ARMKEIL

Microcontroller Tools

Getting started with DS-MDK

Create applications for heterogeneous
ARM® Cortex®-A/Cortex-M devices

© C/C++ - Blinky/Blinky.rteconfig - Eclipse Platform - o X
File Edit Source Refactor Mavigate Search Project Run Window Help
i S B R N B EE @ B0 R ® e G Bl |
[Project Explorer 52 = O | 4 Blinky.rteconfig &3 RTX_Conf CM.c. =0 om ™ =0
B % 7 & Components (4] Feclie @
v (5 Blinky An outline is not
) Includes Software Companents Sel. Variant Vender Version Description available.
(& Debug B MOMXTD:Cortex- M4 NXP ARM Cortex-M4, 64 kB RAM, 32 kBROM
~ it RTE & Board Support MCIMX7D-SABRE Keil 100 iMX7D SABRE Board
~ (= Board_Support v & avsis C Software Interface Components
[y board.c [Keil MCIMXTI @ CORE ARM 430, CMSIS-CORE for Cortex-M, SCO), and SC300
By clock freq.c [Keil MCIF @ Dsp ARM 145 M, 5C000, and SC300
& pin_muscc [Keil MCIM v @ RTOS (AP)) 10 , CMSIS-RTOS APl for Cortex-M, SC000, and 5C300
[y retarget_io.c [Keil MCI @ Keil RTX ARM 4800 , CMSIS-RTOSRTX for Cortex-M, SCO00, and SC300
v G CMSiS & CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver
RTX_Conf_CM.c [ARM & Compiler ARM Compiler Software Extensions
RTX_CMB.lib [ARIV: CH @ Device Startup, System Setup
= Compiler @ File System MDK-Plus L Keil 670 File Access on verious storage devices
= Device & Graphics MOK-Plus , Seager 5322, Userlnterfoce on graphicel LCD displays
[l RTE_Componentsh & Network MDK-Plus , Keil 710 , IPv4 Networking using Ethernet or Serial protocols
&) main.c & OpenAMP
[osObjects.h & Use MDK-Plus | Keil 6.7.0 , USB C: with various device classes
4 Blinky.rteconfig < >
& MAMXTD Comechidsct Validation Output Description
v g5 Hello_World
v @ s
~ [£] Hello World.c
B stdioh
B stdlish < >
© main(void): int Companents | Device Packs
(5 RPMSG PingPong BM Q ‘ |
B Console 57 &) Task: Proble BEE|MmB-m~=1o
CMSIS RTE console [RPMSG PingPong BM]
10:06:33 **** Updating project RPMSG PingPong B
Loading RTE configuration
Updating resources
Updating build settings
Project updated successfully
< >

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2017 ARM Germany GmbH
All rights reserved.

ARM, Keil, pVision, Cortex, and ULINK are trademarks or registered
trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Eclipse is a registered trademark of the Eclipse Foundation, Inc.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the ARM® Cortex®-A and Cortex-M processors.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started with DS-MDK

Preface

Thank you for using the DS-MDK Development Studio available from ARM. To
provide you with the very best software tools for developing ARM based
embedded applications we design our tools to make software engineering easy
and productive. ARM also offers therefore complementary products such as the
ULINK™ debug and trace adapters and a range of evaluation boards. DS-MDK
is expandable with various third party tools, starter kits, and debug adapters.

Chapter overview

The book starts with the installation of DS-MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

DS-MDK introduction provides an overview about the DS-MDK, the software
packs, and describes the product installation.

Working with example projects explains how to get started with supported
development boards using pre-built projects to verify hardware and software
functionality.

Creating projects from scratch guides you through the process of creating and

modifying projects using CMSIS and device-related software components for the
Cortex-M microcontroller. It also shows you how to develop applications for the
Cortex-A processor running Linux.

Debug applications describes the process of how to connect to the target
hardware and explains debugging applications on the target.

Store Cortex-M image gives further details on how to store the application
image on the target and how to run it at start up time.

The Appendix contains further information, for example about the basic concepts
of the Eclipse IDE and the most frequently used perspectives.

Preface

Contents
PrETACE ..t 3
DS-MDK INtrOAUCTIONovieiieieiiesieeie e e 7
Solution for heterogeneous SYSTEMSccvcviiririrerierieieee e 7
DS-MDK TICENSING ..ecvveiiecieciiesie ettt sttt sae e srenns 8
Software and hardware reqUIreMENEScccccveeeieiieriie e 8
INSTAII DS-IMDK ..ottt ettt sre st eneesne s 9
Documentation and SUPPOIT........ccveveiiiiieie e 12
Working with example ProjJects.........ccoeiiiiiiniiniisieienese s 13
Install the LIiNUX IMageccooviiiiiiieieee e 13
Hardware CONNECLIONoiiiieiieieieie e e 14
Verify installation with example projects........ccccvveviiiii i 15
Cortex-M apPlICATIONoviiiiiiie s 18
Cortex-A LinuxX appliCationcccvveiiiieiii i 23
Creating projects from SCratChccccooviiiiinicc 28
Create Cortex-M appliCatiONS............coceiiiieiiieirie e 28
Blinky with CMSIS-RTOS RTX ..ot 28
Create LinuxX appliCatioNScccciveieieiiee sttt 38
SELUP ThE PIOJECT ...t 38
Build the application iMagecccevveiiiiieiciece e 39
Debug appliCatiONS........c.oiiiiiiiieeee e 40
Debug CorteX-M appliCatiONccoeieieiiisireree s 41
Debug Linux applicationcccoveiiiiiiiiic e 45
Debug the LinuX KErnel ... 46
Create a Linux Kernel debug Project..........cccoviriniieneneinesise e 47
Debug the Kernel: Pre-MMU Stageccoeiviieieiieic e 51
Debug the Kernel: post-MMU Stage...........ccocveieieneenieneeenenee e 52
Debug a Linux Kernel moduleoooiiiiiiiieeeee s 55
Create a Linux Kernel module debug project..........ccccoevvivvininencncnn, 55
Debug the Kernel module ... 57
ARM SErEAMIINEei ittt te et sre e nne e 58
Store CorteX-M IMAQE.......coooiii et 60
Create a Cortex-M binary image (BIN)ccocereiiiiiniiie e 60
Store Cortex-M BIN file 0n SD Cardccocovveniniieinese e 61
Run Cortex-M BIN file from U-BOOL...........ccooiriiiiiiiiiiiiene e 62
N o] 0T o | OSSR 63
ECHPSE IDEttt sttt be st e pe e 64

S 6] 1= T 1= ST 64

Getting Started with DS-MDK

Preface

NOTE
This user’s guide describes how to create applications with the Eclipse-based

DS-MDK IDE and Debugger for ARM Cortex-A/Cortex-M based devices.

Refer to the Getting Started with MDK user’s guide for information how to
create projects for ARM Cortex-M microcontrollers with the pVision®

IDE/Debugger.

Getting Started with DS-MDK

DS-MDK introduction

DS-MDK combines the Eclipse-based DS-5 IDE and Debugger with CMSIS-

Pack technology and uses software packs to extend device support for devices
based on 32-bit ARM Cortex-A processors or heterogeneous systems based on
32-bit ARM Cortex-A and ARM Cortex-M processors.

Currently NXP i.MX 6, i.MX7 and VFxxx series devices are supported. These
devices combine computing power for application-rich systems with real-time
responsiveness: the DS-5 Debugger gives visibility to multi-processor execution
and allows optimization of the overall software architecture.

Solution for heterogeneous systems

ARM Cortex-A ARM Cortex-M

Common Peripherals
Shared Memory
Linux Application < — > RTOS System
Inter-Processor Communication

Heterogeneous systems usually consist of a powerful ARM Cortex-A class
application processor and a deterministic ARM Cortex-M based microcontroller.
These systems combine the best of both worlds: the Cortex-A class processor can
run a feature-rich operating system such as Linux and enables the user to program
complex applications with sophisticated human-machine interfaces (HMI). The
Cortex-M class controller offers low /O latency, superior power efficiency and a
fast system start-up time for embedded systems.

Usually, both processors have access to a set of communication peripherals and
shared memory. The biggest challenge with heterogeneous systems is the
synchronization and inter-processor communication.

DS-MDK introduction

DS-MDK offers a complete software development solution for such systems:

= Manage Cortex-A Linux and Cortex-M RTOS projects in the same
development environment.

= Use the Cortex Microcontroller Software Interface Standard (CMSIS)
development flow for efficient Cortex-M programming. Add software packs
any time to DS-MDK to make new device support and middleware updates
independent from the toolchain. The IDE manages the provided software
components that are available for the application as building blocks.

= Debug multicore software development projects with the full visibility
offered by the DS-5 Debugger.

DS-MDK licensing

DS-MDK is part of the Keil® MDK and the product requires a valid license in
order to use it.

For information on how to obtain and set-up the license, please refer to the
following page: http://www.keil.com/mdk5/ds-mdk/licensing/

Software and hardware requirements

DS-MDK has the following minimum hardware and software requirements:

= A workstation running Microsoft Windows, Red Hat Enterprise Linux or
Ubuntu Desktop Edition (only 64-bit OS/platforms are supported)

= Dual-Core Processor with > 2 GHz
= 4 GB RAM and 8 GB hard-disk space

= 1280 x 800 or higher screen resolution

http://www.keil.com/mdk5/cmsis/
http://www2.keil.com/mdk5
http://www.keil.com/mdk5/ds-mdk/licensing/

Getting Started with DS-MDK

Install DS-MDK

Download the DS-MDK installer for your host platform (Windows or Linux)
from www.keil.com/mdk5/ds-mdk/install .

The installation procedures for Windows and Linux are different and are both
described below.

Windows installation

Decompress the zip archive and run the installer setup.exe. Follow the
instructions on the screen and make sure you install the device drivers for the
debug probes.

To start DS-MDK, use Eclipse for DS-MDK from the Start menu (Windows 10:
All apps 2> ARM DS-MDK - Eclipse for DS-MDK).

Linux installation

Extract the installer from the downloaded archive file, run (not source) install.sh
and follow the on-screen instructions. The installer unpacks DS-MDK into your
chosen directory, and optionally installs device drivers and desktop shortcuts.

Note: The installer includes device drivers that require you to run with root
privileges.

To start DS-MDK, from your desktop, select Eclipse for DS-MDK. Alternatively,
launch [DS-MDK install directory]/bin/eclipse from the command line.

http://www.keil.com/mdk5/ds-mdk/install

10 DS-MDK introduction

Run DS-MDK

The first time you run DS-MDK, a window would appear asking to specify a
directory for your workspace (the area where your projects will be stored). For
most users, the default suggested directory is the best option.

& Workspace Launcher

Select a workspace
Eclipse Platform stores your projects in a folder called a werkspace.
Choose a workspace folder to use for this session.

AT C LR C Users' USERDocuments\D5-MDK Workspace ~ Browse...

[[] Use this as the default and do not ask again

The Eclipse-based IDE opens in the CMSIS Pack Manager perspective and a
warning message is shown if the default CMSIS Pack directory is empty.

File Edit Navigate Search Project Run Window Help

¢ - -

HE|%|® =0

- e BRIy iy

Bl Boards

The CMS5IS Pack root folder "C:/Users/stecad01/AppData/Roaming/ARM/CMSIS-Packs” is empty.
Please click here to download the index (requires Internet connection).

Click on the highlighted click here text to start populating the CMSIS Index: this
operation requires an Internet connection to download the index files.

Getting Started with DS-MDK

11

DS-MDK shows a progress bar during the download.

‘@ Refresh all packs from all repositories.

Updating Keil.EFM32Gxoo¢_DFP.pdsc from
http://www.keil.com/pack/

Cancel Details >

At the end of the process, the CMSIS Pack Manager view should be populated
with the CMSIS Packs available.

File Edit Navigate Search Project Run Window Help

e FRUmD Qv Y, -

W Devices © 8 Boards 28| %@ =0 g@packs 2

type filter text Search Pack

Device Summary Pack Action Description

~ % All Devices 3894 Devices * Device Specific
@ ABOV 10 Devices v * Generic 18Packs Software Packs with generic content not specific t0 a devi..
¢ Ambig Micro 6 Devices % ARM.CMSIS [Blinstalll | CMSIS (Cortex Microcontroller Software Interface Standar...
“ Analog Devices 21 Devices % ARM.OMSIS-Driver_Validaticizinstally CMSIS-Driver Validation
¢ ARM 40 Devices % ARM.CMSIS-FreeRTOS @ dnstalls.., Bundle of FreeRTOS for Cortex-M and Cortex-A
 Atmel 271 Devices 5 ARM.CMSIS-RTOS Validatiol install CMSIS-RTOS Validation
@ Cypress 425 Devices % ARM.mbedClient {&dnstall, | ARM mbed Client for Cortex-M devices
“ GigaDevice 70 Devices % ARM.mbedTLS [nstall| ARM mbed Cryptographic and SSU/TLS library for Cortex-.
“ Holtek 22 Devices % ARM.minar K dnstall,..| mbed OS Scheduler for Cortex-M devices
Infineon 166 Devices * HuaweiliteOs (& Install_| Huawei LiteOS kemel Software Pack
¢ Maxim 4 Devices % Keil ARM_Compiler ﬁm_ Keil ARM Compiler extensions for ARM Compiler 5 and A_.
¢ Mediatek 2 Devices * KeilJansson {&lnstall., Jansson is a C library for encoding, decoding and manipul...
Microsemi 6 Devices % KeilMDK-Middieware [Install#., Middieware for Keil MDK-Professional and MDK-Plus
¢ MindMotion 2 Devices & PP [Install, IwiP is a light-weight implementation of the TCP/IP proto..
 Nordic Semiconduct 10 Devices % Micrium RTOS [tnstall, | Micrium software components
“ Nuvoton 436 Devices % Ory & Install Package (CycloneTCP, CycloneSSL and Cyclon...
¢ NxP 576 Devices % RealTimeLogic SharkssL-Lité@lnstall. SharkSSL-Lite is a super small and super fast pre-compile...
“ Renesas 3 Devices * RealTimeLogicSMQ [Install | Simple Message Queues (SMQ) is an easy to use IoT publi..
¢ Silicon Labs 397 Devices % YOGITECH fRSTL ARMCMx_{§$%, Dispiscats !!! DEPRECATED Product !l YOGITECH RSTL Functional Sa...
 SONiX 35 Devices % YOGITECH RSTL_STM32¢x €%, Depsgals !!! DEPRECATED Product ! YOGITECH fRSTL Functional Sa...

¢ STMicroelectronics 953 Devices
“ Texas Instruments 242 Devices
Toshiba 90 Devices
Zilog 7 Devices

NOTE
Currently, software packs for the NXP i.MX 6, i.MX 7 and VFxxx series are
qualified for DS-MDK.

The Console window shows information about the Internet connection and the
installation progress.

The device database (www.keil.com/dd?2) lists all available devices and provides
download access to the related software packs. If the Pack Manager cannot access
the Internet, you use the Import existing packs icon ¢ or double-click on

* PACK files to manually install software packs.

http://www.keil.com/dd2

12 DS-MDK introduction

Documentation and support

DS-MDK provides online manuals and context-sensitive help. The Help menu
opens the main help system that includes the CMSIS C/C++ Development User’s
Guide, the ARM DS-MDK Documentation, the RSE User Guide, and other
reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support and information channels are accessible at
www.keil.com/support.

http://www.keil.com/support

Getting Started with DS-MDK 13

Working with example projects

Install the Linux image

For every supported development board, a pre-configured Linux image with
DS-MDK specific debug settings is available. This web page lists all supported
development boards: www.keil.com/mdk5/ds-mdk/install#boards

& Download the compressed Linux kernel for your development board and
unzip it.

Copy the Linux image to an SD-Card (Windows)

& Download and install the open source tool Win32 Disk Imager from
http://win32diskimager.sourceforge.net/ to flash the Linux kernel image
onto an SD-Card.

Run the program. To write the image to the memory card, specify the
location of the image file, select the Device letter of the SD card and press
the Write button:

%

Image File Device

| rootfs.sdcard | -

Copy | [] MD5 Hash:

Progress

Version: 0.9.5 Cancel Read Write Exit

Copy the Linux image to an SD-Card (Linux)

(To write the image on the memory card on Linux it’s sufficient to use the dd
command where /dev/sdx is the device for your memory card.

NOTE
Make sure you select the right /dev/sdx device to avoid corruption of your

data on your drives.

sudo dd if=image file name of=/dev/sdx bs=1M"

http://www.keil.com/mdk5/ds-mdk/install#boards
http://win32diskimager.sourceforge.net/

14 Working with example projects

Hardware connection

In order to fully debug the target device you need to use a JTAG debugger such
as DSTREAM or ULINKpro. The debugger needs to be connected to the host PC
via USB (DSTREAM/ULINKQpro) or Ethernet (DSTREAM only) and the target
board via JTAG connector.

For the debug of Linux applications via gdbserver an Ethernet connection from
the host PC to the board is required.

Another required connection during debug is the UART port used to interact with
the Linux console: some boards have an RS232 connector whereas others have an
USB interface that the operating system recognizes as virtual COM ports.

The picture below shows an example (NXP i.MX7 SABRE board) connected
with JTAG, Ethernet and USB UART connections.

If you are not sure how to connect your board, please follow the instructions on
the development board’s support page.

Getting Started with DS-MDK 15

Verify installation with example projects

Once you have selected, downloaded, and installed a software pack for your
device, you can verify your installation using one of the examples provided in the
software pack. For more information about the example used in this section,
please refer to Remote Processor Messaging protocol example on page 63 in the
Appendix.

Prepare terminal views

Many applications use a serial device to display messages. A Terminal window
shows these messages from serial ports.

The NXP i.MX 7 SABRE development board for example contains a dual USB
serial port device with two independent serial ports. The configuration of the
serial port is slightly different between Windows and Linux platforms.

Windows

Connect the board to your computer. Windows installs the drivers automatically
and adds two new USB Serial Ports to your system.

Check the exact numbers in the Windows Device Manager (to open it, type
“device manager” in the Windows search bar):

=4 Device Manager o || = [2R

File Action View Help
a2 | = H = e

275 Ports (COM & LPT) -
LE - (COM4)
: (COMS)

" USB Serial Port (COM14)
T3 USB Serial Port (COML5)
. 2} Processors

/:‘) Security Devices

.- Sound, video and game controllers

m

The smaller number is the COM port of the Cortex-A processor, while the larger
number is the COM port of the Cortex-M processor.

16 Working with example projects

Linux

Connect the board to your computer. Linux should recognize the peripheral and
you should be able to find ttyUSBO and ttyUSB1 in your /dev/ directory.

Please make you set the right read/write permission to the device. For example, to
give read/write permissions to all users on your machine type the following
command:

root@imv7dsabresd: ~# sudo chmod 666 /dev/ttyUSB*

:~$ 1s /dev/ -oa | grep USB
“TW-TW- 1 root 188, 0 Apr 21 15:36 ttyUSBO
-TW-TW- 1 root 188, 1 Apr 21 15:32 ttyUsSB1

1~ iudo chmod 666 [dev/ttyUSB*
£=5

The first device (e.g. /dev/ttyUSBO) is the serial port of the Cortex-A processor,
while the second device (e.g. /dev/ttyUSB1) is the serial port of the Cortex-M
Processor.

Windows and Linux

& On DS-MDK, go to Window = Show View = Other-... to open a Terminal
view. Select Terminal - Terminal and click OK.

Open the settings dialog from the toolbar of the Terminal 1 window:

[2! Problems 5| Tasks & Consele [Properties [Terminall &2 M E if ._,E| et = = 8

| Settings |

(7 Set the following and click OK:
» View Title: Terminal Linux
= Connection Type: Serial
= Port: Use the first of the new serial ports (e.g. COM14 or /dev/ttyUSBO0)
* Baud Rate: 115200

NOTE
For the correct terminal settings and hardware connections of your
development board refer to the board support pages.

Getting Started with DS-MDK

¥ Press the reset button on the development board to observe the boot process

in the Terminal window. Press any keyboard key to interrupt the boot
process:

|2 Problems J=| Tasks & Console [T Properties /& Terminal Linux &2 B EIT ._,E| = 7
Serial: (COM14, 115200, 8, 1, None, None - CONMECTED) - Encoding: (150-8859-1)

Warning: FEC® MAC addresses don't match:

Address in SROM is 00:04:97:04:49:38

Address in environment is @@:04:97:84:01:d3

Normal Boot
Hit any key to stop autcboot: @
=

NOTE
You must halt the boot loader at this point to be able to connect the

ULINKpro debug adapter to the Cortex-M processor.

Add another Terminal view to display the output of the Cortex-M processor.

Simply use the drop-down selector next to the New Terminal Connection
in Current View... icon &7 ¥ and select New Terminal View:

MNew Terminal Connection in Current View...

MNew Terminal View

Select the second serial port number and leave the other settings as they are.

Name the Terminal view Terminal M4.

4 [m

18 Working with example projects

Cortex-M application

Copy the RPMSG TTY CMSIS-RTOS example project
Select the device

(& Inthe CMSIS Pack Manager (&) perspective, select the board
(MCIMX7D-SABRE) from the Boards tab on the left and click on
Examples tab on the right-hand side of the window. Use filters in the toolbar
to narrow the list of examples.

B Devices B Boards © 21 %|[® 7= 0 |@packs [Examples 2 O Only show examples from installed packs
SABRE Search Example
Board . Summary Example Action Description
~ i Al Boards 219 Boards CMSIS-RTOS Blinky (MCIMX7D-SABRE) @ Install CMSIS-RTOS RTX Blinky example for Cortex-M4
~ Bl MCIMX65X-SABRE (Rev. A2) MCIMX6X1 CMSIS-RTOS2 Blinky (MCIMX7D-SABRE) § Install CMSIS-RTOS2 RTXS5 Blinky example for Cortex-t
“ Mounted Devices 1 Device Frequency Bin (MCIMX7D-SABRE) Install CMSIS-RTOS RTX, CMSIS-DSP Lib, ADC and RPA
~ Bl MCIMX7D-SABRE (Rev B) MCIMX7D7 Linux Application TTY (MCIMX7D-SABRE) § Install Linux Application TTY example
“ Mounted Devices 1 Device RPMSG PingPong BM (MCIMX7D-SABRE) @ Install Bare-Metal RPMSG PingPong example for Cort¢
% Compatible Devices 5 Devices RPMSG PingPong RTX (MCIMX7D-SAERE)§ Install CMSIS-RTOS RTX RPMSG PingPong example for

RPMSG TTY CMSIS-RTOS (MCIMX?D—SAEI@ Install CMSIS-RTOS RTX TTY example for Cortex-M4
RPMSG TTY CMSIS-RTOS2 (MCIMX7D—SA[@ Install CMSIS-RTOS2 RTX5 TTY example for Cortex-M4

Click Install next to the RPMSG TTY CMSIS-RTOS example if the packs are
not installed (this might take a few minutes based on your internet connection).

I@' Operation in progress...

Downloading Keil.iMX7D_DFP.1.5.1.pack from
http://www.keil.com/pack/Kel.iMX7D_DFP.1.5.1.pack

[JiAlways run in background

Run in Background Cancel Details >>

At the end of the installation the CMSIS Packs for the selected board should be
installed locally and the examples are ready to be copied in your workspace.

Example Action Description
CMSIS-RTOS Blinky (MCIMX7D-SABRE) [Copy CMSIS-RTOS RTX Blinky example for Cortex-M4
CMSIS-RTOS2 Blinky (MCIMX7D-SABRE) [Copy CMSIS-RTOS2 RTX5 Blinky example for Cortex-M4
Frequency Bin (MCIMX7D-SABRE) @ Copy CMSIS-RTOS RTX, CMSIS-DSP Lib, ADC and RPMSG TTY example for Cortex-M4
Linux Application TTY (MCIMX7D-SABRE) & Copy Linux Application TTY example
RPMSG PingPong BM (MCIMX7D-SABRE) & Copy Bare-Metal RPMSG PingPong example for Cortex-M4
RPMSG PingPong RTX (MCIMX7D-SABRE) & Copy CMSIS-RTOS RTX RPMSG PingPong example for Cortex-M4
RPMSG TTY CMSIS-RTOS (MCIMX7D-SABH® Copy CMSIS-RTOS RTX TTY example for Cortex-M4
RPMSG TTY CMSIS-RTOS2 (MCIMX7D-SAES Copy CMSIS-RTOS2 RTX5 TTY example for Cortex-M4

Click Copy next to the RPMSG TTY CMSIS-RTOS example (make sure the
corresponding pack is installed).

Getting Started with DS-MDK

Confirm your selection by clicking on the Copy button.

Example: RPMSG TTY CMSIS-RTOS
Pack: Kell.iMX7D_DFP.1.5.1
Project Name: RPMSG_TTY_CMSIS-RTOS_M4

Project Location: C\Users\Documents\DS-MDK Workspace\RPMSG_TTY_CMSIS-RTOS_M4

Cancel

CMSIS Pack Manager copies the example into your workspace and switches to

the C/C++ perspective:

© C/Ce+ - RPMSG_TTV_RTX_M&/RPMSG_TTY_RTX_Md rteconfig - Eclipse Platform
File Edit Source Refactor Navigate Search Project Run Window Help

g
[Project Explorer 5%
v (5 RPMSG_TTY_RTX_M4
[l Includes
~ i RTE
(= Board_Support
= CMSIS
(= Compiler
(= Device
(= OpenAMP
[RTE_Componentsh
2] hardware_init.c
(] try_rtxc
() MCIMITD_Corte-Ma.sct
& RPMSG_TTY_RTX_ M4 rteconfig

S

B ¥ =

O | @ RPMSG_TTY_RTX Mérieconfig &2
& Components (] fiesole

Software Components
I MCIMXTD: Cortex-M4
4 Board Support
& Cmsis
@ CMSIS Driver
@& Compiler
& Device
4 File System
& Graphics
& Network
& OpenAMP
& Use

Build the application

ARSI B RN E AR ACEEE- R A R AT Nk Sl

. Variant

MCIMXTD-SABRE

MDK-Plus
MDK-Plus.
MDK-Plus.

MDK-Plus.

=0
@
Vendor

NXP
Keil

Version Description
ARM Cortex-Md, 64 kB RAM, 32 k
, IMX7D SABRE Board
Cortex Microcontroller Software |
Unified Device Drivers compliant
ARM Compiler Software Extensiol
Startup, System Setup
. File Access on various storage de|
. User Interface on grephicel LED d
. |Pvd Networking using Ethernet o

100

. Keil
. Segger
, Keil

680
5322
720

, Keil , USB Communication with variou

[m} X

(e] | [

8= Outline &2 ke Ta.. = B

An outline is not available,

& Build the project from the context menu in the Project Explorer:

[Project Explorer 52

&=

5%

~ (5 RPMSG_TTY_RTX_M4

[l Inclu
v & RTE
=B
&= C
&= C
& =
=olB

[B R

[€ hardy
g ty_rt
[E mcn
& RPM!

EE

@

Mew

Go Into
Open in Mew Window

Copy
Paste

Delete
Move...

Rename...

Import...
Export...

CMSIS C/C++ Project
Build Project
Clean Project

=

8

& RPMSG_TTY_RTX M4.rteconfig 52

& Crmngnents (] Fesolve
» L

omponents

MXTD:Cortex-M4

rd Support

515

SIS Driver

npiler

Sel.

ice
System
phics
work
enAMP

The Console window shows information about the build process:

20

Working with example projects

B Console i3 & 5/ BB RE | B~-cir= 8
COT Build Console [RPMSG_TTY_RTX_M4]
== ====== ====== 2
Total RO Size (Code + RO Data) 28276 (27.61kB)
Total RW Size (RW Data + ZI Data) 31856 (31.11kB)
Total ROM Size (Code + RO Data + RW Data) 28396 (27.73kB)
fromelf --bin --output=RPMSG_TTY_RTX_M4.bin RPMSG_TTY_RTX_M4.axf
15:55:26 Build Finished (took 37s5.283ms)
v
< >

Configure CMSIS DS-5 debugger
¥ Right-click the RPMSG_TTY_RTX_M4 project and select Debug As >

CMSIS DS-5 Debugger to launch

the debug configurations dialog:

& Debug Configurations

Create, manage, and run configurations

Launch a D5-5 debugging session using a CM5IS D5-5 Debugger project.

Name: | RPMSG_TTY_RTX_M4 |

rype fifter text]
[©] C/C++ Application
[€] C/C++ Attach to Application

€ Connection

Project Selection

& Advanced € 05 Awareness

[€] C/C++ Postmortem Debugger
[©] C/C++ Remote Application
W CMSIS DS-5 Debugger

W RPMSG_TTY_RTX_M4
5 DS-5 Debugger
@ IronPython Run

& RPMSG_TTY_RTX_M4

.5“J IrenPython unittest
4] Java Applet

[T Java Application
Ju JUnit

& lython run

E Jython unittest

= Launch Group

Eﬂ PyDev Django

23 PyDev Google App Run
eP Python Run

é’ Python unittest

ﬁ Remote Java Application

Connection Setti

Connection Typ

Filter matched 20 of 20 items

Connection Address

Target Configuration...

ngs

e ULINKpro

P1445217:Keil ULINKpro Browse...

Apply Revert

Close

Verify the Connection Settings an
detected. If in doubt, use Browse..

(& Click on Target Configuration...
Layer (DTSL).

d ensure that ULINKpro is correctly
. to list available debug adapters.

to setup the Debug and Trace Services

Getting Started with DS-MDK

21

& Debug and Trace Services Layer (DTSL) Configuration for ULINKpro O

Debug and Trace Services Layer (DTSL) Configuration for ULINKpro
Add, edit or choose a DTSL configuration

@ B B2y ey Name of configuration: default

Trace Capture | Cortex-A7 | Cortex-M4 ~._ETR| [TM | CTl Synchronization
[/] Enable Cortex-M4 core trace

Enable Cortex-M4 trace
Enable ETM Timestamps

= Onthe Cortex-A7 tab, disable all trace options to avoid buffer overflows.
= Onthe Cortex-M4 tab, check Enable Cortex-M4 core trace.

In the OS Awareness tab select the real-time operating system used in your
application from the drop-down menu.

& Debug Configurations

Create, manage, and run configurations

Launch a DS-3 debugging session using a CMSIS D5-5 Debugger project.

= JN= N Name: | RPMSG_TTV_RTX_M4

type filter text 4 Connection | ¢ Advanced | 4 OS Awareness
C/C++ Attach to Application A
pp
[E] €/C++ Postmortem Debugger

[€] €/C++ Remote Application EUHETOS
reel
o CMSIS DS-5 Debugger A Rl

W' RPMSG_TTY_RTX_M4

Select OS awareness: | None ~

Mucleus
#% D5-5 Debugger RTXC
a' IrenPython Run ThreadX
@ IronPython unittest eForce uC3 Compact
] Java Applet emEJOS
j— _ 2 pC/os-ll
= > pC/OS-1II

X X Apply Revert
Filter matched 21 of 21 items

@ Close

Click Debug.

NOTE
The error message “Failed to launch debug server” most likely indicates
that an incorrect ULINKpro connection address is selected.

22 Working with example projects

Run Cortex-M application

DS-MDK switches to the DS-5 Debug perspective. The application loads and
runs until main.

(> To start the Cortex-M4 application click Run in the Debug Control view.

#% Debug Control 32 | [Project Explorer 4§ Remote Systems = 0

IR TR IE M O ER- 1 v
a t\k RPMSG_TTY_RTX_M4 connected
t Cortex-M4 #1 stopped on breakpoint

Status: connected OS5 Support: Enabled

Observe the output of the application in the Terminal M4 window.
= 0

HEEE 2

B App Console B Target Console ® Terminal 1 4 Terminal 1 22 @] Error Log

Serial: (COMS5, 115200, 8, 1, None, None - CONNECTED) - Encoding: (ISO-8859-1)

RPMSG TTY RTX Demo. ..
RPMSG Init as Remote

NOTE
You can add another Terminal view to the debug perspective by using
Window = Show View = Terminal.

Getting Started with DS-MDK 23

Cortex-A Linux application

Copy and build the Linux Application TTY

& Switch back to the CMSIS Pack Manager perspective and copy the
Linux Application TTY example project to your workspace.

Build the project from the context menu in the Project Explorer in the same
way we have done for the Cortex-M RPMSG TTY CMSIS-RTOS example.

The Console should show an error-free build:

& Consale 32 &@\':.A g &b :5»|=‘E':=J'DE
CDT Build Conscle [Linux Application TTY]
........ e e e
"Invoking: GCC C Compiler 4 [arm-linux-gnueabihf]’
arm-linux-gnueabihf-gcc -08 -g -Wall -c -fmessage-length=8 -MMD -MP -MF"src/LinuxTTY.d" -M
"Finished building: ../src/LinuxTTY.c'

~

‘Building target: Linux Application TTY'

"Invoking: GCC C Linker 4 [arm-linux-gnueabihf]’
arm-linux-gnueabihf-gcc -o "Linux Application TTY" ./src/LinuxTTY.o
‘Finished building target: Linux Application TTY'

15:56:20 Build Finished (took 1s.398ms)

Setup RSE connection

CjF GO to Wl_ndOW 9 Open Remote S5H Only System Connection
PeI’SpECtIVE 9 Other, Define connection information
then select Remote
System Explorer. Use the | Parent profile <

5= button to create a new

& New Connection O =

connection. Select SSH Fost name: I El "I
- Connection name: iMX7_SAER
Only and click Next. i -
Description: | |

RSE communicates with
- | Verify host name

the target USIng TCP/IP Configure proxy settings

Enter the target's IP

address into the Host

Name field. Enter a _

meaningful name in the D [T Re> —

Connection name box:

24 Working with example projects

Click Finish to show your connection in the Remote | g remotesystems 52 | % Team = &
Systems window: £ 8 B ~
4 Ef Local
. *Zy Local Files
% Local Shells
4 [F5 iMXT_SABRE
. ¥y Sftp Files
% Ssh Shells
?f\','J Ssh Terminals

Boot Linux

NOTE
If you are debugging a microcontroller application simultaneously, you need to
run the Cortex-M application, otherwise the prompt in the Terminal Linux is not

accessible.

¥ In the Terminal Linux enter “boot” to start the Linux system if it hasn’t
started yet:

B App Console | Target Console @ ErrorLog ™ Terminal Linux 22 HEIL ._,E| - *¥ = 0O

Serial: (COM14, 115200, 8, 1, Mone, None - CONNECTED) - Encoding: (I150-8859-1)

Warning: FEC® MAC addresses don't match: -
Address in SROM is 80:04:9f:04:49:88

Address in environment is @8:84:9f:84:81:d3

Mormal Boot
Hit any key to stop autcboot: @
=» boo

4 [m

When the boot process has finished, log in as root (no password required).

Configure DS-5 debugger

(& Right-click on the project Linux Application TTY and select Debug As =
Debug Configurations... In the Debug Configurations window, select DS-5
Debugger and then press the LI icon to create a new debug configuration.
Name it GDB Debug and select in the Connection tab Linux Application
Debug = Application Debug = Connections via gdbserver = Download
and debug application. The RSE connection from the previous step shows

up:

Getting Started with DS-MDK 25

Name: GDB Debug
<= Connection . [iz7} Files| &5 Debugger| & OS Awareness | ®= Arguments| B Environment

Select target
Select the manufacturer, board, project type and debug eperation to use, Currently selected:

Linux Application Debug / Application Debug / Connections via gdbserver / Download and debug application
Filter platforms

Connect to already running application -
Download and debug application
Start gdbserver and debug target-resident application

D5-5 Debugger will download your application to the target system and then start a new gdbserver session to debug the application. This
configuration requires ssh and gdbserver on the target platform.

Connections

RSE connection |i.MX7_SABRE -

Address: /| Use RSE Host
gdbserver (TCP) | port: 5000
V| Use Bxtended Mode

¥ On the Files tab, in Target Configuration, select the workspace build target
for Application on host to download. Select an existing directory on the
target file system, e.g. /home/root/tmp as the Target download
directory.

Select an existing directory on the target file system, €.g. /home/root/tmp
as the Target working directory (use the same directory as for Target
download directory).

MName: GDE Debug

4= Connection |t} Files . % Debugger| iz 05 Awareness| €= Arguments| B Environment

Target Configuration

Application on host to download:

S{workspace_loc:/Linux Application TTY/Debug/Linux Application TTY}

File System...| |Work;pace... | Load symbols

Target download directory:

Shomefroot/tmp

Target working directory:

Shome/root/tmp

On the Debugger tab, under Run Control select Debug from symbol
“main”. Click Debug.

26 Working with example projects

If asked for login, please insert the credential for the Linux target. If you are
using one of the images downloaded from www.keil.com please use root as
username and leave the password field empty.

Run the Linux application

& In the Terminal Linux, load the kernel module that communicates with the
Cortex-M4 application with this command:

root@imv7dsabresd: ~# modprobe -v imx rpmsg_tty

The kernel module will be loaded:

insmod /lib/modules/4.1.15-
1.1.0+ga4d2a08/kernel/drivers/rpmsg/imx rpmsg tty.ko
imx rpmsg tty rpmsg0: new channel: 0x400 -> 0x0!
Install rpmsg tty driver!

(& Use the Continue F* button to run the Linux application. The App Console
shows the application’s messages:

B App Console 2 | = o Bl ¥ = O
5, Linked: GDBE Debug =

Preparing the debug session

cd "/home/root/tmp™

export LD_LIBRARY PATH=".:/home/root/tmp:3LD_LIBRARY PATH"

gdbserver :5888 "/home/root/tmp/Linux Application TTY"
Process /home/root/tmp/Linux Application TTY created; pid = 385
Listening on port 5@ee

Debug sessicn has been started, connecting to gdbserver

Remote debugging from host 18.41.5.21

Get Message From Remote Side: Hello from M4!

Child exited with status @

Similarly, the Terminal M4 shows the output of the microcontroller
application:

14} Disassembly ‘5 Memory = Stack ¢ Trace [Events 0= Outline 42 Terminal M4 5% = O

W EERE & B

Serial: (COM15, 115200, 8, 1, None, None - CONMNECTED) - Encoding: (I50-8859-1)

RPMSG TTY RTX Demo...

RPMSG Init as Remote

Name service handshake is done, M4 has setup a rpmsg channel [@ ---> 1824]
Get Message From Master Side: "Hello from A7!™ [len : 14]

NOTE
You can add another Terminal view to the Debug perspective by using
Window - Show View = Terminal.

http://www.keil.com/

Getting Started with DS-MDK

27

You have verified that your development environment can connect to both the
Cortex-M and the Cortex-A processor. Try other example projects such as the
Frequency Bin that demonstrates how to use the CMSIS-DSP library in the
Cortex-M processor. The following chapters will explain how to create projects
for both from scratch and how to debug these applications.

28

Creating projects from scratch

Creating projects from scratch

Create Cortex-M applications

This chapter guides you through the steps required to create and modify projects
for the Cortex-M target in a heterogeneous system.

Blinky with CMSIS-RTOS RTX

Follow these steps to create a project called Blinky using the real-time operating
system CMSIS-RTOS RTX:

Setup the Project: create a project and select the microcontroller device
along with the relevant CMSIS components.

Select Software Components: choose the required software components for
the application.

Customize the CMSIS-RTOS RTX Kernel: adapt the RTOS kernel.
Create the Source Code Files: add and create the application files.
Build the Application Image: compile and link the application.

For the Blinky project, you will create and modify the main.c source file which
contains the main() function that initializes the RTOS kernel, the peripherals, and
starts thread execution. In addition, you will configure the system clock and the
CMSIS-RTOS RTX.

Getting Started with DS-MDK

29

Setup the project

(& From the Eclipse
menu bar, choose File
- New > C Project:

S C Project

€ Project

Create C project of selected type [

Project name: | B\ink},{

Use default location

Location: | ChUsers\USER\Documents\D5-MDIK\Blinky Browse...

Choose file systern: | default

Project type: Toolchains:

v (= Executable
@& Empty Project
@ Hello World ANSI C Project
® CMSIS C/C++ Project

> [Shared Library

> [Static Library

> = Makefile project

ARM Compiler 5
ARM Compiler &
GCC 4.8.3 [arm-linux-gnueabihf]

Show project types and toolchains only if they are supported on the platform

® < Back

Mext > Finish Cancel

(> Select CMSIS RTE C/C++ Project, enter a project name (for example

Blinky) and click Next.

CMSIS C/C+ + Project

‘!r

r—

Selected project type: Executable
Output: exe
Toolchain Adapter

Toolchain: ARM Compiler 5

Adapter. | Adapter for ARM C/C++ 5x and 6.x toolchains

Family: ARMCC (passed model via Tcompiler filter attribute)

Toolchain adapter for ARMCC 5.x and 6.x compilers

Cancel

30 Creating projects from scratch

(> Select your target device from the list: in this example we would continue
using MCIMX7D7:Cortex-M4. Make sure the selection on FPU is none so
that we can avoid initializing it for our example.

Select Device .

Device: MCIMX7D7:Cortex-M4 CPU: ARM Cortex-M4
Vendor: NXP Max. Clock:
Pack: KeiliMX7TD_DFP.1.5.1 Memory: 64 kB RAM, 32 kB ROM
URL: http://www.keil.com/dd2/nxp/ FPU: ‘none ~
Search: | ‘ Endian: Little-endian
s @ ARM The i.MX 7Dual family of processors features
w W@ NXP an advanced implementation of the ARM
« % iMX 7 Series Cortex-AT7 core, which operates at speeds of
« % iMX 7Dual up to 1 GHz, as well as the ARM Cortex-M4
% MCIMXTD3 core.
’ - Heterogeneous Multicore Processing
» % MCIMX7D5 Architecture, up to Dual Cortex-A7 and
v 4 MCIMX7D7 Cortex-M4 configuration
H MCIMX7D7:.Cortex-A7 - External Memory Support:
B MCIMX7D7:Cortex-M4 DDR3/DDR3L/LPDDR2/LPDDR3
. %2 i MX 7Solo - Flash Memory Support: NAND (60-bit
ECC), Managed NAND (eMMC, eSD)
- Eletropharetic Display (EPD) Controller
v
@ < Back Mext > Cancel

(& Select the NXP = i.MX 7 Series = i.MX Dual & MCIMX7D7 >
MCIMX7D:Cortex-M4 device and click Finish.
The C/C++ Perspective opens and shows the project:

Getting Started with DS-MDK

© €/C++ - Blinky/Blinky rtcconfig - Eclipse Platform

File Edit Source Refactor Navigate Search Project Run Window Help

- | ® - |~ N G B C O R ® O e e
[Project Explorer 57 B G ¥ = O |4 Binkyreconfig 33 = O
v 5 Blinky <& Components (| @
) Includes
v s RTE Software Companents Sel. Variant Vendar Version Description
[F) RTE_Components. W MCIMXTD:Cortex-M4 Nxp ARM Cortex M4, 64 kB RAM, 32 &
4 Blinkyrteco MCIMKTD-SABRE ~ Keil 100 iM7D SABRE Board

@8 MCIMXTD_Cortex-Md.set
(25 RPMSG PingPong BM

MDK-Plus Keil 670
MDK-Plus Seqg 5322
MDK-Plus] 710
MDK-Plus Keil 670
< >
Validation Cutput Description
< >
Components | Device| Packs.
B Console 3 |l mB-m-=08
CMSIS RTE console [Blinky]
11:00:06 g project Blinky

Updating
Updating
Froject

Select software components

& For the Blinky project based on CMSIS-RTOS RTX, you need to select the
following components:

= Board Support:iMX7D SABRE Board:HW INIT

= Board Support:iMX7D SABRE Board:User I/O Redirect
= CMSIS:RTOS (API):Keil RTX.

= Compiler:1/O:STDERR configured as variant User

= Compiler:1/O:STDIN configured as variant User

= Compiler:1/O:STDOUT configured as variant User

= Compiler:1/O:TTY configured as variant User

= Device:i.MX7D HAL:CCM

= Device:i.MX7D HAL:RDC

= Device:i.MX7D HAL:UART

Use the Resolve button to add other required components automatically.
Finally, save your selection:

32 Creating projects from scratch

& “Blinky.rteconfig 3%

= O
¢ Components Resolvewalidation)messages: Savejwhen (Iune"J
-

Variant Vendor Version Description
NXP ARM Cortex-M4, 64 kB RAM, 32 kB ROM
MCIMX7D-SABRE Keil 100 iMX7D SABRE Board

Software Components Sel,
B MCOMXTD:Cortex-M4
~ 4 Board Support
~ @ iMX7D SABRE Board

@ HWINIT Board specific settings for hardware initialization
@ User /0 Redirect User /0 Redirect to UART
v & CMSIS Cortex Microcontroller Software Interface Components
« CORE ARM 430 CMSIS-CORE for Cortex-M, S5C000, and 5C300
« DSP ARM 146 , CMSIS-DSP Library for Cortex-M, 5C
v % RTOS (API) 1.0 .. CMSIS-RTOS API for Cortex-M, SC000, and SC300
@ Keil RTX ARM 4.800 | CMSIS-RTOS RTX implementation for Cortex-M, S
4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifica
v 4 Compiler ARM Compiler Software Extensions
@ Event Messaging | [0 DAP Keil 100 Event Messaging using Debug Access Port (DAF)
v #1/0
« File] File Systern Keil 1.1.0 |, Use retargeting together with the File System component
@ STDERR User | Keil 1.1.0 , Redirect STDERR to a wser defined output target (USART, Gr
@ STDIN User , Keil 1.1.0, Retrieve STDIN from a user specified input source (USART,
@ STDOUT User , Keil 1.1.0 |, Redirect STDOUT to a user defined output target (USART, G
@ TV [0 Breakpoint kel 110 Stop program execution at a breakpoint when using TTY
v 4y Device Startup, System Setup
v @ IMXTD HAL
@ CCM Keil 1.0.0 |, Clock Control Module
@ MU [m} Keil 100 Messaging Unit
@ RDC Keil 100, Resource Domain Controller
@ UART Keil 1.0.0 , Universal Asynchronous Receiver/Transmitter v
< >
Validation Output Description al
w4, ARM:CMSIS.RTOS.Keil RTX Additional software components required
w /L require Cclass="Device", Cgroup="5Startup” Select component from list
Keil:Device.Startup MNP iMX7D CM4 devices
v /4 Keil. MCIMXTD-SABRE:Board SuppertiMX7D SABRE Board HW INIT Additional seftware compenents required
~ /A, require Cclass="CMSIS", Cgroup="CORE" Select component from list .
< >

Components Device | Packs

NOTE
Saving the RTE configuration triggers a project update and the selected software
components become instantly visible in the Project Explorer.

Configure CMSIS-RTOS RTX kernel

(& In the project, expand the group RTE:CMSIS, right-click on the file
RTX_Conf_CM.c, and select Open With > CMSIS Configuration
Wizard. Change the following settings:

= Default Thread stack size [bytes] 512
= Main Thread stack size [bytes] 512
= RTOS Kernel Timer input clock frequency [Hz] 240000000

Getting Started with DS-MDK 33

&

i= *RTX_Conf_CM.c i3 = 8
i= CMSIS Configuration Wizard ER=NG)
Option Value
w Thread Configuration
Murnber of concurrent running user threads 6
Default Thread stack size [bytes] 512 y
Main Thread stack size [bytes] 512 y
Mumber of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-providec 0 y
Stack overflow checking
Stack usage watermark O
Processor mode for thread execution Privileged mode |

w RTX Kernel Timer Tick Configuration

Use Cortex-M SysTick timer as RTX Kernel Timer

RTOS Kernel Timer input clock frequency [Hz] 240000[)0[1
RTX Timer tick interval value [us] 1000
w System Configuration
Round-Robin Thread switching
User Tirers
ISR FIFO Queue size 16 entries

RTOS Kernel Timer input clock frequency [Hz]

Defines the input frequency of the RTOS Kernel Timer.
When the Cortex-M SysTick timer is used, the input clock
is on most systems identical with the core clock.

Source Editor | CM5IS Configuration Wizard

Save the file using L&l or CTRL+S.

NOTE

If you have opened a file with the CMSIS Configuration Wizard once, your choice
is stored and the file will be opened in this view automatically next time.

Create the source code files

Pre-configured user code templates contain routines that resemble the
functionality of a software component.

& Right-click on the project and select New = Files from CMSIS Template.

34

Creating projects from scratch

& Mew Files from CMSIS Template O >
CMSIS User Code Template
This wizard creates new files from CMSIS user code template.
=
Project: | Blinky Browse
Component MName
v @ CMSIS
4 RTOS.Keil RTX CMSIS-RTOS 'main’ function
#p RTOS.Keil RTX CMSI5-RTOS Mail Queue
#p RTOS.Keil RTX CMSIS-RTOS Memory Pool
4 RTOS.Keil RTX CMSIS-RTOS Message Queue
@ RTOS.Keil RTX CMSI5-RTOS Mutex
 RTOS.Keil RTX CMSI5-RTOS Semaphore
@ RTOS.Keil RTX CMSI5-RTOS Thread
@ RTOS.Keil RTX CMSIS-RTOS Tirmer
& RTOS.Keil RTX CMSIS-RTOS User SVC
Location: | /Blinky | Browse...

File name: | osObjects.h main.c |

®

Expand the software component CMSIS and select the template CMSIS-
RTOS 'main' function. Click Finish. Replace the content of main.c with
the following application specific code:

s

* CMSIS-RTOS 'main' function template

K e e e e * /
#define osObjectsPublic // define objects in main
module
#include "osObjects.h" // RTOS object definitions
#ifdef RTE_

#include "RTE_Components.h" // Component selection
#endif
#ifdef RTE CMSIS RTOS // when RTE component CMSIS RTOS is
used

#include "cmsis_os.h" // CMSIS RTOS header file
#endif

#include "system iMX7D M4.h"
#include "retarget io user.h"
#include "board.h"
#include <stdio.h>

osThreadId tid threadA; /* Thread id of thread A
*/
e
& Thread A

Getting Started with DS-MDK

void threadA (void const *argument) {
volatile int a = 0;
for (;;) {
osDelay (750) ;
printf ("Blinky threadA: Hello World!'\n");
}
}

osThreadDef (threadA, osPriorityNormal, 1, 0);

/*
* main: initialize and start the system
*/
int main (void) {
/* Board specific RDC settings */
BOARD RdcInit() ;

/* Board specific clock settings */
BOARD ClockInit();

SystemCoreClockUpdate () ;

InitRetargetIOUSART () ;

tid threadA = osThreadCreate (osThread(threadA), NULL);
#ifdef RTE CMSIS RTOS // when using CMSIS RTOS

osKernelInitialize (); // initialize CMSIS-RTOS
#endif

/* Initialize device HAL here */

#ifdef RTE CMSIS RTOS // when using CMSIS RTOS
osKernelStart () // start thread execution
#fendif

/* Infinite loop */
while (1)
{
/* Add application code here */
osDelay (1000) ;
printf ("Blinky main loop: Hello World!\n") ;

// initialize peripherals here

// create 'thread' functions that start executing,
// example: tid name = osThreadCreate (osThread(name), NULL);

osKernelStart () // start thread execution
}
}

Save the file using L&l or CTRL+S

36

Creating projects from scratch

Adapt the scatter file

On the i.MX 7 devices, several types of memory are available. For deterministic,
real-time behavior, the Cortex-M4 should use the local Tightly Coupled Memory
(TCM), which provides low-latency access. Multiple on-chip RAM areas
(OCRAM) are available, which are larger, but not as fast.

The following table shows the memories and their load addresses for the different

processors:
Region Size Cortex-A7 Cortex-M4 (Code Bus)
OCRAM 128 KB | 0x00900000-0x0091FFFF | 0x00900000-0x0091FFFF
TCMU 32KB 0x00800000-0x00807FFF
TCML 32 KB 0x007F8000-0x007FFFFF | Ox1FFF8000-0x1FFFFFFF
OCRAM_S | 32 KB 0x00180000-0x00187FFF | 0x00000000-0x00007FFF/
0x00180000-0x00187FFF

By default, the scatter file template uses the start address 0x0 for the load region

command.

(& To put the Cortex-M4 code into the TCM of the i.MX 7, open the file
MCIMX7D_Cortex-M4.sct and change the address of the load region to
Ox1FFF8000:

’
Khkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkhkkhkkhkhkkhkkhkkkkkk

; ** Scatter-Loading Description File generated by RTE CMSIS Plug-in

* %

’

hhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkhkhkkhkkhkkkhkkkkkkkk

LR IROM1 Ox1FFF8000 0x00008000 {

; load region size region

ER IROM1 Ox1FFF8000 0x00008000 { ; load address = execution address
* .o (RESET, +First)
* (InRoot$$Sections)
.ANY (+RO)

}

RW_TRAM1 0x20000000 0x00008000 ({

.ANY

}
}

(+RW +ZI)

& Save the file using Ll or CTRL+S.

Getting Started with DS-MDK 37

Build the Cortex-M image

(& Right-click on the project name and select Build Project to build the
application.

This step compiles and links all related source files. The Console shows
information about the build process. An error-free build displays program size
information:

B Console 52 @Gﬁ)| | -Eac|="E':=J'='E|

CDT Build Console [Blinky]
----- A

Code (inc. data) RO Data RW Data ZI Data Debug

13476 1486 1248 laa 6676 5158297 Grand Totals
13476 1486 1248 laa 6676 5158297 ELF Image Totals
13476 1486 1248 laa a8 @ ROM Totals
Total RO Size (Code + RO Data) 14724 (14.38kB)
Total RW Size (RW Data + ZI Data) 6776 (6.62kB)
Total ROM Size (Code + RO Data + RW Data) 14824 (14.48kB)

'Finished building target: Blinky.axf’

14:89:34 Build Finished (tock 19s5.942ms) N

Debug Cortex-M application on page 41 guides you through the required steps
to connect your evaluation board to the workstation and to debug the application
on the target hardware.

38 Creating projects from scratch

Create Linux applications

This chapter guides you through the steps required to create and modify projects
for an ARM Cortex-A class device running Linux:

= Setup the project: create a project.
= Build the application image: compile and link the application.

Setup the project

& From the Eclipse menu bar, choose File & New - C Project. Select the
Hello World ANSI C Project:

C Project f——"r

Create C project of selected type

Project name: | Hello_World

Use default location

C\Users\stecad01\Documents\DS-MDK Workspace_new\Hello_Worl Browse...
default
Project type: Toolchains:
w = Executable ARM Compiler 5
® Empty Project ARM Compiler &
& Hello World ANSI C Project GCC 4 [arm-linux-gnueabihf]

® CMSIS C/C++ Project
(= Shared Library
(= Static Library
(= Makefile project

Show praject types and toolchains only if they are supported on the platform

(> Enter a project name (for example Hello_World) and make sure that the
GCC [...] (built-in) toolchain is selected before clicking Finish.

The C/C++ Perspective opens and shows the current project:

Getting Started with DS-MDK

39

& C/C++ - Hello_World/src/Hello_World.c - Eclipse Platform — m} X
File Edit Source Refactor Mavigate Search Project Run Window Help
i - & ~-w NEB G- - -0 Gi® g
e e]| 5 B @
[ty ProjectExplorer 32 | (5 . ¥ = O [g] Hello_World.c &2 =8 ox *» =08
{55 Blinky 3® Name : Hello_World.c[] AR e
(=5 Hello_World 10 include <stdioh -
. 11 include <s 10.h>
(55 RPMSG PingPong BM 12 #include <stdlib.h: 51 stdio.h
13 i
14= int main{wveid) { = 5td|.lb.h.)
15 puts(”!!lHello World!!!"™); /* prints !! e main(void): i
16 return EXIT_SUCCESS;
7
T E > < >
B Console &3 = 8
@G%|auu -EN‘:‘E'IJ'
COT Build Console [Hello_World]
< >
=% Hello World
¥ Right-click on the project name and select Build Project.
This step compiles and links all related source files. The Console shows
information about the build process:
B Console i3 | ¥ Tasks)| Problems [0 Properties 49 <§|>| B RH '_5,‘| mE~S~=08
COT Build Console [Hello_World]
oo oo oo o A
Total RO Size (Code + RO Data) 4348 (4.73kB)
Total RW Size (RW Data + ZI Data) 364 (©.36kB)
Total ROM Size (Code + RO Data + RW Data) 4856 (4.74kB)
'Finished building target: Hello World.axf'
15:83:41 Build Finished (tock 1s.116ms)
v

< >

The chapter Debug Linux application on page 45 guides you through the
required steps to connect your evaluation board to the workstation and to

download the application to the target hardware.

40 Debug applications

Debug applications

The DS-5 Debugger can verify all software applications that execute on a
heterogeneous computer system. It enables complete system visibility using
multiple simultaneous debug connections:

P
uUsB : 8 2

ULINKpro

o e CoreSight™

B \ \

Cortex®-A Cortex®-M

S Linux Kernel

gdbserver RTOS System

TCP/IP

Linux Microcontroller

Application Application

DS-5 Debugger Heterogeneous System

= The Cortex-M application is debugged using a ULINKpro debug unit (refer
to www.keil.com/ulink for more information). Users can analyze the
microcontroller application with RTOS aware-debugging and peripheral
views.

= The Linux kernel and bare metal applications running on the Cortex-A are
also debugged using a ULINKpro debug unit. The debugger lists kernel
threads and processes.

= A Linux application is debugged via gdbserver across a TCP/IP network
link. The debugger supports multi-threaded application debugging and shows
pending breakpoints on loadable modules and shared libraries.

http://www.keil.com/ulink
https://en.wikipedia.org/wiki/Gdbserver

Getting Started with DS-MDK

41

Debug Cortex-M application

This section explains how to debug the microcontroller application running on the
Cortex-M microcontroller. Once configured the debug configuration as shown in
section Configure CMSIS DS-5 debugger at page 20, you can start the debugging
session by clicking “Run” in the Debug Control view.

If specified in the configuration window, the debugger will run till the beginning
of the function main().

DS-MDK should automatically switch to the Debug Perspective, specifically
designed to be used during the debug session on your device.

Let’s look at some of the Views available in DS-MDK.

Variables

The Variables view shows the contents of local, file static, and global variables in
your program. By default, the Variables view displays all the local variables. It
also displays the file static and global variable folder nodes.

)= Variables 7 oo =g
s ¥ Qéh A
0, Linked: Blinky_M4 -
Name Value Type Count | Size | Location Access
== Llocals 3 variables
o a 11 int 2 SR R/W
Cill 12 int 32 SR R/W
@ c 8 int 32 SRD R/W
=k = File Static Variables 0 of 6 variables
== Globals 1 of 47 variables
+ @ tid_threadA BxBEBEREBE osThreadld 1 32 020000018 R/W
Add Variable Browse...

If you know the name of the specific variable you want to view, enter the variable
name in the Add Variable field. This lists the variables that match the text you
entered. Double-click the variable to add it to the Variables view.

Registers

The Registers view displays the contents of processor and peripheral registers
available on your target and allows modifying them.

42

Debug applications

()= Variables e Registers 2 Iy Expressions f() Functions

Register Set: | All registers

Name

== Core
RO
Rl
R2
R2
R4

LR
PC

PP OO O®OODOPOOOPODODTODD
@

SP_PROCESS

@ xPSR
@ PRIMASK
‘@ BASEPRI

@ FAULTMASK

= a
ER AT
<G, Linked: Blinky_M4 -
Value Size | Access
23 of 23 registers -

exgepeeeel 32 R/W
@x30300200 32 R/W
exepepeeoee 32 R/W
oxpeeeeeed 32 R/W
exeeseeese 32 R/W
@xeeeeaeed 32 R/W
exeesegere 32 R/W
@xeeeeaeed 32 R/W
exeesegere 32 R/W
@x@000a088 32 R/W
exeeseeeBe 32 R/W
BxBBOBERBE 32 R/W
oxgeoeesse 32 R/W
@x280010B8 32 R/W
@x20001E48 32 R/W
@x260010B8 32 R/W
@x1FFF94aD 32 R/W
@x1FFFR4AC 32 R/W
oxgloseene 32 R/W
exepepeeoee 32 R/W
oxpeeeeeed 32 R/W
@xeeepeee 32 R/W Sz

m

The search button at the top of the View allows searching for register by name to
speed up debugging in targets with hundreds or thousands of different registers.

Disassembly

The Disassembly view gives you a glimpse over the assembly code running on
the device. When the target is stopped, DS-MDK automatically highlights the

next instruction to be executed (content of the Program Counter).

The view shows the address, the OpCode and the decoded version of each
instruction and can be used, as an example, to debug issues related to invalid

addresses.

143 Disassernbly &1 {5 Memory = Stack ¢ Trace = Events D= Outline &

B O v <NextInstruction>

B

=]

Address
@x1FFF949C
Bx1FFF94AR
Bx1FFFa4A2
@x1FFFO4A6

@x1FFF94A8
Bx1FFF94AC
@x1FFFO4B@
@x1FFF94B4
Bx1FFFI4B3
@x1FFF94BA
@Bx1FFF94BC
@x1FFF94Ce
Bx1FFFo4C2
@x1FFF94C4
@x1FFF94C8

Opcode

o=
‘G, Linked: Blinky_M4 =

100

Disassembly
BL osDelay ; @x1FFFAS54
ADR ré, {pci+ex4e ; exlfffod4ed
BL _ 2printf ; @x1FFF9534
B threadA+8 ; @x1FFF2498
main
BL BOARD RdcInit ; @x1FFF357C
BL BOARD ClockInit ; ex1FFFs44@
BL SystemCoreClockUpdate ; @x1FFF3F34
BL InitRetargetIOUSART ; @x1FFF8ASE
MOVS rl,%a@
LDR ro,[pc,#68] ; [Bx1FFFO508] - @x1FFFE738
BL osThreadCreate ; ©@x1FFFAG14
LDR ri,[pc,#64] ; [ex1FFF9584] = @x20000015
STR ro,[r1,#e]
BL osKernelInitialize ; @x1FFFASEC
BL osKernelStart ; @x1FFFASOE

m

Getting Started with DS-MDK 43

Memory view

In order to display and to modify the contents of memory it’s possible to use the
Memory view. You can specify the start address of the memory range, either as
an absolute address or as an expression, for example $pc+256. The size of the
memory range to display, in bytes, is the offset value from the start address.

141 Disassembly “H Memory 32 = Stack ¢ Trace [= Events = Outline = B
B~ @ r T
"D, Linked: Blinky_M4 -
)+ &("main.c"tid_threadA) 200
6286868 xx Data (Hexadecimal: 4 bytes) |
...18 181 Bx2 8 ex2 8
...38 OxFFFFFFFI exB@E500008 OxBDEOREEE ON2008156C

...48 Bx206015C0 @x20001614 @x200014G63 exBRERDEGE 6x200800CC Ox280001D00
...60 ©OxBEEREA34 GxPlOC0300 OxBO0B0REE Ox20001168 OxDODEREEE OxDEREEEEE

ceadB BxBBCERER6 Bx28888E7R
...98 @6x28688DE3 Gx1FFFAG39 Gx82040280
.. AB Gx02020004

...0A 8ex2e801878 Ox280080EB38 @x1FFF94C7 @x20000188 OxBODEREEE OxDeREEEEE
...DE ©x80000000 OxEEOE0000

The memory view allows specifying both the address and the size as a formula. A
few examples:

- &(“main.c”::tid_threadA) refers to the address of variable tid threadA in
file main.c

- 3$PC refers to the value contained by the register PC
- sizeof(float) refers to the size of the type “float”
Please refer to the online manual for further options.

Breakpoints

Breakpoints can be set either directly on the source code editor or in the
Breakpoints view. In the source code editor, right-click on the left side on the
line you would like the execution to stop and click on Toggle Breakpoint.

44 Debug applications

/* main function */
— int main(void)

i
/* Board specific RDC settings */
BOARD_RdcInit();

/* Board specific cleck settings */
BOARD ClockInit();
Toggle Breakpoint Ctrl+Shift+B
Add Breakpoint... Ctrl+Double Click
Add Dynamic Printf...
Enable Breakpoint Shift+Double Click
Breakpoint Properties... Ctrl+Double Click
DS-5 Breakpoints 3

threadA), NULL);

'/ when using CMSIS RTOS
/ initialize CMSIS-RTOS
Breakpoint Types b

Default Breakpoint Type 3

Go to Annotation Ctel by when using CMSIS RTOS

Team » | executing,
osThread(name), NULL);
Add Bookmark... f/ start thread execution

Add Task...

v Show Quick Diff Ctrl+Shift+Q
Show Annotation

v | Show Line Numbers
Folding Fodin"y;

Preferences...
= T

The breakpoint will appear in the list in the Breakpoints view where it can
edited, disabled or removed.

)= Variables | ®g Breakpoints 2 | Registers %Y Expressions f() Functions [05 Data = 0

X% Ewix v
%, Linked: Blinky_M4 ~
@ main.c:53 @ main+0ed (T32) [#2 SW]

It is possible to access to the properties of the breakpoint by right-click on the
breakpoint and then select Properties. The Properties window, showed below,
allows using some of the advanced functionalities of the DS-MDK debugger such
as Thread specific breakpoint, advanced Stop conditions and the ability to run
scripts when the program stops.

Getting Started with DS-MDK

95 Breskpoint Properties o Lo Es

Breakpoint Properties

Description: main.c:53 @ main-O (T32) [£2 5W]

Host File Location: Ci\Users\stecad01\Documents\DS-MDK Clean\Blinky_lM4imain.c:53.0
Compiled File Location: C:/Users/stecaddl/Documents/DS-MDK Clean/Blinky_W4/main.c:53.0
Type: Source Level Software Breakpoint

State: Active

Address: U] © OAFFFI4AC main-0xd [£21] (T32)

V| Break on Selected Threads or Cores

V| Show Both Active and Inactive Threads

Cortex-M4 21 stopped on breakpoint
fmain £3 stopped (PID 2)|
osTimerThread #2 stopped (PID 1)
os_idle_demon 24 stopped (PID 255)

q|

Only core selection is persistent between connections

Stop Condition:

Ll

Ignore Count: 0

On break, run script:

~ | File System... | | Workspace...

Continue Execution
Silent

Hardware Virtualization: Unsupported

Ereak on Virtual Machine ID:

©

Please refer to the online help for a detailed explanation of all the functionalities
accessible from the Properties window.

Debug Linux application

This section explains how to debug a Linux application running on the
Cortex-A7.

The DS-5 Debugger uses gdbserver for debugging Linux on the target hardware.
Before connecting, you must:

= Set up the target with Linux installed and booted. Refer to Install the Linux
image on page 13.

= Obtain the target IP address or name for the connection between the debugger
and the debug hardware adapter. If the target is in your local subnet, click
Browse and select your target.

46 Debug applications

Next, set up a Remote Systems Explorer (RSE) connection to the target to
download the application onto the target’s file system. Refer to Setup RSE
connection on page 23 for more information.

Configure the debugger as described in Configure DS-5 debugger at page 24 and
launch the application.

DS-MDK uses the same debug perspective as for bare metal when debugging
Linux application so you do not need to learn a hew environment or set of Views
in order to start debugging.

Debug the Linux Kernel

The DS-5 Debugger configuration dialog makes it easy to configure a debugging
session to a specific target. The Linux kernel debug configuration type is
primarily designed for post-MMU debug to provide full kernel awareness but —
with some extra controls — can also be used for pre-MMU debug. This makes it
possible to debug the Linux kernel, all the way from its entry point, through the
pre-MMU stages, and then seamlessly through the MMU enable stage to post-
MMU debug with full kernel awareness. You can do this all with source-level
symbols, and without the need for tedious disconnecting, reconfiguring and
reconnecting!

The Linux kernel, already built with debug info and a complete vmlinux symbol
file, file system, and full source code, is available from the respective board
support pages (see www.keil.com/mdk5/ds-mdk/install#boards).

Unpack the Linux kernel sources (kernel-source.tar.gz) into your currently active
DS-MDK Eclipse workspace. Be aware that on a Windows system you will not
be able to fully unpack the sources. Some symbolic links and case-sensitive
source files will not be created. Usually, this is not critical for Linux kernel
debug.

http://www.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK

Create a Linux Kernel debug project
(& Create a new CMSIS C/C++ Project named Linux Kernel Debug and select

NXP i.MX7Dual device MCIMX7D7:Cortex-A7.

Select Device

Device: MCIMX7D7:Cortex-A7
Vendor: NXP
Pack: Keil.iMX7D_DFP.1.5.1

URL: http://www.keil.com/dd2/nxp,

CPU:

Max. Clock:
Memory:
FPU:

ARM Cortex-A7

double precision

Search:

B MCIMX7D7:Cortex-AT
B MCIMX7D7:Cortex-M4

Endian: Little-endian
¥ ARM The i.MX 7Dual family of processors features ~ ~
~ @ NXP an advanced implementation of the ARM
+ % .MX 7 Series Cortex-AT core, which operates at speeds of
% i.MX 7Dual up to 1 GHz, as well as the ARM Cortex-M4
core.
I MCIMX703 - Heterogeneous Multicore Processing
iz MCIMX7D5 Architecture, up to Dual Cortex-A7 and
v g MCIMX7D7

Cortex-M4 configuration
- External Memory Support:
DDR3/DDR3L/LPDDR2/LPDDR3

% i.MX 7Solo - Flash Memory Support: NAND (60-bit
ECC), Managed NAND (eMMC, eSD)
- Eletrophoretic Display (EPD) Controller
v
@ < Back Next > Cancel

Add the vmlinux file to the project folder using Windows Explorer. This file
must match the kernel in the SD card on the board.

NOTE

The debug symbols in the vmlinux file have virtual addresses, so the usage of
vmlinux file by the debugger assumes that the OS is up and running with the
MMU enabled. It still can be used to debug pre MMU at source-level if there is
no offset between physical and virtual addresses at the entry point.

> Add a debugger script to the project (right-click the project and select New
- Other... 2 DS-5 Debugger - DS 5 Debugger Script) called stop.ds
containing:

stop
set os enabled off

When OS awareness is enabled and kernel symbols are loaded from the vmlinux
file, DS-5 Debugger will try to read some kernel structures. If the MMU is not yet
on, the debugger may try to access invalid addresses, leading to data aborts,
which is undesirable. This OS awareness support feature can be temporarily

48 Debug applications

disabled during the pre-MMU debug stage with the CLI command

set os enabled off, and later (post-MMU) re-enabled with the CLI command

set os enabled on.

(> Restart the board and make sure you stop the boot of the Linux kernel by

pressing a button when U-Boot is initializing in the Terminal view.

= 0

HEokEHE 2~

& App Console I Target Console @ Terminal 1 22 & Terminal 1 €] Error Log

Serial: (COM4, 115200, 8, 1, None, None - CONNECTED) - Encoding: (1IS0-8859-1)

No panel detected: default to TFT43AB ~
Display: TFT43AB (480x272)

Video: 480x272x24

In: serial
Out: serial
Err: serial

switch to partitions #0, OK
mmc@ is current device

Net: FEC@

Normal Boot

Hit any key to stop autoboot: @

=> v

(7 Right-click on the project, select Debug As..., then select CMSIS DS-5

Debugger... to open the Debug Configurations dialog.
In the Connection tab, select CPU Instance = SMP.

In the Advanced tab, tick Run target initialization debugger script, and

select the stop.ds script in the workspace:

& Debug Coenfigurations

Create, manage, and run configurations

€ [Connection]: Connection address is empty

= X | B 3~ MName: | Linux Kernel Debug

type filter text B Connection | 4 Advanced ™. ¥ 05 Awareness

C/C++ Postmortem Debugger A
C/C++ Remote Application
~ W CMSIS DS-5 Debugger
W Kernel_Debug

File Settings

* Linux Kernel Debug Load symbols only
W RPMSG_TTY_RTX_M4
#5 DS-5 Debugger Run control
A" IrenPython Run
& \rnnP:tthnn nittest (®) Connect only () Debug from entry point () Debug from symbol | main
B Java Applet Run target initialization debugger script {.ds / .py)

[3] Java Application

A7 Jython run

.5J Jython unittest

= Launch Group

Eﬂ PyDev Django

A3 PyDev Google App Run

e,, Python Run

A Duthnn nittect s
Filter matched 23 of 23 items

[]Run debug initialization debugger script (.ds / .py)

Apply

‘/?;‘ Debug

Program image | S{workspace_loc:/Linux Kernel Debug/fvmlinuzx} ‘ File System...

Ju JUnit | S{workspace_loc:/Linux Kernel Debug/stop.ds} File System...

File System...

Workspace...

Workspace...

Revert

Close

(> Click Debug. The Commands view will show:

Getting Started with DS-MDK

49

B Commands &2 @ £ E Egits-4 = O

‘G, Linked: Linux Kernel Debug -

Signals handled by operating system

Connected to running target iMX7D _DFP on TCP:localhost

cd "C:\@3_workspace\DS-MDK_iMX7KernelDebug”

Working directory "C:\83_workspace\DS-MDK_iMX7KernelDebug”

source fv "C:\@3_workspace\DS-MDK_iMX7KernelDebughlinux Kernel Debughstop.ds”
+stop

Execution stopped in 5VC mode at 5:@xBFF76234

On core Cortex-A7_8 (ID @)

S:@8xBFF76234 TST r3,#ax2e

+set os enabled off

file "C:\83_workspace\D5-MDK_iMX7KernelDebughilinux Kernel Debughwmlinux™

Command: Press (Ctrl+5pace) for Content Assist Submit

¥ Inthe Command (CLI) entry box, set a temporary hardware breakpoint
(thbreak) on the entry point into the kernel, by typing in:

thbreak 0x80008000
Press the Submit button or the Enter key. 0x80008000 is the entry point for

the kernel. This is the address to which U-Boot will pass control to boot
Linux once it has completed its setup tasks.

¥ Run the target by pressing the Continue button (B*) in the Debug Control
view, or press F8.

¥ In the Terminal view, tell U-Boot to boot the kernel, by typing in:

boot
Code execution will stop at the breakpoint, and the Disassembly view will show
the assembly code at the entry point (labeled stext). If you have unpacked your

kernel source code into the workspace, the Editor view will show the content of
head.S.

If not, no source code is shown, because the path to the source code has not yet
been configured. DS-5 Debugger will try to open .. ./arch/arm/kernel/head.S
in its Editor view. If it does not find the kernel sources using the source paths
within the vmlinux file, you can resolve this by setting a substitute source path, to
re-direct paths from where the kernel was built, for example, from:

/home/munlin0l/fsl-community-bsp-platform/build-core-image-
base/tmp/work-shared/imx7dsabresd/kernel-source

to a local copy of the kernel sources at:
C:\path\to\linux-imx\4.1.15-r0\git

Make sure that the "Image Path™ and "Host Path™ both end with a corresponding
directory.

50 Debug applications

nead.s Will now open in the Editor view, and the Disassembly view will show
the symbol stext, at the entry point for the kernel. If it doesn't, choose the Path
Substitution... command from the Debug Control view's drop-down menu (=)
and check that the final directory in the Image Path and Host Path correspond.
Then right-click on an instruction in the Disassembly view, and select "Show in
Source".

[8] headS 52 y = O }4} Disassembly 52 § v=0o
7 .arm - < Linked: Linux Kemel Debug ~

HEAD B O v <NeInstruction> 100

TRY (stext) Address | Opcode | Disassembly
RM_BE(setend be) s Stext

» | s:oxsee0sene BL 5 @xB00184A0
MB(adr r9, BSYM(1f) ARM 5:0x30005004 MRS CPSR
bx rs 5:0x86003008 EOR
S :0%2000300C ST
51050003010 BIC
S :0x50008014 ORR
5:0x50008018 BNE 48 ; 0X80005030
5 :0x6000801C ORR
5 :0x30003020 ADR oxao0e5E34
5:0x80003024 nsr
5:0%20003028 b
5 :0xE000802C b
5 :0x50008030 SR CPSR_c,re
5:0x60008034 MRC p15,%0x0,r9, 8, 0, 50
S :AXRARARATA Al Tankun nracessar tune : axARARISNA

Getting Started with DS-MDK 51
Debug the Kernel: Pre-MMU stage
You can now set breakpoints and watchpoints, view registers, view memory,
single-step, and other usual debug operations at this pre-MMU stage, all with
source level symbols.
Gd= Variables ©g Breakp... | Registers 57 %Y Expressi.. f0) Functi. = B

“F, Linked: Linux Kernel Debug =

(7 Atthe kernel entry point, you can PRSI 1 reroe
check the Core and CP15 system e Value e
registers in the Registers view to TFe s
check that they are set as

RO exeepeeo00 32 RW
Rl exeeppe000 32 RW
R2 ex33200000 32 RW

L]
L]
]
recommended by kernel.org. . g I Rt
Observe that: u e
.. . @ R7 2xeeeseees 32 RW
a. the CPU isin SVC (supervisor) o R oxazamooe 32 AW
@ R9 @x418FCa75 32 R'W
mode; check Core = CPSR > M e R0 oxpaoeEROE 32 R/W
R11 @x3131F828 32 R/W
- SVC . <socags ,
o5 e
b. ROisO 5 b oeseenrors BEIET
=& CPSR @x30000003 32 RW

c. R2contains a pointer to the device > ¥ | L\ EW
tree. Right-click R2 and select Show °c oo | 1|uw
Memory Pointed To By R2. o oo |1 [um
Change the size of the memory o) o0 1 RW
displayed to 200 bytes for example et oo IENE D
by entering 200 in the text entry box o o IR
in the top right of the Memory view. ot e

1 RW
I T I T

d. the MMU is off; check CP15 - o
SecureBanked > S SCTLR > M P& of s e
e. the Data cache is off: check CP15 boum 7o
-> SecureBanked © S_SCTLR 2>
C
f. the Instruction cache is either on or off; check CP15 = SecureBanked =>
S SCTLR=> 1

(& To see when the MMU will be turned on, set a breakpoint:

thbreak _ turn mmu on

then continue running (or press F8). When turn mmu_on is reached, note
the value of SP. This contains the virtual address of mmap switched and is
the place the code will jump to after the MMU is enabled.

& Ingeneral, it is not possible to single-step through turn mmu on, SO place
a hardware breakpoint on the virtual address of mmap switched:

1

m

52 Debug applications

thbreak *$SP

then continue running (press F8). When the breakpoint at mmap switched
is hit, the MMU is on.

¥ Check that the MMU is now on, by looking in the Registers view at CP15 =
SecureBanked - S_SCTLR -> M (should show Enabie).

Debug the Kernel: post-MMU stage

The main C code entry into the kernel, after all the architecture-specific setup has
beendon&iSstart_kernel()in\source\init\main.a

(¥ Seta breakpoint on it:
thbreak start kernel
and then run to it.
You can now safely enable OS support in DS-5 Debugger:

set os enabled on

Check that the following appears in the Command view, to confirm Linux
kernel support is enabled:

Enabled Linux kernel support for version "Linux 4.1.15-
1.1.0+gad4d2a08 #2 SMP PREEMPT Tue Jul 5 09:51:28 CEST 2016
arm"

(& The same Linux version information can be reported manually using:
info os-version

which will show for example:

Operating system on: Linux 4.1.15-1.1.0+ga4d2a08 #2 SMP
PREEMPT Tue Jul 5 09:51:28 CEST 2016 arm

This is similar to:
output init nsproxy.uts ns->name

which will show for example:

{sysname = "Linux", nodename = " (none)", release = "4.1.15-
1.1.0+ga4d2a08", version = "#2 SMP PREEMPT Tue Jul 5 09:51:28
CEST 2016", machine = "armv71l", domainname = " (none)"}

This may take a few moments to display, because DS-5 Debugger has to
process the debug symbols.

When OS awareness is enabled and kernel symbols are loaded from the vmlinux
file, DS-5 Debugger will try to access some locations in the kernel. For example,
itwill try toread init nsproxy.uts ns->name t0 get the kernel name and

Getting Started with DS-MDK 53

version. It will also set breakpoints automatically on sys init module () and
SyS_delete module () to trap when kernel modules are inserted (insmod) and

removed (rmmod). You will see these breakpoints appearing in the Breakpoints
view:

9= Variables | ®g Breakpoints 57 | oo Registers %3 Expressions f() Functions = 0

R
‘G, Linked: Linux Kernel Debug ~

@ 5:0x8008C2FC @ Sy5_delete_module [Debugger Internal A32 (ARM]]

@ 5:0x8003E54C @ SyS_init_module [Debugger Internal A32 (ARM]]

@ S:0x8009E688 @ 5y5_finit_module [Debugger Internal A32 (ARM]]

(> Set a breakpoint with:

thbreak kernel init
then run to it.

So far, CPU 0 has been doing all the work. Note that CPU 1 is still powered
down:

4 T Linux Kernel Debug connected VIO
ﬁ Cortex-A7_0 #0 stopped on breakpoint
ﬁt Cortex-A7_1 #1 powered down

A very useful feature during kernel bring-up is to display early printk output in
DS-5 Debugger's command window.

(> Before the console has been enabled there will be no output from the serial
port. You can view the entire log so far with:

info os-log

B Commands 57 | @ History §35 Scripts G ~%4 =08

“G, Linked: Linux Kernel Debug =
into os-log

Booting Linux on physical CPU @x@
Linux version 4.1.15-1.1.8+ga4d2a@3 (munlin@l@mun-lin-box@2) (gcc version 5.3.@ (GCC)) #2 SMP PREEMPT Tue Jul 5
CPU: ARMv7 Processor [418fc@75] revision 5 (ARMv?), cr=18c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
Machine model: Freescale 1.MX7D SabreSD Board
Reserved memory: created CMA memory pocl at @xSadeeoee, size 328 MiB
Reserved memory: initialized node linux,cma, compatible id shared-dmz-pool
Memory policy: Data cache writealloc
On node @ totalpages: 261632
free_area_init_node: node @, pgdat 8@c9c6@8, node_mem_map 9f559888

MNormal zone: 1828 pages used for memmap

Normal zone: @ pages reserved

Normal zone: 13856@ pages, LIFO batch:31

HighMem zone: 131872 pages, LIFO batch:31
PERCPU: Embedded 13 pages/cpu @9f519@8@ s21868 r8192 d23988 u53243
pcpu-alleoc: 521868 r8192 d23988 u53248 alloc=13*4996
pcpu-alloc: [@] @ [e] 1
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 268612
Kernel command line: conscle=ttymxc@®,1152080 root=/dev/mmcblk@p2 rooctwait rw
PID hash table entries: 2843 (order: 1, 8192 bytes)
Dentry cache hash table entries: 65536 (order: 6, 262144 hytes)
< m

-

m

L3

Command: info Ds-\ogl Submit
(& To view the log output line by line, as it happens, use:

54 Debug applications

set os log-capture on

kernel init () tries to start the init process. To see this, set a breakpoint at
the end of xernel init () then run to it (set the breakpoint in the main.c
file available in the Editor view). The init process now appears as an active
thread. CPU 1 is now powered up.

Many of the above steps can be automated, either with a script file, or by filling-
in the Debug Configuration's fields before launching (refer to the Appendix).

(& Delete all user breakpoints and continue (F8). Let the kernel run all the way
to the Login prompt. Login as root.

(> Stop the target by pressing Interrupt (LI/F9). In the Debug Control view,

expand "Active Threads™" and "All Threads". In "All Threads", you will see a
large number of threads/processes have been created. Only two were actually
running, one on each of the two cores. You can see these in "Active
Threads".

Right-click on the connection and select Display Cores to see the state of
both CPUs. You can view the state of the cores, threads and processes on the
command-line with:

info cores

info threads
info processes

“H Memory = Stack ‘H MMU 2 ¢ Trace [-| Events 5= Outline B

It is possible to single-step a
core or a thread/process. To
do so, select either the core

5, Linked: Linux Kernel Debug =
Translation | Tables | Memory Map
Virtual Range Physical Range Type | AP |C |5 [X

or the thread/process in the
Debug Control view, then
press Step (=*-/F5). Note that
when single-stepping though

S:0:00010000-0:00010FFF
5:0:00011000-0:00011 FFF
5:0:00012000-0:0001 2FFF
5:0:00013000-0:00013FFF
5:0:00014000-0:00014FFF
5:0:00015000-0:00015FFF
5:0:00016000-0:00016FFF

SP:0xBF4E4000-0xBF4E4FFF
SP:0xBF4E3000-0xBF4E3FFF
SP:0xBF4E2000-0xBF4E2FFF
SP:0xBF4E1000-0xBF4ELFFF
SP:0xBF4E0000-0xBF4EOFFF
SP:0xBF1C8000-0xBF1CEFFF
SP:0xEF49B000-0xBF4OBFFF

Nermal
Nermal
Normal
Normal
Normal
Normal
Nermal

(SRS RN

(USRS CEURY

(SRS CERRT

Current: Secure PL1&0

a process, it might get
migrated to another core. If a breakpoint is set on a process, the debugger is
able to track the migration of process-specific breakpoints to the other core.

You can check the virtual-to-physical address map for Linux by using the
MMU view. Continue to run the target (F8). Go to Window = Show View
- MMU. Switch to the Memory Map tab and press the Show Memory Map
button to refresh the values.

Let's take a look at the kernel's thread info structure. Stop the target, then
check the kernel's stack size with:

show os kernel-stack-size

For this ARMv7 kernel, the kernel stack size is 8K.

Getting Started with DS-MDK 55

In the Expressions view, add a new expression into the field (type in the field
at the bottom on the view):

(struct thread info¥*) ($sp_svc & ~O0x1FFF)

Ox1FFF is 8K minus 1. Expand the tree structure to explore its contents. The
list of threads in the Debug Control view is created from the same
information, so they should match. For example, the thread name is held in

task.comm.

¥ To get a simple view into the workings of the scheduler, set a breakpoint on
__schedule () With:
hbreak __ schedule

NOTE

This time use hbreak to have a persistent hardware breakpoint instead of a
temporary one.

Then continue running (press F8). At the breakpoint, continue running (press
F8) again and again, and see the names of the active threads changing in
"Active Threads", and different threads are scheduled-in.

(& Alternatively, instead of setting a breakpoint on schedule (), try to seta
breakpoint on do_fork (). If nothing forks, force a fork by typing e.g. '1s".

In summary, we have looked at how DS-MDK can be used to debug the Linux
SMP kernel, both in pre-MMU enabled and post-MMU enabled stages, and
looked at a few of the kernel's internal features.

Debug a Linux Kernel module

Only a few things are required to make kernel module debugging work. This
sections explains how to do this for the imx_rpmsg_tty module that is used in the
example projects that are explained in detail on page Error! Bookmark not
defined..

Create a Linux Kernel module debug project
& Create a new CMSIS C/C++ Project named Linux Kernel Module Debug

As with the Linux kernel debug, add the vmlinux file to the project folder
using Windows Explorer.

> Add a debugger script to the project (right-click the project and select New
- Other... > DS-5 Debugger = DS 5 Debugger Script) called stop.ds
containing:

56 Debug applications

stop

Add another debugger script to the project (right-click the project and select
New = Other... 2 DS-5 Debugger = DS 5 Debugger Script) called
load_ko.ds containing:

add-symbol-file imx rpmsg_tty.ko

NOTE

Make sure that the file imx_rpmsg_tty.ko is stored in the workspace so that
DS-MDK can find it. Otherwise, specify the fully qualified path to it. You can
download the file and the source code file from the board support page of
your development board.

The stop command in the first script will halt the processor before loading the
kernel symbols and the add-symbol-£ile command will load the kernel
module object file.

¥ Right-click the project and select Debug As = CMSIS DS-5 Debugger...

On the Connections tab, set the CPU Instance to either 0 or SMP. Go to the
Advanced tab and specify the path to the vmlinux file and enable Load symbols
only. Also, set the initialization debugger scripts as shown here:

& Debug Configurations X
Create, manage, and run configurations I d
Launch a D5-5 debugging session using a CMS5IS DS-5 Debugger project. ‘
. T
= X | = MName: | Kernel_Debug |
type filter text & Connection 4 Advanced . & 05 Awareness
~ M CMSIS DS-5 Debug A :
W Kernel_Debug eSSt
W RPMSG_TTV_R Program image ‘ [c:\Users\ USER\ Documents\DS-MDK Workspacelwmlinux | | File Systern... | | Workspace...
#5 DS-5 Debugger
@" IronPython Run Load symbols only
a’ IrenPython unittes
] Java Applet Run control
[31 Java Application
?: JUnit i (®) Connect only (O) Debug from entry peint () Debug from symbol ~ main
a’ Jython run Run target initialization debugger script (.ds /.py)
a Jython unittest
= Launch Group | S{workspace_loc:/Kernel_Debug/stop.ds} | File System... | | Workspace...
PyDev Django
Run debug initialization debugger script (.ds/ .py)
25 PyDev Google A %]
- p)f o gle App
@ Python Run | ${workspace_loc:/Kernel_Debug/load_ko.ds} | File System... Workspace...
é’ Python unittest
£, Remote Java Appli
< >
: . Apply Revert
Filter matched 22 of 22 items
©

Apply the settings and press Close (do not press Debug yet!).

Getting Started with DS-MDK

57

Debug the Kernel module

The following steps are required to come to a point where you can debug the

kernel module:
(& Restart your target and halt in U-Boot.

Debug and run the Cortex-M4 application RPMSG TTY RTX.

Boot Linux.

At the Linux prompt, issue the following command to install the driver for

the kernel module:
modprobe imx_ rpmsg_tty

Debug and run the Kernel_Debug project.

Now, you can open the imx_rpmsg_tty.c and set breakpoints.

Finally, debug the Linux Application TTY as well (make sure that the RSE
connection is still live). When you run the application, the debugger will

stop at the breakpoint you have set in the previous step.

#5 Debug .. &2 = O || Commands &I | £
= | L % | LSRN = B, Linked: Kernel_Debug ~
- Breakpoint 2 deleted
wait
4 t3 Kernel_Debug connected continue

Cortex-A7_0 #0 running
* Cortex-A7_1 #1 running
4 tg Linux Application TTY application exit: coded

break -p "C:/83_workspace/DS-MDK/imx_rpmsg_tty.c":52
Hardware breakpoint 3 at S:@x7Felseze

on file imx_rpmsg_tty.c, line 52
Execution stopped in SVC mede at breakpoint 3: S:@x7F@lBe2e

: .
BB -&% < O

@ Application terminated #2 terminated On core Cortex-A7_@ (ID @)
4 @ RPMSG_TTY_RTX_M4 connected In imx_rpmsg_tty.c
* Cortex-M4 #1 running S:@x7F@lBe28 52,8 print_hex_dump(KERN_DEBUG, _ func_ , DU
wait
continue

Status: connected 05 Support: Enabled

Execution stopped in SVC mode at breakpoint 3: S:8x7FB1B828

On core Cortex-A7_@ (ID @)

S5:@x7F@lBe28 52,8 print_hex_dump(KERN_DEBUG, _ func__,

wait
continue

4 1

imzx_rpmsg_tty.c &2

dev_dbg(&rpdev->dev, "msg(<- src Bx¥x) len ¥d\n", src, len);

print_hex_dump(KERN_DEBUG, _ func__, DUMP_PREFIX_NONE, 16, 1,
data, len, true);

spin_lock bh(&cport->rx_lock);
space = tty prepare_flip string(&cpert-»port, &chuf, len);
if (space <= @) {

dev_err({&rpdev->dev, "No memory for tty_prepare flip string\n");

spin_unlock_bh(&cport->rx_lock);
return;

h

memcpy(cbuf, data, len);
tty_flip_buffer_push(&cport->port);
spin_unlock bh(&cport->rx_leck);

Command: Press (Ctrl+Space) for Content Assist

DU

m

m

58 Debug applications

ARM Streamline

ARM Streamline performance analyzer gives you the ability to collect
performance metrics, software tracing and statistical profiling from your Linux
system and show that in its innovative user interface. Streamline helps you to
identify code hotspots, system bottlenecks and other unintended effects of your
code or the system architecture.

DS-MDK includes ARM Streamline in the MDK Professional edition: you can
launch Streamline from the ARM DS-MDK Start menu.

ARM D5-MDK v5.26.1

|| Debug Hardware Tools (Removed)
EN [5-MDK v5.26.1 Command Prompt
& D5-MDE v5.26.1 Release Motes

& Eclipse for DS-MDK v5.26.1

- Streamline (D5-MDK 5.26.1)

ﬁ%‘ Uninstall ARM D5-MDK v5.26.1

Once launched, Streamline allows connecting via TCP/IP to a running Linux
target. A target agent (gator) is required to run on the ARM Linux target for
ARM Streamline to operate. If you downloaded the Linux image from
http://www?2.keil.com/mdk5/ds-mdk/install#boards, then gator is already installed
so you do not need to rebuild the image.

To start collecting data, you can type the target hostname or IP address in the
field box on the top-left side of the window and press the Start Capture button.

- Streamline
File Edit Bare Metal Window Help

% Streamline Data = 0O
& | Target name or [P address © @
o Filter F= [T

The interface would then show the acquired data in graphs which can be used to
understand which parts of the code require optimizations or affect the
performance of the system considerably.

http://www2.keil.com/mdk5/ds-mdk/install#boards

Getting Started with DS-MDK 59

1| Capture_C01_A01 i3)
'Timeline # Call Paths| @ Functions | s Code| = Call Graph| B Stack| § Log

Q MEISEL by (&) &)

4s 65 BIS

CPU Activity
Duser

GPU Vertex
I Dacwty

GPU Fragment

system_server 02148

Effective Shader Cycles

mep
Oee

Geometry Statistics
ETrzngles

glDrawElements Statistics
B Cas 10 gDrawbiements.

Mali GPU Vertex Processor

asmarlerond e

For extra information on the capabilities of the product, please refer to the user
guide available online at https://developer.arm.com/docs/100769/latest/.

https://developer.arm.com/docs/100769/latest/

60 Store Cortex-M image

Store Cortex-M image

To store the Cortex-M image for execution at start up use the following steps:
1. Create a binary image (BIN) with the frome1£ utility application.
2. Store this BIN image on SD card in the boot partition
3. Setup the U-Boot environment to start-up the BIN image file.

Create a Cortex-M binary image (BIN)

(¥ Right-click the project and select Properties = C/C++ Build - Settings.
In the the Build Steps enter under Post-build steps the Command:

fromelf --bin --output "Blinky.bin" "Blinky.axf"

& Properties for Blinky m} x
type filter text Settings =14 - v
Resource
Builders .
w C/C++ Build Configuration: |Debug [Active] ~ | | Manage Configurations...

Build Variables
Environment

Logging %) Tool Settings Build Steps Build Artifact i} Binary Parsers @ Error Parsers
Settings
Tool Chain Editor Pre-build steps

C/C++ General Command:

Project References | v|
Run/Debug Settings

Description:

| > |

Post-build steps

Command:
[fromelf --bin --output "Blinky:bin" "Blinky.axf" ~|
Description:
v
@

NOTE
This example shows the steps for the Blinky application from section Blinky
with CMSIS-RTOS RTX on page 28.

Click OK and rebuild the project to get the BIN file generated.

Getting Started with DS-MDK

61

Store Cortex-M BIN file on SD Card
The SD Card has two partitions:

= The Linux file system partition.

= The FAT32 boot partition.

(& List the partitions with the faisx command:

~# fdisk -1

Device Boot Start End Sectors Size Id Type
/dev/mmcblkOpl 8192 24575 16384 8M c W95 FAT32 (LBA)
/dev/mmcblk0p2 24576 1236991 1212416 592M 83 Linux

(& Store the Cortex-M binary image in the FAT32 boot partition to be able to
execute it at system startup:

1. Create a sub-directory on the Linux file system, for example:
~# mkdir /media/sd0

2. Mount the Linux file system partition for access with RSE.
~# mount -t vfat /dev/mmcblkOpl /media/sdO

3. Use RSE to copy the BIN file from your workspace to the /media/sdo
directory.

4. Unmount the partition to ensure that the file is written correctly:

~# umount /media/sd0

5. Reboot the system and halt in U-Boot.

62 Store Cortex-M image

Run Cortex-M BIN file from U-Boot
At this point, the Cortex-M BIN file is stored in the boot partition.
(> Use the setenv command to change the boot image to the new BIN file:
=> setenv mdimage Blinky.bin; save
The printenv cOmmand shows the boot setup:
=> printenv
Ioadm4image=fatload mmc ${mmcdev}:${mmcpart} 0x7F8000 ${m4image}
m4boot=run loadmd4image; bootaux 0x7F8000
m4image=Blinky.bin
Run m4boot to start the Blinky application:

=> run mdboot

NOTE
For more information refer to the U-Boot Command Line Interface in the U-Boot

user's manual (www.denx.de/wiki/DULG/UBoot).

http://www.denx.de/wiki/DULG/UBoot

Getting Started with DS-MDK 63

Appendix

Remote Processor Messaging protocol example

The device family packs for NXP’s i.MX devices contain two example projects
that show how the two processors communicate with each other using the remote
processor messaging protocol (RPMSG) viaa TTY serial device.

Cortex-A NXO Cortex-M

i-’cﬂCm.deE!‘

. & Temnal M4 £3 |
1 Get Message From I_MX? 1 Get Message From

Remote Side: Master Side:
Hello from M4! ARM®Cortex®-A7 "Hello from A7!"

) Child exited with [len : 14]
: ARM®Cortex®-M4

status 0
Linux Application RTOS System

The Linux Application TTY runs on the Cortex-A processor and writes a message
toa TTY device. The terminal of the RPMSG TTY RTX application running on
the Cortex-M processor shows this message. The application itself responds on
the TTY device. The Linux application reads this message and shows it in its
App Console.

64 Appendix

Eclipse IDE

DS-MDK is an Integrated Development Environment (IDE) that combines the
Eclipse IDE with the compilation and debug technology of ARM.

Use DS-MDK as a project manager to create, build, debug, monitor, and manage
projects for ARM targets. It uses a single folder called a workspace to store files
and folders related to specific projects.

Users can extend its abilities by installing plug-ins written for the Eclipse
platform, such as the CMSIS Pack Manager and Remote System Explorer,
included in DS-MDK.

Perspectives

DS-MDK have multiple perspectives: each perspective contains an initial set and
layout of views that help you to create, build and debug projects. While working
with DS-MDK, you will switch perspectives frequently. It is always possible to
change a perspective layout and to add new views to it.

DS-MDK uses mainly these perspectives:

= C/C++ Perspective

= CMSIS Pack Manager Perspective

= Remote System Explorer Perspective
= DS-5 Debug Perspective

Getting Started with DS-MDK

65

C/C++ perspective

By default, this perspective consists of the Project Explorer, an editor area and

views for tasks, properties, and a message console.

The editor area shows C/C++ source code as well as graphical representations of
various configuration files such as the Run-Time Environment configuration file,

the AXEF file, the scatter file, and files with CMSIS configuration wizard
annotations.

Project Explorer Dependency Check Manage Run-Time Environment Console
& C/C++ - RPMSG_TTY| RTX_M4/RPMSG_TTY_RTX_MA4.rteconfig - Eclipse Platform -| o x
File Edit Source Refpctor Navigate Search Project Run Window Hel)
B-Hoo 3 f -axB @g-a- -6 0-@- & 5 el [F @ e @
[Project brplorer 2 |51 & ¥ = 8 | ¢ "RPMSGTTY_RTX Mrieconfy 52 | i2 RTX.ConfCM.c [¢] hardware initc = 5 | 3= Outline =B
v €5 LinucAppliction{TTY & Components* (5 Resolv @R
3z Binaries An outline is not available.
) Includes Software Components Sel. Variant Vendor Version Description A
@ sre B MCIMXTD:Cortex-Md NXP ARM Cortex-M4, 64 kB RAM, 32 kB R
(= Debug & Board Support MCIMXTD-SABRE Keil 100, iMXTD SABRE Board
v (5 RPMSG_TTY_RTX_M4 v @ cmsis Cortex Microcontroler Softuware Inte
(&) Includes @ CORE a ARM 500
(& Debug @ Dsp [m] ARM 146
~ t RIE @ RTOS (API) 10 05 APl for Cortex:
(= Board Suppert % RTOS2 (API) 20] RTOS AP for Cortex
v (= CMsIS €p CMSIS Driver Unified Device Drivers compliant t
8] RTX_Conf_CM.c [ARM: & Compiler ARM Compiler Software Extensions
s RTX_CMB.Iib [ARM::C v @ Device Startup, System Setup
& Compiler v % iMK7D HAL
= Device @ cem Keil 100, Clock Control Module
(& OpenAMP ¢ MU Keil 100 , Messaging Unit
RTE_Components.h @ RDC Keil 100 , Resource Domain Controller
€] hardware_init.c @ UART Keil 100 ., Universal Asynchronous Receiver/Tre
[tty_mee @ Startun v Keil 100 NXP iMX7D (M4 devices v
[El MCIMXTD_Cortex-Mé.sct < 24
€ RPMSG_TTY_RTX_M4.rteconfig Validation Output Description)
v /L Keil MCIMX7D-SABRE:Board Suppaert.iMX7D SABRE Board. HW INIT Additional software components required
~ /A require Celass="CMSIS", Cgroup="CORE" Select component from list
@ ARM::CMSIS.CORE CMSIS-CORE for Cortex-M, SCO00, SC300, ARM8-M
o A Vil RACIAYI S ABBE - Brmerd oot ST CABBE Bt e 1) Aol frsara oo st e ivar
< >
Compoenents| Device | Packs
& Console 2 oG BB =&IMmBIO=0O
CDT Build Console [RPMSG_TTY_RTX_M4]
~
Total RO Size (Code + RO Data) 28292 (27.63kB)
Total RW Size (RW Data + ZI Data) 31856 (31.11k8)
Total ROM Size (Code + RO Data + RW Data) 28412 (27.75kB)
13:45:01 Build Finished (took 21s.546ms)
v
< 5 (3 >

For more information, refer to the C/C++ Development User’s Guide and the

CMSIS C/C++ Development User’s Guide available from the Eclipse help
system (Help = Help Contents).

66

Appendix

ELF file viewer

An ELF file is the executable image generated by the ARM linker that contains
object code and debug information. Open it from the Project Explorer to inspect

the contents of the image.

[} RPMSG_TTY_RTX_Md.axf 52 =
Header £
Machine class ELFCLASS32 (32-bit)

Data encoding ELFDATAZLSE (Little endian)

Header version EV_CURRENT (Current version)

Operating System ABI none

ABT version @

File type ET_EXEC (Executable file) (2)

Machine EM_ARM (Advanced RISC Machines ARM)

Image entry point Bx1FFFE299

Flags EF_ARM_HASENTRY + EF_ARM_ABI_FLOAT_SOFT (@x85800202)

Header Size 52 bytes (2x34)

Segment header entry size 32 bytes (@x20)

Section header entry size 26 bytes (@x28)

Program header entries 1

Section header entries 16

Program header offset 5497220

Section header offset 5497252

Section header string table index 15

Header | Sections| Segments Symbol Table | Disassembly

CMSIS Configuration Wizard

Right-click on a file in the Project Explorer and select Open With > CMSIS
Configuration Wizard to modify files with CMSIS configuration wizard
annotations in a graphical editor. Verify and adapt the contents directly in the

graphical representation of the text file.

i= RTX_Conf CM.c 22

i= CMSIS Configuration Wizard

Option Value
~ Thread Configuration
Number of cencurrent running user threads 6
Default Thread stack size [bytes] 1024
Main Thread stack size [bytes] 1024
Number of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Stack overflow checking
Stack usage watermark O
Processor mode for thread execution Privileged mede
~ RTX Kemel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kemel Timer
RTOS Kernel Timer input clock frequency [Hz] 24000000
RTX Timer tick interval value [us] 1000
~ System Cenfiguration
~ Reund-Rebin Thread switching
Raund-Rahin Timeout [tick<l 5

<
Number of concurrent running user threads

Defines max. number of user threads that will run at the same time.
Default: 6

Source Editor | CMSIS Configuration Wizard

> @ |0

Getting Started with DS-MDK 67

Scatter File Viewer

Scatter files (*.sct) are used to specify the memory map of an image to the linker.
The Scatter File Viewer lets you inspect this text file in a graphical
representation. Use the filename.sct tab to edit the scatter file contents (refer to

Save the file using L&l or CTRL+S
Adapt the scatter file on page 35).

[8) MCIMX7D_Cortex-M4sct 52 =8
OxFFFFFFFF T 1 DxFFFFFFFF |
LR_IROM1 RW_IRAM1
ANY (+RW,+ZI
LR_IROM1 L
0x20000000
ER_IROM1
*.0 (RESET, +First)
* (InRoot$SSections)
ANY (+R0)
O FFF2000 Ox1FFFE000
000000000 & : 0xD0ODODO0D ¢
Load Regions Execution Regions

< >
Regions/Sections MCIMX7D_Cortex-M4.sct

If you want to learn more about the scatter loading mechanism, look for the
documentation at https://developer.arm.com.

https://developer.arm.com/

68 Appendix

CMSIS Pack Manager perspective

The Pack Manager perspective offers the following functionality:
= Install or update software packs.

= List devices and boards supported by software packs.

= List example projects from software packs.

Use the & icon and select CMSIS Pack Manager, to open this perspective.

Device Database Auvailable Packs/Examples Pack Properties
& CMSIS Pack Manager - PMSG_TTY_RTX_M4/RPMSG_TTY_RTX_ Md.rtecanfig - Eclipse Platform - x
File Edit Navigate Searfh Project Run Window Help
PRI o ln g ard Ao e || w0 5 % 8
M Devices 17 B EE® % =0 & % Bamples 52 [Only show examples from installed packs | (3 | & (5 4" = = O | i= Pack Properties 17 =0
Search Device Search Example mEle -
Device Summary A EBxample Action Description v ‘33 "éMXZD-DW"” °
v oo Ne 527 Devices CMSIS-RTOS Blinky (MCIMX7D-SABRE) € Copy CMSIS-RTOS based Blinky example for Cortex- 4 éa"\‘;P:‘MGMX‘,DVSAERE
v % IMX 7 Series 1 Device Linux Application TTY (MCIMX7D-SABRE) (¢ Copy. Linux Application TTY example & Components
~ % iMX TDusl 1 Device RPMSG PingPong BM (MCIMX7D-SABRE) (¢, Copy. Bare-Metal RPMSG PingPong example for Cortex-M4 M
B MCIVXID ARM Cortex-AT, AR RPMSG PingPong RTX (MCIMXTD-SABRE) . Copy. CMSIS-RTOS RTX and Bare: Metal RPMSG PingPong exan 0 Stp
“% K Series 1 Device RPMSG TTY RTX (MCIMXTD-SABRE) < Copy CMSIS-RTOS RTX TTY example for Cortex-M4 © @ IMXD HAL
4 K00 Series 2 Devices UART
4 K10 Series 23 Devices e
3 K20 Series 41 Devices P
4 K30 Series 6Devices P
A K0 Series 6 Devices @ Board Support
1% K50 Series 12 Devices % OpenAMP
4 Ke0 Series 18 Devices
4 K70 Series 4Devices ~ B Deices
S KT v g LMXT Series
4 K80 Series 2Devices & g LT
A KEAu Series 6 Devices B MOWKTD
4 Ko Series 21 Devices « O Bamples
% Koo Series 33 Devices CMSIS-RTOS Blinky (MCIMX7D-5
8 Kibox Series 14 Devices Linux Application TTY (MCIMXTL
4? Ko Series 2Devices RPMSG PingPong BM (MCIMXTL
:; :\‘2‘:::; ‘Zj E:::z RPMSG PingPong RTX (ME\MX’[
45 LPCI100 Series 128 Devices
4 LPCI200Series 12 Devices
“t¢ LPC1300 Series 24 Devices
1% LPC1500 Series 13 Devices
4 LPCI700Series 21 Devices
45 LPCI00 Series 21 Devices
4 LPCAO0D Series 16 Devices v
< > llc 5| >
B Console 52 oG AR MB--= 8
CDT Build Console [RPMSG_TTY_RTX 4]
-
Total RO (Code + RO Data) 28292 (27.63kB)
Total R (RW Data + ZI Data 31856 (31.11kB)
Total ROM Size (Code + RO Data + Ru Data) 2812 (27.75kB) .
< >
ONLINE

For more information, refer to the CMSIS C/C++ Development User’s Guide
available from the Eclipse help system (Help = Help Contents).

Getting Started with DS-MDK

69

Remote System Explorer perspective

The Remote System Explorer (RSE) is a workbench perspective that allows you

to connect and work with a variety of remote systems. With predefined plug-ins,
you can look at remote file systems, transfer files between hosts, do remote
search, execute commands and work with processes.

Remote Systems File/System Properties

Source Code Editor

Remote System Details

S Remote System Explorer - /10.41.1.130/1
File Edit Navigate Search

w2 I

pbusy.sh - Eclipse Platform

Project Run Wibdow Help

ERit-0- Qi

[5] keepbusy.sh 52
iwhile :3 do

48 Remote Systems 7 il |=|
lels]~-
”

15 done &

(= mnt v

=|5 | 48 Remote System Details 53 | =] Tasks

Parent profile
DESKTOP-S6TOQPL
DESKTOP-S6TOQPL

Value
/home/root/keepbusy.sh
exccutable

sh

/home/root/*

)

No

11 February 2016 15:59:21
/home/root

keepbusy.sh

=1
T5iMX7_SABRE

Remote system type

ected
ected

Local
SSH Only So

- [m X

Quick Accesd || 1 | @ 25 @0 BB
= O = futline 2 = O
An btiing is not available.

o & * v=g
Host name Default User I Description
LOCALHOST USER
10.41.1.130 root

For more information, refer to the RSE User Guide in the Eclipse help system

(Help = Help Contents).

70 Appendix

DS-5 Debug perspective

The DS-5 Debugger allows you to debug bare-metal, RTOS, and Linux
applications with comprehensive and intuitive views, including synchronized
source and disassembly, call stack, memory, registers, expressions, variables,
threads, breakpoints, and trace.

Debug Control Source Code Editor ~ Target Connection Disassembly Variables

S DS-5 Debug {Linux Application TTV/sre/LinuT TV c - Eclipse Platform - o X

File Edit Sourfe Refactor Navigate Search Project Ruf Window Help

- [l i - B Qi v - -G - || e @
%5 Debug Con... 73 | [{ Project Exp... J§ Remote Sy. = B commanas 2 2 B BB~ &% = O e-\erab.. 37 Bl =0
SR R IR A A R g e 7
- set debug-from main ~ A=
~ T& GDB Debu; st Vsl Count | Size
& Applic: ~

e
ecution stopped at breakpoint 1: 6x006685F4
R RPMSG_ uxTTY .

2
I

0x000086F4 61,0 {

Deleted temporary breakpoint: 1
wa

continue
NORMAL_TERMINATION

00f 0 variabis v
< >
Status: application exit: code 255 Command:{Press (Ctri+ Space) for Content Assist Browse.
[8) LinuxTTY.c 52 =8
" $ v
ror %d from tcsetatte”, errno); & Linked: GDE Debua
&, Linked: GDB Debug
B D [<Metnstruction> | 100
Address | Opcode | Disassembly
0x@00036F0 PoP {r7.pc} A
OxO0BBB6F2 NOP
ar *argv[]) o]
0x000086F2 PUSH {ra,r7, r}
EyRPMSG™; 0x000086F6 sus Sp.sp,#0x24
2x900286F8 ADD r7,sp,#0
name, O_RDWR | O_NOCTTY | 0_SYNC); CxB000BEFA o ro.[r7. 2]
- - - Ox@00886FC STR ri,[r7,#0]
9x900e86FE MoV r3,#oxsslc
ror %d opening ¥s: ¥s", errno, portname, strerror (errno)); ©0x60005702 movt ri.=e
Bx000B8706 STR r3, [r7,#8x1c] v
< >

interface_attribs (fd, 8115200, 0);
write (fd, "Hello from A71", 18);
usleep (10800);

char buf[14];
read (fd, buf, sizeof buf);

printf ("Get Message From Remote Side: %s", buf);

< > < >

R GDB Debug application exit: code 255 (Linux Application Debug - Application Debug)

For more information, refer to the ARM DS-5 Debugger Documentation in the
ARM DS-MDK Documentation available from the Eclipse help system (Help =
Help Contents).

Additional links

Kernel.org: http://www.kernel.org/doc/Documentation/arm/Booting

Debugging with scripts:
https://developer.arm.com/docs/dui0446/latest/debuqgging-with-scripts

Debug configurations: https://developer.arm.com/docs/dui0446/latest/ds-5-
debug-perspectives-and-views/debug-configurations-debugger-tab

http://www.kernel.org/doc/Documentation/arm/Booting
https://developer.arm.com/docs/dui0446/latest/debugging-with-scripts
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab
https://developer.arm.com/docs/dui0446/latest/ds-5-debug-perspectives-and-views/debug-configurations-debugger-tab

Getting Started with DS-MDK

71

Index

A
Applications
Add Source Codecovvvvvevveeirieineens 35
Blinky with CMSIS-RTOS RTX.......... 28
BUIld....coviiiiiieiece e 37
Build Cortex-M Imagecccovevevennns 37
Create BINFileccccocoevviviiiiiccieinns 60
Create CorteX-M.......c.ccoevevvvveiveiineennenn, 28
Create Source Files.........cccocevviveieninnns 33
Customize RTOS........ccccvviveveiieceiinns 32
Run from U-Bootc.ccovvvvveiiiienes 62
Select Software Components................ 31
Setup the Project.........ccoeevveienicnnnenn, 29
Store BIN Fileooooviiiiiciccecicees 61
C
(010 0 10] [T 19
D
Debug
Applications
Cortex-M.........
LinuX....cocoevveee
Linux Kernel
Linux Kernel Module..........cccccovvenenn. 55
Streamlineooeeeveeciiicic e 58
Device Database..........ccceevveevvievveccieeinnen, 11
Documentationccccecvveevieiireecee e, 12
DS-MDK
INStall.......cccovveiiiiiiiieecee e 9
Installation Requirements ...8
Introductionccooeeevvieeeiiieceiene w1
LiCenSiNgcooveveeiireneeiee e 8
E
Eclipse

Perspectives........coceeveieienceeiese e 64
Example Project
INStall.......ccooviiiie 15
Example Projectsc.ccooeveveinccicnennens 13
F
Flash Programmig
Scatter File ... 36
L
Linux
Install Image.......cooevvervncnceeeen 13
Linux Applications
Build Application Imageccoev... 39
Development..........c.cc.c.....
Project Set Up
P
Perspective
ClICHT i
CMSIS Pack Manager ...
DS-5 Debug......ccccoveieennnns
Remote System Explorer...................... 69
R
Remote System Explorer............ccccoovnnenee. 23
S
Store Cortex-M ImMageccocvvveiiiieninnns 60
T
Terminal VIEW ..o 15

