

8051 RISC Microcontroller

High-Speed, 8051-Compatible, With SRAM and Extended Functions

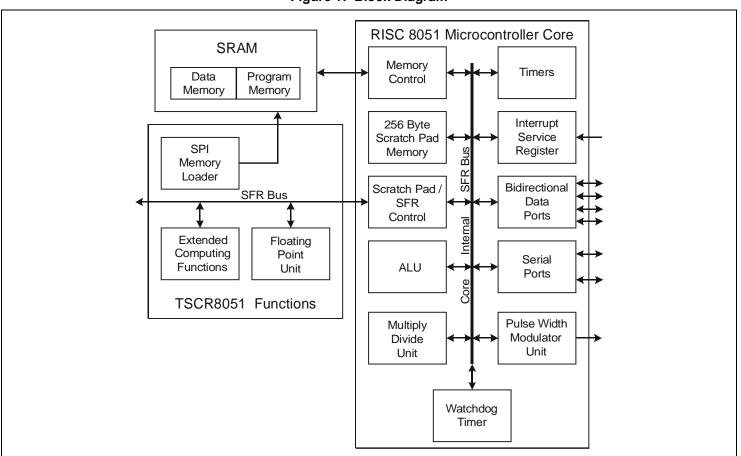
1. Description

The TSCR8051 8-bit microcontroller is software compatible with the millions of devices that have been produced since Intel[®] introduced the 8051 line in 1980. It executes all ASM51 instructions and uses the same instruction set as the 8031. Its Reduced Instruction Set Computer (RISC) core executes many of its instructions in a single clock cycle, providing a significant speed advantage over traditional 8051 devices that execute an instruction every twelve clock cycles. With clock speeds of up to 200 MHz, this device is an 8051 performance leader.

The TSCR8051 features 128KBKBytes of partitionable Data and Program memory and extended 32-bit capabilities including an IEEE 754-compliant floating-point coprocessor with comparator, a multiply/divide unit, a population counter, and a leading-zero counter.

2. Features

- Industry standard 8051 / 8031 software compatible
- RISC architecture with up to x12 speed advantage / MHz over traditional 8051 family devices
- Four speed grades: 100, 150, 180, and 200 MHz
- 128KB of additional high-speed SRAM memory
- IEEE 754-compliant floating point coprocessor for full arithmetic capabilities – up to 100 MFlops
- Extended 32-bit computing functions including population counter, leading zero counter, and floating-point comparator
- Dual data pointers for fast data block moves
- Full 8051-compatible architecture including:
 - o Four 8-bit bi-directional ports
 - o 256 Bytes of "Scratch Pad" memory
 - o Three 16-bit timer/counters
 - Interrupt controller with 12 interrupt sources and 4 priority levels
 - o 15-bit programmable watchdog timer
 - Core 8-bit arithmetic logic unit and 16-bit multiplication division unit
 - o Two full-duplex serial ports
 - Four capture/compare units to generate pulse width modulated signals
 - Special Function Register (SFR) interface, serving up to 50 SFR devices


3. Part Numbering Options	Marking
Packages:	
44 PLCC	XXXXX
68 PLCC	XXXXX
100 TQFP	XXXXX
Operating Temperature:	
Standard, 0° to 70° C	S
Extended (planned)	E
Speed Grade:	
66 MHz	-06
100 MHz	-10
150 MHz	-15
180 MHz	-18
200 MHz	-20

Part number example: **TSCxxxxPS-06**

4. Operating Voltages

 $\begin{array}{l} V_{\text{DDQ,}} \, V_{\text{DDQF}} = 3.3 \pm .3 \ \text{VDC} \\ V_{\text{DD}} = 1.8 \pm .2 \ \text{VDC} \end{array}$

Figure 1: Block Diagram

5. Table of Contents

1.	Description	1
2.	Features	1
3.	Part Numbering	1
4.	Operating Voltages	1
5.	Table of Contents	2
6.	Table of Figures	2
7.	Table of Tables	3
8.	Block Diagram	4
9.	Pin-Out	4
1(0. Special Function Registers	9
1	1. Memory	32
12	2. Instruction Set	34
1:	3. External SFR Timing	42
14	4. Hardware Overview	43

15.	Core Engine	43
16.	Multiplication / Division Unit (MDU)	43
17.	Timers	45
18.	Serial Ports	51
19.	Interrupts	54
20.	Floating Point Unit (FPU)	57
21.	Extended Computing Functions	57
22.	SPI Memory Loader	58
23.	Reset Control	58
24.	Power Management	58
25.	Device Specifications	59
26.	Package Dimensions	59
27.	Document History	60

6. Table of Figures

Figure 1: Block Diagram2	
Figure 2: 44 PPLC, Top View4	

Figure 3 – Scratch Pad Memory	32
Figure 4 – SRAM Memory Layout	
Figure 5 – External Use of Special Function Register Bus (read)	
Figure 6 – External Use of Special Function Register Bus (write)	42
Figure 7 – Timer/Counter 1 in Mode 0	
Figure 8 – Timer/Counter 1 in Mode 2	47
Figure 9 – Timer/Counter 0 in Mode 3	47
Figure 10 – Timer 2 as Gated Timer: Prescaler Select = 1, Reload Mode = 1	49
Figure 11 – Timer 2 as Counter: Capture Mode = 0 (using CC3)	50
Figure 12 – Timer 2: Reload Mode = 0, Compare Mode = 0 (using CC2)	50
Figure 13 – Receive Timing, Mode 0	52
Figure 14 – Receive Timing, Modes 1 and B	53
Figure 15 – Receive Timing, Modes 2, 3, and A	
Figure 16 – Transmit Timing, Mode 0	53
Figure 17 – Transmit Timing, Modes 1 and B	53
Figure 18 – Transmit Timing, Modes 2, 3, and A	
Figure 19 – Interrupt Processing	56

7. Table of Tables

5
9
34
34
85
86
87
88
88
39
4
4
5
54
55
55
57
57
58

8. Block Diagram

- 9. Pin-Out
- 9.1. 44 PLCC

Figure 2: 44 PPLC, Top View

		6	5	4	3	2	1	44	43	42	41	40		
	/		0	•		-	•							
-	7						•						39	
-	8												38	
	9												37	
	10												36	
	11												35	
	12			Pl	astic	lead	ded	chip	carri	er			34	
	13												33	
-	14	32												
-	15												31	
-	16												30	
-	17												29	
_		10	10	00	01	00	0.0	0.4	05	0(07	0.0		
		18	19	20	21	22	23	24	25	26	27	28		

	Table 1: 44 PLCC Pinout										
No.	ΝΑΜΕ		No.	NAME		No.	NAME		No.	ΝΑΜΕ	
1	Vdd Core		12	SD_IN		23	SD/CLK		34	Vss	
2	P1.0		13	P3.1/TxD		24	P2.0/A8		35	#EA	
3	P1.1		14	P3.2/#INT0		25	P2.1/A9		36	P0.7/AD7	
4	P1.2		15	P3.3/#INT1		26	P2.2/A10		37	P0.6/AD6	
5	P1.3		16	P3.4/T0		27	P2.3/A11		38	P0.5/AD5	
6	P1.4		17	P3.5/T1		28	P2.4/A12		39	P0.4.AD4	
7	P1.5		18	P3.6/#WR		29	P2.5/A13		40	P0.3/AD3	
8	P1.6/SCL		19	P3.7/#RD		30	P2.6/A14		41	P0.2/AD2	
9	P1.7/SDA		20	CLK1		31	P2.7/A15		42	P0.1/AD1	
10	RST		21	CLK0		32	#PSEN		43	P0.0/AD0	
11	P3.0/RxD		22	Vss		33	ALE		44	Vdd	

9.2.

68 PLCC

Not available at time of revision.

9.3. 100 TQFP

Not available at time of revision.

9.4. Pin Descriptions

				PORT PINS							
	Thes	e are 8-bit bi-directio	nal I/O ports.	Each consists o	of a latch, output driver, and input buffer.						
Symbol	Туре	Description									
PORT0 [7:0]	I/O	An open-drain port. Pins set to 1 will float and can be used as high impedance inputs. PORT0 pins must be polarized to V_{DDQ} or V_{SSQ} in order to prevent any parasitic current consumption.									
PORT1 [7:0]	I/O	A port with internal pull-ups. Pins set to 1 are pulled high and can be used as inputs. Input pins that are externally pulled low will source current because of the internal pull-ups. In addition to general purpose I/O, PORT1 has alternate functions that may be accessed through the Special Function Registers. Data can be read or written through any pin that is not being used for alternate functions.									
		Pin	Name	Туре	Description						
		PORT1[0]	INT3	Input	External Interrupt 3						
			CC0	Input	Capture/Compare 0						
			RXD1	Input	Serial Port 1 Receive Pin (see page 51)						
		PORT1[1]	INT4	Input	External Interrupt 4						
			CC1	Input	Capture/Compare 1						
			TXD1	Output	Serial Port 1 Transmit Pin (see page 51)						
		PORT1[2]	INT5	Input	External Interrupt 5						
			CC2	Input	Capture/Compare 2						
		PORT1[3]	INT6	Input	External Interrupt 6						
			CC3	Input	Capture/Compare 3						
		PORT1[4]	INT2	Input	External Interrupt 2						
		PORT1[5]	T2EX	Input	Timer 2 External Reload Trigger						
		PORT1[6]			No Alternate Function						
		PORT1[7]	T2	Input	Timer 2 Counter Trigger or Timer Gate						
PORT2 [7:0]	I/O				lled high and can be used as inputs. Input pins that use of the internal pull-ups.						
PORT3 [7:0]	I/O	A port with internal pull-ups. Pins set to 1 are pulled high and can be used as inputs. Input pins that are externally pulled low will source current because of the internal pull-ups. In addition to general purpose I/O, PORT3 has alternate functions that may be accessed through the Special Function Registers. Data can be read or written through any pin that is not being used for alternate functions.									
		Pin	Name	Туре	Description						
		PORT3[0]	RXD0	Input	Serial Port 0 Receive Pin (see page 51)						
		PORT3[1]	TXD0	Output	Serial Port 0 Transmit Pin (see page 51)						
		PORT3[2]	INT0	Input	External Interrupt 0						
		PORT3[3]	INT1	Input	External Interrupt 1						
		PORT3[4]	Т0	Input	Timer 0 Counter Trigger						
		PORT3[5]	T1	Input	Timer 1 Counter Trigger						
		PORT3[6]			No Alternate Function						
		PORT3[7]			No Alternate Function						

Pin Descriptions (continued)

	CLOCK AND RESET PINS								
Symbol	Туре	Description							
CLK_0, CLK_1	Input	Clock Differential Inputs : These signals (combined) form the internal system clock. They are designed to work with a differential clock oscillator and will not work with a crystal. These signals are ignored if CLK_OVR is asserted.							
LCLK	Input	Program Memory Loading Clock : Drives program memory loading circuitry. After program memory is loaded, this signal is ignored unless CLK_OVR is asserted. This pin is designed to work with a clock oscillator and will not work with a crystal.							
CLK_OUT	Output	System Clock Output: Provides access to the internal clock for external SFR circuitry.							
RESET	Input	Global Reset: A high level for 2 clock cycles (if oscillator is running) resets the hardware.							
CLK_OVR	Input	Clock Override: When asserted, LCLK is used in place of CLK as the system clock.							

	SERIAL PERIPHERAL INTERFACE (SPI) PINS									
Symbol	Туре	Description								
SD_IN	Input	Serial Data Input for SPI: program memory input. Immediately upon power-up or after reset, program memory is loaded from an SPI-compatible device.								
SD_OUT	Output	Serial Data Output for SPI								
SD_CLK	Output	Serial Data Clock : During program memory loading, SD_CLK is equivalent to either LCLK or the system clock, depending on the status of the LCLK_EN input (see Clock Pins above).								
SD_CS_	Output	Serial Data Chip Select (active low) for SPI								
SD_BSY	Output	Serial Data Busy: Asserted during SPI program memory loading.								

POWER AND GROUND PINS								
Symbol	Туре	Description						
Vdd	Power	1.8 V Power Supply						
Vddq	Power	3.3 V Power Supply						
VDDQF	Power	3.3 V Filtered Power Supply for differential clock buffer						
VSS, VSSQ, VSSQF	Ground	Ground for VDD, VDDQ, VDDQF						

	MISCELLANEOUS PINS						
Symbol	Туре	Description					
PMODE	Input	Memory Page Mode affects the meaning of registers PPG, DRPG, and DWPG, and the mapping of logical memory addresses. See section 11.2 on page 32 for details.					
SWD	Input	Start Watchdog Timer: If held high during reset, the watchdog timer starts immediately after the reset.					

	DEBUG PINS							
Symbol Type Description								
DC2, DC1, DC0	Input	Debug Control : These signals select which internal signals are available on the DBG bus. They control the debug multiplexer, which chooses among various signals that are accessed during factory testing. During normal operation DC[2:0] should be tied to ground.						
DBG [7:0]	Output	Debug Port : This bus is driven by the debug multiplexer, which chooses among various signals based on the state of the debug control (DC[2:0]) signals. During normal operation these pins will be driven to ground and should not be connected to external circuitry.						

Pin Descriptions (continued)

SPECIAL FUNCTION REGISTER (SFR) PINS						
Symbol	Туре	Description				
SFR_I [7:0]	R_I [7:0] Input SFR Input Bus : Allows external SFR circuitry to transmit data to the 8051 core external SFR circuitry is not used, these signals should be tied to ground.					
SFR_O [7:0] Output SFR Output Bus: Allows the 8051 core to send data to external SFR circuitry.						
SFR_A [6:0]	Output	SFR Address Bus: The 8051 core selects external SFR circuitry via these pins.				
SFR_WE	Output	SFR Write Enable: Asserted when the 8051 core is writing to external SFR circuitry.				
SFR_OE	Output	SFR Read Enable: Asserted while the core is reading from external SFR circuitry.				
SFR_DE	Input	SFR Data Enable : Asserted by external circuitry when writing on the SFR_I bus. If no external SFR circuitry is used, SFR_DE should be tied to ground.				
SFR_BE	Input	SFR Bus Enable : Asserted by external SFR circuitry to enable communication from the 8051 core. If no external SFR circuitry is used, SFR_BE should be tied to ground.				

10. Special Function Registers

The TSCR8051 has 128 special function registers. Of these, 78 are predefined as shown in the table below. The remaining 50 undefined locations may be implemented via the external SFR bus. Read accesses to undefined locations will return unidentified data (high Z state).

	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8									FF
F0	В								F7
E8		MD0	MD1	MD2	MD3	MD4	MD5	ARCON	EF
E0	ACC	PPG	DRPG	DWPG					E7
D8	WDCON								DF
D0	PSW								D7
C8	T2CON		CRCL	CRCH	TL2	TH2			CF
C0	IRCON	CCEN	CCL1	CCH1	CCL2	CCH2	CCL3	CCH3	C7
B8	IEN1	IP1	SORELH	S1RELH					BF
B0	P3			FPUS	FPUR3	FPUR2	FPUR1	FPUR0	B7
A8	IEN0	IP0	SORELL	FPCS	OPB3	OPB2	OPB1	OPB0	AF
A0	P2			FPUCON	OPA3	OPA2	OPA1	OPA0	A7
98	S0CON	SOBUF	IEN2	S1CON	S1BUF	S1RELL	PCCON	POPC	9F
90	P1		DPS				LZCON	LZC	97
88	TCON	TMOD	TL0	TL1	TH0	TH1	CKCON		8F
80	P0	SP	DPL	DPH	DPL1	DPH1	WDTREL	PCON	87

Table 2: Special Function Register Mapping

Special Function Register Descriptions

The following tables describe the predefined special function registers in the order of their addresses.

P0: PORT0											
Address	Reset Value		Description								
80h	FFh		Corresponds to the PORT0[7:0] pins. Writing a '1' to any bit allows the corresponding pin to float; writing a '0' holds the pin low (V_{SSQ}). See PORT0 description on page 4.								
	Bit Map										
7 6 5 4 3 2 1 0						0					
PORT0[7]	PORT0[6]	PORT0[5]	PORT0[4]	PORT0[3]	PORT0[2]	PORT0[1]	PORT0[0]				

SP: STACK	SP: STACK POINTER								
Address	Address Reset Value Description								
81h	07h	Contains the program stack location. It is incremented before PUSH and CALL instructions; the stack begins at location 08h.							

DPL: DATA POINTER (LOW)								
Address Reset Value Description								
82h	00h	Lower byte of the first data pointer; can be accessed separately (MOV DPL,#data8) or in combination with DPH (MOV DPTR,#data16). Only used when DPS.0 = 0. Generally used to access external code (MOVC A,@A+DPTR) or data space (MOV A,@DPTR).						

DPH: DAT	DPH: DATA POINTER (HIGH)							
Address	Reset Value	Description						
83h	00h	Upper byte of the first data pointer; can be accessed separately (MOV DPH,#data8) or in combination with DPL (MOV DPTR,#data16). See DPL, above.						

DPL1: DATA POINTER (LOW)									
Address	Reset Value	Reset Value Description							
84h	00h	Lower byte of the second data pointer; used in place of DPL when DPS.0 =1 (see DPL, above).							

DPH1: DA	DPH1: DATA POINTER (HIGH)							
Address	Reset Value	Description						
85h	00h	Upper byte of the second data pointer; used in place of DPH when DPS.0=1 (see DPH, above).						

WDTREL: WATCHDOG TIMER RELOAD									
Address	Reset Value			Descrip	otion				
86h	00h	of bits WDT (IEN0. Bit 7 is the Prescal	Bits 6-0 are loaded into the watchdog timer when a refresh is triggered by a consecutive setting of bits WDT (IEN0.6) and SWDT (IEN1.6). Bit 7 is the Prescaler Select (PS) bit. When PS = 1 the watchdog is clocked through an additional divide-by-16 prescaler.						
	Bit Map								
7	6	6 5 4 3 2 1 0							
PS		Watchdog Timer Reload Value							

PCON: POWER CONTROL REGISTER									
Address	Reset Value				Descrip	tion			
87h	00h	PCON is u	used for g	eneral power c	ontrol. Bits 6-4	are reserved.			
		Position	sition Name Bit Function						
	PCON.7 SMOD When set, doubles the baud rate of serial port 0 in modes 1, 2, and 3. F details, see page 52.							2, and 3. For	
		PCON.3 PCON.2	Canaral Purnosa Flags						
		PCON.1 PD Power-Down: setting to 1 invokes power down (see page 58).).	
		PCON.0	IDL	Idle: setting to	1 invokes idle	mode (see page	e 58).		
	Bit Map								
7	6		5 4 3 2 1 0						
SMOD	-		_	– GF1 GF0 PD IDL					

TCON: TIMER/COUNTER CONTROL

Address	Reset Value				Descrip	tion			
88h	00h		TCON, along with TMOD, controls Timer 0 and Timer 1 properties. For more detail, see the discussion on page 45.						
		Position	Name			Bit Function			
		TCON.7	TF1		ow flag, set by h tware; automation				
		TCON.6	TR1	Timer 1 run co	ontrol bit. If clea	red, Timer 1 sto	ps.		
		TCON.5	TF0		Timer 0 overflow flag, set by hardware when Timer 0 overflows. Can be cleared by software; automatically cleared when interrupt is processed.				
		TCON.4	TR0	Timer 0 run control bit. If cleared, Timer 0 stops.					
		TCON.3	IE1	Interrupt 1 Edge: Set by hardware when pin INT1 triggers an interrupt. Cleared when interrupt is processed.					
		TCON.2	IT1	Interrupt 1 Type: Selects falling edge (1) or low level (0) on INT1 pin to trigger an interrupt.					
		TCON.1	IE0		ge: Set by hardv interrupt is proc		NT0 triggers an	interrupt.	
		TCON.0	IT0	-0 Interrupt 0 Type: Selects falling edge (1) or low level (0) on INT0 pin to trigger an interrupt.					
				Bit	Мар				
7	6		5	4	3	2	1	0	
TF1	TR1	Т	F0	TR0	IE1	IT1	IE0	IT0	

TMOD: TI	MOD: TIMER/COUNTER MODE CONTROL								
Address	Reset Value	Description							
89h	00h	TMOD, along with TCON, controls Timer 0 and Timer 1 properties. For more detail, see discussion on page 45.							
		Position	Nam	e		Bit Functio	on		
		TMOD.7	GATE	E1 Setting (GATE1 allows IN	NT1 to act as an	external gate f	or Timer 1.	
		TMOD.6	C/T	1 Counter,	/Timer selector f	for Timer 1: 0 =	timer; 1 = coun	ter.	
		TMOD.5 TMOD.4		M1-1 M0-1 M1-1 and M0-1 select the timer/counter 1 mode (see table below).					
		TMOD.3	GATE	E0 Setting (Setting GATE0 allows INT0 to act as an external gate for Timer 0.				
		TMOD.2	C/T(0 Counter,	Counter/Timer selector for Timer 0: 0 = timer; 1 = counter.				
		TMOD.1 TMOD.0		M1-0 M0-0 M1-0 and M0-0 select the timer/counter 0 mode (see table below).					
				Bit	Мар				
7	6	5		4	3	2	1	0	
GATE1	C/T1	M1·	1	M0-1	GATE0	C/T0	M1-0	M0-0	

M1-x	M0-x	TMOD: Timer 0 / Timer 1 Function Table							
0	0	13-bit Counter/Timer; the 3 high order bits of TLx are unused (undetermined).							
0	1	16-bit Counter/Timer.							
1	0	8-bit auto-reload Counter/Timer. The reload value is in THx. When TLx overflows, THx is copied into TLx.							
1	1	Timer 1: Halt. Timer 0: Two independent 8-bit Timers / Counters (see page 45).							

TLO: TIME	TL0: TIMER 0 (LOW BYTE)								
Address	Reset Value	Description							
8Ah	00h	Less significant byte of 16-bit Timer 0; the other byte is TH0. Timer 0 can be configured (using the TMOD register) as either a timer or a counter, and in any of four operating modes. In timer mode, Timer 0 is incremented once every 12 clock cycles. In counter mode, Timer 0 is incremented when a falling edge is observed at pin T0 (PORT3[4]). Timer 0 can also be affected by the INT0 pin and the TCON register; see page 45 for details.							

TL1: TIME	TL1: TIMER 1 (LOW BYTE)								
Address	Reset Value	Description							
8Bh	00h	Less significant byte of 16-bit Timer 1; the other byte is TH1. Timer 1 can be configured (using the TMOD register) as either a timer or a counter, and in any of four operating modes. In timer mode, Timer 1 is incremented once every 12 clock cycles. In counter mode, Timer 1 is incremented when a falling edge is observed at pin T1 (PORT3[5]). Timer 1 can also be affected by the INT1 pin and the TCON register; see page 45 for details.							

ТНО: ТІМЕ	TH0: TIMER 0 (HIGH BYTE)									
Address	Reset Value	et Value Description								
8Ch	00h	The more significant byte of 16-bit Timer 0; the other byte is TL0. For function, see TL0.								

TH1: TIME	TH1: TIMER 1 (HIGH BYTE)								
Address	Reset Value	Description							
8Dh	00h	The more significant byte of 16-bit Timer 1; the other byte is TL1. For function, see TL1.							
		TH1 can also set the baud rate for serial port 0; see discussion on page 52.							

CKCON: 0	CKCON: CLOCK CONTROL										
Address	Reset Value	Description									
8Eh	00h	the cycle for should be l	ts 7-3 are not implemented; bits 2-0 control the length of the memory access timer, stretching e cycle for slow memory types. Because this device contains high speed RAM, CKCON[2:0] ould be left at the default high-speed setting. Any changes will degrade device performance. (CON[2:0] stretches the memory cycle access time as shown below:								
			ckcon.2	ckcon.1	ckcon.0	value	memaddr	memrd	memaddr	memwr	
			0	0	0	0	1	1	2	1	
			0	0	1	1	2	2	3	1	
			0	1	0	2	3	3	4	2	
			0	1	1	3	4	4	5	3	
			1	0	0	4	5	5	6	4	
			1	0	1	5	6	6	7	5	
					0	6	8	8	8	6	
				1	1	1	0	0	9	1	
	Bit Map										
7	6	5		4		3	2	2	1		0
_	-	-		_		_	CKC	ON.2	CKCON	I.1 C	CKCON.0

P1: PORT	P1: PORT1									
Address	Reset Value		Description							
90h	FFh		P1 corresponds to the PORT1[7:0] pins. Writing a '1' to any P1 bit sets the corresponding pin igh (V_{DDQ}); writing a '0' holds the pin low (V_{SSQ}). See PORT1 description on page 4. Bit Map							
7	6	5 4 3 2 1					0			
PORT1[7	7] PORT1[6] PORT1[5]	PORT1[5] PORT1[4] PORT1[3] PORT1[2] PORT1[1] PORT1[0							

DPS: DATA	DPS: DATA POINTER SELECT									
Address	Reset Value		Description							
92h	00h		Data pointer select – When DPS.0 is 0 (cleared), all data pointer activity uses DPH and DPL. When DPS.0 is set to 1, data pointer activity uses DPH1 and DPL1.							
			В	it Map						
7	6	5	5 4 3 2 1 0							
_	—	-	– – – – – DPS.0							

LZCON: LEAD ZERO COUNT CONTROL

			CONTROL							
Address	Reset Value				De	scriptior	1			
96h	0Fh	register. F significant zero count	For this ap bits are v t does no setting the	oplication, 'lead written before le t change until t	ling zeros' ess signific he internal	are 0 bits ant bits. 32-bit le	s written bei Once a '1' l ading zero o	ading zeros writh fore a 1 is writte has been writter count register is byte of the regis	n; more n, the leading cleared –	
		Position	Name			B	it Function	l		
		LZCON.4	LZOF	count overflo	ows. The c en the cou	ount use nt reache	s an interna s 2 ³² . LZO	ardware when th al 32-bit register F is read only; it eared.	, so LZOF is	
		LZCON.3	LZM					, reading the least tregister will cleast		
		LZCON.2 LZCON.1	LZRS1 LZRS0	register is av The LZRS1/ consecutive The bytes ar 00b (least si	vailable in t LZRS0 val reads will re read fror gnificant by S1/0 select	he 8-bit I ue decre provide a m more s yte), the s which I	ZC register ments after Il four bytes ignificant to value cycles byte to read	hich byte of the 3 r, as shown in the each read of LZ of the internal 3 ward less signifi to 11b (most si next; reading L	te table below. C so that four 32-bit register. cant. After gnificant byte).	
					LZRS1	LZRS0	Next Byt	e Read by LZC		
					0	0	() (LSB)		
					0	1		1		
					1	0		2		
					1	1	3	B (MSB)		
		LZCON.0	LZCLR	Leading Zero Clear – Setting LZCLR clears the internal 32-bit leading zero count register and the LZOF bit. Clearing LZCLR has no effect except changing the value of the bit itself. LZCLR is cleared each time the 8-bit LZC register is written.						
					Мар					
7	6		5	4	3		2	1	0	
-	-	-	-	LZ_OF	LZM		LZRS1	LZRS0	LZCLR	

LZC: LEAD	LZC: LEADING ZERO COUNT									
Address	Reset Value	Description								
97h	00h	An internal 32-bit leading zero count register records the number of leading zeros written to this register. For this application, 'leading zeros' are 0 bits written before a 1 is written. More significant bits are considered to written 'before' less significant bits. Once a 1 has been written, the leading zero count does not change until the internal 32-bit leading zero count register is cleared (see the LZCON register for clearing instructions). The internal 32-bit register is read a byte at a time by reading this 8-bit LZC register. The byte to be read from the internal 32-bit register is determined by bits LZRS1 and LZRS0 in LZCON.								

SOCON: SERIAL PORT O CONTROL

Address	Reset Value				Descrip	tion					
98h	00h	S0CON co	S0CON controls serial port 0 (not PORT0). For details, see page 51.								
		Position	Name			Bit Function					
		S0CON.7 S0CON.6	SM0 SM1	Serial Mode:	determines the	operating mode	of serial port 0.				
		S0CON.5	SM20	Enables multi	processor comr	nunication featu	ire for serial por	t 0.			
		S0CON.4	REN0	Receive Enat	ole: 1 enables se	erial reception, () disables recep	otion.			
		S0CON.3	TB80	Transmit Bit: If serial port 0 is in mode 2 or 3, this is transmitted as the ninth data bit. Can be set or cleared to support a given function (e.g. parity or multiprocessor communication).							
		S0CON.2	RB80		n mode 2 or 3, t stop bit (can be						
		S0CON.1	TIO		rrupt for serial p ransmission; mu			mpletion of a			
		S0CON.0	RI0	Receive Interrupt for serial port 0. Set by hardware after completion of a serial port 0 reception; must be cleared by software.							
				Bit	Мар						
7	6		5	4	3	2	1	0			
SM0	SM1	SM	120	RENO TB80 RB80 TIO RIO							

S0BUF: S	SOBUF: SERIAL PORT 0 TRANSMIT/RECEIVE BUFFER									
Address	Reset Value	Description								
99h	00h	This register accesses both a transmit buffer and a separate receive buffer. Writing to S0BUF fills the transmit buffer and starts transmission. Reading from S0BUF accesses the receive buffer. Serial port 0 can simultaneously transmit and receive. It buffers 1 byte at receive.								

IEN2: INTERRUPT ENABLE 2												
Address	Reset Value		Description									
9Ah	00h	IEN2 is one of	IEN2 is one of three registers that control the interrupt circuitry. Only one bit is supported:									
		Position Name Function										
		IEN2.0	ES1	If 0, disables t	he serial chann	el 1 interrupt.						
			Bit N	Іар								
7	6	5	4 3 2 1				0					
-	-	-	_	-	ES1							

S1CON: SERIAL PORT 1 CONTROL

Address	Reset Value		Description										
			-										
9Bh	00h	S1CON co	S1CON controls serial port 1 (not PORT1). For details, see page 51.										
		Position	Name			Bit Function							
		S1CON.7	SM	Serial Mode f	or serial port 1:	0 = Mode A, 1 =	Mode B.						
		S1CON.6	-	Reserved									
		S1CON.5	SM21	Enables multi	iprocessor comr	nunication featu	ire						
		S1CON.4	REN1	Receive Enat	ole: 1 enables se	erial port recepti	on; 0 disables r	eception.					
		S1CON.3	TB81	If serial port 1 is in mode A, this is transmitted as the ninth data bit. Can be set or cleared to support a given function (e.g. parity or multiprocessor communication).									
		S1CON.2	RB81		is in mode A, th stop bit (can be			n mode B, it					
		S1CON.1	TI1	Transmit Interrupt for serial port 1. Set by hardware after completion of a serial port 1 transmission; must be cleared by software.									
		S1CON.0	RI1	Receive Interrupt for serial port 1. Set by hardware after completion of a serial port 1 reception; must be cleared by software.									
				Bit	Мар								
7	6	5	5	4	3	2	1	0					
SM	_	SM	21	REN1	TB81	RB81	TI1	RI1					

S1BUF: S	S1BUF: SERIAL PORT 1 TRANSMIT/RECEIVE BUFFER									
Address	Reset Value	Description								
9Ch	00h	This register accesses both a transmit buffer and a separate receive buffer. Writing to S1BUF fills the transmit buffer and starts transmission. Reading from S1BUF accesses the receive buffer. Serial port 1 can simultaneously transmit and receive. It buffers 1 byte at receive.								

S1RELL:	S1RELL: SERIAL PORT 1 RELOAD (LOW BYTE)								
Address	Reset Value	Description							
9Dh	00h	Lower byte of S1REL (serial port 1 reload register); the upper two bits are in S1RELH. Serial port 1 baud rate = System Clock Frequency / (32 x (1024 – S1REL))							

PCCON: POPULATION COUNT CONTROL

Address	Reset Value				D	escriptio	n			
9Eh	0Fh	Bits 7-5 are '1's that are						ry, which counts	the nur	nber of
		Position	Name				Bit Function	on		
		PCCON.4 POPOF Population Count Overflow – Read-only; asserted by the when the population count overflows. The count is storegister, so POPOF is asserted when the count reached cleared by setting POPCLR or by reading the least sign the internal 32-bit count register when the POPM bit is								2-bit DPF is
		PCCON.3	POPM							
		PCCON.2 PCCON.1	POPRS1 POPRS0	Population Read Select – Determines which byte of the 32-bit internal						
					POPRS1	POPRS	0 Next By	te to Read via l	POPC	
					0	0	0 (LSB)			
					0	1	1			
					1	0	2			
					1	1	3 (MSB)			
		PCCON.0	POPCLR	populat (POPO	ion count re F). Clearing	egister an g POPCL	d the Popula R has no eff	clears the interr tion Count Over ect except chan time POPC is	flow Fla ging the	ig
				В	it Map					
7	6	5		4	3		2	1		0
-	-	-	P	OPOF	POPI	VI	POPRS1	POPRS0	POF	PCLR

POPC: Po	POPC: POPULATION COUNT									
Address	Reset Value	Description								
9Fh	00h	An internal 32-bit population counter records the number of '1' bits written to POPC. The count increases with every '1' written to POPC until the internal counter overflows or is cleared (see PCCON for clearing instructions). The internal 32-bit population counter is read a byte at a time by reading POPC, controlled by bits POPRS1 and POPRS0 in the PCCON register.								

P2: PORT	P2: PORT2 CONTROL													
Address	Reset Value		Description											
A0h	00h		P2 corresponds to the PORT2[7:0] pins. Writing a '1' to any bit of P2 sets the corresponding bin high (V_{DDQ}); writing a '0' holds the pin low (V_{SSQ}). See PORT2 description in section 8.											
			Bit N	Лар										
7	6	5 4 3 2 1												
PORT2[7] PORT2[6] PORT2[5]] PORT2[5] PORT2[4] PORT2[3] PORT2[2] PORT2[1] PORT2[0											

FPUCON: FLOATING-POINT UNIT CONTROL

Address	Reset Value		Description								
A3h	00h	Bits 7-5 are not used; bits 4-0 control the function of the floating-point unit (FPU).									
		Position	Name				Bit Func	tion			
		FPUCON.4	FPU_M1	FF	PU Roundin	ig Mode:					
		FPUCON.3	FPU_M0		FPU_M1	FPU_M0		Rounding Mode	•		
					0	0	Round to r	earest even num	nber		
					0	1	Round to z	ero			
					1	0	Round up	(to +INF, positive	infinity)		
					1	1	Round dov	down (to –INF, negative infinity)			
		FPUCON.2	FPU_OP2	FPU Operation:							
		FPUCON.1	FPU_OP1		FPU_OP2	FPU_OP1	FPU_OP 0	Operati	on		
		FPUCON.0	FPU_OP0		0	0	0	Add A and B			
					0	0	1	Subtract B from	A		
					0	1	0	Multiply A by B			
					0	1	1	Divide A by B			
					1	0	0	Convert Integer	A to Float		
					1	0	1	Convert Float A to Integer			
					1	1	х	Undefined (Res	erved)		
					Bit Map						
7	6	5	4		:	3	2	1	0		
-	-	-	FPU_		FPU	_M0	FPU_OP2	FPU_OP1	FPU_OP0		

OPA3: FP	OPA3: FPU FLOATING POINT OPERAND A3 (MSB)								
Address	Reset Value	Description							
A4h	00h	Contains the most significant byte of the 32-bit Floating Point Operand A (OPA).							

OPA2: FP	OPA2: FPU FLOATING POINT OPERAND A2									
Address	Reset Value	Description								
A5h	00h	Contains the second most significant byte of the 32-bit Floating Point Operand A (OPA).								

OPA1: FPU FLOATING POINT OPERAND A1						
Address Reset Value Description						
A6h	00h	Contains the second least significant byte of the 32-bit Floating Point Operand A (OPA).				

OPA0: FP	OPA0: FPU FLOATING POINT OPERAND A0 (LSB)						
Address Reset Value Description							
A7h	00h	Contains the least significant byte of the 32-bit Floating Point Operand A (OPA).					

IENO: INTE	ENO: INTERRUPT ENABLE 0									
Address	Reset Value		Description							
A8h	00h	IEN0 cont watchdog			/ (with IEN1 and	I IEN2). In addi	tion, bit 6 (WDT) is part of the		
		Position	Name			Bit Function				
		IEN0.7 EAL If 0, disables all interrupts.								
		IEN0.6	WDT	WDT Watchdog timer refresh flag, set to initiate a refresh of the watchdog t WDT must be set directly before SWDT (IEN1.6) to refresh the watch timer. WDT is reset by hardware 12 clock cycles after it has been set						
		IEN0.5	ET2	If 0, disables ti	mer 2 overflow	and external rel	oad interrupts.			
		IEN0.4	ES0	If 0, disables the	he serial channe	el 0 interrupt.				
		IEN0.3	ET1	If 0, disables t	he Timer 1 over	flow interrupt.				
		IEN0.2	EX1	If 0, disables e	external interrup	t 1.				
		IEN0.1	ET0	If 0, disables t	he Timer 0 over	flow interrupt.				
		IEN0.0	EX0	If 0, disables external interrupt 0.						
				Bit	Мар					
7	6		5	4	3	2	1	0		
EAL	. WE	DT I	ET2	ES0	ET1	EX1	ET0	EX0		

IPO: INTER	RUPT PRIORITY	ט											
Address	Reset Value					Desc	ription						
A9h	00h	IP0, combined with IP1, sets the priority level for each of the six interrupt groups. In addition, bits 6 & 7 are part of the watchdog circuitry. There are four interrupt priority levels:											
					IP1.x	IP0.x	Priority Level						
					0	0	0 (lowest)						
					0	1	1						
					1	0	2						
					1	1	3 (highest)						
		Position	Name				Bit Functio	n					
		IP0.7	OWDS	Oscillator	Oscillator Watchdog Status (not supported)								
		IP0.6	WDTS		atchdog Timer Status: Set by the hardware when the watchdog time alue reaches 7CFFh; reset begins two clock cycles later.								
						IP0.5	IP0.5	Lower bit, interrupt group 5 priority (Timer 2, External Interrupt 6)					upt 6)
		IP0.4	IP0.4	Lower bit, interrupt group 4 priority (Serial channel 0, External Inte									
		IP0.3	IP0.3	Lower bit,	interrup	ot group	3 priority (Timer	1, External Interi	upt 4)				
		IP0.2	IP0.2	Lower bit,	interrup	ot group	2 priority (Extern	al Interrupts 1 ar	nd 3)				
		IP0.1	IP0.1	Lower bit,	interrup	ot group	1 priority (Timer	0, External Interi	upt 2)				
		IP0.0	IP0.0	0.0 Lower bit, interrupt group 0 priority (Serial Channel 1, External Inter					rnal Interrupt 0)				
				В	Bit Map								
7	6	5		4		3	2	1	0				
OWDS	WDTS	IP0.5	;	IP0.4	IF	P0.3	IP0.2	IP0.1	IP0.0				
000511													

SORELL:	SORELL: SERIAL PORT O RELOAD (LOW BYTE)								
Address	Reset Value	Description							
AAh	D9h	Lower byte of the serial port 0 reload register (S0REL); the upper two bits are in S0RELH. When serial port 0 is in mode 1 or 3 and BD = 1, then: serial port 0 baud rate = 2 ^{SMOD} x System Clock Frequency / (64 x (1024 – S0REL)) (Mode is determined by S0CON; SMOD is PCON.7; BD is WDCON.7)							

FPCS: FLOATING POINT COMPARATOR STATUS

Address	Reset Value		Description						
ABh	00h		Compares the FPU operand registers (OPA and OPB) to each other and against special values: infinity, zero, and Not a Number [NaN]. Bits 7 and 6 are not used.						
		Position	Name			Bit Function	on		
		FPCS.5	UNORD		Unordered: Set when either OPA or OPB is "Not a Numbe For more details, see FPU description on page 57.			nber" (NaN).	
		FPCS.4	ALTB	A < B: \$	A < B: Set when OPA is less than OPB.				
		FPCS.3	BLTA	B < A: \$	B < A: Set when OPB is less than OPA.				
		FPCS.2	AEQB	A = B: \$	Set when OPA a	nd OPB are equ	ial.		
		FPCS.1	OP_INF	Operan	d Infinite: Set wh	nen either OPA	or OPB is infinit	e.	
		FPCS.0	OP_ZERC	Operan	d Zero: Set whe	n OPA is zero.			
				Bit	Мар				
7	6	Ę	5	4	3	2	1	0	
-	-	UNC	ORD	ALTB BLTA AEQB OP_INF OP_			OP_ZERO		

	OPB3: FPU FLOATING POINT OPERAND B3 (MSB)						
Address Reset Value Description							
	ACh	00h	Contains the most significant byte of 32-bit Floating Point Operand B (OPB).				

OPB2: FPU FLOATING POINT OPERAND B2						
Address Reset Value Description						
ADh	00h	Contains the second most significant byte of 32-bit Floating Point Operand B (OPB).				

	OPB1: FPU FLOATING POINT OPERAND B1							
Address Reset Value Description								
	AEh	00h	Contains the second least significant byte of 32-bit Floating Point Operand B (OPB).					

OPB0: FPU FLOATING POINT OPERAND B0 (LSB)							
Address Reset Value Description							
AFh	00h	Contains the least significant byte of 32-bit Floating Point Operand B (OPB).					

P3: PORT3	P3: PORT3 CONTROL										
Address	Reset Value		Description								
B0h	FFh		P3 corresponds to the PORT3[7:0] pins. Writing a '1' to P3 sets the corresponding pin high V_{DDQ}); writing a '0' holds the pin low (V_{SSQ}). See description of PORT3 in section 8.								
			Bit	Мар							
7	6	5	4	3	2	1	0				
PORT3[7]	PORT3[6]	PORT3[5]	PORT3[4]	PORT3[3]	PORT3[2]	PORT3[1]	PORT3[0]				

FPUS: FLOATING POINT UNIT STATUS

Address	Reset Value				Descrip	tion		Description PUS reports special values in the FPU results (FPUR) or in an operand (OPA or OPB).							
B3h	00h	FPUS rep	FPUS reports special values in the FPU results (FPUR) or in an operand (OPA or OPB).												
		Position	osition Name Bit Function												
		FPUS.7	SNAN	• •	Not A Number (N. For more det	,									
		FPUS.6	QNAN	Quiet Not A Number (QNaN): Set when the FPU result is a QNaN more details, see discussion on page 57.				a QNaN. For							
		FPUS.5	INF	Infinity: Se	et when the FPU	result is infinite).								
		FPUS.4	INE	Inexact: S	et when the FPL	J result is inexa	ct.								
		FPUS.3	OVRFLW	with an absolute value greater than $(2-2^{-23}) \times 2^{127}$.				nt number							
		FPUS.2	UFLW					oint number							
		FPUS.1	DBZ		Zero: Set when and operand B			see							
		FPUS.0	ZERO	Zero: Set when the FPU operation result is zero.											
				Bit	Мар										
7	6		5	4	3	2	1	0							
SNAN	QNAN	II	NF	INE OVRFLW UFLW DBZ ZERO				ZERO							

FPU	FPUR3: FPU FLOATING POINT RESULT 3 (MSB)							
Add	ress	Reset Value	Description					
B4	1h	00h	The most significant byte of the 32-bit floating-point unit result (FPUR) of an FPU operation.					

FPUR2: F	FPUR2: FPU FLOATING POINT RESULT 2							
Address	Reset Value	Description						
B5h	00h	Second most significant byte of the 32-bit floating-point unit result (FPUR).						

FPUR1 - FPU FLOATING POINT RESULT 1

Address	Reset Value	Description
B6h	00h	Second least significant byte of the 32-bit floating-point unit result (FPUR) of an FPU operation.

FPUR0 – F	FPUR0 – FPU FLOATING POINT RESULT 0 (LSB)							
Address	Reset Value	Description						
B7h	00h	Least significant byte of the 32-bit floating-point unit result (FPUR) of an FPU operation.						

IEN1: INTE	IEN1: INTERRUPT ENABLE 1									
Address	Reset Value		Description							
B8h	00h	IEN1 cont the watche			y (with IEN0 and	d IEN2). In addi	tion, bit 6 (SWD	T) is part of		
		Position	Name			Bit Function				
		IEN1.7	EXEN2	If 0, disables	the Timer 2 ex	ternal reload inte	errupt.			
		IEN1.6	SWDT	Start Watchdog Timer: If the timer is not running, setting SWDT activates it. If the timer is running, setting SWDT directly after setting WDT (IEN0.6) performs a watchdog timer refresh. SWDT is cleared by the hardware 12 clock cycles after it has been set.						
		IEN1.5	EX6	If 0, disables	external interru	ıpt 6 [INT6]				
		IEN1.4	EX5	If 0, disables	external interru	ıpt 5 [INT5]				
		IEN1.3	EX4	If 0, disables external interrupt 4 [INT4]						
		IEN1.2	EX3	If 0, disables	s external interru	ıpt 3 [INT3]				
		IEN1.1	EX2	If 0, disables	s external interru	ıpt 2 [INT2]				
		IEN1.0	EADC	Enable A/D Converter (not supported).						
	Bit Map									
7	6		5	4	3	2	1	0		
EXEN2	SWDT	E	X6	EX5	EX4	EX3	EX2	EADC		

IP1: INTER	P1: INTERRUPT PRIORITY 1								
Address	Reset Value		Description						
B9h	00h	IP1, combined wit four priority levels		e priorit	y level fo	or each of the six i	nterrupt groups.	There are	
				IP1.x	IP0.x	Priority Level			
				0	0	0 (lowest)			
				0	1	1			
				1	0	2			
				1	1	3 (highest)			
		Position/Name				Function			
		IP1.5	Upper bit, in	terrupt	group 5	priority (Timer 2, E	External Interrup	t 6)	
		IP1.4	Upper bit, in	terrupt	group 4	priority (Serial cha	annel 0, External	Interrupt 5)	
		IP1.3	Upper bit, in	terrupt	group 3	priority (Timer 1, E	External Interrup	t 4)	
		IP1.2	Upper bit, in	terrupt	group 2	priority (External I	nterrupts 1 and 3	3)	
		IP1.1	Upper bit, in	terrupt	group 1	priority (Timer 0, E	External Interrup	t 2)	
		IP1.0 Upper bit, interrupt group 0 priority (Serial Channel 1, External Interrupt 0)					I Interrupt 0)		
			В	it Map					
7	6	5	4		3	2	1	0	
-	-	IP1.5	IP1.4		IP1.3	IP1.2	IP1.1	IP1.0	

SORELH:	SORELH: SERIAL PORT O RELOAD (UPPER 2 BITS)								
Address	Reset Value		Description						
BAh	03h		Contains the upper two bits of S0REL (serial port 0 reload register); the lower byte is in S0RELL. See S0RELL for functional description. Bit Map						
7 6		5	4	3	2	1	0		
		-	-	-	-	S0RELH.1	S0RELH.0		

S1RELH:	S1RELH: SERIAL PORT 1 RELOAD (UPPER 2 BITS)								
Address	Reset Value			Descrip	tion				
BBh	03h		Contains the upper two bits of S1REL (serial port 1 reload register; the lower byte is in S1RELL. See S1RELL for functional description.						
			Bit	Мар					
7	6	5	4	3	2	1	0		
-	-	-	-	-	-	S1RELH.1	S1RELH.0		

IRCON: IN	IRCON: INTERRUPT REQUEST									
Address	Reset Value		Description							
C0h	00h	Bits are s	et by Time	er 2 and extern	al interrupts and	d must be cleare	ed by software.			
		Position	Name			Bit Function				
		IRCON.7	EXF2	Timer 2 exte	rnal reload flag					
		IRCON.6	TF2	Timer 2 over	flow flag					
		IRCON.5	IEX6	External Inte	rrupt 6 [INT6] E	dge flag				
		IRCON.4	IEX5	External Inte	rrupt 5 [INT5] E	dge flag				
		IRCON.3	IEX4	External Inte	rrupt 4 [INT4] E	dge flag				
		IRCON.2	IEX3	External Inte	rrupt 3 [INT3] E	dge flag				
		IRCON.1	IEX2	External Inte	rrupt 2 [INT2] E	dge flag				
		IRCON.0	IADC	A to D Converter Interrupt (not supported)						
			Мар							
7	6		5	4 3 2 1		1	0			
EXF2	TF2		EX6	IEX5 IEX4 IEX3 IEX2 IADC						

COLN. COMPARE/ CAFTURE LNABLE									
Address	Reset Value		Description						
C1h	00h						nd Capture/Com o bits, COCAHx	npare registers (and COCALx:	CRC, CC1,
			COCAHx	COCALx		Со	mpare / Captur	e Mode	
			0	0	Com	pare / captu	ire disabled		
			0	1			ising edge of pir C0 falling edge	n CCx(See bit detection)	I3FR
			1	0	Com	pare enable	ed		
			1	1	Capt	ure on write	operation into r	register	
		Position		Name		Bit Function			
		CCI	EN.7	COCAH3		Compare/Capture Mode Select for CC3 (high)			
		CCI	EN.6	COCAL3 Compare/Capture Mode Select for CC3 (ow)			
		CC	EN.5	COCAH2		Compare/Capture Mode Select for CC2 (high)			nigh)
		CCI	EN.4	COCAL	2	Compare/Capture Mode Select for CC2 (low)			ow)
		CCI	EN.3	N.3 COCAH1		Compare/Capture Mode Select for CC1 (high)			
		CC	EN.2	COCAL	1	Compare/	Capture Mode S	Select for CC1 (I	ow)
		CCI	EN.1	COCAH	0	Compare/	Capture Mode S	Select for CRC (high)
		CCI	EN.0	COCAL	C	Compare/	Capture Mode S	Select for CRC (low)
				В	it Map	1			
7	6		5	4		3	2	1	0
COCAH	3 COCAL	3 C	OCAH2	COCAL2	(COCAH1	COCAL1	COCAH0	COCAL0

CCL1: Co	CCL1: COMPARE / CAPTURE 1 (LOW BYTE)							
Address	Reset Value	Description						
C2h	00h	Less significant byte of CC1 (16-bit Compare/Capture register 1); the other byte is CCH1. Depending on the mode set in CCEN, CC1 either captures the value of Timer 2 or compares against the value of Timer 2.						

CCH1: COMPARE / CAPTURE 1 (HIGH BYTE)						
Address	Reset Value	Description				
C3h	00h	More significant byte of CC1; the other byte is CCL1. See description in CCL1.				

CCL2: Co	CCL2: COMPARE / CAPTURE 2 (LOW BYTE)					
Address	Reset Value	Description				
C4h	00h	Less significant byte of CC2 (16-bit Compare/Capture Register 2); the other byte is CCH2. Depending on the mode set in CCEN, CC2 either captures the value of Timer 2 or compares against the value of Timer 2.				

CCH2: COMPARE / CAPTURE 2 (HIGH BYTE)							
Address	Reset Value	Description					
C5h	00h	More significant byte CC2; the other byte is CCL2. See description in CCL2.					

CCL3: COMPARE / CAPTURE 3 (LOW BYTE)

Address	Reset Value	Description
C6h	00h	Less significant byte of CC3 (16-bit Compare/Capture Register 3); the other byte is CCH3. Depending on the mode set in CCEN, CC3 either captures the value of Timer 2 or compares against the value of Timer 2.

CCH3: COMPARE / CAPTURE 3 (HIGH BYTE)							
Address	Reset Value	Description					
C7h	00h	More significant byte of CC3; the other byte is CCL3. See description in CCL3.					

Description

T2CON: TIMER 2 CONTROL Address Reset Value C8h 00h Controls Timer 2 properties In addition, bits 5 and 6 select active edges for INT2 and INT3

C8h	00h Controls Timer 2 properties. In addition, bits 5 and 6 select active edges for INT2 and INT3.														
		Position	Name				Bit Function								
		T2CON.7	T2PS	Timer 2	Presca	aler Select: 0 =	= 1/12 system cl	ock, 1 = 1/24 sy	stem clock						
		T2CON.6	I3FR	Selects active edge for INT3: 0 = Falling edge, 1 = Rising edge											
		T2CON.5	2CON.5 I2FR Selects active edge for INT2: 0 = Falling edge, 1 = Rising e						lge						
		T2CON.4	T2R1	Timer 2	Reload	d Mode									
		T2CON.3	T2R0	T2R1	T2R0		Reloa	d Mode							
				0	х	Reload disa	abled								
				1	0	Mode 0: Re	eload is triggered	d by Timer 2 ove	erflow						
				1	1	Mode 1: Re pin T2EX (F		d by negative tra	ansition of						
		T2CON.2	N.2 T2CM	0: If Tim set h 1: If Tim	 Timer 2 Compare Mode 0: If Timer 2 matches a compare register, the corresponding pin CCx is set high until the next Timer 2 overflow. 1: If Timer 2 matches a compare register, the pre-written value in P1.x is sent to pin CCx. Overflow does not cause any change. 										
								T2CON.1	T2I1	Timer 2	Input N	/lode			
		T2CON.0	T2I0	T2I1	T2I0		Timer 2 In	put Mode							
				0	0	Timer 2 stops	6.								
				0	1	Timer 2 is a t	imer, incremente	ed according to	T2PS.						
				1	0	Timer 2 is a c pin T2 (PORT		ented by an exte	rnal signal at						
		11Timer 2 is a gated timer, incremented according to T2PS and started/stopped by external signals on pin T2.													
				<u> </u>	Bit Ma	ар									
7	6	5		4		3	2	1	0						
T2PS	I3FR	I2F	R	T2R1		T2R0	T2CM	T2I1	T2I0						

CRCL: COMPARE / RELOAD / CAPTURE (LOW BYTE)						
Address	Reset Value	Description				
CAh	00h	Less significant byte of CRC (16-bit Compare/Reload/Capture register); the other byte is CRCH. Depending on the mode set by CCEN, CRC either captures the value or compares against the value of Timer 2.				

CRCH: COMPARE / RELOAD / CAPTURE (HIGH BYTE) Address Reset Value Description CBh 00h More significant byte of the 16-bit CRC; the other byte is CRCL. See description in CRCL.

TL2: TIMER 2 (LOW BYTE)						
Address	Reset Value	Description				
CCh	00h	Less significant byte of 16-bit Timer 2; the other byte is TH2. Timer 2 is configured by T2CON.				

TH2: TIMER 2 (HIGH BYTE)						
Address	Reset Value	Description				
CDh	00h	More significant byte of 16-bit Timer 2; the other byte is TL2. Timer 2 is configured by T2CON.				

PSW: PRC	PSW: PROGRAM STATUS WORD									
Address	Reset Value	Description								
D0h	00h	PSW cont	ains prog	s program status information.						
		Position	Name			Bit	Functio	n		
		PSW.7	CY	Carry Flag						
		PSW.6	AC	Auxiliary Carry	/ flag for Bin	ary Cod	led Decin	nal (BCD) opera	tions	
PSW.5 F0 General Purpose Flag 0, available to user software										
		PSW.4	PSW.4 RS1 RS1 and RS0 select the register bank:							
PSW.3 RS0 RS1 RS0 Ban					Bank	Location				
					0	0	0	0h – 7h		
					0	1	1	8h – Fh		
					1	0	2	10h – 17h		
					1	1	3	18h – 1Fh		
		PSW.2	OV	Overflow Flag						
		PSW.1	_	User Defined Flag						
		PSW.0	Р	Parity Flag – An even number of '1' bits in the accumulator sets this bit (even parity), an odd number of ones clears it (odd parity).						
				Bit N	lap					
7	6		5	4	3		2	1	0	
CY	AC	F	-0	RS1	RS0		OV	-	P	

WDCON: Power Fail Control								
Address	Reset Value				Descrip	tion		
D8h	00h	Other registe	Only bit 7 (BD) is supported. BD controls the baud rate of serial port 0 in modes 1 and 3. Other registers that affect the serial port 0 baud rate include S0RELL, S0RELH, TH1, PCON.7 (SMOD bit), and S0CON.					
		Position Name Bit Function						
		WDCON.7	BD	0: Serial port 0 baud rate = $\frac{2^{\text{SMOD}} \text{ x System Clock Frequency}}{384 \text{ x } (256 - \text{TH1})}$				
		1: Serial port 0 baud rate = $\frac{2^{\text{SMOD}} \times \text{System Clock Frequency}}{64 \times (1024 - \text{SOREL})}$						
	Bit Map							
7	6	5		4	3	2	1	0
BD	-	-	· · · · · · ·					

ACC: ACCUMULATOR							
Address	Reset Value	Description					
E0h	00h	Accumulator. Most instructions use the accumulator to hold the operand. The mnemonics for accumulator-specific instructions refer to accumulator as A, not ACC.					

PPG: PROGRAM MEMORY PAGING							
Address	Reset Value			Descrip	tion		
E1h	00h	Bits 7-3 are not used; bits 2-0 select the memory page to use as program memory. The location of each page in physical memory depends upon the state of the PMODE pin. When PMODE is low there are two 64 KByte pages of SRAM memory. When PMODE is high there are eight 16 KByte pages of memory. For full description, see section 11.2 on page 32.					
		Position	Name		Bit Fu	unction	
		PPG.2	PPM2	Program Pag	ge Memory Sele	ect 2 (msb)	
		PPG.1	PPM1	Program Pag	ge Memory Sele	ect 1	
		PPG.0	PPM0	Program Pag	ge Memory Sele	ect 0 (Isb)	
			Bit M	Лар			
7	6	5	4	3	2	1	0
_	-	_	_	_	PPM2	PPM1	PPM0

DRPG: DATE READ MEMORY PAGING

Address	Reset Value		Description				
E2h	01h	Bits 7-3 are not use location of each pa register (page 28)	ige in physical n				
		Position	Name		Bit F	unction	
		DRPG.2	DRPM2	Data Read	Data Read Page Memory Select 2 (msb)		
		DRPG.1	DRPM1	Data Read	Data Read Page Memory Select 1		
		DRPG.0	DRPM0	Data Read	Data Read Page Memory Select 0 (Is		
	Bit Map						
7	6	5	4	3	2	1	0
-	-	-	-	-	DRPM2	DRPM1	DRPM0

DWPG: DATE WRITE MEMORY PAGING Address **Reset Value** Description E3h 01h Bits 7-3 are not used; bits 2-0 select which memory page to write as data memory. The location of each page in physical memory depends upon the state of the PMODE pin. See PPG register (page 28) for details. Note: Writing to page 0 is not allowed. Position Name **Bit Function** DWPG.2 DWPM2 Data Write Page Memory Select 2 (msb) DWPG.1 DWPM1 Data Write Page Memory Select 1 DWPG.0 DWPM0 Data Write Page Memory Select 0 (lsb) **Bit Map** 7 6 5 4 3 2 1 0 _ _ DWPM2 DWPM1 DWPM0 _ _ _

MD0: MULTIPLICATION / DIVISION 0							
Address	Reset Value		Description				
E9h	00h		ne of six registers that hold MDU operands (write) and results (read). Its function varies epending on the operation being performed:				
			Arithmetic Operation MD0 Function (Write) MD0 Function (Read)				
			32-bit / 16-bit 16-bit / 16-bit	Dividend LSB	Quotient LSB		
			16-bit x 16-bit Multiplicand LSB Product LSB		Product LSB		
			32-bit Shift Register 32-bit Normalize	LS	SB		

MD1: MULTIPLICATION / DIVISION 1							
Address	Reset Value			Description			
EAh	00h		one of six registers that hold MDU operands (write) and results (read). Its function varies epending on the operation being performed:				
			Arithmetic Operation MD1 Function (Write) MD1 Function (Read)				
			32-bit / 16-bit	Dividend Second LSB	Quotient Second LSB		
			16-bit / 16-bit	Dividend MSB	Quotient MSB		
			16-bit x 16-bit Multiplicand MSB Product Second LS		Product Second LSB		
			32-bit Shift Register 32-bit Normalize	Secon	id LSB		

MD2: MULTIPLICATION / DIVISION 2						
Address	Reset Value			Description		
EBh	00h		One of six registers that hold MDU operands (write) and results (read). Its function varies lepending on the operation being performed:			
			Arithmetic Operation	MD2 Function (Write)	MD2 Function (Read)	
			32-bit / 16-bit	Dividend Second MSB	Quotient Second MSB	
			16-bit / 16-bit	Dividend MSB	Not used	
			16-bit x 16-bit	Not used	Product Second MSB	
			32-bit Shift Register 32-bit Normalize	Secon	d MSB	

MD3: MULTIPLICATION / DIVISION 3							
Address	Reset Value			Description			
ECh	00h		One of six registers that hold MDU operands (write) and results (read). Its function varies lepending on the operation being performed:				
			Arithmetic Operation	MD3 Function (Write)	MD3 Function (Write)		
			32-bit / 16-bit	Dividend MSB	Quotient MSB		
			16-bit / 16-bit	Not	used		
			16-bit x 16-bit	Not used	Product MSB		
			32-bit Shift Register 32-bit Normalize	M	SB		

MD4: MULTIPLICATION / DIVISION 4						
Address	Reset Value		Description			
EDh	00h		One of six registers that hold MDU operands (write) and results (read). Its function varies epending on the operation being performed:			
			Arithmetic Operation MD4 Function (Write) MD4 Function (Read)			
			32-bit / 16-bit 16-bit / 16-bit	Divisor LSB	Remainder LSB	
			16-bit x 16-bit	Multiplier LSB	Not used	
			32-bit Shift Register 32-bit Normalize	Not	used	

MD5: MUL	MD5: MULTIPLICATION / DIVISION 5						
Address	Reset Value		Description				
EEh	00h		One of six registers hold MDU operands (write) and results (read). Its function varies epending on the operation being performed:				
			Arithmetic Operation MD5 Function(Write) MD5 Function(Read)				
			32-bit / 16-bit 16-bit / 16-bit	Divisor MSB	Remainder MSB		
			16-bit x 16-bit Multiplier MSB Not used				
			32-bit Shift Register 32-bit Normalize	Not	used		

ARCON: A	ARCON: ARITHMETIC CONTROL									
Address	Reset Value	Description								
EFh	00h	ARCON co	ARCON controls the functions of				tions of the MDU (Multiplication/Division Unit).			
	Pos			ne			Bit Functio	on		
		ARCON.7	MDI		Multiply Divide Error Flag, set by the hardware when an operation performed improperly (restarted or interrupted).				operation is	
	ARCON.6 ARCON.5		MDO	OV Mult	Multiply Divide Overflow Flag					
			SL	R Shift	Shift Direction: $SLR = 1 = shift left$ $SLR = 0 = shift right$				right	
		ARCON.3 SC. ARCON.3 SC. ARCON.2 SC. ARCON.1 SC. ARCON.0 SC.		.3 After .2 norm .1 value	Five-bit shift counter (SC). Setting SC to zero selects "normalize". After the normalize function is completed, SC contains the number normalization shifts that were performed. Setting SC to a non-zero value selects "Shift" and specifies the number of shifts to be performed.				he number of a non-zero	
					Bit Map					
7	6	5		4		3	2	1	0	
MDEF	MDOV	SL	R	SC.4 (MS	B) S	SC.3	SC.2	SC.1	SC.0 (LSB)	

B: B REGIS	B: B REGISTER					
Address	Reset Value	Description				
F0h	00h	B is used during multiply and divide instructions. It can also be used as a scratch-pad register to hold temporary data.				

11. Memory

The TSCR8051 contains 256 bytes of "scratch pad" memory and 128KB of SRAM.

11.1. Scratch Pad Memory

Internal "scratch pad" memory is 256 bytes (00 to FF). Addressing for this data area is always one byte wide.

The upper 128 bytes of scratch pad memory (80 to FF) overlaps the Special Function Registers (SFRs). Direct addressing accesses the SFRs; indirect addressing accesses the upper scratch pad.

The lower 128 bytes of scratch pad memory may be addressed either directly or indirectly. It is further divided into three sections:

The bottommost 32 bytes contain four register banks, with registers R0 to R7 in each bank. Bits RS0 and RS1 in the PSW register determine which register bank is in use.

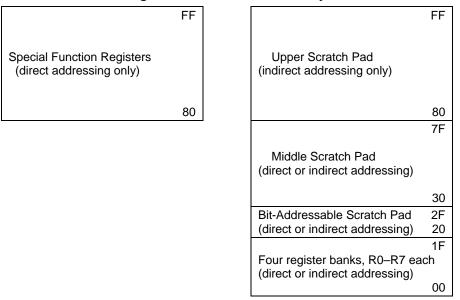


Figure 3 – Scratch Pad Memory

11.2. SRAM Memory

The TSC8051 contains 128 KBytes of high-speed SRAM that support both program and data memory, using either of two paging modes as determined by the PMODE pin. Memory organization for both modes is shown in Figure 4 below.

When PMODE is low (mode 0), SRAM memory is divided into two logical pages of 64 KBytes each.

When PMODE is high (mode 1), there are eight logical pages of SRAM memory with 16 KBytes in each page.

Figure 4 – SRAM Memory Layout

Physical S	SRAM	Logical SRAM, F	Page Mode 0	Logical SRAM,	Page Mode 1
	1FFFF		FFFF		3FFF
Block 7	1C000			Page 7	0000
	1BFFF				3FFF
Block 6				Page 6	
	18000	Page 1			0000
	17FFF	Fage 1			3FFF
Block 5	14000			Page 5	0000
	13FFF				3FFF
Block 4				Page 4	
	10000		0000		0000
	0FFFF		FFFF		3FFF
Block 3	0C000			Page 3	0000
	0C000 0BFFF				3FFF
Block 2	UDFFF			Page 2	3666
BIOORE	08000				0000
	07FFF	Page 0			3FFF
Block 1				Page 1	
	04000				0000
	03FFF				3FFF
Block 0	00000		0000	Page 0	0000

11.2.1. Address Mapping

In either paging mode, the program specifies a memory location with a three-bit Page number and a sixteen-bit Address. Memory addressing is mapped as follows:

Physical Address:	Blo (5 b		Address [13:0]
Mode 0 Logical Address:	Page (3 bits)		Address [15:0]
Mode 1 Logical Address:	Addr. Page [15:14] (3 bits)		Address [13:0]

In the physical address, the two most significant bits of the Block are always 00.

In mode 0, the two most significant bits of the Page are always 00.

In mode 1, the two most significant bits of the Address (Addr.[15:14]) are always 00.

11.2.2. Specifying the Page Number

Page numbers are specified in three different registers – PPG, DRPG, and DWPG. The PPG register specifies the current page for program memory – it defaults to 0. DRPG specifies the current page for data reads and DWPG for data writes; both of these default to 1. Page register usage is determined by the type of instruction being performed:

MOVC and program fetch instructions use the page number in PPG.

MOVX @Ri,A and MOVX @DPTR,A use DWPG.

MOVX A,@R1 and MOVX A,@DPTR use DRPG.

11.2.3. Program and Data Addressing

Address pointers for program and data use 16 bits; paging adds another three bits to each address, giving a logical address range of 00000 to 7FFFF. There is no physical distinction between program memory and data memory – the entire SRAM data area is available for both program and data.

11.3. Dual Data Pointers

DPRT is the standard 16-bit data pointer, made up of registers DPL and DPH. A secondary data pointer, DPTR1, is stored in registers DPL1 and DPH1. The active pointer for any DPTR-related instruction is determined by the value of register DPS. When moving large blocks of data, the user can accelerate the process by storing the source address in one pointer an the destination in the other, and switching between pointers by toggling the DSP.0 bit.

12. Instruction Set

All TSCR8051 instructions are binary code compatible with the industry standard 8051. The following tables give a summary of the instruction set.

Table 3 and Table 4 contain notes for mnemonics used in Instruction Set tables.

Table 5 through Table 9 show instruction hexadecimal codes with the number of bytes and number of cycles used by each instruction.

Table 10 lists all instructions in hexadecimal code order.

Table 3: Data Addressing Mnemonics

Rn	Working register R0-R7	
direct	256 internal RAM locations, any Special Function Registers	
@Ri	Indirect internal or external RAM location addressed by register R0 or R1	
#data	8-bit constant included in instruction	
#data 16	16-bit constant included as bytes 2 and 3 of instruction	
bit	256 software flags, any bit-addressable I/O pin, control or status bit	
А	Accumulator	

Table 4: Program Addressing Mnemonics

addr16	Destination address for LCALL and LJMP may be anywhere within the 64-Kbyte of program memory address space.
addr11	Destination address for ACALL and AJMP will be within the same 2-Kbytepage of program memory as the first byte of the following instruction.
rel	SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 bytes relative to the first byte of the following instruction

Table 5: Arithmetic Instructions

Mnemonic	Description	Code	Bytes	Cycles
ADD A,Rn	Add register to accumulator	28-2F	1	1
ADD A, direct	Add direct byte to accumulator	25	2	2
ADD A,@Ri	Add indirect RAM to accumulator	26-27	1	2
ADD A,#data	Add immediate data to accumulator	24	2	2
ADDC A,Rn	Add register to accumulator with carry flag	38-3F	1	1
ADDC A, direct	Add direct byte to A with carry flag	35	2	2
ADDC A,@Ri	Add indirect RAM to A with carry flag	36-37	1	2
ADDC A,#data	Add immediate data to A with carry flag	34	2	2
SUBB A,Rn	Subtract register from A with borrow	98-9F	1	1
SUBB A, direct	Subtract direct byte from A with borrow	95	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	96-97	1	2
SUBB A,#data	Subtract immediate data from A with borrow	94	2	2
INC A	Increment accumulator	04	1	1
INC Rn	Increment register	08-0F	1	2
INC direct	Increment direct byte	05	2	3
INC @Ri	Increment indirect RAM	06-07	1	3
INC DPTR	Increment data pointer	A3	1	1
DEC A	Decrement accumulator	14	1	1
DEC Rn	Decrement register	18-1F	1	2
DEC direct	Decrement direct byte	15	2	3
DEC @Ri	Decrement indirect RAM	16-17	1	3
MUL AB	Multiply A and B	A4	1	5
DIV	Divide A by B	84	1	5
DA A	Decimal adjust accumulator	D4	1	1

Table 6: Logic Instructions

Mnemonic	Description	Code	Bytes	Cycles
ANL A,Rn	AND register to accumulator	58-5F	1	1
ANL A, direct	AND direct byte to accumulator	55	2	2
ANL A,@Ri	AND indirect RAM to accumulator	56-57	1	2
ANL A,#data	AND immediate data to accumulator	54	2	2
ANL direct,A	AND accumulator to direct byte	52	2	3
ANL direct,#data	AND immediate data to direct byte	53	3	4
ORL A,Rn	OR register to accumulator	48-4F	1	1
ORL A, direct	OR direct byte to accumulator	45	2	2
ORL A,@Ri	OR indirect RAM to accumulator	46-47	1	2
ORL A,#data	OR immediate data to accumulator	44	2	2
ORL direct,A	OR accumulator to direct byte	42	2	3
ORL direct,#data	OR immediate data to direct byte	43	3	4
XRL A,Rn	Exclusive OR register to accumulator	68-6F	1	1
XRL A, direct	Exclusive OR direct byte to accumulator	65	2	2
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	66-67	1	2
XRL A,#data	Exclusive OR immediate data to accumulator	64	2	2
XRL direct,A	Exclusive OR accumulator to direct byte	62	2	3
XRL direct,#data	Exclusive OR immediate data to direct byte	63	3	4
CLR A	Clear accumulator	E4	1	1
CPL A	Complement accumulator	F4	1	1
RL A	Rotate accumulator left	23	1	1
RLC A	Rotate accumulator left through carry	33	1	1
RR A	Rotate accumulator right	03	1	1
RRC A	Rotate accumulator right through carry	13	1	1
SWAP A	Swap nibbles within the accumulator	C4	1	1

Table 7: Data Transfer Instructions

Mnemonic	Description	Code	Bytes	Cycles
MOV A,Rn	Move register to accumulator	E8-EF	1	1
MOV A, direct	Move direct byte to accumulator		2	2
MOV A,@Ri	Move indirect RAM to accumulator	E6-E7	1	2
MOV A,#data	Move immediate data to accumulator	74	2	2
MOV Rn,A	Move accumulator to register	F8-FF	1	2
MOV Rn,direct	Move direct byte to register	A8-AF	2	4
MOV Rn,#data	Move immediate data to register	78-7F	2	2
MOV direct,A	Move accumulator to direct byte	F5	2	3
MOV direct,Rn	Move register to direct byte	88-8F	2	3
MOV direct1, direct2	Move direct byte to direct byte	85	3	4
MOV direct,@Ri	Move indirect RAM to direct byte	86-87	2	4
MOV direct,#data	Move immediate data to direct byte	75	3	3
MOV @Ri,A	Move accumulator to indirect RAM	F6-F7	1	3
MOV @Ri,direct	Move direct byte to indirect RAM	A6-A7	2	5
MOV @Ri,#data	Move immediate data to indirect RAM	76-77	2	3
MOV DPTR,#data16	Load data pointer with a 16-bit constant	90	3	3
MOVC A,@A+DPTR	Move code byte relative to DPTR to accumulator	93	1	3
MOVC A,@A+PC	Move code byte relative to PC to accumulator	83	1	3
MOVX A,@Ri	Move external RAM (8-bit address) to A	E2-E3	1	3-10
MOVX A,@DPTR	Move external RAM (16-bit address) to A	E0	1	3-10
MOVX @Ri,A	Move A to external RAM (8-bit address)	F2-F3	1	4-11
MOVX @DPTR,A	Move A to external RAM (16-bit address)	F0	1	4-11
PUSH direct	Push direct byte onto stack	C0	2	4
POP direct	Pop direct byte from stack	D0	2	3
XCH A,Rn	Exchange register with accumulator	C8-CF	1	2
XCH A, direct	Exchange direct byte with accumulator	C5	2	3
XCH A,@Ri	Exchange indirect RAM with accumulator	C6-C7	1	3
XCHD A,@Ri	Exchange low-order nibble indirect RAM with A	D6-D7	1	3

Mnemonic	Description	Code	Bytes	Cycles
ACALL addr11	Absolute subroutine call	xxx11	2	6
LCALL addr16	Long subroutine call	12	3	6
RET	from subroutine	22	1	4
RETI	from interrupt	32	1	4
AJMP addr11	Absolute jump	xxx01	2	3
LJMP addr16	Long jump	02	3	4
SJMP rel	Short jump (relative address)	80	2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	73	1	2
JZ rel	Jump if accumulator is zero	60	2	3
JNZ rel	Jump if accumulator is not zero	70	2	3
JC rel	Jump if carry flag is set	40	2	3
JNC	Jump if carry flag is not set	50	2	3
JB bit,rel	Jump if direct bit is set	20	3	4
JNB bit,rel	Jump if direct bit is not set	30	3	4
JBC bit, direct rel	Jump if direct bit is set and clear bit	10	3	4
CJNE A, direct rel	Compare direct byte to A and jump if not equal	B5	3	4
CJNE A,#data rel	Compare immediate to A and jump if not equal	B4	3	4
CJNE Rn,#data rel	Compare immed. to reg. and jump if not equal	B8-BF	3	4
CJNE @Ri,#data rel	Compare immed. to ind. and jump if not equal	B6-B7	3	4
DJNZ Rn,rel	Decrement register and jump if not zero	D8-DF	2	3
DJNZ direct,rel	Decrement direct byte and jump if not zero	D5	3	4
NOP	No operation	00	1	1

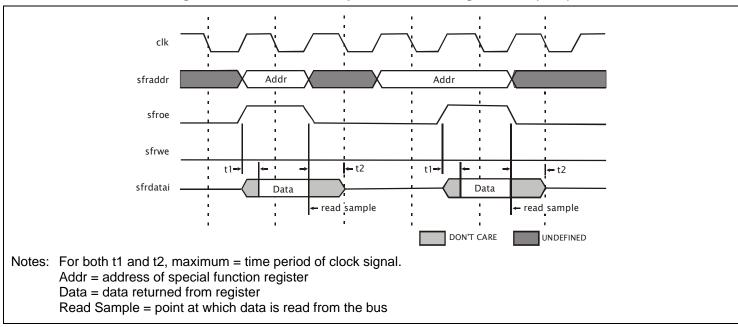
Table 8: Program Branch Instructions

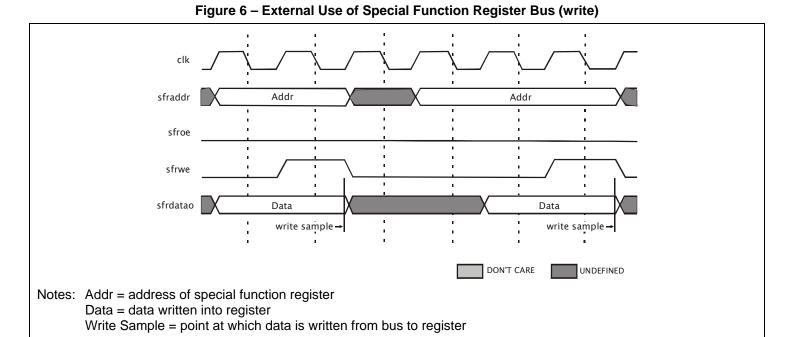
Table 9: Boolean Manipulation Instructions

Mnemonic	Description	Code	Bytes	Cycles
CLR C	Clear carry flag	C3	1	1
CLR bit	Clear direct bit	C2	2	3
SETB C	Set carry flag	D3	1	1
SETB bit	Set direct bit	D2	2	3
CPL C	Complement carry flag	B3	1	1
CPL bit	Complement direct bit	B2	2	3
ANL C,bit	AND direct bit to carry flag	82	2	2
ANL C,/bit	AND complement of direct bit to carry	B0	2	2
ORL C,bit	OR direct bit to carry flag	72	2	2
ORL C,/bit	OR complement of direct bit to carry	A0	2	2
MOV C,bit	Move direct bit to carry flag	A2	2	2
MOV bit,C	Move carry flag to direct bit	92	2	3

Opcode	Mnemonic	Opcode	Mnemonic	Opcode	Mnemonic	Opcode	Mnemonic
00 H	NOP	10 H	JBC bit,rel	20 H	JB bit,rel	30 H	JNB bit,rel
01 H	AJMP addr11	11 H	ACALL addr11	21 H	AJMP addr11	31 H	ACALL addr11
02 H	LJMP addr16	12 H	LCALL addr16	22 H	RET	32 H	RETI
03 H	RR A	13 H	RRC A	23 H	RL A	33 H	RLC A
04 H	INC A	14 H	DEC A	24 H	ADD A,#data	34 H	ADDC A,#data
05 H	INC direct	15 H	DEC direct	25 H	ADD A, direct	35 H	ADDC A, direct
06 H	INC @R0	16 H	DEC @R0	26 H	ADD A,@R0	36 H	ADDC A,@R0
07 H	INC @R1	17 H	DEC @R1	27 H	ADD A,@R1	37 H	ADDC A,@R1
08 H	INC R0	18 H	DEC R0	28 H	ADD A,R0	38 H	ADDC A,R0
09 H	INC R1	19 H	DEC R1	29 H	ADD A,R1	39 H	ADDC A,R1
0A H	INC R2	1A H	DEC R2	2A H	ADD A,R2	3A H	ADDC A,R2
0B H	INC R3	1B H	DEC R3	2B H	ADD A,R3	3B H	ADDC A,R3
0C H	INC R4	1C H	DEC R4	2C H	ADD A,R4	3C H	ADDC A,R4
0D H	INC R5	1D H	DEC R5	2D H	ADD A,R5	3D H	ADDC A,R5
0E H	INC R6	1E H	DEC R6	2E H	ADD A,R6	3E H	ADDC A,R6
0F H	INC R7	1F H	DEC R7	2F H	ADD A,R7	3F H	ADDC A,R7

Opcode	Mnemonic	Opcode	Mnemonic	Opcode	Mnemonic
40 H	JC rel	50 H	JNC rel	60 H	JZ rel
41 H	AJMP addr11	51 H	ACALL addr11	61 H	AJMP addr11
42 H	ORL direct,A	52 H	ANL direct,A	62 H	XRL direct,A
43 H	ORL direct,#data	53 H	ANL direct,#data	63 H	XRL direct,#data
44 H	ORL A,#data	54 H	ANL A,#data	64 H	XRL A,#data
45 H	ORL A, direct	55 H	ANL A, direct	65 H	XRL A, direct
46 H	ORL A,@R0	56 H	ANL A,@R0	66 H	XRL A,@R0
47 H	ORL A,@R1	57 H	ANL A,@R1	67 H	XRL A,@R1
48 H	ORL A,R0	58 H	ANL A,R0	68 H	XRL A,R0
49 H	ORL A,R1	59 H	ANL A,R1	69 H	XRL A,R1
4A H	ORL A,R2	5A H	ANL A,R2	6A H	XRL A,R2
4B H	ORL A,R3	5B H	ANL A,R3	6B H	XRL A,R3
4C H	ORL A,R4	5C H	ANL A,R4	6C H	XRL A,R4
4D H	ORL A,R5	5D H	ANL A,R5	6D H	XRL A,R5
4E H	ORL A,R6	5E H	ANL A,R6	6E H	XRL A,R6
4F H	ORL A,R7	5F H	ANL A,R7	6F H	XRL A,R7


Opcode	Mnemonic	Opcode	Mnemonic	Орсо	de	Mnemonic	
70 H	JNZ rel	80 H	SJMP rel	90 H	MC	V DPTR,#data16	
71 H	ACALL addr11	81 H	AJMP addr11	91 H	AC	ALL addr11	
72 H	ORL C, direct	82 H	ANL C,bit	92 H	MC	℃ bit,C	
73 H	JMP @A+DPTR	83 H	MOVC A,@A+PC	93 H	MC	OVC A,@A+DPTR	
74 H	MOV A,#data	84 H	DIV AB	94 H	SU	BB A,#data	
75 H	MOV direct,#data	85 H	MOV direct, direct	95 H	SU	BB A,direct	
76 H	MOV @R0,#data	86 H	MOV direct,@R0	96 H	SU	BB A,@R0	
77 H	MOV @R1,#data	87 H	MOV direct,@R1	97 H	SU	BB A,@R1	
78 H	MOV R0.#data	88 H	MOV direct,R0	98 H	SU	BB A,R0	
79 H	MOV R1.#data	89 H	MOV direct,R1	99 H	SU	BB A,R1	
7A H	MOV R2.#data	8A H	MOV direct,R2	9A H	SU	BB A,R2	
7B H	MOV R3.#data	8B H	MOV direct,R3	9B H	SU	BB A,R3	
7C H	MOV R4.#data	8C H	MOV direct,R4	9C H	SU	BB A,R4	
7D H	MOV R5.#data	8D H	MOV direct,R5	9D H	SU	BB A,R5	
7E H	MOV R6.#data	8E H	MOV direct,R6 9E H		SU	SUBB A,R6	
7F H	MOV R7.#data	8F H	MOV direct,R7	9F H	SU	BB A,R7	
Opcod	e Mnemonic	Opcode	Mnemonic	C	Opcode	Mnemonic	
					poodo	witternottic	
A0 H	ORL C,bit	B0 H	ANL C,bit		C0 H	PUSH direct	
A0 H A1 H					•		
	ORL C,bit	B0 H	ANL C,bit		С0 Н	PUSH direct	
A1 H	ORL C,bit AJMP addr11	B0 H B1 H	ANL C,bit ACALL addr11		со н С1 н	PUSH direct AJMP addr11	
A1 H A2 H	ORL C,bit AJMP addr11 MOV C,bit	B0 H B1 H B2 H	ANL C,bit ACALL addr11 CPL bit		C0 H C1 H C2 H	PUSH direct AJMP addr11 CLR bit	
A1 H A2 H A3 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR	B0 H B1 H B2 H B3 H	ANL C,bit ACALL addr11 CPL bit CPL C		C0 H C1 H C2 H C3 H	PUSH direct AJMP addr11 CLR bit CLR C	
A1 H A2 H A3 H A4 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR	B0 H B1 H B2 H B3 H B4 H B5 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel		C0 H C1 H C2 H C3 H C4 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A	
A1 H A2 H A3 H A4 H A5 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB -	B0 H B1 H B2 H B3 H B4 H B5 H t B6 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel	a,rel	C0 H C1 H C2 H C3 H C4 H C5 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct	
A1 H A2 H A3 H A4 H A5 H A6 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direc MOV @R1,direc	B0 H B1 H B2 H B3 H B4 H B5 H t B6 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,ret CJNE A,direct,ret CJNE @R0,#data	a,rel	C0 H C1 H C2 H C3 H C4 H C5 H C6 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direc MOV @R1,direc MOV R0,direct	B0 H B1 H B2 H B3 H B4 H B5 H B6 H t B7 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel CJNE @R0,#data CJNE @R1,#data	a,rel a,rel el	C0 H C1 H C2 H C3 H C4 H C5 H C6 H C7 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H A8 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direct MOV R0,direct MOV R1,direct	B0 H B1 H B2 H B3 H B4 H B5 H B6 H B7 H B8 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel CJNE @R0,#data CJNE @R1,#data	a,rel a,rel el el	C0 H C1 H C2 H C3 H C4 H C5 H C6 H C7 H C8 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1 XCH A,R0	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H A8 H A9 H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direct MOV @R1,direct MOV R0,direct MOV R1,direct	B0 H B1 H B2 H B3 H B4 H B5 H B6 H B7 H B8 H B9 H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel CJNE @R0,#data CJNE @R1,#data,rel CJNE R0,#data,rel	a,rel el el	C0 H C1 H C2 H C3 H C4 H C5 H C6 H C7 H C8 H C9 H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1 XCH A,R0 XCH A,R1	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H A8 H A9 H AA H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direct MOV R0,direct MOV R1,direct MOV R2,direct MOV R3,direct	B0 H B1 H B2 H B3 H B4 H B5 H B6 H B7 H B8 H B9 H BA H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel CJNE @R0,#data CJNE @R1,#data,r CJNE R0,#data,r CJNE R1,#data,r	a,rel a,rel el el el el	C0 H C1 H C2 H C3 H C4 H C5 H C5 H C6 H C7 H C8 H C9 H CA H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1 XCH A,R0 XCH A,R1 XCH A,R2	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H A8 H A9 H AA H AB H	ORL C,bitAJMP addr11MOV C,bitINC DPTRMUL AB-MOV @R0,directMOV @R1,directMOV R0,directMOV R1,directMOV R2,directMOV R3,directMOV R4,direct	B0 H B1 H B2 H B3 H B4 H B5 H B6 H B7 H B8 H B9 H BA H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,ret CJNE A,direct,ret CJNE @R0,#data CJNE @R1,#data CJNE R0,#data,r CJNE R1,#data,r CJNE R2,#data,r	a,rel el el el el	C0 H C1 H C2 H C3 H C4 H C5 H C6 H C7 H C8 H C9 H C9 H CA H CB H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1 XCH A,R0 XCH A,R1 XCH A,R2 XCH A,R3	
A1 H A2 H A3 H A4 H A5 H A6 H A7 H A8 H A9 H AA H AB H AC H	ORL C,bit AJMP addr11 MOV C,bit INC DPTR MUL AB - MOV @R0,direct MOV @R1,direct MOV R1,direct MOV R2,direct MOV R4,direct MOV R5,direct	B0 H B1 H B2 H B3 H B4 H B5 H B5 H B6 H B7 H B8 H B9 H BA H BB H BC H	ANL C,bit ACALL addr11 CPL bit CPL C CJNE A,#data,rel CJNE A,direct,rel CJNE @R0,#data CJNE @R1,#data,r CJNE R0,#data,r CJNE R1,#data,r CJNE R2,#data,r CJNE R3,#data,r	a,rel a,rel el el el el el el el	C0 H C1 H C2 H C3 H C4 H C5 H C6 H C7 H C8 H C9 H CA H CB H CC H	PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A,direct XCH A,@R0 XCH A,@R1 XCH A,R0 XCH A,R1 XCH A,R2 XCH A,R3 XCH A,R4	



Opcode	Mnemonic	Opcode	Mnemonic	Opcode	Mnemonic
D0 H	POP direct	E0 H	MOVX A,@DPTR	F0 H	MOVX @DPTR,A
D1 H	ACALL addr11	E1 H	AJMP addr11	F1 H	ACALL addr11
D2 H	SETB bit	E2 H	MOVX A,@R0	F2 H	MOVX @R0,A
D3 H	SETB C	E3 H	MOVX A,@R1	F3 H	MOVX @R1,A
D4 H	DA A	E4 H	CLR A	F4 H	CPL A
D5 H	DJNZ direct, rel	E5 H	MOV A, direct	F5 H	MOV direct,A
D6 H	XCHD A,@R0	E6 H	MOV A,@R0	F6 H	MOV @R0,A
D7 H	XCHD A,@R1	E7 H	MOV A,@R1	F7 H	MOV @R1,A
D8 H	DJNZ R0,rel	E8 H	MOV A,R0	F8 H	MOV R0,A
D9 H	DJNZ R1,rel	E9 H	MOV A,R1	F9 H	MOV R1,A
DA H	DJNZ R2,rel	EA H	MOV A,R2	FA H	MOV R2,A
DB H	DJNZ R3,rel	EB H	MOV A,R3	FB H	MOV R3,A
DC H	DJNZ R4,rel	EC H	MOV A,R4	FC H	MOV R4,A
DD H	DJNZ R5,rel	ED H	MOV A,R5	FD H	MOV R5,A
DE H	DJNZ R6,rel	EE H	MOV A,R6	FE H	MOV R6,A
DF H	DJNZ R7,rel	EF H	MOV A,R7	FF H	MOV R7,A

13. External SFR Timing

14. Hardware Overview

The structure of the TSCR8051 consists of the following units:

- Core Engine:
 - Arithmetic/Logic (ALU) SRAM Memory Control Scratch Pad and Special Function Register (SFR) Control
- Multiplication-Division
- Clock Control
- Timers: 0, 1, 2, Capture-Compare, and Watchdog
- Serial Ports 0 & 1
- Interrupt Service
- Floating-Point
- Extended Computing
- SPI Memory Loader
- Reset
- Power Management

15. Core Engine

The core engine of the TSCR8051 contains:

- Arithmetic and Logic (ALU)
- SRAM Memory Control
- Scratch Pad and SFR (Special Function Register) Control
- I/O Ports

The engine fetches instructions from program memory and executes them, fetching and storing data to/from data memory and the ports as needed. The core engine components use the following registers (described in section 10, starting on page 29):

NAME	M NEMONIC	LOCATION (HEX)	Notes
Program Counter	PC	n/a	2 bytes; initialized to 00H.
Program Status Word	PSW	D0	1 byte
Stack Pointer	SP	81	1 byte
Data Pointer	DPL & DPH or DPL1 & DPH1	82, 83 or 84, 85	2 bytes
Accumulator	ACC or A	E0	1 byte
B Register	В	F0	1 byte
Ports	P0, P1, P2, P3	80, 90, A0, B0	1 byte each

16. Multiplication / Division Unit (MDU)

This on-chip arithmetic unit provides 32-bit division and 16-bit multiplication, shift, and normalize features. All operations are unsigned integer operations.

The MDU uses seven registers which are memory mapped as special function registers. This unit operates concurrently with, and independent of, the CPU. Any MDU calculation overwrites its operands.

The MDU registers are:

Nаме	MNEMONIC	LOCATION (HEX)	Notes
Multiplication Division 0-5 (Operands and Results)	MD0, MD1, MD2, MD3, MD4, MD5	E9 through EE	See descriptions in section 10,
Arithmetic Control	ARCON	EF	starting on page 29.

16.1. MDU Operation and Timing

Operation of the MDU occurs in three phases:

Phase 1: Load the MDx registers

The type of calculation to be performed is determined by the order in which the MDx registers are written. For the operands to write to each register, see the tables in the Special Function Register Descriptions (page 29 and following).

OPERATION	32Віт/16Віт	16Віт/16Віт	16Віт х 16Віт	Shift/Normalize
first write	MD0	MD0	MD0	MD0
	MD1	MD1	MD4	MD1
	MD2	MD4	MD1	MD2
	MD3			MD3
	MD4			
last write	MD5	MD5	MD5	ARCON

Table 11: MDU Register Write Sequence

In all cases, a write to MD0 is the first transfer. The remaining writes must be performed in the order shown. The last write triggers the selected operation.

Phase 2: Execute the calculation

During execution, the MDU works on its own, in parallel with the CPU.

Table 12: MDU Execution Times

OPERATION	MAX. TIME (IN TCLK)	MIN. TIME (IN TCLK)
Division 32bit/16bit	50 (division by 1)	19 (divider > 7FFFh)
Division 16bit/16bit	34 (division by 1)	3 (divider > 7FFFh)
Multiplication	17 (result) +1 (set MDOV flag)	17 (result) +1 (set MDOV flag)
Shift	33 (sc = 1Fh)	3 (sc = 01h)
Normalize	34 (sc < −1Fh)	4 (sc < -01h)

Phase 3: Read results from the MDx registers

For the values to read from each register, see the descriptions in section 10, starting on page 29.

OPERATION	32Віт/16Віт	16Віт/16Віт	16Віт х 16Віт	SHIFT/NORMALIZE
first read	MD0	MD0	MD0	MD0
	MD1	MD1	MD1	MD1
	MD2	MD4	MD2	MD2
	MD3			
	MD4			
last read	MD5	MD5	MD3	MD3

Table 13: MDU Register Read Sequence

Shifting

The SLR bit (ARCON.5) specifies the shift direction; ARCON.4 to ARCON.0 specify the shift count (which must not be 0). During shift, zeroes come into the left end of register MD0 or the right end of register MD3.

Normalizing

This performs repeated shift left operations to remove all leading zeroes of the integer variable stored in registers MD0 to MD3. Normalization is complete when the MSB (most significant bit) of the MD3 register contains a '1'. After normalizing, bits ARCON.4 (MSB) to ARCON.0 (LSB) contain the number of shift left operations that were done.

MDEF Flag

The MDEF error flag (read-only) indicates an improperly performed operation – that is, an arithmetic operation that has been restarted or interrupted by a new operation.

The error flag mechanism is automatically enabled with the first write to MD0 and disabled with the final read instruction from MD3 (multiplication, shift, or normalize) or MD5 (division) in phase three.

The error flag is set when:

- a) Phase two is in process and a write access occurs to any MDx register (calculation restarted/interrupted)
- b) Phase one or two is in progress and a read access occurs to any MDx register (does not interrupt calculation)

The read-only error flag is reset when Phase Two completes successfully and a read access occurs to the MDx registers.

MDOV Flag

MDOV is a read-only overflow flag. It is set when any of these occurs:

- a) Division by zero
- b) Multiplication with a result greater than 0000 FFFFh
- c) MD3.7 (most significant bit) is '1' when normalization begins

The read-only overflow flag is reset when Phase One starts (initial write to MD0).

17. Timers

There are three 16-bit timers: Timer 0, Timer 1 and Timer 2. All can be configured for counter or timer operations. Timer 1 can also be used to generate the baud rate for serial port 0; Timer 2 has a Capture/Compare Unit (CCU) and several additional features.

17.1. Timers 0 and 1

Registers

The 16-bit value for Timer 0 is held in registers TL0 and TH0; Timer 1 is in TL1 and TH1. The behavior of these timers is controlled by various bits in registers TCON and TMOD (pages 11 and 11).

Timer vs. Counter

Each timer can be used either as a counter or as a timer by configuring bit C/Tx in TMOD.

• For a timer, the value is incremented once every 12 clock cycles.

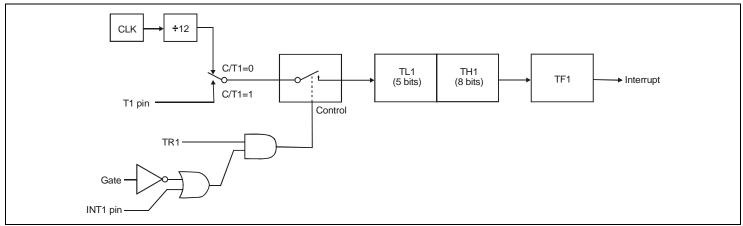
• For a **counter**, the value increments when a falling edge is observed at input pin T0 (Timer 0) or T1 (Timer 1) of PORT3. (PORT3 must be properly configured.) It takes 2 clock cycles to recognize a 1-to-0 event. There are no restrictions on the duty cycle; however, to ensure proper recognition of the state, each input signal should be stable for at least 1 clock cycle.

General Operations

Timer x is started or halted by setting bit TRx in TCON to 1 or 0, respectively.

External control can be implemented by setting bit GATEx in TMOD. If GATEx is set to 1, Timer x runs only when TRx is 1 and the INTx pin of PORT3 is asserted (low). (INTx must be properly configured.)

When Timer x overflows, bit TFx in TCON is set. Bit ETx in register IEN0 (page 19) can configure TFx to cause an interrupt; in this case, TFx is cleared when the interrupt is processed. TFx can also be cleared by software.


Timer 1 can be used to generate the baud rate for serial port 0; see page 52.

Operating Modes

Each counter/timer can operate in the following modes, as configured by bits M0-x and M1-x in the TMOD register:

- Mode 0: 13-bit counter/timer. The upper three bits of the TLx register are undetermined and should not be used.
- Mode 1: 16-bit counter/timer.
- Mode 2: 8-bit counter/timer with auto-reload. The reload value is held in THx while TLx acts as the counter/timer. When THx overflows, the value from THx is copied into TLx.
- Mode 3: This mode is different for Timer 0 and Timer 1.

Timer 0: Acts as two independent 8-bit counters/timers. TL0 behaves according to the Timer 0 control bits, but TH0 is locked into "timer" mode and takes over the use of bits TR1 and TF1. Timer 1 retains the use of all its other pins and bits (T1, INT1, GATE1, C/T1, M0-1, and M1-1). Timer 1 thus retains the ability to generate the serial port 0 baud rate and perform other functions, but it can no longer generate an interrupt. When Timer 0 is in this mode, Timer 1 can be halted and started by switching in and out of this same mode. **Timer 1:** Halts; holds the current value; does not increment.

Figure 7 – Timer/Counter 1 in Mode 0

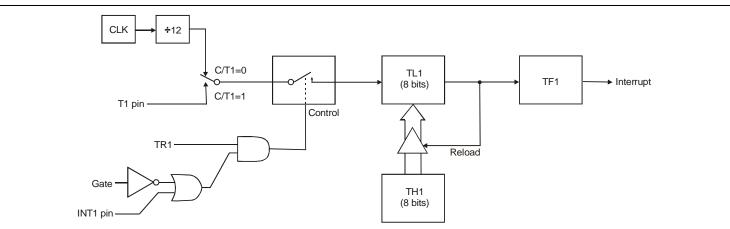
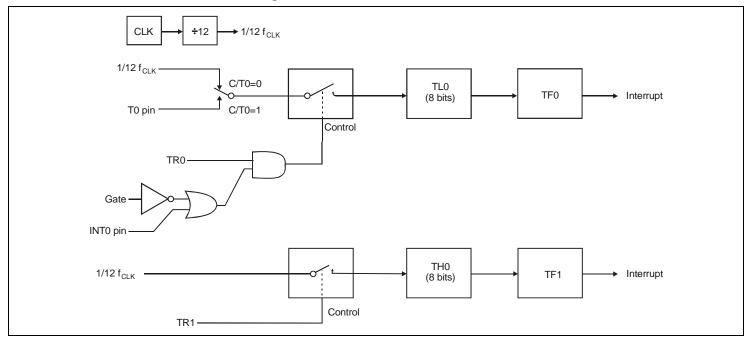



Figure 9 – Timer/Counter 0 in Mode 3

17.2. Timer 2 and Capture/Compare Unit

Registers

The 16-bit value for Timer 2 is stored in registers TL2 and TH2. It is controlled by register T2CON. Timer 2 includes a Capture/Compare Unit (CCU) which is enabled and configured by register CCEN. The CCU uses three 16-bit Capture/Compare values (6 registers) and one 16-bit Capture/Reload/Compare value (2 registers), as listed in the table below. For descriptions of the CCU registers, see pages 24 through 27.

ADDRESS	Nаме	USAGE
90h	P1 (PORT1)	Bits 0 through 3 can be configured for use by the CCU.
C1h	CCEN	Configures and enables all Compare/Capture modes.
C2h & C3h	CC1 (CCL1 and CCH1)	Holds 16-bit Capture 1 value or Compare 1 value.
C4h & C5h	CC2 (CCL2 and CCH2)	Holds 16-bit Capture 2 value or Compare 2 value.
C6h & C7h	CC3 (CCL3 and CCH3)	Holds 16-bit Capture 3 value or Compare 3 value.
C8h	T2CON	Configures & enables Timer 2
CAh & CBh	CRC (CRCL and CRCH)	Holds 16-bit reload value or Capture 0 value or Compare 0 value.
CCh & CDh	T2 (TL2 and TH2)	Contains 16-bit Timer 2 value

Signals

The use of Timer 2 and the Capture/Compare Unit can involve several signals, as listed in the table below:

SIGNAL	LOCATION	USAGE
T2EX	PORT1[5]	External trigger for reload.
T2	PORT1[7]	External trigger for counter or gate for timer.
CC0-CC3	PORT1[0-3]	External trigger for capture or signal generated by compare.
EXF2	IRCON register	Request interrupt on external reload.
TF2	IRCON register	Request interrupt on overflow.
IEX3-IEX6	IRCON register	Request interrupt on capture or compare.

Start/Stop and Timer/Counter

Timer 2 can be halted or operated as either a timer or a counter by configuring bits T2I0 and T2I1 in T2CON.

- For a timer, the value is incremented according to the Prescaler Select bit, T2PS. T2PS = 0 increments every 12 clock cycles; T2PS = 1 increments every 24 clock cycles. Input pin T2 of PORT1 may be configured as a gate to start and stop the timer.
- For a **counter**, the value is incremented one cycle after a falling edge is observed at input pin T2 of PORT1. (PORT1 must be properly configured.) It takes 2 clock cycles to recognize a 1-to-0 event. There are no restrictions on the duty cycle; however, to ensure proper recognition of the state, each input signal should be stable for at least 1 clock cycle.

Overflow

Whenever Timer 2 overflows, bit TF2 in the IRCON register is set. This can be configured to request an interrupt. Bit TF2 should be cleared by the interrupt routine.

Reload

Timer 2 can operate with no reload or in either of two reload modes, as configured by bits T2R0 and T2R1 in T2CON. In either mode, a reload copies the values from registers CRCL and CRCH into registers TL2 and TH2.

- Mode 0: Reload is triggered by a Timer 2 overflow.
- **Mode 1:** Reload is triggered by a negative transition on pin T2EX of PORT1. This can be configured to request an interrupt via flag EXF2 in register IRCON.

Capture

The 16-bit value from Timer 2 can be saved in any of the four pairs of capture/compare registers, as configured in the CCEN register. There are two capture modes available for each pair of registers. In either mode, a capture writes the values from TL2 and TH2 into CRCL and CRCH or into CCxL and CCxH.

Mode 0: Capture is triggered by a transition at pin CCx of PORT1. For CC0, the trigger transition is configured by bit I3FR of T2CON; the other three pins always trigger on a rising edge. If configured to do so, the CCx transition will request an interrupt by setting flag IEXx in IRCON.

Mode 1: Capture is triggered by any write into the lower register of a capture pair. The value written is irrelevant. No interrupt is requested.

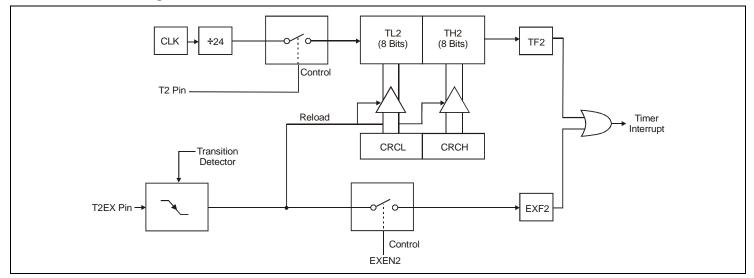
Compare

As the Timer 2 value changes, it can be automatically compared to the value in any of the four pairs of capture/compare registers, as configured by CCEN. If the values are equal, an appropriate signal is sent to pin CCx of PORT1. (If configured to do so, CCx transitions may request an interrupt by setting flag IEXx in IRCON.) The signal is determined by the compare mode, as specified by bit T2CM in T2CON:

- **Mode 0**: On an equal compare, pin CCx changes from low to high. In this mode, writing to PORT1 will have no effect, because the input line from the internal bus and the write-to-latch line are disconnected.
- **Mode 1**: Before the compare, software writes a value to bit x of register P1, but the value is not transmitted to PORT1. On an equal compare, the bit x value is transmitted to pin CCx. Timer 2 overflow has no effect in this mode; software controls both transitions of pin CCx.

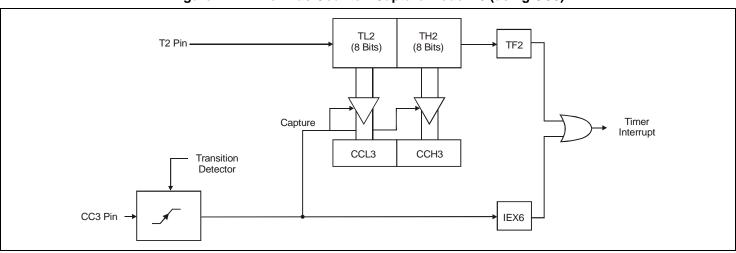
Interrupts

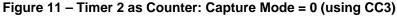
Timer 2 and the CCU can be configured to request interrupts in any of several conditions:

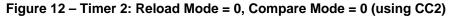

Any overflow – TF2

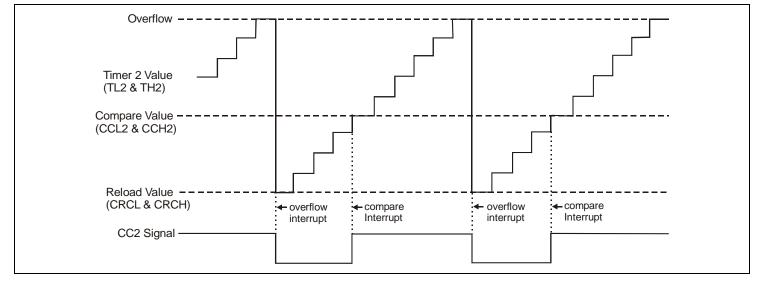
Reload Mode 1 - EXF2

Capture Mode 0 – IEXx


Any Compare – IEXx


For more about interrupts, see section 19 on page 54.




Figure 10 – Timer 2 as Gated Timer: Prescaler Select = 1, Reload Mode = 1

17.3. Watchdog Timer

The watchdog timer provides a means to trigger a system reset in case of software upset. When this timer is running, it must receive regular "refresh" signals from the software. If these signals cease, the timer sends a signal that causes a reset.

Registers

The 15-bit watchdog timer value is stored internally and is not accessible to software. A seven-bit reload value is stored in register WDTREL. Other important bits are in registers IEN0, IEN1, and IP0.

Signals

Input pin SWD starts the watchdog timer. Bit SWDT (in IEN1) can also start the timer. Bits WDT (in IEN0) and SWDT are used to refresh the timer. Bit WDTS (in IP0) is used to trigger a system reset.

Operation

Starting: Each external reset disables the watchdog timer, clears its value, and sets WDTREL to 00h. The watchdog timer starts to run if the SWD signal is asserted during reset. Otherwise, the watchdog timer can be started at any time by setting bit SWDT. Once activated, the watchdog timer cannot be stopped except by a reset.

Running: The watchdog timer value is incremented according to the value of the PS bit in WDTREL (can be written or read at any time). If PS = 0, the timer increments every 24 clock cycles; if PS = 1, a divide-by-16 prescaler is added, and the timer increments once every 384 clock cycles. When the watchdog timer value reaches 7CFFh, it sets bit WDTS (in register IP0). After two clock cycles, the system initiates a reset.

Refreshing: To prevent a system reset, the software must periodically refresh the value of the watchdog timer. This is a two-step process: first, a '1' is written to bit WDT; then, within the next 12 clock cycles, a '1' must be written to bit SWDT. The watchdog timer is then reloaded with the value stored in the lower seven bits of WDTREL (can be written or read at any time). Bits WDT and SWDT are each cleared twelve clock cycles after they are written, or when the timer is reloaded, whichever occurs first.

18. Serial Ports

There are two serial ports, serial port 0 and serial port 1. These ports are entirely separate from the Serial Peripheral Interface (SPI). Each serial port can simultaneously transmit and receive; one byte of received data is buffered to prevent data loss. The two serial ports offer various operating modes and baud rates and allow multiprocessor communication.

Registers

Each serial port uses one special function register (S0BUF or S1BUF) to access two separate internal buffers, one for transmit and one for receive. PORT1 and PORT3 contain the RXD and TXD pins. S0CON and S1CON control and configure the serial ports. IEN0 and IEN2 enable/disable the serial channel interrupts. Additional baud rate data may be contained in S0RELL, S0RELH, S1RELL, S1RELH, PCON, WDCON, and TH1.

Operation

Serial data is transmitted one bit at a time. Each serial port has one transmit pin and one receive pin. The ports are fullduplex – that is, each port can simultaneously send and receive data. Assuming that the ports have been correctly configured, operation proceeds as follows:

Receive: Bit RENx must be set in order to enable reception. As data bits arrive on the RXDx pin, they are stored in the serial port's receive buffer. When a full byte has been received, the hardware sets the RIx flag in the SxCON register to request an interrupt; the received byte is now available in the RxBUF register and new data bits can be received in the receive buffer (except Mode 0; see below).

Transmit: Writing a byte of data into the SxBUF register fills the corresponding output buffer and begins transmission. When the byte has been sent, hardware sets the TIx flag in the SxCON register to request an interrupt; the next data byte can now be written to SxBUF.

18.1. Serial Port 0 Modes

Serial port 0 can operate in four different modes, as configured by bits SM0 and SM1 in the S0CON register.

Mode 0 (Shift Register): Serial data is transmitted and received through pin RXD0 (PORT3[0]) while pin TXD0 (PORT3[1]) outputs the shift clock. Bit RI0 must be cleared to enable reception. Each byte transmitted/received contains 8 bits; the least significant bit (LSB) is always first.

Mode 1 (8-bit UART): Serial data bits are transmitted through pin TXD0 and received through pin RXD0. No external shift clock is used. Each byte uses 10 bits: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, the start bit synchronizes the communication, the 8 data bits are available in S0BUF, and the stop bit sets flag RB80 in register S0CON; RB80 may be cleared by software.

Mode 2 (9-bit UART): Much like Mode 1, but each byte uses 11 bits: start bit (0), 8 data bits (LSB first), a programmable ninth data bit, and a stop bit (1). The 9th bit can be used for parity or to support multiprocessor communication (see below). On transmit, the 9th data bit is taken from TB80 in S0CON. On receive, the 9th data bit goes into RB80 and the stop bit is discarded.

Mode 3 (9-bit UART): Exactly like Mode 2 except that the baud rate is calculated differently.

18.2. Serial Port 1 Modes

Serial port 1 can operate in two different modes, as configured by bit SM in register S1CON. Transmit uses pin TXD1; receive uses pin RXD1.

Mode A (9-bit UART): This is exactly like Modes 2 and 3 of serial port 0 except for bit locations and baud rates. Data bits are in S1BUF; TB81 in S1CON determines the 9th data bit on transmission; on receive, the 9th data bit is stored in RB81.

Mode B (8-bit UART): This is exactly like Mode 1 of serial port 0 except for bit locations and baud rates. Data bits are in S1BUF; on receive, the stop bit sets flag RB81 in S1CON (may be cleared by software).

18.3. Multiprocessor Communication

Any of the 9-bit UART modes can be used for multi-processor communication. In this case, the slave processor(s) must have a '1' value in bit SM2x of SxCON. When the master processor transmits the slave's address, it sends a '1' value as the 9th bit, causing a serial port receive interrupt in all slave processors. Each slave processor then compares the received byte to its network address. If there is a match, the addressed slave clears bit SM2x and receives the rest of the message; the other slaves leave the bit set to '1' and ignore the message. The master processor sends the rest of the message with each 9th bit set to '0' so that no interrupts are generated in the unselected slaves.

18.4. Serial Port Baud Rates

Mode 0: Baud rate is fixed at 1/12 clock rate.

Mode 1: Baud rate depends on bit BD in register WDCON and SMOD bit in register PCON.

If BD = 0, the baud rate is determined by the value of register TH1 (part of Timer 1), using this formula:

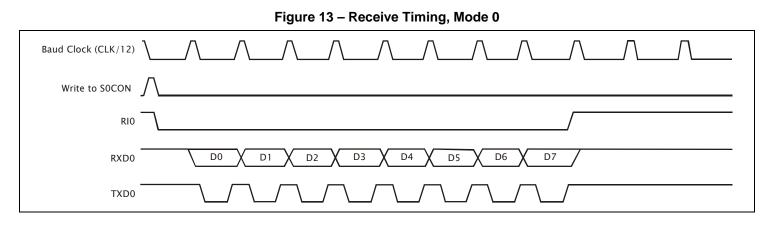
baud rate = $(2^{\text{SMOD}} \times \text{ClockRate}) / (384 \times (256 - \text{TH1}))$

If BD = 1, the baud rate is determined by the value of SOREL (registers SORELL and SORELH) using this formula:

baud rate = $(2^{\text{SMOD}} \times \text{ClockRate}) / (64 \times (1024 - \text{S0REL}))$

Mode 2: Baud rate is determined by bit SMOD in PCON using this formula:

baud rate = $(2^{\text{SMOD}} \times \text{ClockRate}) / 64$


Therefore, if SMOD = 0, baud rate is 1/64 clock rate; if BD = 1, baud rate is 1/32 clock rate.

Mode 3: Same as Mode 1.

Modes A and B: Baud rate is determined by S1REL (registers S1RELL and S1RELH) using this formula:

baud rate = ClockRate / (32 x (1024 - S1REL))

18.5. Serial Port Timing

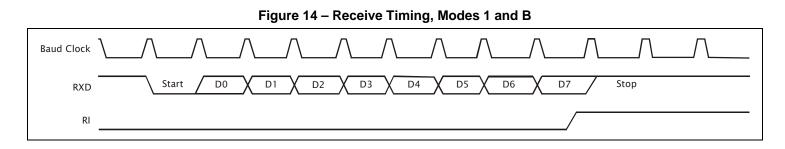
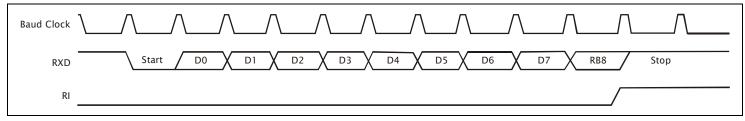



Figure 15 – Receive Timing, Modes 2, 3, and A

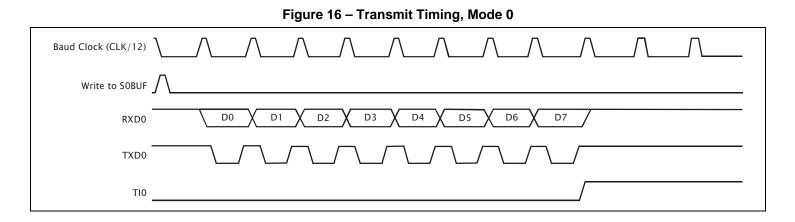
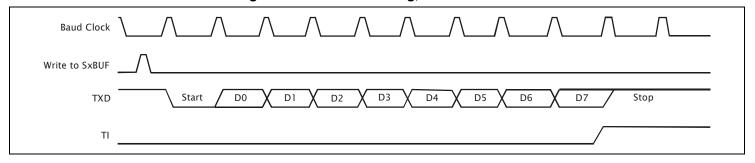
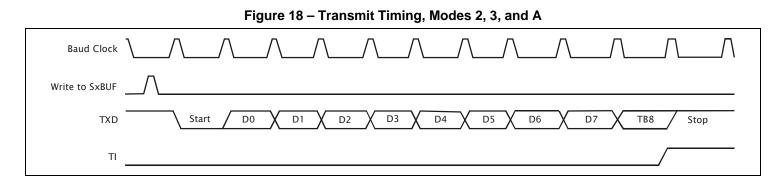




Figure 17 – Transmit Timing, Modes 1 and B

19. Interrupts

The TSCR8051 supports twelve interrupt sources; some are triggered by external signals, others by internal events. Each source sets a request flag in a special function register. Each source can be enabled, disabled, prioritized, and otherwise configured by special function register settings. After a reset, all interrupts are disabled.

There are four levels of priority for interrupts. Priorities are assigned to each of six interrupt "groups", where a "group" contains two interrupt sources. Priorities are controlled by registers IPO and IP1.

Nаме	Signal (Port)	TRIGGER	Priority Group	Flag (Register)	CONFIGURATION REGISTERS
External Interrupt 0	INT0 (3)	Signal Low (or Fall)	0	IE0 (TCON)	IEN0, TCON
External Interrupt 1	INT1 (3)	Signal Low (or Fall)	2	IE1 (TCON)	IEN0, TCON
External Interrupt 2	INT2 (0)	Signal Fall (or Rise)	1	IEX2 (IRCON)	IEN0, IEN1, T2CON
External Interrupt 3	INT3 (0)	Signal Fall (or Rise) *	2	IEX3 (IRCON)	IEN0, IEN1, T2CON
External Interrupt 4	INT4 (0)	Signal Rise *	3	IEX4 (IRCON)	IEN0, IEN1
External Interrupt 5	INT5 (0)	Signal Rise *	4	IEX5 (IRCON)	IEN0, IEN1
External Interrupt 6	INT6 (0)	Signal Rise *	5	IEX6 (IRCON)	IEN0, IEN1
Serial Channel 0	(none)	Rx/Tx Complete	4	RI0, TI0 (S0CON)	IEN0
Serial Channel 1	(none)	Rx/Tx Complete	0	RI1, TI1 (S1CON)	IEN0, IEN2
Timer 0	(none)	Overflow	1	TF0 (TCON)	IEN0
Timer 1	(none)	Overflow	3	TF1 (TCON)	IEN0
Timer 2	T2EX (1)	Signal Fall, Overflow *	5	EXF2, TF2 (IRCON)	IEN0, IEN1

Table 14: Interrupt Summary

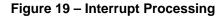
* Timer 2 Compare/Capture events can trigger interrupts on pins CC0-CC3 (INT3-INT6); see page 47.

When an interrupt condition occurs, the corresponding flag is set, regardless of whether that interrupt is enabled. The flags are continually polled by the hardware.

If a flag indicates a pending interrupt and that interrupt is enabled, the next instruction cycle will force an LCALL to the appropriate vector address.

Once interrupt service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by an RETI instruction. The fastest possible response to an interrupt is 7 cycles – one to detect the interrupt and six to perform the LCALL.

Most flags must be cleared by software, normally within the interrupt service routine. The only exceptions are TF0 and TF1, which are automatically cleared when the service routine is called.


Table 15: Interrupt Polling Sequence

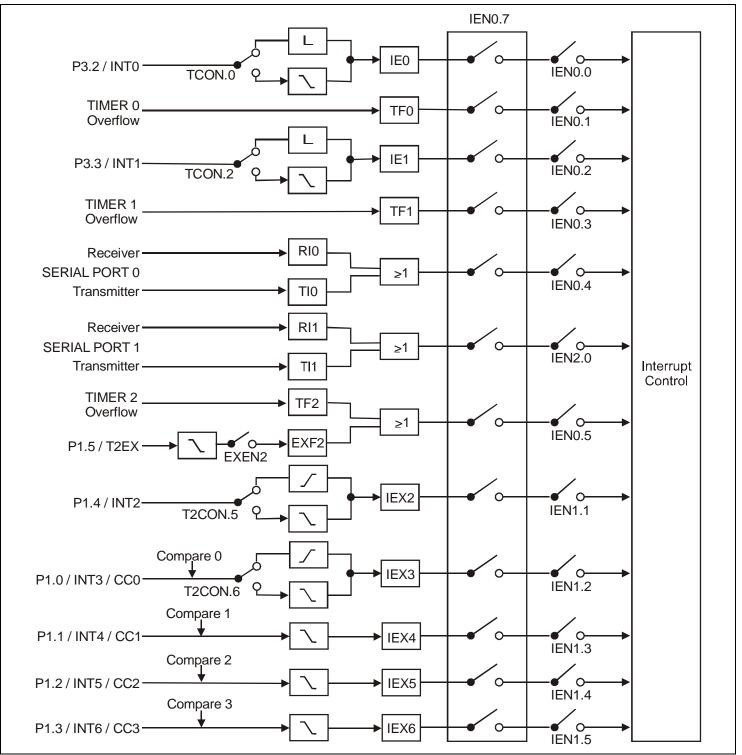

	3 - 1
External interrupt 0	
Serial channel 1	
Timer 0	
External interrupt 2	
External interrupt 1	
External interrupt 3	
Timer 1	
External interrupt 4	
Serial channel 0	
External interrupt 5	
Timer 2	
External interrupt 6	

Table 16: Interrupt Vectors

FLAG – INTERRUPT SOURCE	VECTOR ADDRESS
IE0 – External interrupt 0	0003h
TF0 – Timer 0	000Bh
IE1 – External interrupt 1	0013h
TF1 – Timer 1	001Bh
RI0/TI0 – Serial channel 0	0023h
TF2/EXF2 – Timer 2	002Bh
RI1/TI1 – Serial channel 1	0083h
IEX2 – External interrupt 2	004Bh
IEX3 – External interrupt 3	0053h
IEX4 – External interrupt 4	005Bh
IEX5 – External interrupt 5	0063h
IEX6 – External interrupt 6	006Bh

20. Floating Point Unit (FPU)

The FPU is a single-precision (32-bit) floating point unit, fully IEEE 754 compliant, with a 32-bit comparator.

LOCATION	ΝΑΜΕ	FUNCTION	
A3h	FPUCON	Specifies FPU operation and rounding	
A4h – A7h	OPA3/2/1/0	Floating Point Operand A	
ABh	FPCS	Comparator Flags – Zero, Equal, Infinite, etc.	
ACh – AFh	OPB3/2/1/0	Floating Point Operand B	
B3h	FPUS	Status Flags – QNaN, Inexact, etc.	
B4h – B7h	FPUR3/2/1/0	Floating Point Result	

Table 17: Floating-Point Unit (FPU) Registers

General Operation

Each FPU operation requires four clock cycles. The FPU processes its operands continuously, in pipelined fashion, updating the results every clock cycle. The order in which the registers are written does not matter. When the correct values are in FPUCON and the operand registers, the results and flags will appear four cycles later.

NaN Values

Per the IEEE 754 standard, valid FPU operations can generate "Not-a-Number" (NaN) results; for example, subtracting infinity from infinity produces NaN. There are two categories of NaN: QNaN (Quiet Nan) indicates an indeterminate operation and SNaN (Signaling NaN) indicates an invalid operation. Although either operand may be SNaN, the FPU will never generate SNaN output; any NaN result will be QNaN.

Conversions

When a floating point number is converted to an integer, the integer output may be NaN or infinity, both of which are legal integer values. In those cases, the INF or QNAN flag is not set. However, if the input is NaN, the SNaN flag is set.

21. Extended Computing Functions

These functions allow the TSCR8051 to perform some of the standard vector processing used in super-computing applications.

21.1. 32-bit Leading-Zero Counter

An internal 32-bit register counts leading zeroes written to an 8-bit register. For this application, 'leading zeros' are 0 bits written before a 1 is written; more significant bits are written before less significant bits. Once a '1' has been written, the leading zero count does not change until the internal register is cleared.

LOCATION	NAME	FUNCTION	
96h	LZCON	Controls and reports leading-zero conditions.	
97h	LZC	Write: Updates the internal counter. Read: returns one byte of the internal counter	

Table 18: Leading Zero Count Registers

Various bits in LZCON are used to clear the counter, report an overflow, and control the "read" function of LZC. Two bits in LZCON determine which byte of the internal counter is available via LZC. If these bits are 11b, reading LZC returns the most significant byte of the counter. Whenever LZC is read, the two-bit value is decremented so that the next reading of LZC returns the next lower byte. When the two-bit value is 00b, reading LZC returns the least significant byte of the counter and the two-bit value cycles back to 11b. If the LZM bit (LZCON.3) is set, reading the least significant byte will also clear the counter.

21.2. 32-bit Population Counter

An internal 32-bit register counts the number of ones written to an 8-bit register. This function behaves much like the leading-zero function except that the count does not halt when a zero is written.

LOCATION	NAME	FUNCTION	
9Eh	PCCON	Controls and reports population count conditions.	
9Fh	POPC	Write: Updates the internal counter. Read: Returns one byte of the internal counter	

Table 19: Leading Zero Count Registers

Various bits in PCCON are used to clear the counter, report an overflow, and control the "read" function of POPC. Two bits in PCCON determine which byte of the internal counter is available via POPC. If these bits are 11b, reading POPC returns the most significant byte of the counter. Whenever POPC is read, the two-bit value is decremented so that the next reading of POPC returns the next lower byte. When the two-bit value is 00b, reading POPC returns the least significant byte of the counter and the two-bit value cycles back to 11b. If the POPM bit (PCCON.3) is set, reading the least significant byte will also clear the counter.

22. SPI Memory Loader

The SPI (Serial Peripheral Interface) is a special-purpose interface, completely separate from the I/O ports and the serial ports. Immediately upon power-up or system reset, the microprocessor's program memory is loaded through the SPI from an SPI-compatible device (e.g., Atmel AT25xxxx). The memory loader uses the SPI pins and some of the Clock pins as described on page 7.

23. Reset Control

This unit can be reset by an external signal (RESET) or by the watchdog timer's internal signal (WDTS). When either of these signals is held high for two cycles while the oscillator is running, all registers and flip-flops are reset. Immediately after the reset, program memory is loaded via the SPI circuitry (see above).

24. Power Management

Two power-saving modes, IDLE and POWER-DOWN, can be invoked by setting bits in the PCON register.

IDLE

This mode is invoked by setting the IDL bit. The core becomes non-active, reducing power consumption. The CPU, ALU, and memory unit are stopped, but the internal clocks and peripherals continue to run. Serial ports, timers, etc. are active, and memory retains its state. A reset or any interrupt will cause the unit to exit the IDLE mode.

POWER-DOWN

This state is invoked by setting the PD bit. All internal clocking is turned off. Memory retains its state. A reset or any external non-clocked interrupt causes the unit to exit this state. (Internal interrupts require clocking, and will not occur in the POWER-DOWN state.)

25. Device Specifications

25.1. Absolute Maximum Ratings

SYMBOL	PARAMETER	ΜιΝ	Мах	Unit
Vddq	3.3 V DC Supply Voltage	-0.5	4.6	V
Vddqf	3.3 V DC Filtered Supply Voltage	-0.5	4.6	V
Vdd	1.8 V DC Supply Voltage	-0.5	3.5	V
Vin	Input Voltage	-0.5	6.0	V
Vout	Output Voltage (outputs active)	0	Vdd + 0.5	V
VOUT	Output Voltage (outputs disabled)	0	6.0	V
Tstg	Storage Temperature	-65	150	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum ratings is not implied.

25.2. Recommended Operating Conditions

SYMBOL	PARAMETER	ΜιΝ	Мах	Unit
Vddq	3.3 V DC Supply Voltage	3.0	3.6	V
VDDQF	3.3 V DC Filtered Supply Voltage	3.0	3.6	V
Vdd	1.8 V DC Supply Voltage	1.62	1.98	V
Vin	Normal 3.3 Input Voltage	0	3.6	V
VIN	5V Tolerant Input Voltage	0	5.5	V
Vout	Output Voltage (outputs active)	0	Vdd	V
V001	Output Voltage (outputs disabled)	0	5.5	V
TJ	Junction Temperature	0	125	°C

25.3. DC Characteristics

SYMBOL	PARAMETER	ΜιΝ	Мах	Unit
Vін	Input High Voltage	2.0	Ι	V
VIL	Input Low Voltage	-	0.8	V
Vон	Output High Voltage	2.4	-	V
Vol	Output Low Voltage	-	0.4	V
loz	3-State Output Leakage Current	-10	10	μA

25.4. AC Characteristics

Not available at time of revision.

26. Package Dimensions

Not available at time of revision.

27. Document History

REVISION	DATE	Notes
Draft 0.1	June 8, 2010	incomplete