Using TrustZone for ARMv8-M on ARM Cortex-M23 and ARM Cortex-M33

Christopher Seidl
Technical Marketing Manager

Thomas Ensergueix
Director, Product Marketing

Webinar
11/17/2016

©ARM 2016
Agenda

- Introduction of ARM® Cortex®-M23 and ARM Cortex-M33
- TrustZone® for ARMv8-M: Security foundation in hardware
- Software development tools and software components
- Demo
ARM Cortex-M23 and ARM Cortex-M33
Bringing TrustZone to the Cortex-M family

- **Cortex-M7**: Maximum performance, control and DSP
- **Cortex-M3**: Performance efficiency
- **Cortex-M0**: Lowest cost, low power
- **Cortex-M4**: Mainstream control and DSP
- **Cortex-M0+**: Highest energy efficiency
- **ARMv7-M**
- **ARMv6-M**
- **Cortex-M33**: Flexibility, control and DSP with TrustZone
- **Cortex-M23**: TrustZone in smallest area, lowest power
- **ARMv8-M**

High performance
Performance efficiency
Lowest power & area

ARMv6-M
ARMv7-M

© ARM 2016
TrustZone for ARMv8-M

Separation and access control
Isolate trusted software and resources
- Reduce attack surface of key components

Trusted software
- Provision of security services
- Small, well-reviewed code

Trusted hardware
- Hardware assist for cryptography
- Secure-access validation built into SoC
Bringing security protection to the system

- Secure the system, secure the processor
 - Hardware separation and isolation
 - Protect memories, peripherals, legacy IP

- AMBA AHB5 bus protocol
 - Signals security through the interconnect
 - Complementary to ARMv8-M

- Optimized for embedded systems
 - Fewer wires saves area and power
 - Hardware protection simplifies software
Ever-expanding world’s #1 embedded ecosystem

Public silicon lead partners

- Analog Devices
- Nuvoton
- NXP
- Microchip
- Renesas
- STI
- Silicon Labs

Public ecosystem lead partners

- ARM Keil
- Mentor Graphics
- ARM mbed
- FreeRTOS
- express logic
- IAR Systems
- eSOL
- Lauterbach
- SELTEC
- KMC
- Sohma & Sophia Technologies
- Micrium
- YOKOGAWA
- SEGGER
- SEQUITUR LABS
- Ubiquitous
- eForce
- TRUSTONIC
- GCC
- added Software
TrustZone for ARMv8-M
Security foundation in hardware
TrustZone for ARMv8-A

Non-secure states
- Rich OS, e.g. Linux
- Secure app/libs
- Secure OS
- Secure monitor

Secure states

TrustZone for ARMv8-M

Non-secure states
- Non-secure app
- Non-secure OS

Secure states
- Secure app/libs
- Secure OS

Secure transitions handled by the processor to maintain embedded class latency
Security defined by memory map

All transactions from core and debugger are checked

- All addresses are either secure or non-secure

- Policing managed by Security Attribution Unit (SAU)
 - Internal SAU similar to MPU
 - Supports use of external system-level definition
 - For example, based on flash blocks or per peripheral

- Banked MPU configuration
 - Independent memory protection per security state

- Load/stores acquire non-secure attribute based on address
 - Non-secure access to secure address → memory fault

Request from CPU

System level control

Security Attribution Unit

Non-secure MPU

Secure MPU

Request to system
ARMv8-M additional states

Existing handler and thread modes are mirrored

- Secure and non-secure code runs on a single CPU
 - For efficient embedded implementation

- Secure state for trusted code
 - New secure stack pointers for robust operation
 - Addition of stack-limit checking

- Dedicated resources for isolation between domains
 - Separate memory protection units for secure and non-secure
 - Private SysTick timer for each state

- Secure side can configure target domain of interrupts

Diagram:

- ARMv7-M
 - Handler mode
 - Thread mode

- ARMv8-M
 - Non-secure handler mode
 - Secure handler mode
 - Non-secure thread mode
 - Secure thread mode
High performance cross-domain calls

Efficient implementation focused on microcontroller

- Security inferred from instruction address
 - Secure memory considered to hold secure code

- Direct function calls across boundary
 - High performance and high security
 - Multiple entry points
 - No need to go via ‘monitor’ for transitions

- Uses Secure Gateway (SG) instruction
 - Only permitted in special secure memory with non-secure callable (NSC) attribute
ARMv8-M programmer’s model: Memory map

Non-secure state

ROM tables
System control and debug
Off-chip peripherals
Off-chip memory
Peripherals
RAM
Flash

Non-secure memory view is identical with Cortex-M

Branches to fixed memory locations access secure firmware

Secure memory is invisible

Vector table for Non-secure handlers

0xFFFFF000
0x00000000
0xA0000000
0x60000000
0x40000000
0x20000000
0x00000000

System control and debug
Off-chip peripherals
Off-chip memory
Peripherals
RAM
Flash

Debug
MPU
SCB
NVIC
SysTick
ITM/DWT/FPB
ARMv8-M programmer’s model: Memory map

Secure state

- ROM tables
- System control and debug
- Off-chip peripherals
- Off-chip memory

Non-secure peripherals
- Secure peripherals
- Non-secure RAM
- Secure RAM
- Non-secure flash
- Secure flash

Non-secure MPU alias
- Debug
- SAU
- Secure MPU
- Secure SCB
- NVIC
- Secure SysTick
- ITM/DWT/FPB

Secure memory view shows additional Flash, RAM, and peripherals

Access to all regions is possible in secure state

Regions can be configured in secure state using the SAU

Vector table for secure handlers
A simplified use case

Composing a system with secure and non-secure projects

- **Non-secure** projects cannot access secure resources
- **Secure** project can access everything
- **Secure** and **non-secure** projects may implement independent time scheduling
Software development tools and software components

Accelerate software creation for ARMv8-M devices with TrustZone
Tools and components for software development

- Keil® MDK IDE & debugger
- ARM Compiler 6
- CMSIS v5
- Fast Models
- ULINK™ debug adapters
- MPS2 Cortex-M Prototyping System
Keil MDK Microcontroller Development Kit

Most comprehensive development solution supporting over 3600 devices

MDK Tools

- **MDK-Core**
 - μVision® IDE with Pack Management
 - μVision Debugger with Streaming Trace

- **ARM C/C++ Compiler**
 - ARM Compiler 5 with Qualification Kit
 - ARM Compiler 6 LLVM Technology

- **DS-MDK**
 - DS-5 IDE with Pack Management
 - DS-5 Debugger with Streamline

Software Packs

- **Device**
 - Startup
 - Device HAL
 - CMSIS Drivers

- **CMSIS**
 - CMSIS-Core
 - CMSIS-DSP
 - CMSIS-RTOS

- **Middleware**
 - IPv4 Network
 - IPv6 Network
 - USB Device
 - USB Host
 - File System
 - Graphics

- **mbed™ TLS**
 - SSL/TLS Encryption

- **mbed Client**
 - IoT Connector
CMSIS: Pathway to the ARM ecosystem

- Vendor-independent hardware abstraction layer for Cortex-M series
 - Open source software framework with processor HAL, DSP library, and RTOS kernel

- Consistent, generic, and standardized software building blocks
 - Optimized API that software creation, code portability, and middleware interfaces

- Infrastructure to accelerate time to market for device deployment
 - Software Packs to distribute device support, board support, and software building blocks

3668 devices supported
1.2M+ source files on GitHub
3M+ downloads in past six months
CMSIS-CORE for secure mode projects

- startup_<device>.c
 CMSIS device startup

- system_<device>.c
 CMSIS system and clock configuration

- <user>.c/c++
 User application
 main() { ... }

- partition_<device>.h
 Secure attributes and interrupt assignment

- <device>.h
 CMSIS device peripheral access

Files relating to CMSIS-CORE including device specific files

- partitions.h provides initial setup for SAU and configures non-secure mode memory areas and interrupts

- CMSIS-CORE device files
- CMSIS-CORE header files generated from CMSIS-SVD
- User program
Debugging of software projects

- MDK offers debugging with:
 - Simulation environment for software development prior silicon availability
 - MPS2 target connection for testing with microcontroller prototypes

- Secure & Non Secure Debug Access

Enter password for Secure Debug Access
Demo
More information

- Upcoming webinars (keil.com/events):
 - Dec 1st: Dynamic software analysis with MDK event recorder
 - Dec 8th: What’s new in CMSIS-RTOS2 and Keil RTX5
Summary

ARMv8-M provides the architecture for the next generation of secure connected embedded devices

Software and tools make it easy for developers to use secure mode

CMSIS provides software building blocks for faster time to market of embedded applications that require security