
© 2018 Arm Limited

Securing IoT
applications with

Mbed TLS
Hannes Tschofenig

© 2018 Arm Limited 2

Agenda

Theory

• Threats

• Security services

• TLS Protocol

• Performance

• DTLS

Hands-on with Arm Keil MDK

• Pre-shared secret-based authentication

(covered in webinar #1)

• Public-key based authentication

(covered in webinar #2)

© 2018 Arm Limited 3

Speaker’s bio – Hannes Tschofenig

• Employed by Arm Ltd working mostly on IoT (security)
standards.

• Previous employers include European Data Protection
Supervisor, Nokia Siemens Networks/Nokia and
Siemens.

• Contributed to different standardization bodies, such
as the IETF (see IETF data tracker page) and OMA, and
EEMBC.

• Contact email address: Hannes.Tschofenig@arm.com

https://datatracker.ietf.org/person/Hannes Tschofenig
mailto:Hannes.Tschofenig@arm.com

© 2018 Arm Limited

Threats

© 2018 Arm Limited 5

Examples of breaches due to missing communication security

Car Hack Traffic Lights Hack

https://jalopnik.com/millions-of-connected-bmws-were-using-unencrypted-data-1682795531
https://www.wired.com/2014/04/traffic-lights-hacking/

© 2018 Arm Limited

Security services

© 2018 Arm Limited 7

What are we trying to protect?

• Internet threat model is documented in
RFC 3552

• Attacker has nearly complete control of the communications channel.

• End systems engaged in a protocol exchange have not themselves been
compromised.

• Focus of the IETF standardization
activities has been on communication
security (COMSEC) and providing
security services, such as confidentiality,
integrity and authentication.

• Lack of COMSEC is one of the top 5
problems with IoT security.

IoT device

Cloud,
on-premise server, or

other IoT device

Data

Adversary

Goal of the TLS
protocol is to
provide COMSEC
and to secure the
exchange of data
between two
endpoints.

https://tools.ietf.org/html/rfc3552

© 2018 Arm Limited

TLS Protocol

© 2018 Arm Limited 9

History

• TLS has been around for some time

• SSL 1.0, 2.0 and 3.0 was developed by Netscape. Version 1.0 was never publicly released because of serious security flaws in the protocol; version 2.0, released in February
1995, "contained a number of security flaws which ultimately led to the design of SSL version 3.0". SSL version 3.0, released in 1996.

• TLS 1.0 was published as RFC 2246 in January 1999.

• TLS 1.1 was published as RFC 4346 in April 2006.

• TLS 1.2 was published as RFC 5246 in August 2008.

• Beside the work on the major TLS versions DTLS 1.1 was published as RFC 4347 in April
2006 and DTLS 1.2 was published as RFC 6347 in January 2012.

• Equally important is the work on numerous extensions to TLS/DTLS, which happened
throughout the years.

• The work on TLS 1.3 started late 2013 and is still ongoing in the IETF TLS working group.

• TLS is widely deployed and has been excessively analyzed by researchers.

http://tools.ietf.org/html/rfc2246
http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc6347
https://datatracker.ietf.org/wg/tls/charter/

© 2018 Arm Limited 10

Naïve approach to COMSEC

• Ideally, we just need keys, algorithms and parameters shared between the endpoints to
protect application data.

Client

Adversary

Server

Just share keys
between the endpoints

© 2018 Arm Limited 11

Protecting application data
Using Authenticated Encryption with Associated Data (AEAD)

Application data

Encrypted data TagRecord protocol header

Note: The size of the boxes has been selected for editorial reasons.

Tag = Authentication Tag =

Integrity Check Value (ICV)

Nonce

Examples of AEAD ciphers are:
• AES-128-CCM(-8)
• AES-256-GCM

CCM –Counter with CBC-MAC
Mode (CCM)

GCM - Galois/Counter Mode
AEAD cipher, key, nonce

© 2018 Arm Limited 12

Practical challenges

• There are additional requirements:

• Algorithms, parameters and features need to be negotiated.
With dynamic negotiation downgrade protection is needed.

• Endpoints need to be authenticated.

• Key management needs to be addressed.

• Re-keying is needed from time-to-time.

• Different types of credentials are often used (e.g., public key crypto, strong password-based credentials).

• Exchange needs to be protected against Denial of Service.

• Protection against traffic analysis and other privacy-related threats may be needed.

• In a nutshell, there is more to the protection of application data in flight than the use of
keys with an algorithm.

• This is where an authentication and key agreement protocol comes into the picture.

© 2018 Arm Limited 13

Design Idea: Two Phase Protocol Exchange

Phase 1

• Endpoint authentication that may
involve asymmetric cryptography

• Multi-roundtrip handshake with
algorithm and feature negotiation

• Added DoS protection capabilities

• End result: Symmetric keys for use
with negotiated ciphers.

Phase 2

• Symmetric crypto to offer data-origin
authentication, integrity and
confidentiality protection

• Great performance with low
on-the-wire overhead.

The TLS spec calls this the
“Record Protocol”.

The TLS spec calls this the
“Handshaking Protocols”.

© 2018 Arm Limited 14

Abstract TLS handshake exchange (Part 1)

Hello – I am the client!

I support ciphersuite 1, 2, and 3 + extensions X, Y, and Z

Here is a random number Nc.

Client Server

Hello – I am the server!

Let us pick ciphersuite 2 and I support extension X.

Here is my random number Ns.

© 2018 Arm Limited 15

The ciphersuite concept

• Up till TLS 1.2 a ciphersuite is a combination of

• Authentication and key exchange algorithm (e.g., PSK)

• Cipher and key length (e.g., Advanced Encryption Standard (AES) with 128 bit keys [AES])

• Mode of operation (e.g., Counter with Cipher Block Chaining - Message Authentication Code (CBC-MAC) Mode
(CCM) for AES) [RFC3610]

• Hash algorithm for integrity protection, such as the Secure Hash Algorithm (SHA) in combination with Keyed-
Hashing for Message Authentication (HMAC) (see [RFC2104] and [RFC4634])

• Hash algorithm for use with the pseudorandom function (e.g., HMAC with the SHA-256)

• Misc information (e.g., length of authentication tags)

• Information whether the ciphersuite is suitable for DTLS or only for TLS.

• Examples are TLS_PSK_WITH_AES_128_CCM_8 and TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8.

• The full list of standardized ciphersuites can be found here.

http://tools.ietf.org/html/draft-ietf-dice-profile-08
http://tools.ietf.org/html/rfc3610
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc4634
http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4

© 2018 Arm Limited 16

TLS/DTLS extensions

• The TLS/DTLS protocol is an authentication framework rather than a single
authentication protocol.

• Various extensions have been standardized over time to improve functionality and
performance.

• The TLS/DTLS 1.2 Profiles for the Internet of Things (RFC 7925) offers guidance for the
IoT sector.

• RFC 7925 covers the following profiles and explains what extensions are useful for

– PSK-based ciphersuite

– Raw public key-based ciphersuite

– Certificate-based ciphersuite.

https://tools.ietf.org/html/rfc7925

© 2018 Arm Limited 17

Randomness

Widespread Weak Keys in Network Devices
We performed a large-scale study of RSA and DSA cryptographic keys in
use on the Internet and discovered that significant numbers of keys are
insecure due to insufficient randomness. These keys are being used to
secure TLS (HTTPS) and SSH connections for hundreds of thousands of
hosts.

© 2018 Arm Limited 18

Randomness: Why do we care?

• Cryptographic protocols depend on good entropy source.

• High entropy ≈ true random data

• true random data = the perfect 50/50 coin-flip

• Examples:

• Public/Private key pairs

• Digital signatures (based on El Gamal)

• Diffie-Hellman exchanges

• Unique AES keys

• Unique IVs

• Nonces

• TLS for use in your project/product requires an entropy source.

© 2018 Arm Limited

Extending the example
with the

pre-shared secret
ciphersuite

Note: Client and Server share a PSK Identity and a PSK Secret.

© 2018 Arm Limited 20

Recap: Abstract TLS handshake exchange (Part 1)

Hello – I am the client!

I support ciphersuite 1, 2, and 3 + extensions X, Y, and Z

Here is a random number Nc.

Client Server

Hello – I am the server!

Let us pick ciphersuite 2 and I support extension X.

Here is my random number Ns.

© 2018 Arm Limited 21

Abstract TLS message exchange (Part 2)
Client Server

I am done

Let us switch to the negotiated cipher.

Finished

Application Data

I am “Alice”

Let us switch to the negotiated cipher.

Finished!

Continuation from slide#21

© 2018 Arm Limited

TLS-PSK handshake
(with correct
terminology)

© 2018 Arm Limited 23

TLS-PSK exchange

ServerClient

ClientHello

ServerHello

ServerKeyExchange*
ServerHelloDone

ClientKeyExchange,

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application Data

Legend:

*: optional message

[]: Not a handshake message.

Note: This is only one variant
of the TLS-PSK exchange.

Contains the
psk_identity

May contain
a psk identity
hint

© 2018 Arm Limited

Hands-on

© 2018 Arm Limited 25

Platform

• For this hands-on session we are using the Keil MCBSTM32F400 Evaluation Board,
which uses the STM32F407IG MCU.

• This MCU uses an Arm Cortex M4 processor. More information can be found in this
datasheet.

• Keil RTX5 serves as the real-time OS.

http://www.keil.com/mcbstm32f400/
http://www.st.com/en/microcontrollers/stm32f407ig.html
http://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf

© 2018 Arm Limited 26

Demo setup

TLS client

Development
laptop

TLS server

Keil
MCBSTM32F400

© 2018 Arm Limited 27

Mbed TLS
Mbed TLS source code: https://github.com/ARMmbed/mbedtls

Client

• Modified version of the
ssl_client1.c/ssl_client2.c example code
running on Keil MCBSTM32F400.

• Corresponds to the following command
line execution:

> ssl_client2 server_addr=<IP_ADDR> debug_level=5
psk_identity=“client” psk=0102030405
force_version=tls1_2 force_ciphersuite=TLS-PSK-WITH-
AES-128-CCM-8

Server

• Test server provided with Mbed TLS
source code – ssl_server2

• Command

> ssl_server2 debug_level=5 psk_identity=“client”
psk=0102030405 force_version=tls1_2

https://github.com/ARMmbed/mbedtls

© 2018 Arm Limited 28

Purpose of this hands-on example

For TLS

1. Configure Mbed TLS to execute a
PSK-based ciphersuite

2. Become familiar with the Mbed
TLS API

3. Understand main steps in
establishing a TLS connection to
protect HTTP data

TLS

Ethernet

IP

TCP

Application
(e.g., HTTP)

Example Protocol
Stack

© 2018 Arm Limited 29

Config.h

• C Preprocessor Directives for including/excluding functionality into the
Mbed TLS library.

• Located in include/mbedtls/config.h

• For the Keil IDE an additional file, mbedTLS_config.h is used.

• All configuration settings with documentation can be found at
https://tls.mbed.org/api/config_8h.html

https://tls.mbed.org/api/config_8h.html

© 2018 Arm Limited 30

TLS-PSK config.h settings

• According to RFC 7925 we use

• TLS_PSK_WITH_AES_128_CCM_8 as a ciphersuite, which requires
MBEDTLS_KEY_EXCHANGE_PSK_ENABLED

• TLS 1.2: MBEDTLS_SSL_PROTO_TLS1_2

• AES, CCM and SHA256 support (MBEDTLS_AES_C, MBEDTLS_CCM_C,
MBEDTLS_SHA256_C)

• Debugging features

• System support

• IoT features (e.g., MBEDTLS_SSL_MAX_FRAGMENT_LENGTH)

• [Performance enhancements]

© 2018 Arm Limited 31

Mbed TLS Application Code (TLS)

1. Initialize TLS session data

2. Initialize the RNG

3. Establish TCP connection

4. Configure TLS

5. Run TLS handshake protocol

6. Exchange application data

7. Tear down communication and free state

© 2018 Arm Limited

Performance

© 2018 Arm Limited 33

Size of the TLS exchange: PSK example

175 bytes of TLS
payload with

• 6 byte identity
length

• no extensions

• only a single
ciphersuite being
proposed by
client.

Client Server Size

ClientHello 49 bytes

ServerHello 44 bytes

Server Hello Done 4 bytes

Client Key Exchange 12 bytes

Change Cipher Spec
Protocol

1 byte

TLS Finished 32 bytes

Change Cipher Spec 1 byte

TLS Finished 32 bytes

© 2018 Arm Limited 34

Key length

Symmetric ECC DH/DSA/RSA

80 163 1024

112 233 2048

128 283 3072

192 409 7680

256 571 15360

• RFC 7925 recommends to use at least 112 bits symmetric keys for state-of-the-art applications.

• A 2013 ENISA report states that an 80-bit symmetric key is sufficient for legacy applications but
recommends 128 bits for new systems. The lifetime of a device has to be taken into account as well!

Values in table above are based on recommendations from RFC 4492.

See also RFC 3766 for "Determining Strengths For Public Keys Used For Exchanging Symmetric Keys”.

The chosen key length impacts security and performance.

https://tools.ietf.org/html/rfc7925
https://www.enisa.europa.eu/publications/algorithms-key-sizes-and-parameters-report
https://tools.ietf.org/html/rfc4492
https://tools.ietf.org/html/rfc3766

© 2018 Arm Limited 35

Symmetric key crypto performance
LPC 1768 / ARM Cortex-M3 core running at 96 MHz

0.6

1.4

0.7

0.8

0.9

1.8

1.9

2

1.7

1.9

2.1

0

0.5

1

1.5

2

2.5

SHA-256 SHA-512 AES-CBC-128 AES-CBC-192 AES-CBC-256 AES-GCM-128 AES-GCM-192 AES-GCM-256 AES-CCM-128 AES-CCM-192 AES-CCM-256

Ti
m

e
(m

se
c)

Cryptographic Operation

From a contribution to the NIST lightweight crypto workshop 2015.

http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf

© 2018 Arm Limited 36

Symmetric key cryptography performance explained

• SHA computes a hash over a buffer with a length of 1024 bytes.

• AES-CBC: 1024 input bytes are encrypted. No integrity protection is used.
IV size is 16 bytes.

• AES-CCM and AES-GCM: 1024 input bytes are encrypted and integrity
protected. No additional data is used. In this version of the test a 12 bytes
nonce value is used together with the input data. In addition to the
encrypted data a 16 byte tag value is produced.

© 2018 Arm Limited

DTLS

© 2018 Arm Limited 38

DTLS

• The design of DTLS is intentionally
similar to TLS. DTLS 1.2 is
documented in RFC 6347.

• DTLS operates on top of an
unreliable datagram transport;
most importantly over UDP.

• CoAP is an example of a protocol that
runs over UDP.

• But since TLS cannot be used
directly over unreliable transports
enhancements are needed.

DTLS

Ethernet

IP

UDP

Application

Example Protocol Stack

http://tools.ietf.org/html/rfc6347

© 2018 Arm Limited

Conclusion

© 2018 Arm Limited 40

Summary

• TLS is the most successful Internet security protocol and has helped to secure web and
smart phone traffic. It is now being used in the IoT environment.

• TLS is a flexible protocol with various options.

• In part #1 of this webinar we started with TLS-PSK exchange. At the next webinar we
look into how to use public key based crypto with TLS and what the performance
implications are.

4141 © 2018 Arm Limited

The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights
reserved. All other marks featured may be
trademarks of their respective owners.

www.arm.com/company/policies/trademarks

