
© 2018 Arm Limited

March 2018

Munich

Securing IoT
applications with

Mbed TLS
Hannes Tschofenig

Part#2: Public Key-based authentication

© 2018 Arm Limited 2

Agenda

• For Part #2 of the webinar we are moving from Pre-Shared Secrets (PSKs) to
certificated-based authentication.

• TLS-PSK ciphersuites have

• great performance,

• low overhead,

• small code size.

• Drawback is the shared key concept.

• Public key cryptography was invented to deal with this drawback
(but itself has drawbacks).

© 2018 Arm Limited

Public Key Infrastructure
and certificate
configuration

© 2018 Arm Limited 4

Public Key Infrastructure
Various PKI deployments in existence

Structure of our PKI The client has to store:

• Server certificate plus corresponding
private key.

(Some information for
authenticating the client)

CA cert

self-signed

Client cert Server cert

Signed by CASigned by CA

The server has to store:

• Client certificate plus corresponding
private key.

• CA certificate, which serves as the
trust anchor.

© 2018 Arm Limited 5

Generating certificates (using OpenSSL tools)

• When generating certificates you will be
prompted to enter info.

• The CA cert will end up in the trust
anchor store of the client.

• The Common Name used in the server
cert needs to be resolvable via DNS
UNLESS you use the server name
indication extension.

• If the information in the Common Name
does not match what is expected in the
TLS handshake (based on configuration)
then the exchange will (obviously) fail.

You are about to be asked to enter information that will be

incorporated into your certificate request.

What you are about to enter is what is called a Distinguished

Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:.

State or Province Name (full name) [Some-State]:.

Locality Name (eg, city) []:.

Organization Name (eg, company) [Internet Widgits Pty Ltd]:.

Organizational Unit Name (eg, section) []:.

Common Name (e.g. server FQDN or YOUR name) []:CA

Email Address []:.

© 2018 Arm Limited 6

Generating CA certificate

Listing supported curves

Self-signed CA Cert

> openssl ecparam -list_curves

> openssl ecparam -genkey -name secp256r1 -out ca.key
> openssl req -x509 -new -SHA256 -nodes -key ca.key -days 3650 -out ca.crt

© 2018 Arm Limited 7

Generating server certificate

Generate Server Private Key

Create CSR

Print CSR:

CA creates Server Cert

> openssl ecparam -genkey -name secp256r1 -out server.key

> openssl req -new -SHA256 -key server.key -nodes -out server.csr

> openssl x509 -req -SHA256 -days 3650 -in server.csr -CA ca.crt
-CAkey ca.key -CAcreateserial -out server.crt

> openssl req -in server.csr -noout -text

© 2018 Arm Limited 8

Generating client certificate

Generate Client Private Key

Create CSR

CA creates Client Cert

> openssl ecparam -genkey -name secp256r1 -out client.key

> openssl req -new -SHA256 -key client.key -nodes -out client.csr

> openssl x509 -req -SHA256 -days 3650 -in client.csr -CA ca.crt
-CAkey ca.key -CAcreateserial -out client.crt

© 2018 Arm Limited 9

Operational PKI challenges worth mentioning

• Certificates contain an expiry date, which needs to be checked.

• Certificates may also get revoked.

• Certificates and trust anchors may need to be replaced.

• These topics are not covered in this webinar.

© 2018 Arm Limited

TLS protocol

© 2018 Arm Limited 11

Public key crypto

• Two popular types of of asymmetric crypto systems emerged, namely RSA
and Elliptic Curve Cryptography (ECC).

• The TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 ciphersuite is
recommended by many standards. It uses

• Ephemeral Elliptic Curve Diffie-Hellman (ECDHE), and

• The Elliptic Curve Digital Signature Algorithm (ECDSA).

• New to ECC?

• Talk: "A gentle introduction to elliptic-curve cryptography" by Tanja Lange and Dan Bernstein.

• Book: “Guide to Elliptic Curve Cryptography” by Vanstone, et al.

https://www.youtube.com/watch?v=l6jTFxQaUJA
http://www.amazon.co.uk/Elliptic-Cryptography-Springer-Professional-Computing/dp/038795273X

© 2018 Arm Limited 12

Recall: Key length

Symmetric ECC DH/DSA/RSA

80 163 1024

112 233 2048

128 283 3072

192 409 7680

256 571 15360

Preferred for
IoT security

© 2018 Arm Limited 13

Two Phase Design of TLS

Phase 1 – “Handshaking Protocols” Phase 2 – “Record Protocol”

AES-128-CCM-8 to protect HTTP

TLS-ECDHE-ECDSA

• Uses public key cryptography
and (in our case) certificates
for authentication.

• Covered in today’s webinar.

TLS-PSK

• Used symmetric keys for
authentication

• Covered in 1st webinar

© 2018 Arm Limited 14

Full TLS handshake

ServerClient

ClientHello

ServerHello, Certificate*, ServerKeyExchange*,

CertificateRequest*, ServerHelloDone

Certificate*, ClientKeyExchange,

CertificateVerify*, [ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

Certificate
requested by the
server
and
provided by
the client
(optional msgs)

Legend:
*: optional message

[]: Not a handshake message.

Note: Most Web deployments use server-to-client authentication only.

Used by some
ciphersuites to
convey information
to generate the
premaster secret.

May need to be
signed by the
server.

Used when client
provided certificate to
demonstrate
possession of private
key.

Server Certificate

© 2018 Arm Limited 15

ECDHE-ECDSA Exchange

Client

• Generate EC Diffie-Hellman key pair

• Place ephemeral ECDH public key in the
ClientKeyExchange message

• CertificateVerify demonstrate possession of the
long-term private key corresponding to the
public key in the client's Certificate message.

Server

• Generate EC Diffie-Hellman key pair

• Ephemeral ECDH public key is put in
ServerKeyExchange message.

• Sign ServerKeyExchange message with long
term private key.

1

2

3
• ECDHE derived key becomes pre_master_secret,

which is then used in master_secret calculation

© 2018 Arm Limited

Hands-on

© 2018 Arm Limited 17

Platform

• For this hands-on session we are using the Keil MCBSTM32F400 Evaluation Board,
which uses the STM32F407IG MCU.

• This MCU uses an Arm Cortex M4 processor. More information can be found in this
datasheet.

• Keil RTX5 serves as the real-time OS. Mbed TLS and networking middleware.

http://www.keil.com/mcbstm32f400/
http://www.st.com/en/microcontrollers/stm32f407ig.html
http://www.st.com/content/ccc/resource/technical/document/application_note/4a/6a/82/05/8e/9e/4e/94/DM00073853.pdf/files/DM00073853.pdf/jcr:content/translations/en.DM00073853.pdf

© 2018 Arm Limited 18

Demo setup

TLS client

Development
laptop

TLS server

Keil
MCBSTM32F400

© 2018 Arm Limited 19

config.h settings for TLS-ECDHE-ECDSA
• According to RFC 7925 we use

• TLS 1.2: MBEDTLS_SSL_PROTO_TLS1_2

• TLS-ECDHE-ECDSA-WITH-AES-128-CCM-8 as a ciphersuite, which requires
MBEDTLS_KEY_EXCHANGE_ECDHE_ECDSA_ENABLED

• AES, CCM, and SHA256, (MBEDTLS_AES_C, MBEDTLS_CCM_C, MBEDTLS_SHA256_C)

• ECC support: MBEDTLS_ECDH_C, MBEDTLS_ECDSA_C MBEDTLS_ECP_C, MBEDTLS_BIGNUM_C

• ASN.1 and certificate parsing support

• NIST Curve P256r1 (MBEDTLS_ECP_DP_SECP256R1_ENABLED)

• Server Name Indication (SNI) extension (MBEDTLS_SSL_SERVER_NAME_INDICATION)

• We enable optimizations (MBEDTLS_ECP_NIST_OPTIM) and deterministic ECDSA (RFC 6979) with
MBEDTLS_ECDSA_DETERMINISTIC

© 2018 Arm Limited 20

Mbed TLS client application code

1. Initialize TLS session data

2. Initialize the RNG

3. Establish TCP connection

4. Configure TLS

5. Run TLS handshake protocol

6. Exchange application data

7. Tear down communication and free state

Parse CA certificate,
client certificate and
private key of client.

• Load CA certificate
• Load client certificate and private key
• Configure SNI
• Configure curve(s)

Verify the server
certificate

© 2018 Arm Limited 21

Server-side command line

Parameters:

– auth_mode determines the behaviour of a missing client
certificate or a failed client authentication. Allowed values are
“none”, “optional” and “required”.

– cert_file indicates the file that contains the server certificate.

– key_file indicates the file that contains the private key of the
server.

–ca_file indicates the file that contains the CA certificate.

> programs/ssl/ssl_server2 auth_mode=required crt_file=server.crt key_file=server.key
ca_file=ca.crt

Server Certificate
Server
Private Key

Demands mutual authentication

CA certificate

© 2018 Arm Limited

The cost of public key
crypto

© 2018 Arm Limited 23

Handshake message size

• Example assumes a ECC-based
ciphersuite with a 256 bit curve.

• Only a single certificate is
exchanged in the Certificate
message.

• (But mutual authentication is
used, i.e., client and server
exchange certificates.)

• Result: 1932 bytes

Client Server Size

ClientHello 121 bytes

ServerHello 87 bytes

Certificate 557 bytes

Server Key Exchange 215 bytes

Certificate Request 78 bytes

Server Hello Done 4 bytes

Certificate 570 bytes

Client Key Exchange 138 bytes

Certificate Verify 80 bytes

Change Cipher Spec

Protocol

1 byte

TLS Finished 40 bytes

Change Cipher Spec 1 byte

TLS Finished 40 bytes

© 2018 Arm Limited 24
24

Performance comparison: Signature generation
ECDSA Performance (Signature Operation, w=7, NIST Optimization Enabled)

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

2000,00

LPC1768, 96 MHz,

Cortex M3

L152RE, 32 MHz,

Cortex M3

F103RB, 72 MHz,

Cortex M4

F401RE, 84 MHz,

Cortex M4

Prototyping Boards

T
im

e
 (

m
s
e
c
) secp192r1

secp224r1

secp256r1

secp384r1

secp521r1

Performance data from a contribution to the NIST lightweight crypto workshop 2015.

http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf

© 2018 Arm Limited 25

Performance optimization impact

Performance data from a contribution to the NIST lightweight crypto workshop 2015.

Using ~50 % more RAM increases the performance by a factor 8 or more.

http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf

© 2018 Arm Limited

Improving performance
with TLS extensions

© 2018 Arm Limited 27

A session ID is allocated by the server.

Session resumption exchange
First phase

ServerClient

ClientHello (+empty session ID)

ServerHello (+Session ID),
Certificate*, ServerKeyExchange*,

CertificateRequest*, ServerHelloDone

Certificate*, ClientKeyExchange,

CertificateVerify*, [ChangeCipherSpec], Finished

[ChangeCipherSpec], Finished

Application Data

© 2018 Arm Limited 28

Security state established
with full exchange and
“indexed” with session
identifier.

Session resumption exchange
Second phase

ServerClient

ClientHello (+SessionID)

ServerHello

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application Data

Benefits:

• Few message exchanged
• Less bandwidth consumed
• Lower computational overhead

© 2018 Arm Limited 29

Negotiating the SessionTicket extension and issuing a ticket with the NewSessionTicket message.

The client caches the ticket along with the session information.

Session resumption without server-side state
First phase

ServerClient

ClientHello (+empty SessionTicket)

ServerHello (+empty SessionTicket),
Certificate*, ServerKeyExchange*,

CertificateRequest*, ServerHelloDone

Certificate*, ClientKeyExchange,

CertificateVerify*, [ChangeCipherSpec], Finished

NewSessionTicket, [ChangeCipherSpec], Finished

Application Data

© 2018 Arm Limited 30

Ticket stores the session state including the master_secret, client authentication type, client identity, etc.

Specified in RFC 5077.

Session resumption without server-side state
Second phase

ServerClient

ClientHello (+SessionTicket extension)

ServerHello

(empty SessionTicket extension)

NewSessionTicket

[ChangeCipherSpec]

Finished

[ChangeCipherSpec]

Finished

Application Data

Benefits:

• Same as session resumption.
• Increased scalability due to

distributed session state storage

http://tools.ietf.org/html/rfc5077

© 2018 Arm Limited 31

TLS cached info
TLS exchanges lots of fairly static
information.

• Certificates

• List of acceptable certification authorities

Idea: Cache information on the client and
avoid sending it unless it changes.

TLS Cached Info specification is published
in RFC 7924.

Allows to cache server certificate and
certificate request.

Client-side certificate can be omitted by
sending a Certificate URI extension
instead, which is specified in RFC 6066.

Client Server Size

ClientHello 121 bytes

ServerHello 87 bytes

Certificate 557 bytes

Server Key Exchange 215 bytes

Certificate Request 78 bytes

Server Hello Done 4 bytes

Certificate 570 bytes

Client Key Exchange 138 bytes

Certificate Verify 80 bytes

Change Cipher Spec

Protocol

1 byte

TLS Finished 40 bytes

Change Cipher Spec 1 byte

TLS Finished 40 bytes

https://tools.ietf.org/html/rfc7924
https://tools.ietf.org/html/rfc6066

© 2018 Arm Limited 32

Raw public key (RPK) extension (RFC 7250) re-uses the existing TLS Certificate message to
convey the raw public key encoded in the SubjectPublicKeyInfo structure.

Maximum Fragment Length (MFL) extension (RFC 6066) allows the client to indicate to
the server how much maximum memory buffers it uses for incoming messages.

Trusted CA Indication extension (RFC 6066) allows clients to indicate what trust anchor
they support.

Note: Re-using TLS code at multiple layers helps to lower the overall code requirements.

Further TLS extensions for performance improvement

http://tools.ietf.org/html/rfc7250
http://tools.ietf.org/html/rfc6066
http://tools.ietf.org/html/rfc6066

© 2018 Arm Limited

Hands-on

(Session Resumption)

© 2018 Arm Limited 34

config.h settings for session resumption
• No additions needed for plain session resumption.

• Only one parameter for RFC 5077 session resumption without server-side state:
MBEDTLS_SSL_SESSION_TICKETS

© 2018 Arm Limited 35

Mbed TLS client application code

Initial exchange

1. Initialize TLS session data

2. Initialize the RNG

3. Establish TCP connection

4. Configure TLS

5. Run full TLS handshake protocol

6. Exchange application data

7. Encounter error

Subsequent exchanges

8. Set session state

9. Establish TCP connection

10. Run TLS session resumption

11. Exchange application data

12. Tear down communication and free
state

Initialize session
resumption state

Configure session resumption
without server-side state

Free session
resumption state

© 2018 Arm Limited

Conclusion

© 2018 Arm Limited 37

Summary

• PSK-based ciphersuites provide great performance.

• Certificate-based ciphersuites provide an alternative where the private key
is not shared.

• Public key crypto is more challenging to performance.

• This performance impact can partially be mitigated using TLS extensions,
such as session resumption.

3838 © 2018 Arm Limited

The Arm trademarks featured in this
presentation are registered trademarks or
trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. All rights
reserved. All other marks featured may be
trademarks of their respective owners.

www.arm.com/company/policies/trademarks

