8 - Bit Micro-controller

with 16KB flash & 1KB RAM embedded

Product List

SM8954AL25, 25MHz 16KB internal flash MCU SM8954AC25, 25MHz 16KB internal flash MCU SM8954AC40, 40MHz 16KB internal flash MCU

Description

The SM8954A series product is an 8 - bit single chip micro controller with 16KB on-chip flash and 1K byte RAM embedded. It is a derivative of the 8052 micro controller family. It has 5-channel SPWM build-in. User can access on-chip expanded RAM with easier and faster way by its 'bank mapping direct addressing mode' scheme. With its hardware features and powerful instruction set, it's straight forward to make it a versatile and cost effective controller for those applications which demand up to 16 I/O pins for PDIP package or up to 36

I/O pins for PLCC/QFP package, or applications which need up to 16K byte flash memory for program data.

To program the on-chip flash memory, a commercial writer is available to do it in parallel programming method.

Ordering Information

yywwv SM8954Aihhk

yy: year, ww:week

v: version identifier {, A, B,...}

i: process identifier $\{L=3.0V \sim 3.6V, C=4.5V \sim 5.5V\}$

hh: working clock in MHz {25, 40} k: package type postfix {as below table}

v: version identifier

Postfix	Package	Pin/Pad Configuration	Dimension		
Р	40L PDIP	page 2	page 21		
J	44L PLCC	page 2	page 22		
Q	44L QFP	page 2	page 23		

Features

Working voltage: 3.0V ~ 3.6V For L Version 4.5V ~ 5.5V For C Version

General 8052 family compatible

12 clocks per machine cycle

16K byte on chip program flash

1024 byte on-chip data RAM

Three 16 bit Timers/Counters

One Watch Dog Timer

Four 8-bit I/O ports for PDIP package

Four 8-bit I/O ports + one 4-bit I/O ports for PLCC or QFP package

Full duplex serial channel

Bit operation instruction

Industrial Level

8-bit Unsigned Division

8-bit Unsigned Multiply

BCD arithmetic

Direct Addressing

Indirect Addressing

Nested Interrupt

Two priority level interrupt

A serial I/O port

Power save modes: Idle mode and Power down mode

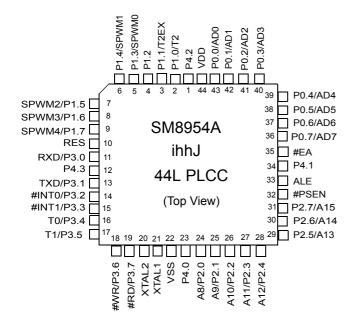
Code protection function

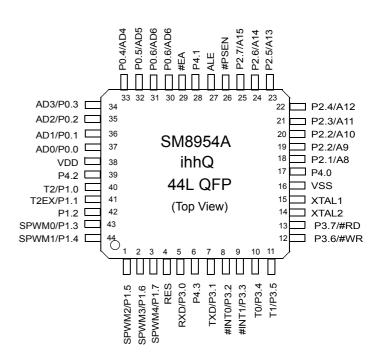
Low EMI (inhibit ALE)

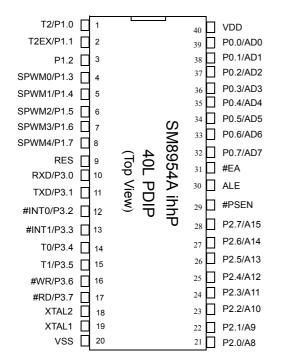
Bank mapping direct addressing mode for access on-chip RAM

5 channel SPWM function with P1.3 ~ P1.7

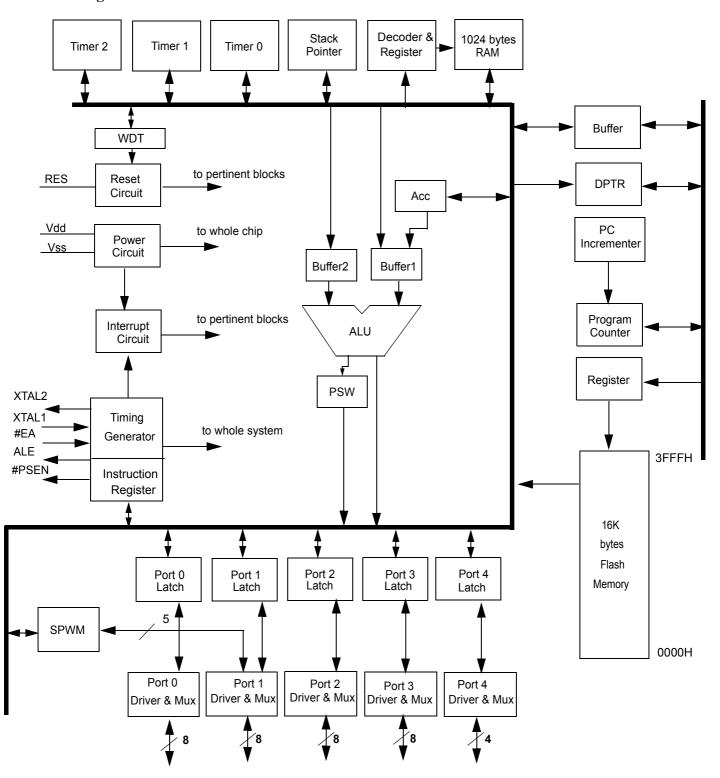
Taiwan


4F, No. 1 Creation Road 1, Science-based Industrial Park, Hsinchu, Taiwan 30077


TEL: 886-3-578-3344 #2667 886-3-579-2987 FAX: 886-3-5792960 886-3-5780493


Web site: http://www.syncmos.com.tw

Pin Configurations



Block Diagram

Pin Descriptions

40L	44L	44L				
		PLCC	Symbol	Active	I/O	Names
Pin#	Pin#					
1	40	2	P1.0/T2		i/o	bit 0 of port 1 & timer 2 clock out
2	41	3	P1.1/T2EX		i/o	bit 1 of port 1 & timer 2 control
3	42	4	P1.2		i/o	bit 2 of port 1
4	43	5	P1.3/SPWM0		i/o	bit 3 of port 1 & SPWM channel 0
5	44	6	P1.4/SPWM1		i/o	bit 4 of port 1 & SPWM channel 1
6	1	7	P1.5/SPWM2		i/o	bit 5 of port 1 & SPWM channel 2
7	2	8	P1.6/SPWM3			bit 6 of port 1 & SPWM channel 3
8	3	9	P1.7/SPWM4		i/o	bit 7 of port 1 & SPWM channel 4
9	4	10	RES	Н	i	Reset
10	5		P3.0/RXD			bit 0 of port 3 & Receive data
11	7	13	P3.1/TXD			bit 1 of port 3 & Transmit data
12	8	14	P3.2/#INT0	L/ -		bit 2 of port 3 & low true interrupt 0
13	9	15	P3.3/#INT1	L/ -		bit 3 of port 3 & low true interrupt 1
14	10	16	P3.4/T0			bit 4 of port 3 & Timer 0
15	11	17	P3.5/T1			bit 5 of port 3 & Timer 1
16	12	18	P3.6/#WR			bit 6 of port 3 & ext. memory write
17	13		P3.7/#RD			bit 7 of port 3 & ext. mem. read
18	14	20	XTAL2			Crystal out
19	15	21	XTAL1		İ	Crystal in
20	16	22	VSS			Sink Voltage, Ground
21	18	24	P2.0/A8			bit 0 of port 2 & bit 8 of ext. memory address
22	19	25	P2.1/A9			bit 1 of port 2 & bit 9 of ext. memory address
23	20	26	P2.2/A10			bit 2 of port 2 & bit 10 of ext. memory address
24	21	27	P2.3/A11			bit 3 of port 2 & bit 11 of ext. memory address
25	22	28	P2.4/A12			bit 4 of port 2 & bit 12 of ext. memory address
26	23	29	P2.5/A13			bit 5 of port 2 & bit 13 of ext. memory address
27	24	30	P2.6/A14			bit 6 of port 2 & bit 14 of ext. memory address
28	25	31	P2.7/A15			bit 7 of port 2 & bit 15 of ext. memory address
29	26		#PSEN			program storage enable
30	27		ALE			address latch enable
31	29		#EA	L		external access
32	30	36	P0.7/AD7	-		bit 7 of port 0 & data/address bit 7 of ext. memory
33	31	37	P0.6/AD6	-		bit 6 of port 0 & data/address bit 6 of ext. memory
34	32	38	P0.5/AD5	-		bit 5 of port 0 & data/address bit 5 of ext. memory
35	33	39	P0.4/AD4	-		bit 4 of port 0 & data/address bit 4 of ext. memory
36	34	40	P0.3/AD3	-		bit 3 of port 0 & data/address bit 3 of ext. memory
37	35	41	P0.2/AD2	-		bit 2 of port 0 & data/address bit 2 of ext. memory
38 39	36 37	42 43	P0.1/AD1 P0.0/AD0	-		bit 1 of port 0 & data/address bit 1 of ext. memory bit 0 of port 0 & data/address bit 0 of ext. memory
40		43	VDD	-	i/o	,
40	38 17	23	P4.0		i/o	Drive Voltage, +5 Vcc bit 0 of Port 4
	28	34	P4.0 P4.1			bit 1 of Port 4
	39	1	P4.1			bit 2 of Port 4
	6	12	P4.2 P4.3	-		bit 3 of Port 4
	Ö	12	F4.3		i/o	DIL 3 OI FULL 4

Special Function Register (SFR)

The address \$80 to \$FF can be accessed by direct addressing mode only. Address \$80 to \$FF is SFR area.

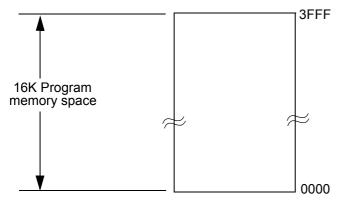
The following table lists the SFRs which are identical to general 8052, as well as SM8954A Extension SFRs.

Special Function Register (SFR) Memory Map

\$F8									\$FF
\$F0	В								\$F7
\$E8									\$EF
\$E0	ACC								\$E7
\$D8	P4								\$DF
\$D0	PSW								\$D7
\$C8	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2			\$CF
\$C0									\$C7
\$B8	IP							SCONF	\$BF
\$B0	P3								\$B7
\$A8	ΙE				SPWMD4				\$AF
\$A0	P2			SPWMC	SPWMD0	SPWMD1	SPWMD2	SPWMD3	\$A7
\$98	SCON	SBUF		P1CON				WDTC	\$9F
\$90	P1							WDTKEY	\$97
\$88	TCON	TMOD	TL0	TL1	TH0	TH1			\$8F
\$80	P0	SP	DPL	DPH	(Reserved)	RCON	DBANK	PCON	\$87

Note: The text of SFRs with bold type characters are Extension Special Function Registers for SM8954A

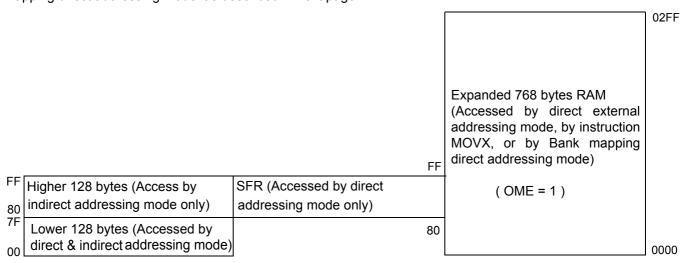
Addr	SFR	Reset	7	6	5	4	3	2	1	0
85H	RCON	*****00							RAMS1	RAMS0
86H	DBANK	0***0001	BSE				BS3	BS2	BS1	BS0
97H	WDTKEY	00H	WDTKEY7	WDTKEY6	WDTKEY5	WDTKEY4	WDTKEY3	WDTKEY2	WDTKEY1	WDTKEY0
9BH	P1CON	00000***	SPWME4	SPWME3	SPWME2	SPWME1	SPWME0			
9FH	WDTC	0*0**000	WDTE		CLEAR			PS2	PS1	PS0
АЗН	SPWMC	******00							SPFS1	SPFS0
A4H	SPWMD0	00H	SPWMD04	SPWMD03	SPWMD02	SPWMD01	SPWMD00	BRM02	BRM01	BRM00
A5H	SPWMD1	00H	SPWMD14	SPWMD13	SPWMD12	SPWMD11	SPWMD10	BRM12	BRM11	BRM10
A6H	SPWMD2	00H	SPWMD24	SPWMD23	SPWMD22	SPWMD21	SPWMD20	BRM22	BRM21	BRM20
A7H	SPWMD3	00H	SPWMD34	SPWMD33	SPWMD32	SPWMD31	SPWMD30	BRM32	BRM31	BRM30
ACH	SPWMD4	00H	SPWMD44	SPWMD43	SPWMD42	SPWMD41	SPWMD40	BRM42	BRM41	BRM40
BFH	SCONF	0*****00	WDR						OME	ALEI
C8H	T2CON	00H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
C9H	T2MOD	******00							T2OE	DCEN
D8H	P4	****1111					P4.3	P4.2	P4.1	P4.0


Extension Function Description

1. Memory Structure

The SM8954A is the general 8052 hardware core as a single chip micro controller. Its memory structure follows general 8052 structure.

1.1 Program Memory


The SM8954A has 16K byte on-chip flash memory which used as general program memory. The address range for the 16K byte is \$0000 to \$3FFF.

Note: The single flash block address structure for doing as well as program ROM flash.

1.2 Data Memory

The SM8954A has 1K bytes on-chip RAM, 256 bytes of it are the same as general 8052 internal memory structure while the expanded 768 bytes on-chip RAM can be accessed by external memory addressing method (by instruction MOVX), or by 'Bank mapping direct addressing mode' as described in next page.

On-chip expanded RAM address structure.

1.2.1 Data Memory - Lower 128 byte (\$00 to \$7F, Bank 0 & Bank 1)

Data Memory \$00 to \$FF is the same as 8052.

The address \$00 to \$7F can be accessed by direct and indirect addressing modes.

Address \$00 to \$1F is register area.

Address \$20 to \$2F is memory bit area.

Address \$30 to \$7F is for general memory area.

1.2.2 Data Memory - Higher 128 byte (\$80 to \$FF, Bank 2 & Bank 3)

The address \$80 to \$FF can be accessed by indirect addressing mode or by bank mapping direct addressing mode. Address \$80 to \$FF is data area.

1.2.3 Data Memory - Expanded 768bytes (\$0000 to \$02FF, Bank 4 ~ Bank 15)

From external address \$0000 to \$02FF is the on-chip expanded RAM area, total 768 bytes. This area can be accessed by external direct addressing mode (by instruction MOVX) or by bank mapping direct addressing mode as described below:

1.3 Bank mapping direct addressing mode:

We provide RAM bank address '40H~7FH' as mapping window which allow user access all the 1KB on-chip RAM through this RAM bank address.

That means using direct addressing mode can access all the 1KB on-chip RAM. Please see next page for the mapping mode table.

BS3	BS2	BS1	BS0	040h~07fh map- ping address	Note
0	0	0	0	000h~03fh	lower 128 byte RAM
0	0	0	1	040h~07fh	lower 128 byte RAM
0	0	1	0	080h~0bfh	higher 128 byte RAM
0	0	1	1	0c0h~0ffh	higher 128 byte RAM
0	1	0	0	0000h~003fh	on-chip expanded 768 byte RAM
0	1	0	1	0040h~007fh	ει
0	1	1	0	0080h~00bfh	ει
0	1	1	1	00c0h~00ffh	ec
1	0	0	0	0100h~013fh	ει
1	0	0	1	0140h~017fh	ιι
1	0	1	0	0180h~01bfh	ec
1	0	1	1	01c0h~01ffh	ει
1	1	0	0	0200h~023fh	ει
1	1	0	1	0240h~027fh	ec
1	1	1	0	0280h~02bfh	и
1	1	1	1	02c0h~02ffh	ec

With this bank mapping scheme, user can access entire 1K byte on-chip RAM with direct addressing method. That means using the window area (\$040~\$07F), user can access any bank (64 byte) data of 1K byte on-chip RAM space which is selected by BS[3:0] of data bank control register (DBANK, \$86).

For example, user write #30h to \$101 address:

MOV DBANK, #88H ; set bank mapping \$040~\$07f to \$0100~\$013f

MOV A, # 30H ; store #30H to A

MOV 41H, A ; write #30H to \$0101 address

Data Bank Control Register (DBANK, \$86)

bit-7 bit-0

	BSE	Unused	Unused	Unused	BS3	BS2	BS1	BS0
Read / Write:	R/W	-	-	-	R/W	R/W	R/W	R/W
Reset value:	0	*	*	*	0	0	0	1

Data bank select enable bit BSE = 1 enables the data bank select function
Data bank select enable bit BSE = 0 disables the data bank select function
BS[3:0] setting will map \$040~\$07F RAM space to entire 1K byte on-chip RAM space.

Internal RAM Control Register (RCON, \$85)

bit-7

	Unused	Unused	Unused	Unused	Unused	Unused	RAMS1	RAMS0
Read / Write:	-	-	-	-	-	-	R/W	R/W
Reset value:	*	*	*	*	*	*	0	0

SM8954A has 768 byte on-chip RAM which can be accessed by external memory addressing method only. (By instruction MOVX). The address space of instruction MOVX @Rn is determined by bit 1 and bit 0 (RAMS1, RAMS0) of RCON. The default setting of RAMS1, RAMS0 bits is 00 (page0).

RAMS1	RAMS0	MOVX @Ri i=0,1 mapping to expended RAM address
0	0	\$0000 ~ \$00FF
0	1	\$0100 ~ \$01FF
1	0	\$0200 ~ \$02FF

The port 0, port2, port3.6 and port3.7 can be used as general purpose I/O pin while port0 is open-drain structure.

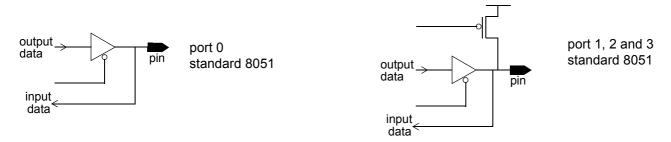
System Control Register (SCONF, \$BF)

bit-7

	WDR	Unused	Unused	Unused	Unused	Unused	OME	ALEI
Read / Write:	R/W	-	-	-	-	-	R/W	R/W
Reset value:	0	*	*	*	*	*	0	0

WDR: Watch Dog Timer Reset. When system reset by Watch Dog Timer overflow. WDR will be set to 1, The bit 7 (WDR) of SCONF is Watch Dog Timer Reset bit. It will be set to 1 when reset signal generated by WDT overflow. User should check WDR bit whenever un-predicted reset happened.

OME: 768 bytes on-chip RAM enable bit. The bit 0 (OME) of SCONF can enable or disable the on-chip expanded 768 byte RAM. The default setting of OME bit is 0 (disable).



ALEI: ALE output inhibit bit, to reduce EMI. Setting bit 0 (ALEI) of SCONF can inhibit the clock signal in Fosc/6Hz output to the ALE pin.

1.4 I/O Pin Configuration

The ports 1, 2 and 3 of standard 8051 have internal pull-up resistor, and port 0 has open-drain outputs. Each I/O pin can be used independently as an input or an output. For I/O ports to be used as an input pin, the port bit latch must contain a '1' which turns off the output driver FET. Then for port 1, 2 and 3 port pin is pulled high by a weak internal pull-up, and can be pulled low by an external source. The port 0 has open-drain outputs which means its pull-ups are not active during normal port operation. Writing '1' to the port 0 bit latch will causing bit floating so that it can be used as a high-impedance input.

The port 4 used as GPIO will has the same function as port 1, 2 and 3.

2. Port 4 for PLCC or QFP package:

The bit addressable port 4 is available with PLCC or QFP package. The port 4 has only 4 pins and its port address is located at 0D8H. The function of port 4 is the same as the function of port 1, port 2 and port 3.

Port4 (P4, \$D8)

	bit-7							bit-0
	Unused	Unused	Unused	Unused	P4.3	P4.2	P4.1	P4.0
Read / Write:	-	-	-	-	R/W	R/W	R/W	R/W
Reset value:	*	*	*	*	1	1	1	1

The bit 3, bit 2, bit 1, bit 0 output the setting to pin P4.3, P4.2, P4.1, P4.0 respectively.

3. Watch Dog Timer

The Watch Dog Timer (WDT) is a 16-bit free-running counter that generate reset signal if the counter overflows. The WDT is useful for systems which are susceptible to noise, power glitches, or electronics discharge which causing software dead loop or runaway. The WDT function can help user software recover from abnormal software condition. The WDT is different from Timer0, Timer1 and Timer2 of general 8052. To prevent a WDT reset can be done by software periodically clearing the WDT counter. User should check WDR bit of SCONF register whenever un-predicted reset happened

The purpose of the secure procedure is to prevent the WDTC value from being changed when system runaway.

There is a 250KHz RC oscillator embedded in chip. Set WDTE = "1" will enable the RC oscillator and the frequency is independent to the system frequency.

To enable the WDT is done by setting 1 to the bit 7 (WDTE) of WDTC. After WDTE set to 1, the 16-bit counter starts to count with the RC oscillator. It will generate a reset signal when overflows. The WDTE bit will be cleared to 0 automatically when SM8954A been reset, either hardware reset or WDT reset.

To reset the WDT is done by setting 1 to the CLEAR bit of WDTC before the counter overflow. This will clear the content of the 16-bit counter and let the counter re-start to count from the beginning.

3.1 Watch Dog Timer Registers:

Watch Dog Timer Registers - WDT Control Register (WDTC, \$9F)

bit-7

WDTE Unused Unused PS₁ PS₀ R CLEAR PS2 R/W R/W R/W R/W R/W Read / Write: Reset value: 0 0 0 0 0

WDTE: Watch Dog Timer enable bit CLEAR: Watch Dog Timer reset bit PS[2:0]: Overflow period select bits

PS [2:0]	Overflow Period (ms)
000	2.048
001	4.096
010	8.192
011	16.384
100	32.768
101	65.536
110	131.072
111	262.144

Watch Dog Key Register - (WDTKEY, \$97H)

bit-7 bit-0

WDT WDT WDT WDT WDT WDT **WDT WDT** KEY7 KEY6 KEY5 KEY4 KEY3 KEY2 KEY1 KEY0 W W W W W W W W 0 0 0 0 0 0 0 0

Read / Write: Reset value: By default, the WDTC is read only. User need to write values 1EH, E1H sequentially to the WDTKEY(\$97H) register to enable the WDTC write attribute, That is

MOV WDTKEY, # 1EH MOV WDTKEY, # E1H

When WDTC is set, user need to write another values E1H, 1EH sequentially to the WDTKEY(\$97H) register to disable the WDTC write attribute. That is

MOV WDTKEY, # E1H MOV WDTKEY, # 1EH

Watch Dog Timer Register - System Control Register (SCONF, \$BF)

bit-7 bit-0

	WDR	Unused	Unused	Unused	Unused	Unused	OME	ALEI
Read / Write:	R/W	-	-	-	-	-	R/W	R/W
Reset value:	0	*	*	*	*	*	0	0

The bit 7 (WDR) of SCONF is Watch Dog Tlmer Reset bit. It will be set to 1 when reset signal generated by WDT overflow. User should check WDR bit whenever un-predicted reset happened

4. Reduce EMI Function

The SM8954A allows user to reduce the EMI emission by setting 1 to the bit 0 (ALEI) of SCONF register. This function will inhibit the clock signal in Fosc/6Hz output to the ALE pin.

5. Specific Pulse Width Modulation (SPWM)

The Specific Pulse Width Modulation (SPWM) module contain 1 kind of PWM sub module: SPWM (Specific PWM). SPWM has five 8-bit channels.

5.1 SPWM Function Description:

The 8-bit SPWM channel is composed of an 8-bit register which contains a 5-bit SPWM in MSB portion and a 3-bit binary rate multiplier (BRM) in LSB portion. The value programmed in the 5-bit SPWM portion will determine the pulse length of the output. The 3-bit BRM portion will generate and insert certain narrow pulses among an 8-SPWM-cycle frame. The number of pulses generated is equal to the number programmed in the 3-bit BRM portion. The usage of the BRM is to generate equivalent 8-bit resolution SPWM type DAC with reasonably high repetition rate through 5-bit SPWM clock speed. The SPFS[1:0] settings of SPWMC (\$A3) register are dividend of Fosc to be SPWM clock, Fosc/2^(SPFS[1:0]+1). The SPWM output cycle frame repetition rate (frequency) equals (SPWM clock)/32 which is [Fosc/2^(SPFS[1:0]+1)]/32.

5.2 SPWM Registers - P1CON, SPWMC, SPWMD[4:0]

SPWM Registers - Port1 Configuration Register (P1CON, \$9B)

bit-0 bit-7

	SPWME4	SPWME3	SPWME2	SPWME1	SPWME0	Unused	Unused	Unused
Read / Write:	R/W	R/W	R/W	R/W	R/W	-	-	-
Reset value:	0	0	0	0	0	*	*	*

SPWME[4:0]: When the bit set to one, the corresponding SPWM pin is active as SPWM function. When the bit reset to zero, the corresponding SPWM pin is active as I/O pin. Five bits are cleared upon reset.

SPWM Registers - SPWM Control Register (SPWMC, \$A3)

bit-7 bit-0

	Unused	Unused	Unused	Unused	Unused	Unused	SPFS1	SPFS0
Read / Write:	-	-	-	-	-	-	R/W	R/W
Reset value:	*	*	*	*	*	*	0	0

SPFS[1:0]: These two bits is 2's power parameter to form a frequency divider for input clock.

SPFS1	SPFS0	Divider	SPWM clock, Fosc=20MHz	SPWM clock, Fosc=24MHz
0	0	2	10MHz	12MHz
0	1	4	5MHz	6MHz
1	0	8	2.5MHz	3MHz
1	1	16	1.25MHz	1.5MHz

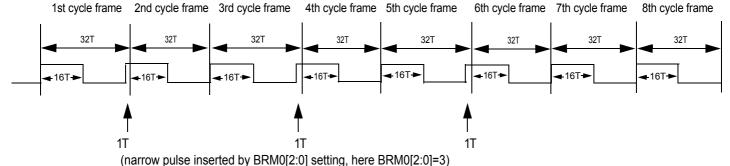
SPWM Registers - SPWM Data Register (SPWMD[4:0], \$AC, \$A7 ~\$A4)

bit-7 bit-0

	SPWMD	SPWMD	SPWMD	SPWMD	SPWMD	BRM	BRM	BRM
	[4:0]4	[4:0]3	[4:0]2	[4:0]1	[4:0]0	[2:0]2	[2:0]1	[2:0]0
Read / Write:	R/W							
Reset value:	0	0	0	0	0	0	0	0

SPWMD[4:0]: content of SPWM Data Register. It determines duty cycle of SPWM output waveform.

BRM[2:0]: will insert certain narrow pulses among an 8-SPWM-cycle frame


N = BRM[2:0]	Number of SPWM cycles inserted in an 8-cycle frame
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

Example of SPWM timing diagram:

MOV SPWMC, #03H; Set output frequency (Divider = 16)

MOV SPWMD0, #83H ; SPWMD0[4:0]=10h (=16T high, 16T low), BRM[2:0] = 3

MOV P1CON, #08H ; Enable P1.3 as SPWM output pin

SPWM clock = 1 / T = Fosc / 2^(SPFS[1:0]+1)

The SPWM output cycle frame frequency = SPWM clock / 32 = [Fosc/2^(SPFS[1:0]+1)]/32

If user use Fosc=20MHz, SPFS[1:0] of SPWMC=#03H, then SPWM clock = 20MHz/2^4 = 20MHz/16 = 1.25MHz SPWM output cycle frame frequency = (20MHz/2^4)/32=39.1KHz

Operating Conditions

Symbol	Description	Min.	Тур.	Max.	Unit.	Remarks
TA	Operating temperature	-40	25	85	°C	Ambient temperature under bias
TS	Storage temperature	-55	25	155	οС	
VCC5	Supply voltage	4.5	5.0	5.5	V	For C Version
VCC3	Supply voltage	3	3.3	3.6	V	For L Version
Fosc 16	Oscillator Frequency	3.0	16	16	MHz	For 5V, 3.3V application
Fosc 25	Oscillator Frequency	3.0	25	25	MHz	For 5V, 3.3V application
Fosc 40	Oscillator Frequency	3.0	40	40	MHz	For 5V application

DC Characteristics

(TA = -40 degree C to 85 degree C, Vcc = 3.0V to 5.5V)

Symbol	Parameter	Valid	Min.	Max.	Unit	Test Conditions
VIL1	Input Low Voltage	port 0,1,2,3,4,#EA	-0.5	0.8	V	
VIL2	Input Low Voltage	RES, XTAL1	0	0.8	V	
VIH1	Input High Voltage	port 0,1,2,3,4,#EA	2.0	Vcc+0.5	V	
VIH2	Input High Voltage	RES, XTAL1	70%Vcc	Vcc+0.5	V	
VOL1	Output Low Voltage	port 0, ALE, #PSEN		0.45	V	IOL=3.2mA
VOL2	Output Low Voltage	port 1,2,3,4		0.45	V	IOL=1.6mA
VOH1	Output High Voltage	port 0	2.4		V	IOH=-800uA (only for VCC =5V)
			90%Vcc		V	IOH=-80uA
VOH2	Output High Voltage	port 1,2,3,4,ALE,#PSEN	2.4		V	IOH=-60uA (only for VCC =5 V)
			90%Vcc		V	IOH=-10uA
IIL	Logical 0 Input Current	port 1,2,3,4		-75	uA	Vin=0.45V
ITL	Logical Transition Current	port 1,2,3,4		-650	uA	Vin=2.0V
ILI	Input Leakage Current	port 0, #EA		<u>+</u> 10	uA	0.45V <vin<vcc< td=""></vin<vcc<>
R RES	Reset Pull-down Resistance	RES	50	300	Kohm	
C IO	Pin Capacitance			10	pF	Freq=1MHz, Ta=25°C
I CC	Power Supply Current	Vdd		15	mA	Active mode, 40MHz
				10	mA	Active mode, 25MHz
				20	mA	Active mode, 16MHz
				10	mA	ldle mode, 40MHz
				7	mA	Idle mode, 25MHz
				6.5	mA	Idle mode, 16MHz
				50	uA	Power down mode

Note1: Under steady state (non-transient) conditions, IOL must be externally

Limited as follows: Maximum IOL per port pin: 10mA

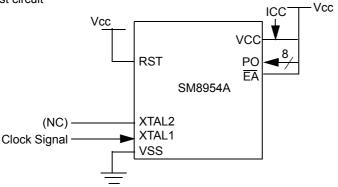
Maximum IOL per 8-bit port : port 0 :26mA

port 1,2,3 :15mA

Maximum total IOL for all output pins: 71mA

If IOL exceeds the condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

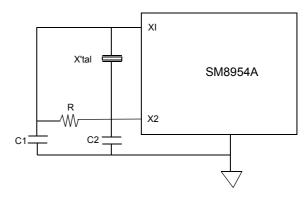
Note2: Minimum VCC for Power-down is 2V.



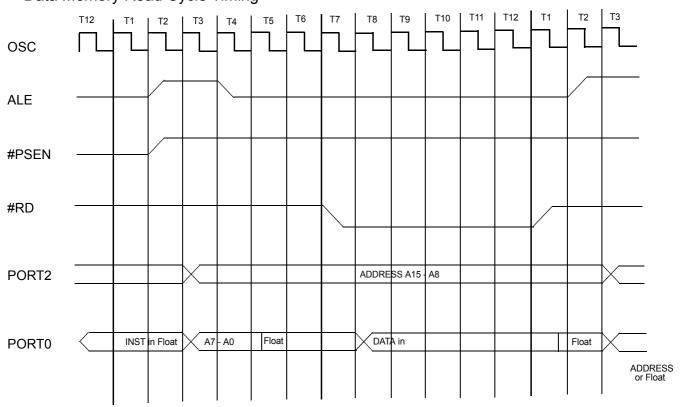
AC Characteristics

(16/25/40MHz, operating conditions; CL for Port 0, ALE and PSEN Outputs=100pF; CL for all Other Output=80pF)

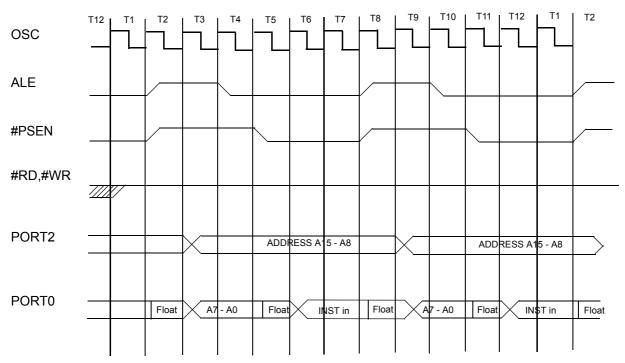
		Valid	fo	sc=16	6MHz	Va	ariable fo	SC	Unit	Remarks
Symbol	Parameter	Cycle	Min.	Тур.	Max	Min.	Тур.	Max		
T LHLL	ALE pulse width	RD/WRT	115			2xT - 10			nS	
T AVLL	Address Valid to ALE low	RD/WRT	43			T - 20			nS	
T LLAX	Address Hold after ALE low	RD/WRT	53			T - 10			nS	
T LLIV	ALE low to Valid Instruction In	RD			240			4xT - 10	nS	
T LLPL	ALE low to #PSEN low	RD	53			T - 10			nS	
T PLPH	#PSEN pulse width	RD	173			3xT - 15			nS	
T PLIV	#PSEN low to Valid Instruction In	RD			177			3xT - 10	nS	
T PXIX	Instruction Hold after #PSEN	RD	0			0			nS	
T PXIZ	Instruction Float after #PSEN	RD			87			T + 25	nS	
T AVIV	Address to Valid Instruction In	RD			292			5xT - 20	nS	
T PLAZ	#PSEN low to Address Float	RD			10			10	nS	
T RLRH	#RD pulse width	RD	365			6xT - 10			nS	
T WLWH	#WR pulse width	WRT	365			6xT - 10			nS	
T RLDV	#RD low to Valid Data In	RD			302			5xT - 10	nS	
T RHDX	Data Hold after #RD	RD	0			0			nS	
T RHDZ	Data Float after #RD	RD			145			2xT + 20	nS	
T LLDV	ALE low to Valid Data In	RD			590			8xT - 10	nS	
T AVDV	Address to Valid Data In	RD			542			9xT - 20	nS	
T LLYL	ALE low to #WR High or #RD low	RD/WRT	178		197	3xT - 10		3xT + 10	nS	
T AVYL	Address Valid to #WR or #RD low	RD/WRT	230			4xT - 20			nS	
T QVWH	Data Valid to #WR High	WRT	403			7xT - 35			nS	
T QVWX	Data Valid to #WR transition	WRT	38			T - 25			nS	
T WHQX	Data hold after #WR	WRT	73			T + 10			nS	
T RLAZ	#RD low to Address Float	RD						5	nS	
T YALH	#WR or #RD high to ALE high	RD/WRT	53		72	T -10		T + 10	nS	
T CHCL	clock fall time								nS	
T CLCX	clock low time								nS	
T CLCH	clock rise time								nS	
T CHCX	clock high time								nS	
T, TCLCL	clock period			63			1/fosc		nS	


ICC Active mode test circuit

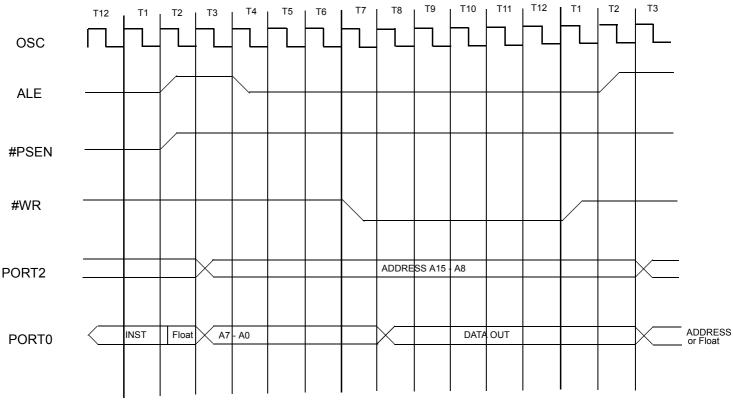
Application Reference


	Valid for SM8954A							
X'tal	3MHz	6MHz 9MHz 12MHz						
C1	30 pF	30 pF	30 pF	30 pF				
C2	30 pF	30 pF	30 pF	30 pF				
R	open	open	open	open				
X'tal	16MHz	25MHz	33MHz	40MHz				
C1	30 pF	15 pF	5 pF	2 pF				
C2	30 pF	15 pF	5 pF	2 pF				
R	open	62ΚΩ	6.8KΩ	4.7ΚΩ				

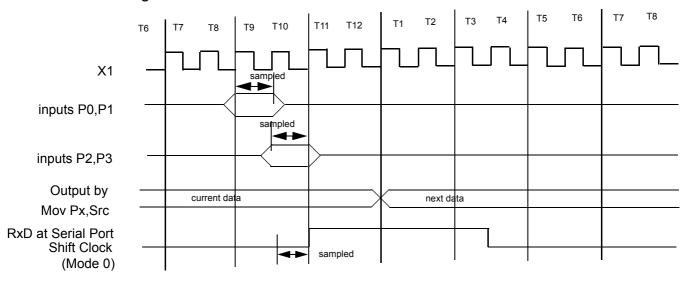
NOTE: Oscillation circuit may differs with different crystal or ceramic resonator in higher oscillation frequency which was due to each crystal or ceramic resonator has its own characteristics.


User should check with the crystal or ceramic resonator manufacturer for appropriate value of external components.

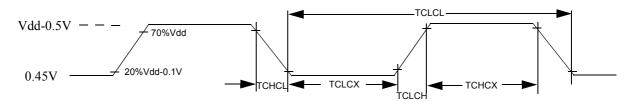
Data Memory Read Cycle Timing

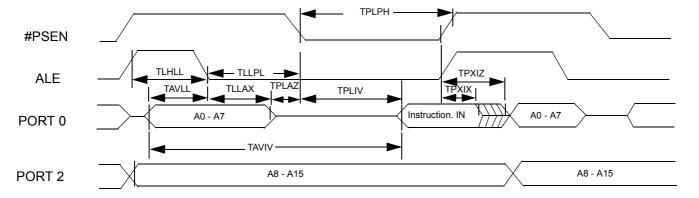


Program Memory Read Cycle Timing

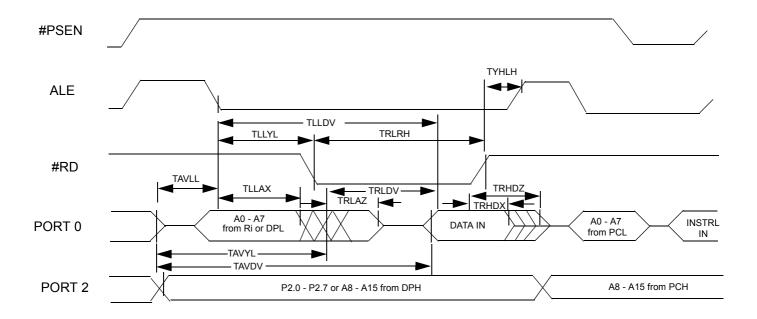


Data Memory Write Cycle Timing

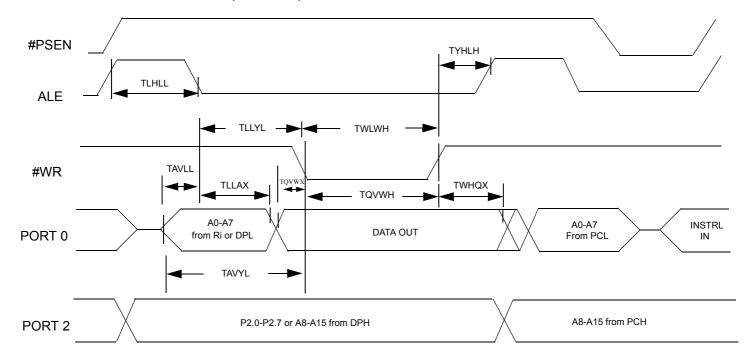



I/O Ports Timing

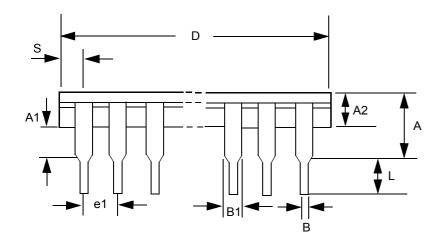
Timing Critical, Requirement of External Clock (Vss=0.0V is assumed)

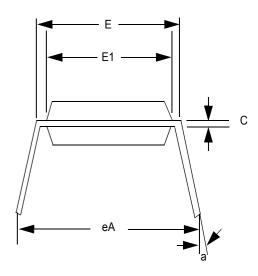


Tm.I External Program Memory Read Cycle

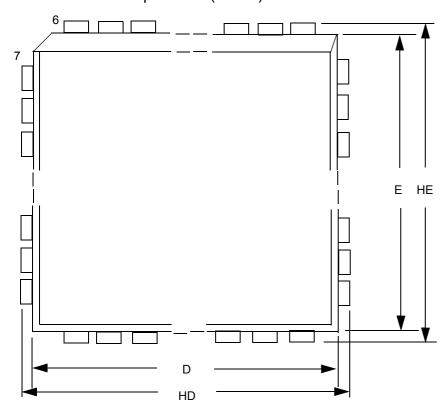


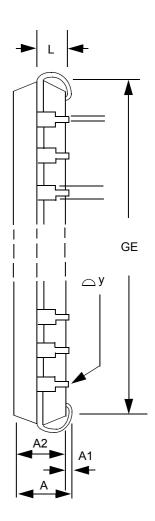
Tm.II External Data Memory Read Cycle

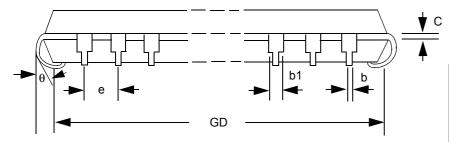



Tm.III External Data Memory Write Cycle

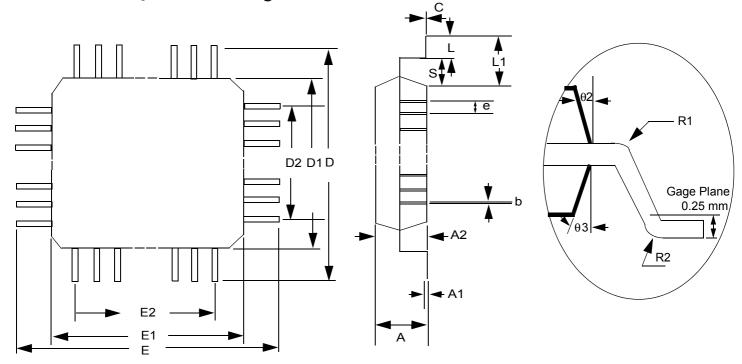
40L 600mil PDIP Information

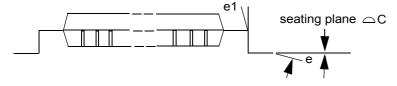

Note:


- Dimension D Max & include mold flash or tie bar burrs
- 2. Dimension E1 does not include inter lead flash.
- 3. Dimension D & E1 include mold mismatch and are determined at the mold parting line.
- 4. Dimension B1 does not include dam bar protrusion/infusion.
- 5. Controlling dimension is inch.
- 6. General appearance spec. should base on final visual inspection spec.


	Dimension in inch	Dimension in mm
Symbol	minimal/maximal	minimal/maximal
Α	- / 0.210	- / 5.33
A1	0.010 / -	0.25 / -
A2	0.150 / 0.160	3.81 / 4.06
В	0.016 / 0.022	0.41 / 0.56
B1	0.048 / 0.054	1.22 / 1.37
С	0.008 / 0.014	0.20 / 0.36
D	- / 2.070	- / 52.58
Е	0.590 / 0.610	14.99 / 15.49
E1	0.540 / 0.552	13.72 / 14.02
e1	0.090 / 0.110	2.29 / 2.79
L	0.120 / 0.140	3.05 / 3.56
а	0°/ 15°	0°/ 15°
eA	0.630 / 0.670	16.00 / 17.02
S	- / 0.090	- / 2.29

44L Plastic Chip Carrier (PLCC)


Note:


- 1. Dimension D & E does not include inter lead flash.
- 2. Dimension b1 does not include dam bar protrusion/intrusion.
- 3. Controlling dimension: Inch
- 4. General appearance spec. should base on final visual inspection spec.

	Dimension in inch	Dimension in mm
Symbol	minimal/maximal	minimal/maximal
Α	- / 0.185	- / 4.70
A1	0.020 / -	0.51 / -
A2	0.145 / 0.155	3.68 / 3.94
b1	0.026 / 0.032	0.66 / 0.81
b	0.016 / 0.022	0.41 / 0.56
С	0.008 / 0.014	0.20 / 0.36
D	0.648 / 0.658	16.46 / 16.71
E	0.648 / 0.658	16.46 / 16.71
е	0.050 BSC	1.27 BSC
GD	0.590 / 0.630	14.99 / 16.00
GE	0.590 / 0.630	14.99 / 16.00
HD	0.680 / 0.700	17.27 / 17.78
HE	0.680 / 0.700	17.27 / 17.78
L	0.090 / 0.110	2.29 / 2.79
θ	- / 0.004	- / 0.10
\triangle y	1	1

44L Plastic Quad Flat Package

Note:

Dimension D1 and E1 do not include mold protrusion.

Allowance protrusion is 0.25mm per side.

Dimension D1 and E1 do include mold mismatch and are determined datum plane.

Dimension b does not include dam bar protrusion.

Allowance dam bar protrusion shall be 0.08 mm total in excess of the b dimension at maximum material condition. Dam bar cannot be located on the lower

radius or the lead foot.

	Dimension in Inch	Dimension in mm
Symbol	minimal/maximal	minimal/maximal
Α	- / 0.100	- / 2.55
A1	0.006 / 0.014	0.15 / 0.35
A2	0.071 / 0.087	1.80 / 2.20
b	0.012 / 0.018	0.30 / 0.45
С	0.004 / 0.009	0.09 / 0.20
D	0.520 BSC	13.20 BSC
D1	0.394 BSC	10.00 BSC
D2	0.315	8.00
Е	0.520 BSC	13.20 BSC
E1	0.394 BSC	10.00 BSC
E2	0.315	8.00
е	0.031 BSC	0.80 BSC
L	0.029 / 0.041	0.73 / 1.03
L1	0.063	1.60
R1	0.005 / -	0.13 / -
R2	0.005 / 0.012	0.13 / 0.30
S	0.008 / -	0.20 / -
θ	0° / 7°	as left
θ1	0°/-	as left
θ2	10° REF	as left
θ3	7° REF	as left
\bigcirc C	0.004	0.10

eMCU writer list				
Company	Contact info	Programmer Model Number		
Advantech 7F, No.98, Ming-Chung Rd., Shin-Tien City, Taipei, Taiwan, ROC Web site: http://www.aec.com.tw	Tel:02-22182325 Fax:02-22182435 E-mail: aecwebmaster@advantech.com.tw	LabTool - 48 (1 * 1) LabTool - 848 (1*8)		
Caprilion P.O. Box 461 KaoHsiung, Taiwan, ROC Web site: http://www.market.net.tw/ ~ cap/	Tel:07-3865061 Fax:07-3865421 E-mail: cap@market.net.tw	UNIV2000		
Hi-Lo 4F, No. 20, 22, LN, 76, Rui Guang Rd., Nei Hu, Taipei, Taiwan, ROC. Web site: http://www.hilosystems.com.tw	Tel:02-87923301 Fax:02-87923285 E-mail: support@hilosystems.com.tw	All - 11 (1*1) Gang - 08 (1*8)		
Leap 6th F1-4, Lane 609, Chunghsin Rd., Sec. 5, Sanchung, Taipei Hsien, Taiwan, ROC Web site: http://www.leap.com.tw	Tel:02-29991860 Fax:02-29990015 E-mail: service@leap.com.tw	ChipStation (1*1) SU - 2000 (1*8)		
Xeltek Electronic Co., Ltd 338 Hongwu Road, Nanjing, China 210002 Web site: http://www.xeltek-cn.com	Tel:+86-25-4408399, 4543153-206 E-mail: xelclw@jlonline.com, xelgbw@jlonline.com	Superpro/2000 (1*1) Superpro/680 (1*1) Superpro/280 (1*1) Superpro/L+(1*1)		

Feedback / Inquiry:

To Attn Fax Tel	:SyncMOS Technologies, Inc. :MKT / Customer Service Dept. :886-3-579-2960 :886-3-578-0493 :886-3-579-2987 :886-3-578-3344 # 2667	From : Company : Dept, Section : Position Title : Inquiry Date : Ref No :	
Descrip	tion:		