

Getting started with DS-MDK
Create applications for heterogeneous

ARM® Cortex®-A/Cortex-M devices

2 Preface

Information in this document is subject to change without notice and does not

represent a commitment on the part of the manufacturer. The software described

in this document is furnished under license agreement or nondisclosure

agreement and may be used or copied only in accordance with the terms of the

agreement. It is against the law to copy the software on any medium except as

specifically allowed in the license or nondisclosure agreement. The purchaser

may make one copy of the software for backup purposes. No part of this manual

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or information storage and

retrieval systems, for any purpose other than for the purchaser’s personal use,

without written permission.

Copyright © 1997-2017 ARM Germany GmbH

All rights reserved.

ARM, Keil, µVision, Cortex, and ULINK are trademarks or registered

trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Eclipse is a registered trademark of the Eclipse Foundation, Inc.

NOTE

We assume you are familiar with Microsoft Windows, the hardware, and the

instruction set of the ARM® Cortex®-A and Cortex-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate

credit to persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK 3

Preface
Thank you for using the DS-MDK Development Studio available from ARM. To

provide you with the very best software tools for developing ARM based

embedded applications we design our tools to make software engineering easy

and productive. ARM also offers therefore complementary products such as the

ULINK™ debug and trace adapters and a range of evaluation boards. DS-MDK

is expandable with various third party tools, starter kits, and debug adapters.

Chapter overview

The book starts with the installation of DS-MDK and describes the software

components along with complete workflow from starting a project up to

debugging on hardware. It contains the following chapters:

DS-MDK introduction provides an overview about the DS-MDK, the software

packs, and describes the product installation.

Working with example projects explains how to get started with supported

development boards using pre-built projects to verify hardware and software

functionality.

Creating projects from scratch guides you through the process of creating and

modifying projects using CMSIS and device-related software components for the

Cortex-M microcontroller. It also shows you how to develop applications for the

Cortex-A processor running Linux.

Debug applications describes the process of how to connect to the target

hardware and explains debugging applications on the target.

Store Cortex-M image gives further details on how to store the application

image on the target and how to run it at start up time.

The Appendix contains further information, for example about the basic concepts

of the Eclipse IDE and the most frequently used perspectives.

4 Preface

Contents
Preface .. 3

DS-MDK introduction .. 7
Solution for heterogeneous systems ... 7

DS-MDK licensing ... 8
Software and hardware requirements ... 8
Install DS-MDK ... 9

Documentation and support .. 12

Working with example projects ... 13
Install the Linux image ... 13
Hardware connection .. 14
Verify installation with example projects ... 15
Cortex-M application .. 18
Cortex-A Linux application .. 23

Creating projects from scratch .. 28
Create Cortex-M applications ... 28

Blinky with CMSIS-RTOS RTX .. 28
Create Linux applications ... 38

Setup the project ... 38
Build the application image .. 39

Debug applications .. 40
Debug Cortex-M application .. 41
Debug Linux application .. 45
Debug the Linux Kernel ... 46

Create a Linux Kernel debug project .. 47
Debug the Kernel: Pre-MMU stage .. 51
Debug the Kernel: post-MMU stage ... 52

Debug a Linux Kernel module ... 55
Create a Linux Kernel module debug project ... 55
Debug the Kernel module ... 57

ARM Streamline ... 58

Store Cortex-M image ... 60
Create a Cortex-M binary image (BIN) .. 60
Store Cortex-M BIN file on SD Card ... 61
Run Cortex-M BIN file from U-Boot ... 62

Appendix .. 63
Eclipse IDE ... 64

Perspectives .. 64

Getting Started with DS-MDK 5

Additional links .. 70

Index ... 71

6 Preface

 NOTE
This user’s guide describes how to create applications with the Eclipse-based

DS-MDK IDE and Debugger for ARM Cortex-A/Cortex-M based devices.

Refer to the Getting Started with MDK user’s guide for information how to

create projects for ARM Cortex-M microcontrollers with the µVision®

IDE/Debugger.

Getting Started with DS-MDK 7

DS-MDK introduction
DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-

Pack technology and uses software packs to extend device support for devices

based on 32-bit ARM Cortex-A processors or heterogeneous systems based on

32-bit ARM Cortex-A and ARM Cortex-M processors.

Currently NXP i.MX 6, i.MX7 and VFxxx series devices are supported. These

devices combine computing power for application-rich systems with real-time

responsiveness: the DS-5 Debugger gives visibility to multi-processor execution

and allows optimization of the overall software architecture.

Solution for heterogeneous systems

Heterogeneous systems usually consist of a powerful ARM Cortex-A class

application processor and a deterministic ARM Cortex-M based microcontroller.

These systems combine the best of both worlds: the Cortex-A class processor can

run a feature-rich operating system such as Linux and enables the user to program

complex applications with sophisticated human-machine interfaces (HMI). The

Cortex-M class controller offers low I/O latency, superior power efficiency and a

fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and

shared memory. The biggest challenge with heterogeneous systems is the

synchronization and inter-processor communication.

8 DS-MDK introduction

DS-MDK offers a complete software development solution for such systems:

▪ Manage Cortex-A Linux and Cortex-M RTOS projects in the same

development environment.

▪ Use the Cortex Microcontroller Software Interface Standard (CMSIS)

development flow for efficient Cortex-M programming. Add software packs

any time to DS-MDK to make new device support and middleware updates

independent from the toolchain. The IDE manages the provided software

components that are available for the application as building blocks.

▪ Debug multicore software development projects with the full visibility

offered by the DS-5 Debugger.

DS-MDK licensing
DS-MDK is part of the Keil® MDK and the product requires a valid license in

order to use it.

For information on how to obtain and set-up the license, please refer to the

following page: http://www.keil.com/mdk5/ds-mdk/licensing/

Software and hardware requirements
DS-MDK has the following minimum hardware and software requirements:

▪ A workstation running Microsoft Windows, Red Hat Enterprise Linux or

Ubuntu Desktop Edition (only 64-bit OS/platforms are supported)

▪ Dual-Core Processor with > 2 GHz

▪ 4 GB RAM and 8 GB hard-disk space

▪ 1280 x 800 or higher screen resolution

http://www.keil.com/mdk5/cmsis/
http://www2.keil.com/mdk5
http://www.keil.com/mdk5/ds-mdk/licensing/

Getting Started with DS-MDK 9

Install DS-MDK
Download the DS-MDK installer for your host platform (Windows or Linux)

from www.keil.com/mdk5/ds-mdk/install .

The installation procedures for Windows and Linux are different and are both

described below.

Windows installation

Decompress the zip archive and run the installer setup.exe. Follow the

instructions on the screen and make sure you install the device drivers for the

debug probes.

To start DS-MDK, use Eclipse for DS-MDK from the Start menu (Windows 10:

All apps ARM DS-MDK Eclipse for DS-MDK).

Linux installation

Extract the installer from the downloaded archive file, run (not source) install.sh

and follow the on-screen instructions. The installer unpacks DS-MDK into your

chosen directory, and optionally installs device drivers and desktop shortcuts.

Note: The installer includes device drivers that require you to run with root

privileges.

To start DS-MDK, from your desktop, select Eclipse for DS-MDK. Alternatively,

launch [DS-MDK install directory]/bin/eclipse from the command line.

http://www.keil.com/mdk5/ds-mdk/install

10 DS-MDK introduction

Run DS-MDK

The first time you run DS-MDK, a window would appear asking to specify a

directory for your workspace (the area where your projects will be stored). For

most users, the default suggested directory is the best option.

The Eclipse-based IDE opens in the CMSIS Pack Manager perspective and a

warning message is shown if the default CMSIS Pack directory is empty.

Click on the highlighted click here text to start populating the CMSIS Index: this

operation requires an Internet connection to download the index files.

Getting Started with DS-MDK 11

DS-MDK shows a progress bar during the download.

At the end of the process, the CMSIS Pack Manager view should be populated

with the CMSIS Packs available.

NOTE

Currently, software packs for the NXP i.MX 6, i.MX 7 and VFxxx series are

qualified for DS-MDK.

The Console window shows information about the Internet connection and the

installation progress.

The device database (www.keil.com/dd2) lists all available devices and provides

download access to the related software packs. If the Pack Manager cannot access

the Internet, you use the Import existing packs icon or double-click on

*.PACK files to manually install software packs.

http://www.keil.com/dd2

12 DS-MDK introduction

Documentation and support

DS-MDK provides online manuals and context-sensitive help. The Help menu

opens the main help system that includes the CMSIS C/C++ Development User’s

Guide, the ARM DS-MDK Documentation, the RSE User Guide, and other

reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation

and explain dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please

report them to us. Support and information channels are accessible at

www.keil.com/support.

http://www.keil.com/support

Getting Started with DS-MDK 13

Working with example projects

Install the Linux image

For every supported development board, a pre-configured Linux image with

DS-MDK specific debug settings is available. This web page lists all supported

development boards: www.keil.com/mdk5/ds-mdk/install#boards

 Download the compressed Linux kernel for your development board and

unzip it.

Copy the Linux image to an SD-Card (Windows)

 Download and install the open source tool Win32 Disk Imager from

http://win32diskimager.sourceforge.net/ to flash the Linux kernel image

onto an SD-Card.

Run the program. To write the image to the memory card, specify the

location of the image file, select the Device letter of the SD card and press

the Write button:

Copy the Linux image to an SD-Card (Linux)

 To write the image on the memory card on Linux it’s sufficient to use the dd

command where /dev/sdx is the device for your memory card.

NOTE

Make sure you select the right /dev/sdx device to avoid corruption of your

data on your drives.

sudo dd if=image_file_name of=/dev/sdx bs=1M`

http://www.keil.com/mdk5/ds-mdk/install#boards
http://win32diskimager.sourceforge.net/

14 Working with example projects

Hardware connection

In order to fully debug the target device you need to use a JTAG debugger such

as DSTREAM or ULINKpro. The debugger needs to be connected to the host PC

via USB (DSTREAM/ULINKpro) or Ethernet (DSTREAM only) and the target

board via JTAG connector.

For the debug of Linux applications via gdbserver an Ethernet connection from

the host PC to the board is required.

Another required connection during debug is the UART port used to interact with

the Linux console: some boards have an RS232 connector whereas others have an

USB interface that the operating system recognizes as virtual COM ports.

The picture below shows an example (NXP i.MX7 SABRE board) connected

with JTAG, Ethernet and USB UART connections.

If you are not sure how to connect your board, please follow the instructions on

the development board’s support page.

Getting Started with DS-MDK 15

Verify installation with example projects

Once you have selected, downloaded, and installed a software pack for your

device, you can verify your installation using one of the examples provided in the

software pack. For more information about the example used in this section,

please refer to Remote Processor Messaging protocol example on page 63 in the

Appendix.

Prepare terminal views

Many applications use a serial device to display messages. A Terminal window

shows these messages from serial ports.

The NXP i.MX 7 SABRE development board for example contains a dual USB

serial port device with two independent serial ports. The configuration of the

serial port is slightly different between Windows and Linux platforms.

Windows

Connect the board to your computer. Windows installs the drivers automatically

and adds two new USB Serial Ports to your system.

Check the exact numbers in the Windows Device Manager (to open it, type

“device manager” in the Windows search bar):

The smaller number is the COM port of the Cortex-A processor, while the larger

number is the COM port of the Cortex-M processor.

16 Working with example projects

Linux

Connect the board to your computer. Linux should recognize the peripheral and

you should be able to find ttyUSB0 and ttyUSB1 in your /dev/ directory.

Please make you set the right read/write permission to the device. For example, to

give read/write permissions to all users on your machine type the following

command:

root@imv7dsabresd:~# sudo chmod 666 /dev/ttyUSB*

The first device (e.g. /dev/ttyUSB0) is the serial port of the Cortex-A processor,

while the second device (e.g. /dev/ttyUSB1) is the serial port of the Cortex-M

processor.

Windows and Linux

 On DS-MDK, go to Window Show View Other… to open a Terminal

view. Select Terminal Terminal and click OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

 Set the following and click OK:

▪ View Title: Terminal Linux

▪ Connection Type: Serial

▪ Port: Use the first of the new serial ports (e.g. COM14 or /dev/ttyUSB0)

▪ Baud Rate: 115200

NOTE

For the correct terminal settings and hardware connections of your

development board refer to the board support pages.

Getting Started with DS-MDK 17

 Press the reset button on the development board to observe the boot process

in the Terminal window. Press any keyboard key to interrupt the boot

process:

NOTE

You must halt the boot loader at this point to be able to connect the

ULINKpro debug adapter to the Cortex-M processor.

 Add another Terminal view to display the output of the Cortex-M processor.

Simply use the drop-down selector next to the New Terminal Connection

in Current View… icon and select New Terminal View:

Select the second serial port number and leave the other settings as they are.

Name the Terminal view Terminal M4.

18 Working with example projects

Cortex-M application

Copy the RPMSG TTY RTX example project

Select the device

 In the CMSIS Pack Manager () perspective, select the board

(MCIMX7D-SABRE) from the Boards tab on the left and click on

Examples tab on the right-hand side of the window. Use filters in the toolbar

to narrow the list of examples.

Click Install next to the RPMSG TTY RTX example if the packs are not

installed (this might take a few minutes based on your internet connection).

At the end of the installation the CMSIS Packs for the selected board should be

installed locally and the examples are ready to be copied in your workspace.

Click Copy next to the RPMSG TTY RTX example (make sure the

corresponding pack is installed).

Getting Started with DS-MDK 19

Confirm your selection by clicking on the Copy button.

CMSIS Pack Manager copies the example into your workspace and switches to

the C/C++ perspective:

Build the application

 Build the project from the context menu in the Project Explorer:

The Console window shows information about the build process:

20 Working with example projects

Configure CMSIS DS-5 debugger

 Right-click the RPMSG_TTY_RTX_M4 project and select Debug As

CMSIS DS-5 Debugger to launch the debug configurations dialog:

Verify the Connection Settings and ensure that ULINKpro is correctly

detected. If in doubt, use Browse… to list available debug adapters.

 Click on Target Configuration… to setup the Debug and Trace Services

Layer (DTSL).

Getting Started with DS-MDK 21

▪ On the Cortex-A7 tab, disable all trace options to avoid buffer overflows.

▪ On the Cortex-M4 tab, check Enable Cortex-M4 core trace.

 In the OS Awareness tab select the real-time operating system used in your

application from the drop-down menu.

Click Debug.

NOTE

The error message “Failed to launch debug server” most likely indicates

that an incorrect ULINKpro connection address is selected.

22 Working with example projects

Run Cortex-M application

DS-MDK switches to the DS-5 Debug perspective. The application loads and

runs until main.

 To start the Cortex-M4 application click Run in the Debug Control view.

Observe the output of the application in the Terminal M4 window.

NOTE

You can add another Terminal view to the debug perspective by using

Window Show View Terminal.

Getting Started with DS-MDK 23

Cortex-A Linux application

Copy and build the Linux Application TTY

 Switch back to the CMSIS Pack Manager perspective and copy the

Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer in the same

way we have done for the Cortex-M RPMSG TTY RTX example.

The Console should show an error-free build:

Setup RSE connection

 Go to Window Open

Perspective Other...,

then select Remote

System Explorer. Use the

 button to create a new

connection. Select SSH

Only and click Next.

RSE communicates with

the target using TCP/IP.

Enter the target's IP

address into the Host

Name field. Enter a

meaningful name in the

Connection name box:

24 Working with example projects

Click Finish to show your connection in the Remote

Systems window:

Boot Linux

NOTE

If you are debugging a microcontroller application simultaneously, you need to

run the Cortex-M application, otherwise the prompt in the Terminal Linux is not

accessible.

 In the Terminal Linux enter “boot” to start the Linux system if it hasn’t

started yet:

When the boot process has finished, log in as root (no password required).

Configure DS-5 debugger

 Right-click on the project Linux Application TTY and select Debug As

Debug Configurations… In the Debug Configurations window, select DS-5

Debugger and then press the icon to create a new debug configuration.

Name it GDB Debug and select in the Connection tab Linux Application

Debug Application Debug Connections via gdbserver Download

and debug application. The RSE connection from the previous step shows

up:

Getting Started with DS-MDK 25

 On the Files tab, in Target Configuration, select the workspace build target

for Application on host to download. Select an existing directory on the

target file system, e.g. /home/root/tmp as the Target download

directory.

Select an existing directory on the target file system, e.g. /home/root/tmp

as the Target working directory (use the same directory as for Target

download directory).

On the Debugger tab, under Run Control select Debug from symbol

“main”. Click Debug.

26 Working with example projects

If asked for login, please insert the credential for the Linux target. If you are

using one of the images downloaded from www.keil.com please use root as

username and leave the password field empty.

Run the Linux application

 In the Terminal Linux, load the kernel module that communicates with the

Cortex-M4 application with this command:

root@imv7dsabresd:~# modprobe -v imx_rpmsg_tty

The kernel module will be loaded:

insmod /lib/modules/4.1.15-

1.1.0+ga4d2a08/kernel/drivers/rpmsg/imx_rpmsg_tty.ko

imx_rpmsg_tty rpmsg0: new channel: 0x400 -> 0x0!

Install rpmsg tty driver!

 Use the Continue button to run the Linux application. The App Console

shows the application’s messages:

Similarly, the Terminal M4 shows the output of the microcontroller

application:

NOTE

You can add another Terminal view to the Debug perspective by using

Window Show View Terminal.

http://www.keil.com/

Getting Started with DS-MDK 27

You have verified that your development environment can connect to both the

Cortex-M and the Cortex-A processor. Try other example projects such as the

Frequency Bin that demonstrates how to use the CMSIS-DSP library in the

Cortex-M processor. The following chapters will explain how to create projects

for both from scratch and how to debug these applications.

28 Creating projects from scratch

Creating projects from scratch

Create Cortex-M applications
This chapter guides you through the steps required to create and modify projects

for the Cortex-M target in a heterogeneous system.

Blinky with CMSIS-RTOS RTX

Follow these steps to create a project called Blinky using the real-time operating

system CMSIS-RTOS RTX:

▪ Setup the Project: create a project and select the microcontroller device

along with the relevant CMSIS components.

▪ Select Software Components: choose the required software components for

the application.

▪ Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.

▪ Create the Source Code Files: add and create the application files.

▪ Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which

contains the main() function that initializes the RTOS kernel, the peripherals, and

starts thread execution. In addition, you will configure the system clock and the

CMSIS-RTOS RTX.

Getting Started with DS-MDK 29

Setup the project

 From the Eclipse

menu bar, choose File

 New C Project:

 Select CMSIS RTE C/C++ Project, enter a project name (for example

Blinky) and click Next.

30 Creating projects from scratch

 Select your target device from the list: in this example we would continue

using MCIMX7D7:Cortex-M4. Make sure the selection on FPU is none so

that we can avoid initializing it for our example.

 Select the NXP i.MX 7 Series i.MX Dual MCIMX7D7

MCIMX7D:Cortex-M4 device and click Finish.

The C/C++ Perspective opens and shows the project:

Getting Started with DS-MDK 31

Select software components

 For the Blinky project based on CMSIS-RTOS RTX, you need to select the

following components:

▪ Board Support:iMX7D SABRE Board:HW INIT

▪ Board Support:iMX7D SABRE Board:User I/O Redirect
▪ CMSIS:RTOS (API):Keil RTX.

▪ Compiler:I/O:STDERR configured as variant User

▪ Compiler:I/O:STDIN configured as variant User

▪ Compiler:I/O:STDOUT configured as variant User

▪ Compiler:I/O:TTY configured as variant User

▪ Device:i.MX7D HAL:CCM

▪ Device:i.MX7D HAL:RDC

▪ Device:i.MX7D HAL:UART

Use the Resolve button to add other required components automatically.

Finally, save your selection:

32 Creating projects from scratch

NOTE

Saving the RTE configuration triggers a project update and the selected software

components become instantly visible in the Project Explorer.

Configure CMSIS-RTOS RTX kernel

 In the project, expand the group RTE:CMSIS, right-click on the file

RTX_Conf_CM.c, and select Open With CMSIS Configuration

Wizard. Change the following settings:

▪ Default Thread stack size [bytes] 512

▪ Main Thread stack size [bytes] 512

▪ RTOS Kernel Timer input clock frequency [Hz] 240000000

Getting Started with DS-MDK 33

 Save the file using or CTRL+S.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice

is stored and the file will be opened in this view automatically next time.

Create the source code files

Pre-configured user code templates contain routines that resemble the

functionality of a software component.

 Right-click on the project and select New Files from CMSIS Template.

34 Creating projects from scratch

Expand the software component CMSIS and select the template CMSIS-

RTOS 'main' function. Click Finish. Replace the content of main.c with

the following application specific code:

/*--

 * CMSIS-RTOS 'main' function template

 --/

#define osObjectsPublic // define objects in main

module

#include "osObjects.h" // RTOS object definitions

#ifdef _RTE_

 #include "RTE_Components.h" // Component selection

#endif

#ifdef RTE_CMSIS_RTOS // when RTE component CMSIS RTOS is

used

 #include "cmsis_os.h" // CMSIS RTOS header file

#endif

#include "system_iMX7D_M4.h"

#include "retarget_io_user.h"

#include "board.h"

#include <stdio.h>

osThreadId tid_threadA; /* Thread id of thread A

*/

/*--

 * Thread A

 --/

Getting Started with DS-MDK 35

void threadA (void const *argument) {

 volatile int a = 0;

 for (;;) {

 osDelay(750);

 printf("Blinky threadA: Hello World!\n");

 }

}

osThreadDef(threadA, osPriorityNormal, 1, 0);

/*

 * main: initialize and start the system

 */

int main (void) {

 /* Board specific RDC settings */

 BOARD_RdcInit();

 /* Board specific clock settings */

 BOARD_ClockInit();

 SystemCoreClockUpdate();

 InitRetargetIOUSART();

 tid_threadA = osThreadCreate(osThread(threadA), NULL);

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelInitialize (); // initialize CMSIS-RTOS

#endif

 /* Initialize device HAL here */

#ifdef RTE_CMSIS_RTOS // when using CMSIS RTOS

 osKernelStart (); // start thread execution

#endif

 /* Infinite loop */

 while (1)

 {

 /* Add application code here */

 osDelay(1000);

 printf("Blinky main loop: Hello World!\n");

 // initialize peripherals here

 // create 'thread' functions that start executing,

 // example: tid_name = osThreadCreate (osThread(name), NULL);

 osKernelStart (); // start thread execution

 }

}

Save the file using or CTRL+S

36 Creating projects from scratch

Adapt the scatter file

On the i.MX 7 devices, several types of memory are available. For deterministic,

real-time behavior, the Cortex-M4 should use the local Tightly Coupled Memory

(TCM), which provides low-latency access. Multiple on-chip RAM areas

(OCRAM) are available, which are larger, but not as fast.

The following table shows the memories and their load addresses for the different

processors:

Region Size Cortex-A7 Cortex-M4 (Code Bus)

OCRAM 128 KB 0x00900000-0x0091FFFF 0x00900000-0x0091FFFF

TCMU 32 KB 0x00800000-0x00807FFF

TCML 32 KB 0x007F8000-0x007FFFFF 0x1FFF8000-0x1FFFFFFF

OCRAM_S 32 KB 0x00180000-0x00187FFF 0x00000000-0x00007FFF/

0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region

command.

 To put the Cortex-M4 code into the TCM of the i.MX 7, open the file

MCIMX7D_Cortex-M4.sct and change the address of the load region to

0x1FFF8000:

;

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in

**

;

LR_IROM1 0x1FFF8000 0x00008000 { ; load region size_region

 ER_IROM1 0x1FFF8000 0x00008000 { ; load address = execution address

 *.o (RESET, +First)

 *(InRoot$$Sections)

 .ANY (+RO)

 }

 RW_IRAM1 0x20000000 0x00008000 {

 .ANY (+RW +ZI)

 }

}

 Save the file using or CTRL+S.

Getting Started with DS-MDK 37

Build the Cortex-M image

 Right-click on the project name and select Build Project to build the

application.

This step compiles and links all related source files. The Console shows

information about the build process. An error-free build displays program size

information:

Debug Cortex-M application on page 41 guides you through the required steps

to connect your evaluation board to the workstation and to debug the application

on the target hardware.

38 Creating projects from scratch

Create Linux applications
This chapter guides you through the steps required to create and modify projects

for an ARM Cortex-A class device running Linux:

▪ Setup the project: create a project.

▪ Build the application image: compile and link the application.

Setup the project

 From the Eclipse menu bar, choose File New C Project. Select the

Hello World ANSI C Project:

 Enter a project name (for example Hello_World) and make sure that the

GCC [...] (built-in) toolchain is selected before clicking Finish.

The C/C++ Perspective opens and shows the current project:

Getting Started with DS-MDK 39

Build the application image

 Right-click on the project name and select Build Project.

This step compiles and links all related source files. The Console shows

information about the build process:

The chapter Debug Linux application on page 45 guides you through the

required steps to connect your evaluation board to the workstation and to

download the application to the target hardware.

40 Debug applications

Debug applications
The DS-5 Debugger can verify all software applications that execute on a

heterogeneous computer system. It enables complete system visibility using

multiple simultaneous debug connections:

▪ The Cortex-M application is debugged using a ULINKpro debug unit (refer

to www.keil.com/ulink for more information). Users can analyze the

microcontroller application with RTOS aware-debugging and peripheral

views.

▪ The Linux kernel and bare metal applications running on the Cortex-A are

also debugged using a ULINKpro debug unit. The debugger lists kernel

threads and processes.

▪ A Linux application is debugged via gdbserver across a TCP/IP network

link. The debugger supports multi-threaded application debugging and shows

pending breakpoints on loadable modules and shared libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

Getting Started with DS-MDK 41

Debug Cortex-M application
This section explains how to debug the microcontroller application running on the

Cortex-M microcontroller. Once configured the debug configuration as shown in

section Configure CMSIS DS-5 debugger at page 20, you can start the debugging

session by clicking “Run” in the Debug Control view.

If specified in the configuration window, the debugger will run till the beginning

of the function main().

DS-MDK should automatically switch to the Debug Perspective, specifically

designed to be used during the debug session on your device.

Let’s look at some of the Views available in DS-MDK.

Variables

The Variables view shows the contents of local, file static, and global variables in

your program. By default, the Variables view displays all the local variables. It

also displays the file static and global variable folder nodes.

If you know the name of the specific variable you want to view, enter the variable

name in the Add Variable field. This lists the variables that match the text you

entered. Double-click the variable to add it to the Variables view.

Registers

The Registers view displays the contents of processor and peripheral registers

available on your target and allows modifying them.

42 Debug applications

The search button at the top of the View allows searching for register by name to

speed up debugging in targets with hundreds or thousands of different registers.

Disassembly

The Disassembly view gives you a glimpse over the assembly code running on

the device. When the target is stopped, DS-MDK automatically highlights the

next instruction to be executed (content of the Program Counter).

The view shows the address, the OpCode and the decoded version of each

instruction and can be used, as an example, to debug issues related to invalid

addresses.

Getting Started with DS-MDK 43

Memory view

In order to display and to modify the contents of memory it’s possible to use the

Memory view. You can specify the start address of the memory range, either as

an absolute address or as an expression, for example $pc+256. The size of the

memory range to display, in bytes, is the offset value from the start address.

The memory view allows specifying both the address and the size as a formula. A

few examples:

- &(“main.c”::tid_threadA) refers to the address of variable tid_threadA in

file main.c

- $PC refers to the value contained by the register PC

- sizeof(float) refers to the size of the type “float”

Please refer to the online manual for further options.

Breakpoints

Breakpoints can be set either directly on the source code editor or in the

Breakpoints view. In the source code editor, right-click on the left side on the

line you would like the execution to stop and click on Toggle Breakpoint.

44 Debug applications

The breakpoint will appear in the list in the Breakpoints view where it can

edited, disabled or removed.

It is possible to access to the properties of the breakpoint by right-click on the

breakpoint and then select Properties. The Properties window, showed below,

allows using some of the advanced functionalities of the DS-MDK debugger such

as Thread specific breakpoint, advanced Stop conditions and the ability to run

scripts when the program stops.

Getting Started with DS-MDK 45

Please refer to the online help for a detailed explanation of all the functionalities

accessible from the Properties window.

Debug Linux application
This section explains how to debug a Linux application running on the

Cortex-A7.

The DS-5 Debugger uses gdbserver for debugging Linux on the target hardware.

Before connecting, you must:

▪ Set up the target with Linux installed and booted. Refer to Install the Linux

image on page 13.

▪ Obtain the target IP address or name for the connection between the debugger

and the debug hardware adapter. If the target is in your local subnet, click

Browse and select your target.

46 Debug applications

Next, set up a Remote Systems Explorer (RSE) connection to the target to

download the application onto the target’s file system. Refer to Setup RSE

connection on page 23 for more information.

Configure the debugger as described in Configure DS-5 debugger at page 24 and

launch the application.

DS-MDK uses the same debug perspective as for bare metal when debugging

Linux application so you do not need to learn a new environment or set of Views

in order to start debugging.

Debug the Linux Kernel
The DS-5 Debugger configuration dialog makes it easy to configure a debugging

session to a specific target. The Linux kernel debug configuration type is

primarily designed for post-MMU debug to provide full kernel awareness but –

with some extra controls – can also be used for pre-MMU debug. This makes it

possible to debug the Linux kernel, all the way from its entry point, through the

pre-MMU stages, and then seamlessly through the MMU enable stage to post-

MMU debug with full kernel awareness. You can do this all with source-level

symbols, and without the need for tedious disconnecting, reconfiguring and

reconnecting!

The Linux kernel, already built with debug info and a complete vmlinux symbol

file, file system, and full source code, is available from the respective board

support pages (see www.keil.com/mdk5/ds-mdk/install#boards).

Unpack the Linux kernel sources (kernel-source.tar.gz) into your currently active

DS-MDK Eclipse workspace. Be aware that on a Windows system you will not

be able to fully unpack the sources. Some symbolic links and case-sensitive

source files will not be created. Usually, this is not critical for Linux kernel

debug.

http://www.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK 47

Create a Linux Kernel debug project

 Create a new CMSIS C/C++ Project named Linux Kernel Debug and select

NXP i.MX7Dual device MCIMX7D7:Cortex-A7.

Add the vmlinux file to the project folder using Windows Explorer. This file

must match the kernel in the SD card on the board.

NOTE

The debug symbols in the vmlinux file have virtual addresses, so the usage of

vmlinux file by the debugger assumes that the OS is up and running with the

MMU enabled. It still can be used to debug pre MMU at source-level if there is

no offset between physical and virtual addresses at the entry point.

 Add a debugger script to the project (right-click the project and select New

 Other… DS-5 Debugger DS 5 Debugger Script) called stop.ds

containing:

stop

set os enabled off

When OS awareness is enabled and kernel symbols are loaded from the vmlinux

file, DS-5 Debugger will try to read some kernel structures. If the MMU is not yet

on, the debugger may try to access invalid addresses, leading to data aborts,

which is undesirable. This OS awareness support feature can be temporarily

48 Debug applications

disabled during the pre-MMU debug stage with the CLI command

set os enabled off, and later (post-MMU) re-enabled with the CLI command

set os enabled on.

 Restart the board and make sure you stop the boot of the Linux kernel by

pressing a button when U-Boot is initializing in the Terminal view.

 Right-click on the project, select Debug As…, then select CMSIS DS-5

Debugger… to open the Debug Configurations dialog.

In the Connection tab, select CPU Instance = SMP.

In the Advanced tab, tick Run target initialization debugger script, and

select the stop.ds script in the workspace:

 Click Debug. The Commands view will show:

Getting Started with DS-MDK 49

 In the Command (CLI) entry box, set a temporary hardware breakpoint

(thbreak) on the entry point into the kernel, by typing in:

thbreak 0x80008000

Press the Submit button or the Enter key. 0x80008000 is the entry point for

the kernel. This is the address to which U-Boot will pass control to boot

Linux once it has completed its setup tasks.

 Run the target by pressing the Continue button () in the Debug Control

view, or press F8.

 In the Terminal view, tell U-Boot to boot the kernel, by typing in:

boot

Code execution will stop at the breakpoint, and the Disassembly view will show

the assembly code at the entry point (labeled stext). If you have unpacked your

kernel source code into the workspace, the Editor view will show the content of

head.S.

If not, no source code is shown, because the path to the source code has not yet

been configured. DS-5 Debugger will try to open .../arch/arm/kernel/head.S

in its Editor view. If it does not find the kernel sources using the source paths

within the vmlinux file, you can resolve this by setting a substitute source path, to

re-direct paths from where the kernel was built, for example, from:

/home/munlin01/fsl-community-bsp-platform/build-core-image-

base/tmp/work-shared/imx7dsabresd/kernel-source

to a local copy of the kernel sources at:

C:\path\to\linux-imx\4.1.15-r0\git

Make sure that the "Image Path" and "Host Path" both end with a corresponding

directory.

50 Debug applications

head.S will now open in the Editor view, and the Disassembly view will show

the symbol stext, at the entry point for the kernel. If it doesn't, choose the Path

Substitution… command from the Debug Control view's drop-down menu ()

and check that the final directory in the Image Path and Host Path correspond.

Then right-click on an instruction in the Disassembly view, and select "Show in

Source".

Getting Started with DS-MDK 51

Debug the Kernel: Pre-MMU stage

You can now set breakpoints and watchpoints, view registers, view memory,

single-step, and other usual debug operations at this pre-MMU stage, all with

source level symbols.

 At the kernel entry point, you can

check the Core and CP15 system

registers in the Registers view to

check that they are set as

recommended by kernel.org.

Observe that:

a. the CPU is in SVC (supervisor)

mode; check Core CPSR M

 SVC

b. R0 is 0

c. R2 contains a pointer to the device

tree. Right-click R2 and select Show

Memory Pointed To By R2.

Change the size of the memory

displayed to 200 bytes for example

by entering 200 in the text entry box

in the top right of the Memory view.

d. the MMU is off; check CP15

SecureBanked S_SCTLR M

e. the Data cache is off; check CP15

 SecureBanked S_SCTLR

C

f. the Instruction cache is either on or off; check CP15 SecureBanked

S_SCTLR I

 To see when the MMU will be turned on, set a breakpoint:

thbreak __turn_mmu_on

then continue running (or press F8). When __turn_mmu_on is reached, note

the value of SP. This contains the virtual address of __mmap_switched and is

the place the code will jump to after the MMU is enabled.

 In general, it is not possible to single-step through __turn_mmu_on, so place

a hardware breakpoint on the virtual address of __mmap_switched:

52 Debug applications

thbreak *$SP

then continue running (press F8). When the breakpoint at __mmap_switched

is hit, the MMU is on.

 Check that the MMU is now on, by looking in the Registers view at CP15

SecureBanked S_SCTLR M (should show Enable).

Debug the Kernel: post-MMU stage

The main C code entry into the kernel, after all the architecture-specific setup has

been done, is start_kernel() in \source\init\main.c.

 Set a breakpoint on it:

thbreak start_kernel

and then run to it.

 You can now safely enable OS support in DS-5 Debugger:

set os enabled on

 Check that the following appears in the Command view, to confirm Linux

kernel support is enabled:

Enabled Linux kernel support for version "Linux 4.1.15-

1.1.0+ga4d2a08 #2 SMP PREEMPT Tue Jul 5 09:51:28 CEST 2016

arm"

 The same Linux version information can be reported manually using:

info os-version

which will show for example:

Operating system on: Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP

PREEMPT Tue Jul 5 09:51:28 CEST 2016 arm

This is similar to:

output init_nsproxy.uts_ns->name

which will show for example:

{sysname = "Linux", nodename = "(none)", release = "4.1.15-

1.1.0+ga4d2a08", version = "#2 SMP PREEMPT Tue Jul 5 09:51:28

CEST 2016", machine = "armv7l", domainname = "(none)"}

This may take a few moments to display, because DS-5 Debugger has to

process the debug symbols.

When OS awareness is enabled and kernel symbols are loaded from the vmlinux

file, DS-5 Debugger will try to access some locations in the kernel. For example,

it will try to read init_nsproxy.uts_ns->name to get the kernel name and

Getting Started with DS-MDK 53

version. It will also set breakpoints automatically on SyS_init_module() and

SyS_delete_module() to trap when kernel modules are inserted (insmod) and

removed (rmmod). You will see these breakpoints appearing in the Breakpoints

view:

 Set a breakpoint with:

thbreak kernel_init

then run to it.

So far, CPU 0 has been doing all the work. Note that CPU 1 is still powered

down:

A very useful feature during kernel bring-up is to display early printk output in

DS-5 Debugger's command window.

 Before the console has been enabled there will be no output from the serial

port. You can view the entire log so far with:

info os-log

 To view the log output line by line, as it happens, use:

54 Debug applications

set os log-capture on

 kernel_init() tries to start the init process. To see this, set a breakpoint at

the end of kernel_init() then run to it (set the breakpoint in the main.c

file available in the Editor view). The init process now appears as an active

thread. CPU 1 is now powered up.

Many of the above steps can be automated, either with a script file, or by filling-

in the Debug Configuration's fields before launching (refer to the Appendix).

 Delete all user breakpoints and continue (F8). Let the kernel run all the way

to the Login prompt. Login as root.

 Stop the target by pressing Interrupt (/F9). In the Debug Control view,

expand "Active Threads" and "All Threads". In "All Threads", you will see a

large number of threads/processes have been created. Only two were actually

running, one on each of the two cores. You can see these in "Active

Threads".

Right-click on the connection and select Display Cores to see the state of

both CPUs. You can view the state of the cores, threads and processes on the

command-line with:

info cores

info threads

info processes

 It is possible to single-step a

core or a thread/process. To

do so, select either the core

or the thread/process in the

Debug Control view, then

press Step (/F5). Note that

when single-stepping though

a process, it might get

migrated to another core. If a breakpoint is set on a process, the debugger is

able to track the migration of process-specific breakpoints to the other core.

 You can check the virtual-to-physical address map for Linux by using the

MMU view. Continue to run the target (F8). Go to Window Show View

 MMU. Switch to the Memory Map tab and press the Show Memory Map

button to refresh the values.

 Let's take a look at the kernel's thread_info structure. Stop the target, then

check the kernel's stack size with:

show os kernel-stack-size

For this ARMv7 kernel, the kernel stack size is 8K.

Getting Started with DS-MDK 55

In the Expressions view, add a new expression into the field (type in the field

at the bottom on the view):

(struct thread_info*)($sp_svc & ~0x1FFF)

0x1FFF is 8K minus 1. Expand the tree structure to explore its contents. The

list of threads in the Debug Control view is created from the same

information, so they should match. For example, the thread name is held in

task.comm.

 To get a simple view into the workings of the scheduler, set a breakpoint on

__schedule() with:

hbreak __schedule

NOTE

This time use hbreak to have a persistent hardware breakpoint instead of a

temporary one.

Then continue running (press F8). At the breakpoint, continue running (press

F8) again and again, and see the names of the active threads changing in

"Active Threads", and different threads are scheduled-in.

 Alternatively, instead of setting a breakpoint on __schedule(), try to set a

breakpoint on do_fork(). If nothing forks, force a fork by typing e.g. 'ls'.

In summary, we have looked at how DS-MDK can be used to debug the Linux

SMP kernel, both in pre-MMU enabled and post-MMU enabled stages, and

looked at a few of the kernel's internal features.

Debug a Linux Kernel module
Only a few things are required to make kernel module debugging work. This

sections explains how to do this for the imx_rpmsg_tty module that is used in the

example projects that are explained in detail on page Error! Bookmark not

defined..

Create a Linux Kernel module debug project

 Create a new CMSIS C/C++ Project named Linux Kernel Module Debug

As with the Linux kernel debug, add the vmlinux file to the project folder

using Windows Explorer.

 Add a debugger script to the project (right-click the project and select New

 Other… DS-5 Debugger DS 5 Debugger Script) called stop.ds

containing:

56 Debug applications

stop

 Add another debugger script to the project (right-click the project and select

New Other… DS-5 Debugger DS 5 Debugger Script) called

load_ko.ds containing:

add-symbol-file imx_rpmsg_tty.ko

NOTE

Make sure that the file imx_rpmsg_tty.ko is stored in the workspace so that

DS-MDK can find it. Otherwise, specify the fully qualified path to it. You can

download the file and the source code file from the board support page of

your development board.

The stop command in the first script will halt the processor before loading the

kernel symbols and the add-symbol-file command will load the kernel

module object file.

 Right-click the project and select Debug As CMSIS DS-5 Debugger...

On the Connections tab, set the CPU Instance to either 0 or SMP. Go to the

Advanced tab and specify the path to the vmlinux file and enable Load symbols

only. Also, set the initialization debugger scripts as shown here:

Apply the settings and press Close (do not press Debug yet!).

Getting Started with DS-MDK 57

Debug the Kernel module

The following steps are required to come to a point where you can debug the

kernel module:

 Restart your target and halt in U-Boot.

Debug and run the Cortex-M4 application RPMSG TTY RTX.

Boot Linux.

At the Linux prompt, issue the following command to install the driver for

the kernel module:
modprobe imx_rpmsg_tty

Debug and run the Kernel_Debug project.

Now, you can open the imx_rpmsg_tty.c and set breakpoints.

Finally, debug the Linux Application TTY as well (make sure that the RSE

connection is still live). When you run the application, the debugger will

stop at the breakpoint you have set in the previous step.

58 Debug applications

ARM Streamline
ARM Streamline performance analyzer gives you the ability to collect

performance metrics, software tracing and statistical profiling from your Linux

system and show that in its innovative user interface. Streamline helps you to

identify code hotspots, system bottlenecks and other unintended effects of your

code or the system architecture.

DS-MDK includes ARM Streamline in the MDK Professional edition: you can

launch Streamline from the ARM DS-MDK Start menu.

Once launched, Streamline allows connecting via TCP/IP to a running Linux

target. A target agent (gator) is required to run on the ARM Linux target for

ARM Streamline to operate. If you downloaded the Linux image from

http://www2.keil.com/mdk5/ds-mdk/install#boards, then gator is already installed

so you do not need to rebuild the image.

To start collecting data, you can type the target hostname or IP address in the

field box on the top-left side of the window and press the Start Capture button.

The interface would then show the acquired data in graphs which can be used to

understand which parts of the code require optimizations or affect the

performance of the system considerably.

http://www2.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK 59

For extra information on the capabilities of the product, please refer to the user

guide available online at https://developer.arm.com/docs/100769/latest/.

https://developer.arm.com/docs/100769/latest/

60 Store Cortex-M image

Store Cortex-M image
To store the Cortex-M image for execution at start up use the following steps:

1. Create a binary image (BIN) with the fromelf utility application.

2. Store this BIN image on SD card in the boot partition

3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M binary image (BIN)

 Right-click the project and select Properties C/C++ Build Settings.

In the the Build Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

NOTE

This example shows the steps for the Blinky application from section Blinky

with CMSIS-RTOS RTX on page 28.

Click OK and rebuild the project to get the BIN file generated.

Getting Started with DS-MDK 61

Store Cortex-M BIN file on SD Card

The SD Card has two partitions:

▪ The Linux file system partition.

▪ The FAT32 boot partition.

 List the partitions with the fdisk command:

~# fdisk –l

…

Device Boot Start End Sectors Size Id Type

/dev/mmcblk0p1 8192 24575 16384 8M c W95 FAT32 (LBA)

/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux

 Store the Cortex-M binary image in the FAT32 boot partition to be able to

execute it at system startup:

1. Create a sub-directory on the Linux file system, for example:

~# mkdir /media/sd0

2. Mount the Linux file system partition for access with RSE.

~# mount –t vfat /dev/mmcblk0p1 /media/sd0

3. Use RSE to copy the BIN file from your workspace to the /media/sd0

directory.

4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sd0

5. Reboot the system and halt in U-Boot.

62 Store Cortex-M image

Run Cortex-M BIN file from U-Boot

At this point, the Cortex-M BIN file is stored in the boot partition.

 Use the setenv command to change the boot image to the new BIN file:

=> setenv m4image Blinky.bin; save

The printenv command shows the boot setup:

=> printenv

…

loadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x7F8000 ${m4image}

m4boot=run loadm4image; bootaux 0x7F8000

m4image=Blinky.bin

Run m4boot to start the Blinky application:

=> run m4boot

NOTE

For more information refer to the U-Boot Command Line Interface in the U-Boot

user's manual (www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

Getting Started with DS-MDK 63

Appendix

Remote Processor Messaging protocol example

The device family packs for NXP’s i.MX devices contain two example projects

that show how the two processors communicate with each other using the remote

processor messaging protocol (RPMSG) via a TTY serial device.

The Linux Application TTY runs on the Cortex-A processor and writes a message

to a TTY device. The terminal of the RPMSG TTY RTX application running on

the Cortex-M processor shows this message. The application itself responds on

the TTY device. The Linux application reads this message and shows it in its

App Console.

64 Appendix

Eclipse IDE
DS-MDK is an Integrated Development Environment (IDE) that combines the

Eclipse IDE with the compilation and debug technology of ARM.

Use DS-MDK as a project manager to create, build, debug, monitor, and manage

projects for ARM targets. It uses a single folder called a workspace to store files

and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse

platform, such as the CMSIS Pack Manager and Remote System Explorer,

included in DS-MDK.

Perspectives

DS-MDK have multiple perspectives: each perspective contains an initial set and

layout of views that help you to create, build and debug projects. While working

with DS-MDK, you will switch perspectives frequently. It is always possible to

change a perspective layout and to add new views to it.

DS-MDK uses mainly these perspectives:

▪ C/C++ Perspective

▪ CMSIS Pack Manager Perspective

▪ Remote System Explorer Perspective

▪ DS-5 Debug Perspective

Getting Started with DS-MDK 65

C/C++ perspective

By default, this perspective consists of the Project Explorer, an editor area and

views for tasks, properties, and a message console.

The editor area shows C/C++ source code as well as graphical representations of

various configuration files such as the Run-Time Environment configuration file,

the AXF file, the scatter file, and files with CMSIS configuration wizard

annotations.

Project Explorer Manage Run-Time EnvironmentDependency Check Console

For more information, refer to the C/C++ Development User’s Guide and the

CMSIS C/C++ Development User’s Guide available from the Eclipse help

system (Help Help Contents).

66 Appendix

ELF file viewer

An ELF file is the executable image generated by the ARM linker that contains

object code and debug information. Open it from the Project Explorer to inspect

the contents of the image.

CMSIS Configuration Wizard

Right-click on a file in the Project Explorer and select Open With CMSIS

Configuration Wizard to modify files with CMSIS configuration wizard

annotations in a graphical editor. Verify and adapt the contents directly in the

graphical representation of the text file.

Getting Started with DS-MDK 67

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker.

The Scatter File Viewer lets you inspect this text file in a graphical

representation. Use the filename.sct tab to edit the scatter file contents (refer to

Save the file using or CTRL+S

Adapt the scatter file on page 35).

If you want to learn more about the scatter loading mechanism, look for the

documentation at https://developer.arm.com.

https://developer.arm.com/

68 Appendix

CMSIS Pack Manager perspective

The Pack Manager perspective offers the following functionality:

▪ Install or update software packs.

▪ List devices and boards supported by software packs.

▪ List example projects from software packs.

Use the icon and select CMSIS Pack Manager, to open this perspective.

Device Database Available Packs/Examples Pack Properties

For more information, refer to the CMSIS C/C++ Development User’s Guide

available from the Eclipse help system (Help Help Contents).

Getting Started with DS-MDK 69

Remote System Explorer perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you

to connect and work with a variety of remote systems. With predefined plug-ins,

you can look at remote file systems, transfer files between hosts, do remote

search, execute commands and work with processes.

File/System Properties Source Code EditorRemote Systems Remote System Details

For more information, refer to the RSE User Guide in the Eclipse help system

(Help Help Contents).

70 Appendix

DS-5 Debug perspective

The DS-5 Debugger allows you to debug bare-metal, RTOS, and Linux

applications with comprehensive and intuitive views, including synchronized

source and disassembly, call stack, memory, registers, expressions, variables,

threads, breakpoints, and trace.

VariablesTarget ConnectionDebug Control DisassemblySource Code Editor

For more information, refer to the ARM DS-5 Debugger Documentation in the

ARM DS-MDK Documentation available from the Eclipse help system (Help

Help Contents).

Additional links
Kernel.org: http://www.kernel.org/doc/Documentation/arm/Booting

Debugging with scripts:

https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts

Debug configurations: https://developer.arm.com/docs/dui0446/latest/ds-5-

debug-perspectives-and-views/debug-configurations-debugger-tab

http://www.kernel.org/doc/Documentation/arm/Booting
https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab

Getting Started with DS-MDK 71

Index
A
Applications

Add Source Code 32

Blinky with CMSIS-RTOS RTX 26

Build ... 34

Build Cortex-M Image 34

Create BIN File 57

Create Cortex-M 26

Create Source Files 30

Customize RTOS 30

Run from U-Boot 59

Select Software Components 29

Setup the Project 27

Store BIN File 58

C
Console ... 17

D
Debug

Applications ... 37

Cortex-M .. 38

Linux .. 42

Linux Kernel .. 43

Linux Kernel Module 52

Streamline .. 55

Device Database .. 10

Documentation .. 11

DS-MDK

Install .. 9

Installation Requirements 8

Introduction .. 7

Licensing .. 8

E
Eclipse

IDE ... 61

Perspectives .. 61

Example Project

Install.. 14

Example Projects 12

F
Flash Programmig

Scatter File ... 33

L
Linux

Install Image ... 12

Linux Applications

Build Application Image 36

Development .. 35

Project Set Up 35

P
Perspective

C/C++ ... 62

CMSIS Pack Manager 65

DS-5 Debug.. 67

Remote System Explorer 66

R
Remote System Explorer........................... 21

S
Store Cortex-M Image 57

T
Terminal View .. 14

