Control Register 0000h

T5IC b FF66h B3h GPT2 Timer 5 Interrupt Control Register 0000h

T6 FE48h 24h GPT2 Timer 6 Register 0000h

T6CON b FF48h A4h GPT2 Timer 6 Control Register 0000h

T6IC b FF68h B4h GPT2 Timer 6 Interrupt Control Register 0000h

TFR b FFACh D6h Trap Flag Register 0000h

WDT FEAEh 57h Watchdog Timer Register (read only) 0000h

WDTCON FFAEh D7h Watchdog Timer Control Register 0000h

ZEROS b FF1Ch 8Eh Constant Value 0’s Register (read only) 0000h

Name
Physical
Address

8-Bit
Address

Description
Reset
Value

Special Function Register (Cont’d)

AN490/0595 1/20

APPENDIX B
APPLICATION NOTE

PROGRAMMING
FLASH MEMORY OF THE ST10F166

INTRODUCTION

The ST10F166 high end microcontroller with on-
chip Flash Memory fulfills the requirements of ap-
plications requiring an update to a part or all the
program code. The block erase capability is also
of use during the application development stage
or for program updating. For data acquisition, the
ST10F166 allows the programming of 16 or 32
bits data independently.

Operations on the Flash memory are under soft-
ware control. Erasure or programming is a simple
procedure, however precautions must be taken to
prevent damage to the ST10F166.

This application note describes the basic charac-
teristics of the Flash memory cell, and the different
algorithms used for erasure and programming.

FUNDAMENTALS OF FLASH MEMORY

The Flash memory included in the ST10F166
combines the EPROM programming mechanism
with electrical erasability (like EEPROM) to create
a highly reliable and cost effective memory. A
Flash memory cell consists of a single transistor
with a floating gate for charge storage like
EPROM, the main difference being that Flash
memory uses a thinner gate oxide.

Figure 1. SGS-THOMSON Flash Cell VS Eprom Cell

FLASH CELL

PROGRAMMATION: HOT e INJECTION

ERASURE: THROUGH TUNNEL OXIDE
F N MECHANISM

BULK ERASURE OF ENTIRE

MEMORY IN 1 SEC RANGE

EPROM CELL

PROGRAMMATION: HOT e INJECTION

ERASURE: UV

N+ N+N+ N+

SOURCE DRAIN SOURCE

CONTROL GATE

FLOATING GATE

DRAIN

by S. Fruhauf, G. Petrosino

PROGRAMMING FLASH MEMORY

2/20

The programming mechanism of a cell is based on
hot electron injection. This means that the cell
control gate and drain are set to a high voltage
and the cell source is grounded. The high voltage
on the drain generates ”hot” electrons through the
channel, and the high voltage on the control gate
traps the free electrons into the floating gate.

The cell erase mechanism is based on ”Fowler-
Nordheim” tunnelling. This means that the cell

control gate is grounded, the cell drain is discon-
nected and the high voltage is applied to the cell
source. The high electric field between the floating
gate and the source removes electrons from the
floating gate.
Unlike standard EEPROM memory, where individ-
ual bytes can be erased, the Flash memory of the
ST10F166 performs erase on blocks where the
high voltage is applied to all cells simultaneously.

Figure 2. Flash Memory Cell Programming Mechanism

Figure 3. Flash Memory Cell Erase Mechanism

SOURCE DRAIN

P- SUBSTRATE

VD ≤ VPP

VCG = VPPCONTROL GATE

FLOATING GATE

e- e-

SOURCE DRAIN

P- SUBSTRATE

VS = VPP

CONTROL GATE

FLOATING GATE

FN

e-e-

FUNDAMENTALS OF FLASH MEMORY (Cont’d)

PROGRAMMING FLASH MEMORY

3/20

A difficulty with Flash memory concerns the re-
quirement to set all the cells of a block to a mini-
mum threshold level suitable for programming and
erase operations. Applying a new erasing pulse to
a block with a different storage level on each cell
(a different threshold level), can be very danger-
ous for the functionality of the Flash memory.
A fast erasing cell may have a threshold voltage
too low or negative, in this case the transistor is al-
ways on and is read at ”one”. This has the effect of
leakage on other cells placed on the same array
column. Thus all cells of the column will be read at
”one” instead of ”zero”.
To avoid this, the user must equalize the amount
of charge on each cell by performing a program-
ming operation before every erasure.

For increased reliability, the SGS-THOMSON
Flash memory technology, combined with the use
of the Erase-verify PRESTO F algorithm, provides
a tight erase threshold voltage distribution, gener-
ating sufficient margin to the faster erasing cell
and the minimum threshold level required to read
a ”one” data value.

ERASE & PROGRAMMING CONTROL

To simplify control of the Flash operation modes,
the ST10F166 Flash memory includes a Flash
Control Register (FCR) used for all programming
or erase operations. Mapped virtually into the
Flash address space, FCR is not accessible dur-
ing normal memory access modes and must be
unlocked by a special instruction sequence.

To avoid unpredictable programming or erase op-
eration on the Flash memory, the ST10F166 pro-
vides several levels of security:
First level : the user must perform a special se-
quence to enable the FCR and to enter into the
program mode.
Second leve l: to operate on the Flash memory,
two steps are necessary. First the user must set
up the FCR in the desired configuration, second
the operation begins ONLY with the appropriate
command.
Third level : during the program mode, two bits of
FCR (VPPRIV & FCVPP) indicate to the user the
status of VPP (the high voltage) before and during
an operation. It is advisable for the user to test
them in the erase or programming routine.

Figure 4. Flash Erasure

VERY SMALL DISPERSION

erasing curves

TIME ms

CELL THRESHOLD

~ 6 V

ERASING A CELL SET TO 1 = PROBLEM

ALL CELLS MUST BE SET TO 0 BEFORE ERASING

FORBIDDEN AREA

CELL SET TO 1 (erased)

CELL SET TO 0

programming curve

FUNDAMENTALS OF FLASH MEMORY (Cont’d)

PROGRAMMING FLASH MEMORY

4/20

THE PRESTO F PROGRAM WRITE ALGORITHM

The following section explains the Presto F Program Write Algorithm shown in figure 5 for a better under-
standing of the user. For high reliability, it is necessary to follow this algorithm to program the Flash mem-
ory.
It is considered that the EBC1/VPP pin has been switched to the VPP supply after reset, and the program
mode has been unlocked.
Before performing the unlock sequence, remember that the interrupts should be disabled, bit IEN of PSW
cleared. After exiting the write mode, bit IEN should be set, to enable the interrupts again.

– READ VPPRIV
After setting the writing mode, a delay of 10 us must be inserted to allow the device to set its internal high
voltage signals. Then, before starting the proper programming operation, the VPP level must be checked.
VPPRIV is at the ”one” level if VPP is correct. If it is not the programming algorithm must be held until
VPP reaches its correct value or until the VPP supply is set correctly.

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

– N = 0
Initialization of N variable to zero. The Presto F Program Write algorithm consist of applying several puls-
es to each word until a correct verify occurs. The maximum number of programming pulses is fixed and
depends on the CPU clock. The maximum cumulated programming time is 2.5 ms for the ST10F166B. If
this limit is reached the word will never be programmed.
In case of several words to program, an Address variable can be initialized.

mov lpcnt, #ALL0 ; reset algo. loop counter

– Write Programming Setup command into FCR
First step for programming:
Set FCR with the desired value.
Set FWE bit to enable programming operation.

Clear CKCTL0 & CKCTL1 bits to define the programming pulse width: 6.4 µs at 20MHz CPU clock.
Choose the configuration:

Set WDWW bit for double word programming.
Clear WDWW bit for word programming.
Set FWMSET bit for program mode.
Take care at this point as this step prepares the device for programming but does not activate the process.

mov fcrval, #ALL0 ; reset FCR data value

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bset wdww ; WDWW=1 define 32-bi t configuration

bset fwmset ; FWMSET=1 confirm write mode

mov FCR, fcrval ; load FCR with the desired value

PROGRAMMING FLASH MEMORY

5/20

Figure 5. PRESTO F Program Write Algorithm

= 0

PCOUNT=PNmax?

PCOUNT=PCOUNT+1

VR02057A

THE PRESTO F PROGRAM WRITE ALGORITHM(Cont’d)

PROGRAMMING FLASH MEMORY

6/20

– Write valid data address
The following command starts automatically the programming process.

For word programming:
mov [addrev],datal ; programming command

For double word programming:
mov [addrev],datal ; programming command, even word

mov [addrev],datah ; programming command, odd word

– WAIT PT
The programming time (PT) depends on the bits CKCTL0 & CKCTL1 of FCR (see setting of FCR). The
end of programming can be detected by polling on the FBUSY bit of FCR.
FBUSY set to ”1” indicates programming is in progress.
FBUSY cleared indicates programming has ended

waitpr: mov fcrrd, FCR ; read FCR

jb busy, waitpr ; jump if programming is not ended

– FCVPP = ”0” ?
Tohave a well programmed word, it is important to check if VPP was at thecorrect value during programming.
This is indicated by the status of the FCVPP bit of FCR.

If FCVPP = ”0” there was no problem, continue with the algorithm.

If FCVPP = ”1” VPP was not enough high during programming, jump to the user defined VPP-fail routine.
An example of this routine could be a reset of FCR, then a new test of the VPPRIV bit and, if all is correct, redo
a programming operation, otherwise exit the programming routine.

jb fcvpp, vpp_fail ; jump if FCVPP is set

– PROGRAM VERIFY READ
To check if the word is correctly programmed, a comparison must be performed with the data expected. A
Program Verify Read will check the cell margin of the word.
Perform twice the same reading instruction separated by a time of 4µs.

This sequence must be made to get a correct reading of the word. This time corresponds to an internal
switching of signals.

THE PRESTO F PROGRAM WRITE ALGO-
RITHM (Cont’d)

PROGRAMMING FLASH MEMORY

7/20

– COMPARE WITH DATA EXPECTED
This step can be merged with the Program Verify Read step as the comparison instruction is a read in-
struction. If the data programmed at the address given is different from the data expected, an extra pro-
gramming operation must be performed (the next step).

cmp datal, [addrev] ; first instruction for PVM (even)

calla cc_UC, wait4 ; 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

cmp datah, [addrod] ; first instruction for PVM (odd)

calla cc_UC, wait4 ; 4 µs

cmp datah, [addrod] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

– N = N max
For each new programming operation the N variable must be incremented; at this point, it must be tested
to verify whether the N max limit has been reached or not. If yes, the word will never be programmed and
the algorithm should be exited from. In this case a possible solution is to change the address of the word
to program.

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

– LAST ADDRESS
In case of consecutives words to program, check the address variable to know if the last address has
been reached. If not, increment the address variable and start another programming operation from the
beginning of the algorithm.

– WRITE FWE = ”0”
All the words are programmed, exit the presto F program Write algorithm. All programming or Program
Verify Read operation are stopped by a reset of FCR register (especially FWE bit cleared). Normal read-
ing of the Flash memory can be performed only after this step.

mov FCR, fcrval ; reset FCR and exit program mode

THE PRESTO F PROGRAM WRITE ALGO-
RITHM (Cont’d)

PROGRAMMING FLASH MEMORY

8/20

THE PRESTO F ERASE ALGORITHM

The following section explains the Presto F Erase Algorithm shown in figure 6 but all parts already de-
scribed in the previous section will not be explained again. Note that an entire block will be erased instead
of one or two words as programming.

– ALL WORDS AT 0000h
Prior to erasure, program all block addresses to 0000h. This step equalizes the charge on each memory
cell of the block. Erasure removes charge from all memory cells regardless of their previous state, and not
performing this programming will drive cells previously at a ”one” to be stuck at ”one” (as explained in the
Fundamentals of Flash memory section).
The Presto F Program Write Algorithm must be used for this block programming. (refer to the previous
section).

– VARIABLE INITIALIZATION
Initialize two variables:

N = 0 for the pulse count, and the address variable to the first address of the block. N can be incremented
from 0 to N max. The maximum cumulated erase time is 30s.

Note : with each pulse, all the block will be erased.

– WRITE ERASE SETUP COMMAND INTO FCR
As for programming, this step only prepares the device for erasure.
Set FWE,FEE bits to enable erasure.

Clear CKCTL0 & set CKCTL1 bits to define a the erasing pulse width 1.64ms at 20MHz CPU clock.
Choose the block configuration for erasure (BE0,BE1).

Clear WDWW bit.
Set FWMSET bit for write mode.

– WRITE ERASE COMMAND
Perform the specific instruction to start automatically the erase process.

mov [fl_scan],f l_scan ; erase command, erasure start

– WAIT ET
The erasing time (ET) depends on the bits CKCTL0 & CKCTL1 of FCR (see setting of FCR). The end of
erasure can be detected by polling on the FBUSY bit of FCR.

FBUSY set to ”1” indicates erase is in progress.
FBUSY cleared indicates erase has ended.

– FCVPP = ”0” ?
Test VPP to detect any discontinuity in VPP during erasure (see previous section).

PROGRAMMING FLASH MEMORY

9/20

Figure 6. PRESTO F Erase algorithm

= 0

PCOUNT=ENmax?

PCOUNT=PCOUNT+1

VR02057B

THE PRESTO F ERASE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

10/20

– ERASE VERIFY READ
This mode, equivalent to the Program Verify Read, guarantees a improved cell margin of a word.
Read the data at the address given by the address variable twice with the same instruction separated by
a time of 4 µs.

– COMPARE DATA = FFFFh
Compare the data read to FFFFh. If it equals FFFFh, this address has been erased; continue verification
until the last address of the block has been verified. If not, increment N variable. Apply a new erasing
pulse to the block, and continue until the data is correctly checked or the maximum erasing pulse count
has been reached.

read_ff: cmp all1, [fl_scan] ; first instruction for EVM

calla cc_UC, wait4 ; 4 µs

cmp all1, [fl_scan] ; second instruction for EVM

jmpr cc_NZ, erase ; jump if the word is not erased

– LAST ADDRESS
Check the address variable to see if the last address of the block has been reached. If not, increment the
address variable and start another
Erase Verify Read.

– WRITE FWE = ”0”
All the block is erased, exit the Presto F Erase algorithm stopping all erasure or Erase Verify Read oper-
ations with a reset of FCR register (especially FWE, FEE bits cleared)
Normal reading of Flash memory can be performed only after this step.

add fl_scan,#02h ; increment the bank pointer

cmp fl_scan,#FL_SIZE ; compare to the last bank address

jmpr cc_NZ, read_ff ; jump to verify the next address

THE PRESTO F ERASE ALGORITHM (Cont’d)

PROGRAMMING FLASH MEMORY

11/20

RULES FOR USING THE FLASH MEMORY

– Follow the Presto F Algorithm and verify its cor-
rect implementation. This will ensure that all the
block has been programmed before erasure to
minimize internal stresses on the memory cells,
and to perform writing operation in a fast and re-
liable way.

– Verify VPP status before and after every writing
operation.

BASIC ROUTINES FOR ERASURE AND
PROGRAMMING

This section describes basic routines which can
be helpful for the user.

Erasure, 32-bit programming and 16-bit program-
ming routines are written as subroutines to allow
easy inclusion in a user program.
The following routines are written in a way to clar-
ify the operations as well as possible.
The initial conditions are described at the head of
the routine, if needed.

Table 1. Recommended CKCTL values depending on the CPU clock used

FCPU
CKCTL TPRG NMAX

PROG. ERASE PROG. ERASE PROG. ERASE

1MHz 00 01 128µs 2.05ms 19 14648

10 MH 00 10 12.8µs 3.28ms 195 9157

16 MH 00 10 8µs 2.05ms 312 14648

20 MH 00 10 6.4µs 1.64ms 390 18315

PROGRAMMING FLASH MEMORY

12/20

; VARIABLE DEFINITIONS FOR THE FLASH MEMORY ROUTINES

ALL0 equ 00000h ;constant 0

ALL1 equ 0FFFFh ;constant FFFF

BLK_START equ 03000h ;first address of bank 1

FL_SIZE equ 03000h ;size of bank 1

FCR equ 07FFEh ;dummy address chosen for FCR

ADDREV equ 0000Ch ;address even (least significant bit)

ADDROD equ 0000Eh ;address odd (most signif icant bit)

DATAH equ 09753h ;data to program to odd address

DATAL equ 08642h ;data to program to even address

MAXLOOP1 equ 00186h ;limit of the programming loop

MAXLOOP2 equ 0478bh ;limit of the erase loop

UNLOCK equ 01000h ;data to unlock the program mode

WAIT4 equ 0000Bh ;loop 4 µs

WAIT10 equ 0001Fh ;loop 10 µs

addrev LIT ’R0’ ;even address pointer

fcrval LIT ’R1’ ;register for FCR writ ing

addrod LIT ’R2’ ;odd address pointer

datal LIT ’R3’ ;register with first data

datah LIT ’R4’ ;register with second data

lpcnt LIT ’R5’ ;algorithm loop counter

all1 LIT ’R6’ ;register used in EVM

unlock LIT ’R7’ ;register used to unlock

val10u LIT ’R8’ ;counter 10 µs

val4u LIT ’R9’ ;counter 4 µs

wait_cnt LIT ’R10’ ;register to control wait loop

fl_scan LIT ’R13’ ;bank address pointer

fcrrd LIT ’R15’ ;register for FCR reading

fwe LIT ’R1.0’ ;FCR FWE bit

fee LIT ’R1.1’ ;FCR FEE bit

ckctl0 LIT ’R1.5’ ;FCR CKCTL0 bit

ckctl1 LIT ’R1.6’ ;FCR CKCTL1 bit

wdww LIT ’R1.7’ ;FCR WDWW bit

be0 LIT ’R1.8’ ;FCR BE0 bit

be1 LIT ’R1.9’ ;FCR BE1 bit

busy LIT ’R15.2’ ;FCR BUSY bit

fcvpp LIT ’R15.3’ ;FCR FCVPP bit

vppriv LIT ’R15.4’ ;FCR VPPRIV bit

PROGRAMMING FLASH MEMORY

13/20

;ERASE ROUTINE: erasure of bank 1, this routine assumes that the bank

;______________ was previously programmed to 0000h before erasure

;************* INITIAL CONDITIONS: **************************************

;

; ALL WORDS IN BANK 1 HAVE TO BE PROGRAMMED AT ”ZERO”

; WITH THE PRESTO F PROGRAM WRITE ALGORITHM

;

;*********************************** ************************************

f_erase:

;

; REGISTERS INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFF

mov fl_scan,#BLK_START ; load first bank address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter in the program mode

calla cc_UC, wait10 ; time out 10 us to set internal signals

;

; FCR SET UP FOR ERASURE

;

bset fwe ; FWE=1) these two instructions

bset fee ; FEE=1) define the erasure

bclr ckctl0 ; CKCTL0=0)

bset ckctl1 ; CKCTL1=1) define the pulse

bclr wdww ; WDWW=0

bset be0 ; BE0=1)

bclr be1 ; BE1=0) select bank 1

bset fwmset ; FWMSET=1 enable program mode

mov FCR, fcrval ; load FCR set up

PROGRAMMING FLASH MEMORY

14/20

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

;

; FLASH ERASURE

;

erase:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP2 ; compare to the limit

jmpr cc_Z, eras_fail ; jump if limit has been reached

mov [fl_scan],f l_scan ; erase command, erasure start

waiter: mov fcrrd, FCR ; read FCR

jb busy, waiter ; jump if erasure is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; erasure

;

; ERASE VERIFY MODE

;

read_ff:cmp all1, [fl_scan] ; first instruction for EVM

calla cc_UC, wait4 ; time out 4 µs

cmp all1, [fl_scan] ; second instruction for EVM

jmpr cc_NZ, erase ; jump if the word is not erased

add fl_scan,#02h ; increment the bank pointer

cmp fl_scan,#FL_SIZE ; compare to the last bank address

jmpr cc_NZ, read_ff ; jump to verify the next address

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

15/20

;32-BIT PROGRAMMING ROUTINE: programming of address 0000Ch with 08642h

;____________________________ and address 0000Eh with 09753h

bit32prg:

;

; REGISTER INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFF

mov datal, #DATAL ; load data for even address

mov datah, #DATAH ; load data for odd address

mov addrev, #ADDREV ; load even address

mov addrod, #ADDROD ; load odd address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter in the program mode

calla cc_UC, wait10 ; time out 10 us to set internal signals

;

; FCR SET UP FOR PROGRAMMING

;

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bset wdww ; WDWW=1 define 32-bit configuration

bset fwmset ; FWMSET=1 confirm program mode

mov FCR, fcrval ; load FCR set up

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

PROGRAMMING FLASH MEMORY

16/20

; FLASH PROGRAMMING

;

prog:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

mov [addrev],datal ; programming command, even word

mov [addrev],datah ; programming command, odd word

waitpr:mov fcrrd, FCR ; read FCR

jb busy, waitpr ; jump if programming is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; programming

;

; PROGRAM VERIFY MODE

;

cmp datal, [addrev] ; first instruction for PVM (even)

calla cc_UC, wait4 ; time out 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

cmp datah, [addrod] ; first instruction for PVM (odd)

calla cc_UC, wait4 ; time out 4 µs

cmp datah, [addrod] ; second instruction for PVM

jmpr cc_NZ, prog ; jump if the word is not correctly

; programmed, restart programming

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

17/20

;16-BIT PROGRAMMING ROUTINE: programming of address 0000Ch with 08642h

;____________________________

bit16prg:

;

; REGISTERS INITIALIZATION

;

mov lpcnt, #ALL0 ; reset algo. loop counter

mov fcrval, #ALL0 ; reset FCR data value

mov unlock, #UNLOCK ; load unlock data

mov val10u, #WAIT10 ; load 10 µs loop data

mov val4u, #WAIT4 ; load 4 µs loop data

mov wait_cnt,#ALL0 ; reset wait loop counter

mov all1, #ALL1 ; set R2 to FFFF

mov datal, #DATAL ; load data

mov addrev, #ADDREV ; load address

;

; UNLOCK SEQUENCE FOR ENTERING IN THE PROGRAM MODE

;

mov FCR, unlock ; first instruction

mov [unlock],unlock ; second instruction of unlock

; sequence to enter into the program mode

calla cc_UC, wait10 ; time out 10 µs to set internal signals

;

; FCR SET UP FOR PROGRAMMING

;

bset fwe ; FWE=1 define programming operation

bclr ckctl0 ; CKCTL0=0)

bclr ckctl1 ; CKCTL1=0) define the pulse width

bclr wdww ; WDWW=0 define 16-bit configuration

bset fwmset ; FWMSET=1 enable program mode

mov FCR, fcrval ; load FCR set up

;

; TEST VPP

;

mov fcrrd, FCR ; read FCR

jnb vppriv, vpp_fail ; test if VPP is high

PROGRAMMING FLASH MEMORY

18/20

; FLASH PROGRAMMING

;

progw:

add lpcnt, #01h ; increment the algo. loop counter

cmp lpcnt, #MAXLOOP1 ; compare to the limit

jmpr cc_Z, prg_fail ; jump if limit has been reached

mov [addrev], datal ; programming command

waitprw:mov fcrrd, FCR ; read FCR

jb busy, waitprw ; jump if programming is not ended

;

; TEST VPP

;

jb fcvpp, vpp_fail ; jump if FCVPP is set, to know if

; a fail occured because VPP did not

; have the correct value during

; programming

;

; PROGRAM VERIFY MODE

;

cmp datal, [addrev] ; first instruction for PVM

calla cc_UC, wait4 ; time out 4 µs

cmp datal, [addrev] ; second instruction for PVM

jmpr cc_NZ, progw ; jump if the word is not correctly

; programmed, restart programming

;

; EXIT OF PROGRAM MODE

;

mov FCR, #ALL0 ; reset FCR and exit program mode

ret ; return to main program

PROGRAMMING FLASH MEMORY

19/20

SUBROUTINES USED IN WRITING OPERATION

wait4:add wait_cnt,#01h ; increment counter

cmp wait_cnt,val4u ; compare with final value

jmpr cc_NZ, wait4 ; jump if not equal

mov wait_cnt,#ALL0 ; reset counter

ret

wait10:add wait_cnt,#01h ; increment counter

cmp wait_cnt,val10u ; compare with final value

jmpr cc_NZ, wait10 ; jump if not equal

mov wait_cnt,#ALL0 ; reset counter

ret

vpp_fail:

; VPP FAIL ROUTINE DEFINED BY THE USER

prg_fail:

; PROGRAM FAIL ROUTINE DEFINED BY THE USER

eras_fail:

; ERASE FAIL ROUTINE DEFINED BY THE USER

PROGRAMMING FLASH MEMORY

20/20

THE SOFTWARE INCLUDED IN THIS NOTE IS FOR GUIDANCE ONLY. SGS-THOMSON SHALL NOT
BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT
TO ANY CLAIMS ARISING FROM USE OF THE SOFTWARE.

APPLICATION EXAMPLE

APPENDIX C

This portion of the appendix is subdivided into two
sections. Section C.1 shows examples for the use
of different types of memories connected to the
ST10x166 in different external bus configurations.
Section C.2 contains formulas, tables and exam-
ples for programming the ST10x166 wait states
described in detail in section 9.7.
C.1 EXTERNAL BUS AND MEMORY
CONFIGURATIONS

A description of the possible ST10x166 external
bus configuration modes which are determined by
the state of the EBC1, EBC0 and BUSACT input
pins during reset can be found in chapter 9. Note
that the following examples refer to the non-seg-
mented memory model which supports only
64Kbytes of memory space. Thus, port pins P4.1
and P4.0 are not required as outputs of additional
segment address bits (A17 and A16).

1) 16-bit Addresses, 8-bit Data, Multiplexed
Bus
(ExternalRAM/ROM:Byte-OrganizedMemories)
This configuration is shown in figure C.1. An
external memory is implemented by a 32Kx8
EPROM and an 8Kx8 RAM. The connected
external bus is used for both 16-bit addresses
and 8-bit data. Because of time-multiplexing,
an external address latch is required for the
lower byte of the address.

2) 16-bit Addresses, 8-bit Data, Non-Multi-
plexed Buses
(ExternalRAM/ROM: Byte-OrganizedMemories)
This configuration is shown in figure C.2. The
external memory is implemented by a 32Kx8
EPROM and an 8Kx8 RAM. Because two
separate 8-bit Data and 16-bit Address buses
are used, no externaladdress latchis required.

C. APPLICATION EXAMPLE

3) 16-bit Addresses, 16-bit Data, Multiplexed
Bus
(External RAM/ROM: Both Word- and Byte-
Organized Memories)
This configuration is shown in figure C.3. The
external memory is implemented by one
32Kx16 EPROM and by two 8Kx8 RAMs. The
connected external bus is used for both 16-bit
addresses and 16-bit data. Because of time-
multiplexing, two external address latches are
required. The EPROM can only be accessed
wordwise, while the RAMs can also be ac-
cessed bytewise, provided that the function of
the BHE output pin is not disabled.In this case,
the address signal A0 selects the lower byte
memory and the active low BHE signal selects
the upper byte memory.

4) 16-bit Addresses, 16-bit Data, Non-Multi-
plexed Buses
(External RAM/ROM: Both Word- and Byte-
Organized Memories)
This configuration shown in figure C.4 is the
fastest external memory access mode. The
external memory is implemented by one
32Kx16 EPROM and by two 8Kx8 RAMs. Be-
cause two separate 16-bit data and 16-bit ad-
dress buses are used, no external address
latch is required. The EPROM can only be ac-
cessed wordwise, while the RAMs can also be
accessed bytewise, provided that the function
of the BHE output pin is not disabled. In this
case, the address signal A0 selects the lower
byte memory and the active low BHE signal
selects the upper byte memory.

1/10

VS S

74HC573
Address

Latch

LE

CE

CS2

CS1

OE

OE

WE

A0-A7

A8-A14
AD0-AD7

AD0-AD7

AD0-AD7

A8-A15

A0-A7

A0-A7

A8-A12

A15

A15

32K x 8
EPROM

M27C256B

ST10x166

8K x 8
RAM

EBC0 EBC1
P0.8-15

ALE

P0.0-7

RD

P3.13/WR

BUSACT

VC C VS S

VR001646Example with Byte-Organized Memory Devices (Data Multiplexed)

Figure C-1. 16-Bit Addresses, 8-Bit Data, Multiplexed Bus Configuration

C - Application Examples

2/10

A15

A15

VS S

CE

CS2

CS1

OE

OE

WE

A0-A14
D0-D7

D0-D7

D0-D7

A0-A15

A0-A12

32K x 8
EPROM

M27C256B

ST10x166

8K x 8
RAM

EBC0 EBC1
P1.0-15

P0.0-7

RD

P3.13/WR

BUSACT

VS S VS S

VR0A164 6Example with Byte-Organized Memory Devices (Data Non-Multiplexed)

Figure C-2. 16-Bit Addresses, 8-Bit Data, Non-Multiplexed Bus Configuration

C - Application Example

3/10

A15

A0
WEP3.13/WR

A15

VS S

74HC573 74HC573
Address
Latch

Address
Latch

LE LE

CE

CS2
CS1

CS2

CS1

OE

OE OE

WE

A0-A7

A8-A14

A
8-

A
15

A1-A7

A1-A7 A1-A7

A8-A13 A8-A13

A15

BHE

32K x 16
EPROM

M27C516

8K x 8
RAM

8K x 8
RAM

ST10x166

EBC0 EBC1

ALE

P0.0-15

RD

BU SACT

P3.12/BHE

VCCVS S

VR0B1646Example with Byte and Word-Organized Memory Devices (Data Multiplexed)

AD0-AD7

AD8-AD15

D0-D15

D0-D7

D8-D15

Figure C-3. 16-Bit Addresses, 16-Bit Data, Multiplexed Bus Configuration

C - Application Examples

4/10

A0-A15

A15

A15

A15

A0

VS SBUSACT

CE

CS2

CS2

CS1

OE

OE

CS1

WE

WE

OE

A1-A14

A1-A13

D0-D15

D0-D7

D0-D15 D8-D15

A1-A13

32K x 16
EPROM

M27C516

8K x 8
RAM

8K x 8
RAM

ST10x166

EBC0

BHE

EBC1
P1.0-15

P3.12/BHE

P0.0-15

RD

P3.13/WR

VCC VCC

VR0C1646
Example with Byte and Word-Organized Memory Devices (Data Non-Multiplexed)

Figure C-4. 16-Bit Addresses, 16-Bit Data, Non-Multiplexed Bus Configuration

C - Application Example

5/10

C.2 CALCULATION OF THE USER
SELECTABLE BUS TIMING PARAMETERS

This section provides tables which ease the calcu-
lation of the number of the ST10x166’s wait states
which must be programmedinto the MCTCbit field
and/or MTTC bit of the SYSCON register to match
the external memory timing specifications.

The following particular memory accesses are
considered in this section:
1) Memory Read via a Multiplexed Bus with

Read/Write Delay
2) Memory Write via a Multiplexed Bus with

Read/Write Delay
3) Memory Read via a Non-Multiplexed Bus

with Read/Write Delay
4) Memory Write via a Non-Multiplexed Bus

with Read/Write Delay
Two types of tables exist for each of thesememory
accesses. The tables signified by an extension ‘.a’
contain formulas for the determination of both the
maximum values of particular timing parametersat
given numbers ofwait statesand of the numbersof
required wait states at given timing parameter val-
ues. These tables consist of columns, as follows:

- Symbol: Specifies commonly used symbols of
the particular timing parameters.

- Meaning: Provides a short explanation of the
symbolic timing parameters.

- 40MHz Clock: Specifies formulas to be used
at a fixed oscillator frequency of 40MHz.

- Variable Timing: Specifies formulas to be
used at a variable oscillator frequency.

Other so called ‘Quick Tables’, signified by an ex-
tension ‘.b’, contain results calculated by inserting
typical values into the formulas represented in the
corresponding table ‘.a’.
The required numbers of wait states are specified
in all subsequent tables by symbols, as follows:
For memory read accesses:
n1: Number of wait states required to match

‘Addressto Valid Data In Time’
0 ≤ n1 ≤ 15; n1 integer

n2: Number of wait states required to match
‘RD to Valid Data In Time’
0 ≤ n2 ≤ 15; n2 integer

n3: Number of wait states required to match
‘Data Float After RD Time’
0 ≤ n3 ≤ 1; n3 integer

n: Total number of resultingwait states
n = max{n1, n2}+n3

For memory write accesses:
n1: Number of wait states required to match

‘Write Pulse Low Time’
0 ≤ n1 ≤ 15; n1 integer

n2: Number of wait states required to match
‘Data Valid to WR Time’
0 ≤ n2 ≤ 15; n2 integer

n: Total number of resultingwait states
required
n = max{n1, n2}

Note: The ST10x166’s wait states can be pro-
grammed in increments of one. To get the number
of required wait states to be programmed, any
value (n1, n2, n3) calculated by means of the for-
mulas in tables ‘.a’ must be roundedup to the next
integer value (e.g. 1.2 →2). If a calculation already
suppliesan integer result (e.g.1.0), one has to per-
form a worst case evaluation of the selected appli-
cation (signal delays, etc.) to decide whether an
additional wait state must be considered or not. If
wait state calculations supply different values for
the same programmable parameter, the worst
case (maximum) value must always be consid-
ered. Then the SYSCON register has to be pro-
grammed, as follows:

MTTC: 1 - n3
MCTC: 15 - max{n1,n2}

Note: For some memories, the Chip Select Time
(tcs) may be as long as the Addressto Valid Data In
Time (tacc). Formulas within this document do not
consider any signal delay caused by the chip se-
lecting logic.
All times are specified in nanoseconds[ns], unless
noted otherwise.

C - Application Examples

6/10

Symbol Meaning 40MHz Clock Variable Timing

tacc
Address to Valid Data In tacc

n1
≤ = t17 + n1 x 50
≥ = tacc /50 - 1.5

tacc

n1
≤ = 4TCL - 25 + n1 x 2TCL
≥ = (tacc + 25) /2TCL - 2

toe
RD to Valid Data In toe

n2
≤ = t14 + n2 x 50
≥ = toe /50 - 0.7

toe

n2
≤ = 2TCL - 15 + n2 x 2TCL
≥ = (toe + 15) /2TCL - 1

tdf
Data Float After RD tdf

n3
≤ = t19 + n3 x 50
≥ = tdf /50 - 0.7

tdf

n3
≤ = 2TCL - 15 + n3 x 2TCL
≥ = (tdf + 15) /2TCL - 1

t ALE Cycle Time t = 150 + n x 50 t = 6TCL + n x 2TCL

Table C-1. Multiplexed Memory Read With Read/Write Delay

Note :

- TCL = 1/fOSC (25ns at 40MHz)

- ALE Cycle Time (= Memory Cycle Time) = 6TCL (150ns at 40MHz) for 0 wait state operation

- An address float time of 5ns must be permissible

- t14,t17,t19: See Device Specification Section

tacc n1 toe n2 tdf n3

≤ = 75 0 ≤ = 35 0 ≤ = 35 0

≥ = 75 . . ≤ = 125 1 ≥ = 35 . . ≤ = 85 1 ≥ = 35 . . ≤ = 85 1

≥ = 125 . . ≤ = 175 2 ≥ = 85 . . ≤ = 135 2

≥ = 175 . . ≤ = 225 3 ≥ = 135 . . ≤ = 185 3

≥ = 225 . . ≤ = 275 4 ≥ = 185 . . ≤ = 235 4

≥ = 275 . . ≤ = 325 5 ≥ = 235 . . ≤ = 285 5

.

Table C-2. Multiplexed Memory Read with Read/Write Delay (Quick Table)

C - Application Example

7/10

Symbol Meaning 40MHz Clock Variable Timing

twr Write Pulse Low Time twr ≤ = t12 + n1 x 50
n1 ≥ = twr /50 - 0.8

twr ≤ = 2TCL - 10 + n1 x 2TCL
n1 ≥ = (twr + 10) /2TCL - 1

tdw Data Valid to WR tdw ≤ = t22 + n2 x 50
n2 ≥ = tdw /50 - 0.7

tdw ≤ = 2TCL - 15 + n2 x 2TCL
n2 ≥ = (tdw + 15) /2TCL - 1

tdh Data Hold after WR tdh ≤ = t23

tdh ≤ = 35
tdh ≤ = 2TCL - 15

tas Address Setup tas ≤ = t6 + t8
tas ≤ = 25

tas ≤ = 2TCL - 15

t ALE Cycle Time t = 150 + n x 50 t = 6TCL + n x 2TCL

Table C-3. Multiplexed Memory Write With Read/Write Delay

Note :

- TCL = 1/ fosc (25ns at 40MHz)

- ALE Cycle Time (= Memory Cycle Time) = 6TCL (150ns at 40MHz) for 0 wait state operation

- An address float time of 5ns must be permissible

- t6,t8,t12,t22,t23 : See Device Specification Section

- Take care of tdh and tas ! These times cannot be prolonged by wait states.

twr n1 tdw n2

≤ = 40 0 ≤ = 35 0

≥ = 40 . . ≤ = 90 1 ≥ = 35 . . ≤ = 85 1

≥ = 90 . . ≤ = 140 2 ≥ = 85 . . ≤ = 135 2

≥ = 140 . . ≤ = 190 3 ≥ = 135 . . ≤ = 185 3

≥ = 190 . . ≤ = 240 4 ≥ = 185 . . ≤ = 235 4

≥ = 240 . . ≤ = 290 5 ≥ = 235 . . ≤ = 285 5

.

Table C-4. Multiplexed Memory Write With Read/Write Delay (Quick Table)

C - Application Examples

8/10

Symbol Meaning 40MHz Clock Variable Timing

tacc Address to Valid Data In tacc ≤ = t17 + n1 x 50
n1 ≥ = twr /50 - 1.5

tacc ≤ = 4TCL - 25 + n1 x 2TCL
n1 ≥ = (tacc + 25) /2TCL - 2

toe RD to Valid Data In toe ≤ = t14 + n2 x 50
n2 ≥ = tdw /50 - 0.7

toe ≤ = 2TCL - 15 + n2 x 2TCL
n2 ≥ = (toe + 15) /2TCL - 1

tdf
1) Data Float after RD tdf ≤ = t20 +n3 x 50

n3 ≤ = tdf /50 - 0.7
tdf ≤ = 2TCL - 15+ n3 x 2TCL
n3 ≥ = (tdf + 15) /2TCL - 1

t1) ALE Cycle Time t = 100 + n x 50 t = 4TCL + n x 2TCL

Table C-5. Non-Multiplexed Memory Read WithRead/Write Delay

Note:

- If the external memory is only used for code storage, tdf may be longer than specified here. In this
case, n = max{n1, n2} because n3 = 0.

- ALE Cycle Time (= Memory Cycle Time) = 4TCL (100ns at 40MHz)

- t14,t17,t20: See Device Specification Section

tacc n1 toe n2 tdf n3

≤ = 75 0 ≤ = 35 0 ≤ = 35 0

≥ = 75 . . ≤ = 125 1 ≥ = 35 . . ≤ = 85 1 ≥ = 35 . . ≤ = 85 1

≥ = 125 . . ≤ = 175 2 ≥ = 85 . . ≤ = 135 2

≥ = 175 . . ≤ = 225 3 ≥ = 135 . . ≤ = 185 3

≥ = 225 . . ≤ = 275 4 ≥ = 185 . . ≤ = 235 4

≥ = 275 . . ≤ = 325 5 ≥ = 235 . . ≤ = 285 5

.

Table C-6. Non-Multiplexed Memory Read WithRead/Write Delay (Quick Table)

C - Application Example

9/10

Symbol Meaning 40MHz Clock Variable Timing

twr Write Pulse Low Time twr ≤ = t12 + n1 x 50
n1 ≥ = twr/50 - 0.8

twr ≤ = 2TCL - 10 + n1 x 2TCL
n1 ≥ = (twr + 10) /2TCL - 1

tdw Data Valid to WR tdw ≤ = t22 + n2 x 50
n2 ≥ = tdw/50 - 0.7

tdw ≤ = 2TCL - 15 + n2 x 2TCL
n2 ≥ = (tdw + 15) /2TCL - 1

tdh Data Hold after WR tdh ≤ = t24

tdh ≤ = 15
tdh ≤ = 2TCL - 10

tas Address Setup tas ≤ = t6 + t8
tas ≤ = 25

tas ≤ = 2TCL - 25

t ALE Cycle Time t = 100 + n x 50 t = 4TCL + n x 2TCL

Table C-7. Non-Multiplexed Memory Write With Read/Write Delay

Note:

- ALE Cycle Time (= Memory Cycle Time) = 4TCL (100ns at 40MHz) for 0 wait state operation

- t6,t8,t12,t22,t24: See Device Specification Section

- Take care of tdh and tas ! These times cannot be prolonged by wait states.

tacc n1 toe n2

≤ = 40 0 ≤ = 35 0

≥ = 40 . . ≤ = 90 1 ≥ = 35 . . ≤ = 85 1

≥ = 90 . . ≤ = 140 2 ≥ = 85 . . ≤ = 135 2

≥ = 140 . . ≤ = 190 3 ≥ = 135 . . ≤ = 185 3

≥ = 190 . . ≤ = 240 4 ≥ = 185 . . ≤ = 235 4

≥ = 240 . . ≤ = 290 5 ≥ = 235 . . ≤ = 285 5

.

Table C-8. Non-Multiplexed Memory Write With Read/Write Delay (Quick Table)

C - Application Examples

10/10

With its on-chip Flash memory, the ST10F166 is
the ideal device for prototyping, preproduction,
medium volume production or reprogrammable
applications.This note gives an example of the im-
plementationof an on-chip loader for entering pro-
gram or code into the Flash memory for a
ST10F166 configured in single chip mode (no ex-
ternal memory).
When the ST10F166 is configured in single chip
mode, the ST10F166 program will start at address
0000h of the memory space (within the FLASH
memory). Therefore in the case of a totally erased
Flash memory, or when upgrading the code inside
the Flash memory, another means to startand pro-
gram the device must be used to pass round the
Flash memory.

On-Chip Boot-Strap Loader
A ROM area of 256 bytes exists on the ST10F166
in addition to the Flash memory which can be pro-
grammed as the Flash memory but not erased.
This ROM area is accessedin a special mode that
will be detailed in the following sections.
The ”Boot-Strap Loader”, definedby the user,may
be programmed into this ROM area allowing the
FLASH memory to be loaded from an external sys-
tem. This represents the only way to access the in-
ternal RAM in order to program the FLASH
memory (which can not be programmed from a
program within the FLASH memory itself). This
routine is loaded on the device with the Program-
ming Board provided by SGS-THOMSON Micro-
electronics and is not accessible from any other
internal or external memory.

The following example describes the loader of a
short program and the technique to access it. The
loader receives data from a host system, via the

INTRODUCTION

ST10F166serial port P0, into the internalRAM and
after receiving a defined number of bytes jumps to
a defined RAM address executing the loaded pro-
gram. Other program functionality is possible.
However, theexampleproposed will be suitable for
most applications.

Access to the Boot-Strap Loader
In order to execute the Boot-Strap loader, the
ST10F166 has to be forced into the boot-strap
mode. This is done with a pull up resistor con-
nected to the ALE pin while a hardware reset
(RSTIN) is applied to the device. This is possible
due to the fact that during reset, ALE pin is used as
an input and is internally pulled down through a
weak pulldown. Then with the deactivation of the
reset, this condition is internally latched and imme-
diatelythe ST10F166starts the executionof the in-
ternal routine waiting for the Boot Strap trigger
condition to invoke the Boot-Straproutine.
In this example this condition is a NMI interrupt ap-
plied to the ST10F166 before the internal routine
will ended. If the conditionis not fulfilledthena soft-
ware reset instruction (SRST) is executed and as
thesingle chip mode is selected throughthe EBC1,
EBC0 and BUSACT pins, the ST10F166 program
will start at address 0000h of the Flash memory.
Since the FLASH memory is still unprogrammed,
unexpectedprogram execution will occur.
It is recommended to enter the boot-strap mode
with EBC1, EBC0 grounded, BUSACT tied to ”1”
and ALE pulled high due to the fact that thestate of
ALE pin is not sampled by a softwarereset.A hard-
ware reset (on RSTIN) will then start the device in
this special mode, which will end with a software
reset to address 0000h of the Flash memory.
The window for the activation of NMI interrupt is
approximately 1ms to 10 ms after the deactivation
of RSTIN.

Example Boot-Strap Loader
for the ST10F166 in Single-Chip Mode

APPENDIX D

1/4

Operation of the exampleBoot-Strap Loader
When the Boot-Strap loader is invoked with the
NMI interrupt, first the ST10F166 is initialized
(WDT disabled, SYSCON set, CP,SP). Then the
device waits for the reception of ‘00’ byte at pin
RxD0. This byte (8 bit data, no parity, one stop bit
and a standard baud rate: 9600 Baud or less) is
sent by the connected host. The time length of
these 9 ‘0’ bits is measured and used to calculate
the prescaler for the baud rate generator. Serial
port 0 is then initialized, and the acknowledgebyte
’55h’ is transmitted to the host to confirm that the
communication is properlyestablished.
The routine executes then a loop, waiting for 960
bytes via port P0. These bytesare stored consecu-
tively into the internal RAM, starting from address
0FA40h. After that the loop is exited, and a jump to
address 0FA40h is performed. The data stored in
RAM is then executed as program code. This pro-
gram, determined by the user, may allow the full
downloadand programmingof furthercode or data
into the FLASH memory.

In summary, this procedure requires the following
actions from the host system:
1. Send a zero byte(8 bit data,no parity,onestop

bit, standardbaud rate)
2. Wait for and verify the acknowledgebyte ’55h’
3. Transmit 960 bytes
If less than 960 bytes are needed for the program
code, the host has to transmit dummy data to fill
the free bytes, since the loop will not terminateuntil
960 bytes are received.
When the Boot-Strap routine is used to load addi-
tional program in the internal RAM, care must be
taken with the physical addresses and necessary
resources of the internal RAM, space must be re-
served for register banks, stack area and vari-
ables.
The Boot Strap mode must be exited from by exe-
cuting an SRST instruction.
WARNING: If the FLASH memory protection has
been enabled with the programming board, it is
necessary to first disable the protection using the
RPROTbit of FCR in the loadedprogram.This is to
allowthe initial softwareroutines in the RAMto pro-
gram and erase the FLASH memory.

Figure 1. ST10F166 Mode Flow

Boot-Strap Loader

2/4

Figure 2. Boot-Strap Loader Operation

TOS equ 0FA40h ;Top of stack, 64 bytes max

StartAddress equ 0FA40h ;Start Address of RAM area

EndAddress equ 0FDFFh ;End Address of RAM area

RamRoutineStart equ near0FA40h ;Start Address of RAM routine

REGBAS equ 0FA00h ;Register bank declaration

sskdef 0 ;Stack reservation

BTLCODE section code

BTL_INIT:

MOV SYSCON,#SYSCNF ;initialize system

; configuration register

; SYSCNF Defined by the user

DISWDT ;disable watchdog timer

MOV CP,#REGBAS ;set registerbank

MOV SP,#TOS ;set stack pointer

GetBaudRate:

WaitStartBit:

JB P3.11,WaitStartBit ;wait for start bit at RXD0

BSET T6R ;start timer T6

Figure 3. Assembler Example

Boot-Strap Loader

3/4

WaitStopBit:

JNB P3.11,WaitStopBit ;wait for stop bit at RXD0

BCLR T6R ;stop timer T6

MOV R1,#36 ;load divide factor

MOV MDL,T6 ;baudrate = ((T6/36)/2)-1

DIVU R1

MOV R2,MDL ;get division result

ROR R2,#1 ;round result

JMPR CC_C,InitSerialPort

SUB R2,#1 ;adjust by one for baud

; rate generator

InitSerialPort:

MOV S0BG,R2 ;load baudrate generator

BSET P3.10 ;initialize TXD0 output

BSET DP3.10

MOV S0CON,#8011h ;initialize serial port 0:

;8bit data,no parity,one stop bit

;receiver enabled

SendAcknowledge:

MOV S0TBUF,#55h ;send acknowledge byte

;for baudrate check

ReceiveData:

MOV R0,#StartAddress

ReceiveLoop:

JNB S0RIR,ReceiveLoop ;wait for receive interrupt request

MOVB [R0],S0RBUF ;store received byte

BCLR S0RIR ;clear receive interrupt request bit

CMPI1 R0,#EndAddress ;all bytes received ?

JMPR CC_NE,ReceiveLoop ;if not continue loop

JMPA CC_UC,RamRoutineStart ;yes: jump to RAM routine

BTLCODE ENDS

END

Assembler Example (Cont’d)

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics
assumes no responsabilityfor the consequencesof use of suchinformation nor for any infringement ofpat-
ents or other rights of third parties which may result from its use. No license is granted by implication or
otherwiseunder any patent or patentrights of SGS-THOMSONMicroelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedesand replaces all infor-
mation previously supplied.
SGS-THOMSONMicroelectronicsproducts are not authorized for use as criticalcomponents in life support
devices or systems without the express written approval of SGS-THOMSON Microelectronics.

 1996 SGS-THOMSON Microelectronics - All rights reserved.

Purchase of I2C Components by SGS-THOMSON Microelectronics conveys a license under the Philips I2C Patent. Rights to use these com-
ponents in an I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics Group of Companies

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

Boot-Strap Loader

4/4

