

© 2018 Arm Limited

Securing IoT Applications with mbed TLS Hannes Tschofenig

Part#3:

July 2018 Munich

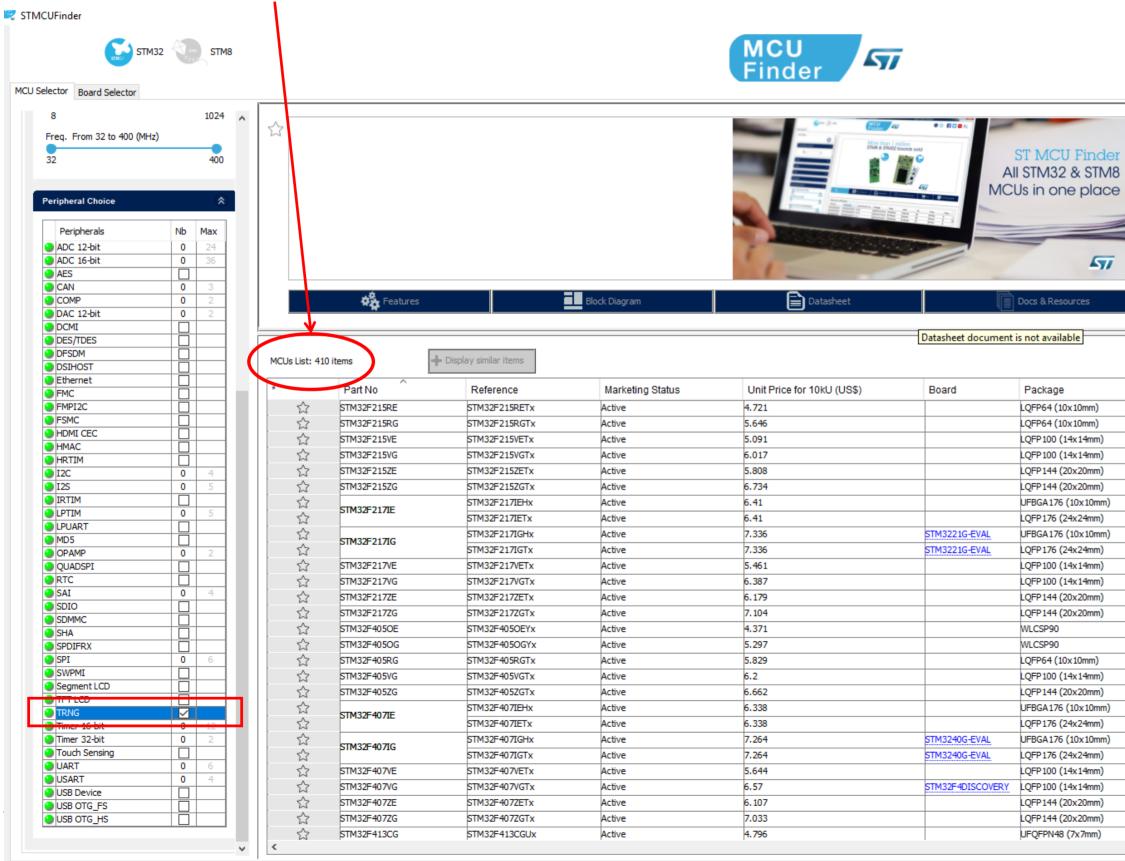
Why should we talk about RNGs?

- The importance of random numbers for security protocols was already discussed in the first webinar.
- As a reminder, watch Paul Bakker talk about "Entropy Requirements in IoT" on the Arm mbed Youtube channel.
- Example code so far did not use an RNG because of the following "development only" settings in the mbedTLS config.h file:
 - #define MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES •
 - #define MBEDTLS_TEST_NULL_ENTROPY •
- A compile-time warning is the result: THIS BUILD IS *NOT* SUITABLE FOR PRODUCTION USE
- We will enhance our code to make use of a hardware-based random number generator.

Our Hardware

Keil Evaluation Board

- We are still using the <u>Keil MCBSTM32F400 Evaluation Board</u>, which uses the STM32F407IG MCU.
- This MCU uses an Arm Cortex M4 processor and offers a hardware-based random number generator.



RNG Availability?

ST alone offers 410 MCUs with RNG support. This is only ST and other vendors have similar offers. •

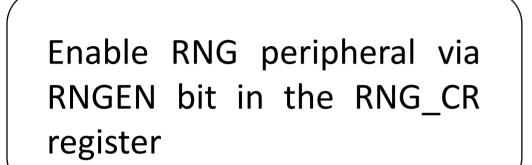
Buy		🕡 STM32CubeMX		
Flash	RAM	Ю	Freq.	
512 kBytes	128 kBytes	51	120 MHz	
1024 kBytes	128 kBytes	51	120 MHz	
512 kBytes	128 kBytes	82	120 MHz	
1024 kBytes	128 kBytes	82	120 MHz	
512 kBytes	128 kBytes	114	120 MHz	
1024 kBytes	128 kBytes	114	120 MHz	
512 kBytes	128 kBytes	140	120 MHz	
512 kBytes	128 kBytes	140	120 MHz	
1024 kBytes	128 kBytes	140	120 MHz	
1024 kBytes	128 kBytes	140	120 MHz	
512 kBytes	128 kBytes	82	120 MHz	
1024 kBytes	128 kBytes	82	120 MHz	
512 kBytes	128 kBytes	114	120 MHz	
1024 kBytes	128 kBytes	114	120 MHz	
512 kBytes	192 kBytes	72	168 MHz	
1024 kBytes	192 kBytes	72	168 MHz	
1024 kBytes	192 kBytes	51	168 MHz	
1024 kBytes	192 kBytes	82	168 MHz	
1024 kBytes	192 kBytes	114	168 MHz	
512 kBytes 512 kBytes	192 kBytes 192 kBytes	140	168 MHz 168 MHz	
1024 kBytes	192 kBytes	140	168 MHz	
1024 kBytes 1024 kBytes	192 kBytes	140	168 MHz	
512 kBytes	192 kBytes	82	168 MHz	
1024 kBytes	192 kBytes	82	168 MHz	
512 kBytes	192 kBytes	114	168 MHz	
1024 kBytes	192 kBytes	114	168 MHz	

arm

Accessing the RNG

STM32F407IG RNG

- The STM32F407IG product webpage contains pointers to reference manuals, including **RM0090**.
- Section 24 describes the RNG functionality. In a nutshell:
 - The RNG delivers a 32-bit random number with every access.
 - The peripheral is attached to the AHB2 bus and is memory mapped.
 - The RNG can be operated in two modes; in an Interrupt-driven mode and in a polling mode.
 - There are three registers dedicated to the use with the RNG, namely (1) a control register (CR), a status register (SR), and a data register (DR).

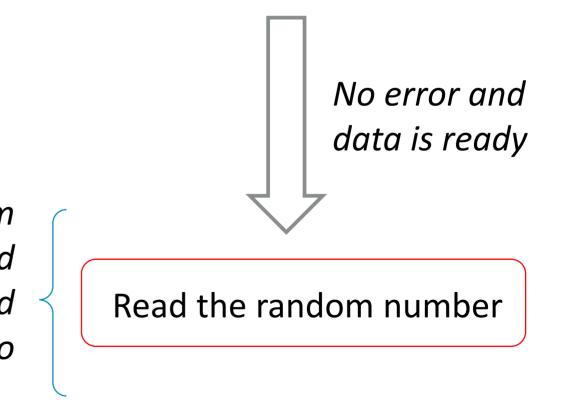


RNG Register Map

	Register	Register size				
Offset	name reset value	33 34 35 36 37 38 39 30				
0x00	RNG_CR 0x0000000	Reserved Reserved				
0x04	RNG_SR 0x0000000	Reserved SISS SOBO				
0x08	RNG_DR 0x0000000	RNDATA[31:0]				

arm

Steps for accessing the RNG

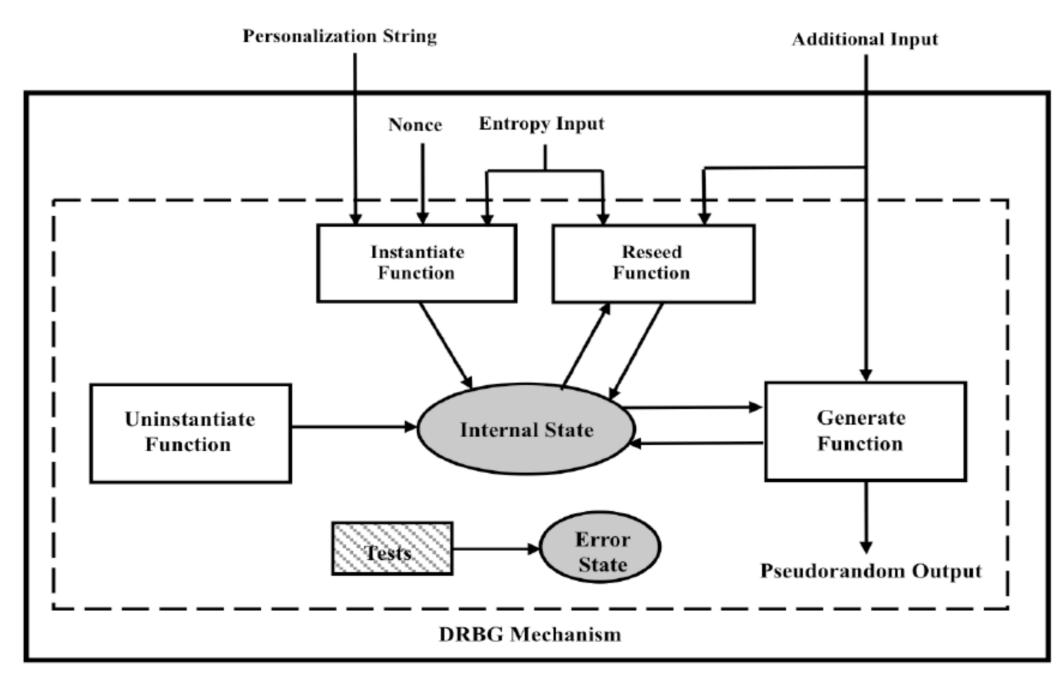

Note: The first random number generated after setting the RNGEN bit should not be used, according to FIPS (Federal Information Processing Standard Publication) PUB 140-2.

Note: Each generated random number has to be compared with the previously generated number. The test fails if any two compared numbers are equal.

Check for errors and random number availability

Perform three checks via the RNG_SR register:1. Is there a seed error? (SEIS bit)2. Is there a clock error? (CEIS bit)3. Is a random number ready? (DRDY bit)

Hands-On: **Testing the RNG Hardware**



NIST SP 800-90A rev 1

Deterministic random bit generator (DRBG)

NIST SP 800-90A rev1 specifies the generation of random bits using deterministic methods based on either hash functions or block cipher algorithms.

Mbed TLS Entropy & DRBG API

Entropy accumulator implementation

// Entropy context structure
mbedtls_entropy_context entropy;

// Entropy context initialization
mbedtls_entropy_init(...)

// Adds an entropy source to poll
mbedtls_entropy_add_source(...)

Add our hardware-based RNG

// Free entropy context
mbedtls_entropy_free(...)

DRBG Mechanism Based on Block Ciphers

// CTR_DRBG context structure
mbedtls_ctr_drbg_context ctr_drbg;

// Initializes the CTR_DRBG context
mbedtls_ctr_drbg_init(...)

// Seed the CTR_DRBG
mbedtls_ctr_drbg_seed(...)

// Turns prediction resistance on or off
mbedtls_ctr_drbg_set_prediction_resistance(...)

// Clears CTR_CRBG context
mbedtls_ctr_drbg_free(...)

// Configure Mbed TLS with RNG callback

mbedtls_ssl_conf_rng(...)

Link with entropy context

Link with CTR_DRBG context

Hands-On: Integrating the RNG functionality

Summary

- Random numbers are important for security.
- Pick the appropriate hardware for your task. For our security application we need a hardware-based random number generator.
- Use your favorite MCU and follow the steps to integrate your RNG into mbed TLS.

